1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Alloction in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44 
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47 
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50 
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53 
54 struct dentry *debugfs_resctrl;
55 
56 void rdt_last_cmd_clear(void)
57 {
58 	lockdep_assert_held(&rdtgroup_mutex);
59 	seq_buf_clear(&last_cmd_status);
60 }
61 
62 void rdt_last_cmd_puts(const char *s)
63 {
64 	lockdep_assert_held(&rdtgroup_mutex);
65 	seq_buf_puts(&last_cmd_status, s);
66 }
67 
68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 	va_list ap;
71 
72 	va_start(ap, fmt);
73 	lockdep_assert_held(&rdtgroup_mutex);
74 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 	va_end(ap);
76 }
77 
78 /*
79  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80  * we can keep a bitmap of free CLOSIDs in a single integer.
81  *
82  * Using a global CLOSID across all resources has some advantages and
83  * some drawbacks:
84  * + We can simply set "current->closid" to assign a task to a resource
85  *   group.
86  * + Context switch code can avoid extra memory references deciding which
87  *   CLOSID to load into the PQR_ASSOC MSR
88  * - We give up some options in configuring resource groups across multi-socket
89  *   systems.
90  * - Our choices on how to configure each resource become progressively more
91  *   limited as the number of resources grows.
92  */
93 static int closid_free_map;
94 static int closid_free_map_len;
95 
96 int closids_supported(void)
97 {
98 	return closid_free_map_len;
99 }
100 
101 static void closid_init(void)
102 {
103 	struct rdt_resource *r;
104 	int rdt_min_closid = 32;
105 
106 	/* Compute rdt_min_closid across all resources */
107 	for_each_alloc_enabled_rdt_resource(r)
108 		rdt_min_closid = min(rdt_min_closid, r->num_closid);
109 
110 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111 
112 	/* CLOSID 0 is always reserved for the default group */
113 	closid_free_map &= ~1;
114 	closid_free_map_len = rdt_min_closid;
115 }
116 
117 static int closid_alloc(void)
118 {
119 	u32 closid = ffs(closid_free_map);
120 
121 	if (closid == 0)
122 		return -ENOSPC;
123 	closid--;
124 	closid_free_map &= ~(1 << closid);
125 
126 	return closid;
127 }
128 
129 void closid_free(int closid)
130 {
131 	closid_free_map |= 1 << closid;
132 }
133 
134 /**
135  * closid_allocated - test if provided closid is in use
136  * @closid: closid to be tested
137  *
138  * Return: true if @closid is currently associated with a resource group,
139  * false if @closid is free
140  */
141 static bool closid_allocated(unsigned int closid)
142 {
143 	return (closid_free_map & (1 << closid)) == 0;
144 }
145 
146 /**
147  * rdtgroup_mode_by_closid - Return mode of resource group with closid
148  * @closid: closid if the resource group
149  *
150  * Each resource group is associated with a @closid. Here the mode
151  * of a resource group can be queried by searching for it using its closid.
152  *
153  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154  */
155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 	struct rdtgroup *rdtgrp;
158 
159 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 		if (rdtgrp->closid == closid)
161 			return rdtgrp->mode;
162 	}
163 
164 	return RDT_NUM_MODES;
165 }
166 
167 static const char * const rdt_mode_str[] = {
168 	[RDT_MODE_SHAREABLE]		= "shareable",
169 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
170 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
171 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
172 };
173 
174 /**
175  * rdtgroup_mode_str - Return the string representation of mode
176  * @mode: the resource group mode as &enum rdtgroup_mode
177  *
178  * Return: string representation of valid mode, "unknown" otherwise
179  */
180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 		return "unknown";
184 
185 	return rdt_mode_str[mode];
186 }
187 
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 				.ia_uid = current_fsuid(),
193 				.ia_gid = current_fsgid(), };
194 
195 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 		return 0;
198 
199 	return kernfs_setattr(kn, &iattr);
200 }
201 
202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 	struct kernfs_node *kn;
205 	int ret;
206 
207 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 				  0, rft->kf_ops, rft, NULL, NULL);
210 	if (IS_ERR(kn))
211 		return PTR_ERR(kn);
212 
213 	ret = rdtgroup_kn_set_ugid(kn);
214 	if (ret) {
215 		kernfs_remove(kn);
216 		return ret;
217 	}
218 
219 	return 0;
220 }
221 
222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 	struct kernfs_open_file *of = m->private;
225 	struct rftype *rft = of->kn->priv;
226 
227 	if (rft->seq_show)
228 		return rft->seq_show(of, m, arg);
229 	return 0;
230 }
231 
232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 				   size_t nbytes, loff_t off)
234 {
235 	struct rftype *rft = of->kn->priv;
236 
237 	if (rft->write)
238 		return rft->write(of, buf, nbytes, off);
239 
240 	return -EINVAL;
241 }
242 
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 	.atomic_write_len	= PAGE_SIZE,
245 	.write			= rdtgroup_file_write,
246 	.seq_show		= rdtgroup_seqfile_show,
247 };
248 
249 static struct kernfs_ops kf_mondata_ops = {
250 	.atomic_write_len	= PAGE_SIZE,
251 	.seq_show		= rdtgroup_mondata_show,
252 };
253 
254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 	struct rftype *rft = of->kn->priv;
257 
258 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260 
261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 			      struct seq_file *s, void *v)
263 {
264 	struct rdtgroup *rdtgrp;
265 	struct cpumask *mask;
266 	int ret = 0;
267 
268 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
269 
270 	if (rdtgrp) {
271 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 			if (!rdtgrp->plr->d) {
273 				rdt_last_cmd_clear();
274 				rdt_last_cmd_puts("Cache domain offline\n");
275 				ret = -ENODEV;
276 			} else {
277 				mask = &rdtgrp->plr->d->cpu_mask;
278 				seq_printf(s, is_cpu_list(of) ?
279 					   "%*pbl\n" : "%*pb\n",
280 					   cpumask_pr_args(mask));
281 			}
282 		} else {
283 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 				   cpumask_pr_args(&rdtgrp->cpu_mask));
285 		}
286 	} else {
287 		ret = -ENOENT;
288 	}
289 	rdtgroup_kn_unlock(of->kn);
290 
291 	return ret;
292 }
293 
294 /*
295  * This is safe against resctrl_sched_in() called from __switch_to()
296  * because __switch_to() is executed with interrupts disabled. A local call
297  * from update_closid_rmid() is proteced against __switch_to() because
298  * preemption is disabled.
299  */
300 static void update_cpu_closid_rmid(void *info)
301 {
302 	struct rdtgroup *r = info;
303 
304 	if (r) {
305 		this_cpu_write(pqr_state.default_closid, r->closid);
306 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 	}
308 
309 	/*
310 	 * We cannot unconditionally write the MSR because the current
311 	 * executing task might have its own closid selected. Just reuse
312 	 * the context switch code.
313 	 */
314 	resctrl_sched_in();
315 }
316 
317 /*
318  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319  *
320  * Per task closids/rmids must have been set up before calling this function.
321  */
322 static void
323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 	int cpu = get_cpu();
326 
327 	if (cpumask_test_cpu(cpu, cpu_mask))
328 		update_cpu_closid_rmid(r);
329 	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 	put_cpu();
331 }
332 
333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 			  cpumask_var_t tmpmask)
335 {
336 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 	struct list_head *head;
338 
339 	/* Check whether cpus belong to parent ctrl group */
340 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 	if (cpumask_weight(tmpmask)) {
342 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 		return -EINVAL;
344 	}
345 
346 	/* Check whether cpus are dropped from this group */
347 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 	if (cpumask_weight(tmpmask)) {
349 		/* Give any dropped cpus to parent rdtgroup */
350 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 		update_closid_rmid(tmpmask, prgrp);
352 	}
353 
354 	/*
355 	 * If we added cpus, remove them from previous group that owned them
356 	 * and update per-cpu rmid
357 	 */
358 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 	if (cpumask_weight(tmpmask)) {
360 		head = &prgrp->mon.crdtgrp_list;
361 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 			if (crgrp == rdtgrp)
363 				continue;
364 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 				       tmpmask);
366 		}
367 		update_closid_rmid(tmpmask, rdtgrp);
368 	}
369 
370 	/* Done pushing/pulling - update this group with new mask */
371 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
372 
373 	return 0;
374 }
375 
376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 	struct rdtgroup *crgrp;
379 
380 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 	/* update the child mon group masks as well*/
382 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385 
386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 	struct rdtgroup *r, *crgrp;
390 	struct list_head *head;
391 
392 	/* Check whether cpus are dropped from this group */
393 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 	if (cpumask_weight(tmpmask)) {
395 		/* Can't drop from default group */
396 		if (rdtgrp == &rdtgroup_default) {
397 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 			return -EINVAL;
399 		}
400 
401 		/* Give any dropped cpus to rdtgroup_default */
402 		cpumask_or(&rdtgroup_default.cpu_mask,
403 			   &rdtgroup_default.cpu_mask, tmpmask);
404 		update_closid_rmid(tmpmask, &rdtgroup_default);
405 	}
406 
407 	/*
408 	 * If we added cpus, remove them from previous group and
409 	 * the prev group's child groups that owned them
410 	 * and update per-cpu closid/rmid.
411 	 */
412 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 	if (cpumask_weight(tmpmask)) {
414 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 			if (r == rdtgrp)
416 				continue;
417 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 			if (cpumask_weight(tmpmask1))
419 				cpumask_rdtgrp_clear(r, tmpmask1);
420 		}
421 		update_closid_rmid(tmpmask, rdtgrp);
422 	}
423 
424 	/* Done pushing/pulling - update this group with new mask */
425 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
426 
427 	/*
428 	 * Clear child mon group masks since there is a new parent mask
429 	 * now and update the rmid for the cpus the child lost.
430 	 */
431 	head = &rdtgrp->mon.crdtgrp_list;
432 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 		update_closid_rmid(tmpmask, rdtgrp);
435 		cpumask_clear(&crgrp->cpu_mask);
436 	}
437 
438 	return 0;
439 }
440 
441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 				   char *buf, size_t nbytes, loff_t off)
443 {
444 	cpumask_var_t tmpmask, newmask, tmpmask1;
445 	struct rdtgroup *rdtgrp;
446 	int ret;
447 
448 	if (!buf)
449 		return -EINVAL;
450 
451 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 		return -ENOMEM;
453 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 		free_cpumask_var(tmpmask);
455 		return -ENOMEM;
456 	}
457 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 		free_cpumask_var(tmpmask);
459 		free_cpumask_var(newmask);
460 		return -ENOMEM;
461 	}
462 
463 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 	if (!rdtgrp) {
465 		ret = -ENOENT;
466 		goto unlock;
467 	}
468 
469 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
470 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
471 		ret = -EINVAL;
472 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
473 		goto unlock;
474 	}
475 
476 	if (is_cpu_list(of))
477 		ret = cpulist_parse(buf, newmask);
478 	else
479 		ret = cpumask_parse(buf, newmask);
480 
481 	if (ret) {
482 		rdt_last_cmd_puts("Bad CPU list/mask\n");
483 		goto unlock;
484 	}
485 
486 	/* check that user didn't specify any offline cpus */
487 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
488 	if (cpumask_weight(tmpmask)) {
489 		ret = -EINVAL;
490 		rdt_last_cmd_puts("Can only assign online CPUs\n");
491 		goto unlock;
492 	}
493 
494 	if (rdtgrp->type == RDTCTRL_GROUP)
495 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
496 	else if (rdtgrp->type == RDTMON_GROUP)
497 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
498 	else
499 		ret = -EINVAL;
500 
501 unlock:
502 	rdtgroup_kn_unlock(of->kn);
503 	free_cpumask_var(tmpmask);
504 	free_cpumask_var(newmask);
505 	free_cpumask_var(tmpmask1);
506 
507 	return ret ?: nbytes;
508 }
509 
510 /**
511  * rdtgroup_remove - the helper to remove resource group safely
512  * @rdtgrp: resource group to remove
513  *
514  * On resource group creation via a mkdir, an extra kernfs_node reference is
515  * taken to ensure that the rdtgroup structure remains accessible for the
516  * rdtgroup_kn_unlock() calls where it is removed.
517  *
518  * Drop the extra reference here, then free the rdtgroup structure.
519  *
520  * Return: void
521  */
522 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
523 {
524 	kernfs_put(rdtgrp->kn);
525 	kfree(rdtgrp);
526 }
527 
528 static void _update_task_closid_rmid(void *task)
529 {
530 	/*
531 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
532 	 * Otherwise, the MSR is updated when the task is scheduled in.
533 	 */
534 	if (task == current)
535 		resctrl_sched_in();
536 }
537 
538 static void update_task_closid_rmid(struct task_struct *t)
539 {
540 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
541 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
542 	else
543 		_update_task_closid_rmid(t);
544 }
545 
546 static int __rdtgroup_move_task(struct task_struct *tsk,
547 				struct rdtgroup *rdtgrp)
548 {
549 	/*
550 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
551 	 * updated by them.
552 	 *
553 	 * For ctrl_mon groups, move both closid and rmid.
554 	 * For monitor groups, can move the tasks only from
555 	 * their parent CTRL group.
556 	 */
557 
558 	if (rdtgrp->type == RDTCTRL_GROUP) {
559 		tsk->closid = rdtgrp->closid;
560 		tsk->rmid = rdtgrp->mon.rmid;
561 	} else if (rdtgrp->type == RDTMON_GROUP) {
562 		if (rdtgrp->mon.parent->closid == tsk->closid) {
563 			tsk->rmid = rdtgrp->mon.rmid;
564 		} else {
565 			rdt_last_cmd_puts("Can't move task to different control group\n");
566 			return -EINVAL;
567 		}
568 	}
569 
570 	/*
571 	 * Ensure the task's closid and rmid are written before determining if
572 	 * the task is current that will decide if it will be interrupted.
573 	 */
574 	barrier();
575 
576 	/*
577 	 * By now, the task's closid and rmid are set. If the task is current
578 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
579 	 * group go into effect. If the task is not current, the MSR will be
580 	 * updated when the task is scheduled in.
581 	 */
582 	update_task_closid_rmid(tsk);
583 
584 	return 0;
585 }
586 
587 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
588 {
589 	return (rdt_alloc_capable &&
590 	       (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
591 }
592 
593 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
594 {
595 	return (rdt_mon_capable &&
596 	       (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
597 }
598 
599 /**
600  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
601  * @r: Resource group
602  *
603  * Return: 1 if tasks have been assigned to @r, 0 otherwise
604  */
605 int rdtgroup_tasks_assigned(struct rdtgroup *r)
606 {
607 	struct task_struct *p, *t;
608 	int ret = 0;
609 
610 	lockdep_assert_held(&rdtgroup_mutex);
611 
612 	rcu_read_lock();
613 	for_each_process_thread(p, t) {
614 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
615 			ret = 1;
616 			break;
617 		}
618 	}
619 	rcu_read_unlock();
620 
621 	return ret;
622 }
623 
624 static int rdtgroup_task_write_permission(struct task_struct *task,
625 					  struct kernfs_open_file *of)
626 {
627 	const struct cred *tcred = get_task_cred(task);
628 	const struct cred *cred = current_cred();
629 	int ret = 0;
630 
631 	/*
632 	 * Even if we're attaching all tasks in the thread group, we only
633 	 * need to check permissions on one of them.
634 	 */
635 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
636 	    !uid_eq(cred->euid, tcred->uid) &&
637 	    !uid_eq(cred->euid, tcred->suid)) {
638 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
639 		ret = -EPERM;
640 	}
641 
642 	put_cred(tcred);
643 	return ret;
644 }
645 
646 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
647 			      struct kernfs_open_file *of)
648 {
649 	struct task_struct *tsk;
650 	int ret;
651 
652 	rcu_read_lock();
653 	if (pid) {
654 		tsk = find_task_by_vpid(pid);
655 		if (!tsk) {
656 			rcu_read_unlock();
657 			rdt_last_cmd_printf("No task %d\n", pid);
658 			return -ESRCH;
659 		}
660 	} else {
661 		tsk = current;
662 	}
663 
664 	get_task_struct(tsk);
665 	rcu_read_unlock();
666 
667 	ret = rdtgroup_task_write_permission(tsk, of);
668 	if (!ret)
669 		ret = __rdtgroup_move_task(tsk, rdtgrp);
670 
671 	put_task_struct(tsk);
672 	return ret;
673 }
674 
675 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
676 				    char *buf, size_t nbytes, loff_t off)
677 {
678 	struct rdtgroup *rdtgrp;
679 	int ret = 0;
680 	pid_t pid;
681 
682 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
683 		return -EINVAL;
684 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
685 	if (!rdtgrp) {
686 		rdtgroup_kn_unlock(of->kn);
687 		return -ENOENT;
688 	}
689 	rdt_last_cmd_clear();
690 
691 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
692 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
693 		ret = -EINVAL;
694 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
695 		goto unlock;
696 	}
697 
698 	ret = rdtgroup_move_task(pid, rdtgrp, of);
699 
700 unlock:
701 	rdtgroup_kn_unlock(of->kn);
702 
703 	return ret ?: nbytes;
704 }
705 
706 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
707 {
708 	struct task_struct *p, *t;
709 
710 	rcu_read_lock();
711 	for_each_process_thread(p, t) {
712 		if (is_closid_match(t, r) || is_rmid_match(t, r))
713 			seq_printf(s, "%d\n", t->pid);
714 	}
715 	rcu_read_unlock();
716 }
717 
718 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
719 			       struct seq_file *s, void *v)
720 {
721 	struct rdtgroup *rdtgrp;
722 	int ret = 0;
723 
724 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
725 	if (rdtgrp)
726 		show_rdt_tasks(rdtgrp, s);
727 	else
728 		ret = -ENOENT;
729 	rdtgroup_kn_unlock(of->kn);
730 
731 	return ret;
732 }
733 
734 #ifdef CONFIG_PROC_CPU_RESCTRL
735 
736 /*
737  * A task can only be part of one resctrl control group and of one monitor
738  * group which is associated to that control group.
739  *
740  * 1)   res:
741  *      mon:
742  *
743  *    resctrl is not available.
744  *
745  * 2)   res:/
746  *      mon:
747  *
748  *    Task is part of the root resctrl control group, and it is not associated
749  *    to any monitor group.
750  *
751  * 3)  res:/
752  *     mon:mon0
753  *
754  *    Task is part of the root resctrl control group and monitor group mon0.
755  *
756  * 4)  res:group0
757  *     mon:
758  *
759  *    Task is part of resctrl control group group0, and it is not associated
760  *    to any monitor group.
761  *
762  * 5) res:group0
763  *    mon:mon1
764  *
765  *    Task is part of resctrl control group group0 and monitor group mon1.
766  */
767 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
768 		      struct pid *pid, struct task_struct *tsk)
769 {
770 	struct rdtgroup *rdtg;
771 	int ret = 0;
772 
773 	mutex_lock(&rdtgroup_mutex);
774 
775 	/* Return empty if resctrl has not been mounted. */
776 	if (!static_branch_unlikely(&rdt_enable_key)) {
777 		seq_puts(s, "res:\nmon:\n");
778 		goto unlock;
779 	}
780 
781 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
782 		struct rdtgroup *crg;
783 
784 		/*
785 		 * Task information is only relevant for shareable
786 		 * and exclusive groups.
787 		 */
788 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
789 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
790 			continue;
791 
792 		if (rdtg->closid != tsk->closid)
793 			continue;
794 
795 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
796 			   rdtg->kn->name);
797 		seq_puts(s, "mon:");
798 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
799 				    mon.crdtgrp_list) {
800 			if (tsk->rmid != crg->mon.rmid)
801 				continue;
802 			seq_printf(s, "%s", crg->kn->name);
803 			break;
804 		}
805 		seq_putc(s, '\n');
806 		goto unlock;
807 	}
808 	/*
809 	 * The above search should succeed. Otherwise return
810 	 * with an error.
811 	 */
812 	ret = -ENOENT;
813 unlock:
814 	mutex_unlock(&rdtgroup_mutex);
815 
816 	return ret;
817 }
818 #endif
819 
820 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
821 				    struct seq_file *seq, void *v)
822 {
823 	int len;
824 
825 	mutex_lock(&rdtgroup_mutex);
826 	len = seq_buf_used(&last_cmd_status);
827 	if (len)
828 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
829 	else
830 		seq_puts(seq, "ok\n");
831 	mutex_unlock(&rdtgroup_mutex);
832 	return 0;
833 }
834 
835 static int rdt_num_closids_show(struct kernfs_open_file *of,
836 				struct seq_file *seq, void *v)
837 {
838 	struct rdt_resource *r = of->kn->parent->priv;
839 
840 	seq_printf(seq, "%d\n", r->num_closid);
841 	return 0;
842 }
843 
844 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
845 			     struct seq_file *seq, void *v)
846 {
847 	struct rdt_resource *r = of->kn->parent->priv;
848 
849 	seq_printf(seq, "%x\n", r->default_ctrl);
850 	return 0;
851 }
852 
853 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
854 			     struct seq_file *seq, void *v)
855 {
856 	struct rdt_resource *r = of->kn->parent->priv;
857 
858 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
859 	return 0;
860 }
861 
862 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
863 				   struct seq_file *seq, void *v)
864 {
865 	struct rdt_resource *r = of->kn->parent->priv;
866 
867 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
868 	return 0;
869 }
870 
871 /**
872  * rdt_bit_usage_show - Display current usage of resources
873  *
874  * A domain is a shared resource that can now be allocated differently. Here
875  * we display the current regions of the domain as an annotated bitmask.
876  * For each domain of this resource its allocation bitmask
877  * is annotated as below to indicate the current usage of the corresponding bit:
878  *   0 - currently unused
879  *   X - currently available for sharing and used by software and hardware
880  *   H - currently used by hardware only but available for software use
881  *   S - currently used and shareable by software only
882  *   E - currently used exclusively by one resource group
883  *   P - currently pseudo-locked by one resource group
884  */
885 static int rdt_bit_usage_show(struct kernfs_open_file *of,
886 			      struct seq_file *seq, void *v)
887 {
888 	struct rdt_resource *r = of->kn->parent->priv;
889 	/*
890 	 * Use unsigned long even though only 32 bits are used to ensure
891 	 * test_bit() is used safely.
892 	 */
893 	unsigned long sw_shareable = 0, hw_shareable = 0;
894 	unsigned long exclusive = 0, pseudo_locked = 0;
895 	struct rdt_domain *dom;
896 	int i, hwb, swb, excl, psl;
897 	enum rdtgrp_mode mode;
898 	bool sep = false;
899 	u32 *ctrl;
900 
901 	mutex_lock(&rdtgroup_mutex);
902 	hw_shareable = r->cache.shareable_bits;
903 	list_for_each_entry(dom, &r->domains, list) {
904 		if (sep)
905 			seq_putc(seq, ';');
906 		ctrl = dom->ctrl_val;
907 		sw_shareable = 0;
908 		exclusive = 0;
909 		seq_printf(seq, "%d=", dom->id);
910 		for (i = 0; i < closids_supported(); i++, ctrl++) {
911 			if (!closid_allocated(i))
912 				continue;
913 			mode = rdtgroup_mode_by_closid(i);
914 			switch (mode) {
915 			case RDT_MODE_SHAREABLE:
916 				sw_shareable |= *ctrl;
917 				break;
918 			case RDT_MODE_EXCLUSIVE:
919 				exclusive |= *ctrl;
920 				break;
921 			case RDT_MODE_PSEUDO_LOCKSETUP:
922 			/*
923 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
924 			 * here but not included since the CBM
925 			 * associated with this CLOSID in this mode
926 			 * is not initialized and no task or cpu can be
927 			 * assigned this CLOSID.
928 			 */
929 				break;
930 			case RDT_MODE_PSEUDO_LOCKED:
931 			case RDT_NUM_MODES:
932 				WARN(1,
933 				     "invalid mode for closid %d\n", i);
934 				break;
935 			}
936 		}
937 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
938 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
939 			hwb = test_bit(i, &hw_shareable);
940 			swb = test_bit(i, &sw_shareable);
941 			excl = test_bit(i, &exclusive);
942 			psl = test_bit(i, &pseudo_locked);
943 			if (hwb && swb)
944 				seq_putc(seq, 'X');
945 			else if (hwb && !swb)
946 				seq_putc(seq, 'H');
947 			else if (!hwb && swb)
948 				seq_putc(seq, 'S');
949 			else if (excl)
950 				seq_putc(seq, 'E');
951 			else if (psl)
952 				seq_putc(seq, 'P');
953 			else /* Unused bits remain */
954 				seq_putc(seq, '0');
955 		}
956 		sep = true;
957 	}
958 	seq_putc(seq, '\n');
959 	mutex_unlock(&rdtgroup_mutex);
960 	return 0;
961 }
962 
963 static int rdt_min_bw_show(struct kernfs_open_file *of,
964 			     struct seq_file *seq, void *v)
965 {
966 	struct rdt_resource *r = of->kn->parent->priv;
967 
968 	seq_printf(seq, "%u\n", r->membw.min_bw);
969 	return 0;
970 }
971 
972 static int rdt_num_rmids_show(struct kernfs_open_file *of,
973 			      struct seq_file *seq, void *v)
974 {
975 	struct rdt_resource *r = of->kn->parent->priv;
976 
977 	seq_printf(seq, "%d\n", r->num_rmid);
978 
979 	return 0;
980 }
981 
982 static int rdt_mon_features_show(struct kernfs_open_file *of,
983 				 struct seq_file *seq, void *v)
984 {
985 	struct rdt_resource *r = of->kn->parent->priv;
986 	struct mon_evt *mevt;
987 
988 	list_for_each_entry(mevt, &r->evt_list, list)
989 		seq_printf(seq, "%s\n", mevt->name);
990 
991 	return 0;
992 }
993 
994 static int rdt_bw_gran_show(struct kernfs_open_file *of,
995 			     struct seq_file *seq, void *v)
996 {
997 	struct rdt_resource *r = of->kn->parent->priv;
998 
999 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1000 	return 0;
1001 }
1002 
1003 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1004 			     struct seq_file *seq, void *v)
1005 {
1006 	struct rdt_resource *r = of->kn->parent->priv;
1007 
1008 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1009 	return 0;
1010 }
1011 
1012 static int max_threshold_occ_show(struct kernfs_open_file *of,
1013 				  struct seq_file *seq, void *v)
1014 {
1015 	struct rdt_resource *r = of->kn->parent->priv;
1016 
1017 	seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
1018 
1019 	return 0;
1020 }
1021 
1022 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1023 					 struct seq_file *seq, void *v)
1024 {
1025 	struct rdt_resource *r = of->kn->parent->priv;
1026 
1027 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1028 		seq_puts(seq, "per-thread\n");
1029 	else
1030 		seq_puts(seq, "max\n");
1031 
1032 	return 0;
1033 }
1034 
1035 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1036 				       char *buf, size_t nbytes, loff_t off)
1037 {
1038 	struct rdt_resource *r = of->kn->parent->priv;
1039 	unsigned int bytes;
1040 	int ret;
1041 
1042 	ret = kstrtouint(buf, 0, &bytes);
1043 	if (ret)
1044 		return ret;
1045 
1046 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
1047 		return -EINVAL;
1048 
1049 	resctrl_cqm_threshold = bytes / r->mon_scale;
1050 
1051 	return nbytes;
1052 }
1053 
1054 /*
1055  * rdtgroup_mode_show - Display mode of this resource group
1056  */
1057 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1058 			      struct seq_file *s, void *v)
1059 {
1060 	struct rdtgroup *rdtgrp;
1061 
1062 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1063 	if (!rdtgrp) {
1064 		rdtgroup_kn_unlock(of->kn);
1065 		return -ENOENT;
1066 	}
1067 
1068 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1069 
1070 	rdtgroup_kn_unlock(of->kn);
1071 	return 0;
1072 }
1073 
1074 /**
1075  * rdt_cdp_peer_get - Retrieve CDP peer if it exists
1076  * @r: RDT resource to which RDT domain @d belongs
1077  * @d: Cache instance for which a CDP peer is requested
1078  * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
1079  *         Used to return the result.
1080  * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
1081  *         Used to return the result.
1082  *
1083  * RDT resources are managed independently and by extension the RDT domains
1084  * (RDT resource instances) are managed independently also. The Code and
1085  * Data Prioritization (CDP) RDT resources, while managed independently,
1086  * could refer to the same underlying hardware. For example,
1087  * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
1088  *
1089  * When provided with an RDT resource @r and an instance of that RDT
1090  * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
1091  * resource and the exact instance that shares the same hardware.
1092  *
1093  * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
1094  *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
1095  *         and @d_cdp will point to the peer RDT domain.
1096  */
1097 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
1098 			    struct rdt_resource **r_cdp,
1099 			    struct rdt_domain **d_cdp)
1100 {
1101 	struct rdt_resource *_r_cdp = NULL;
1102 	struct rdt_domain *_d_cdp = NULL;
1103 	int ret = 0;
1104 
1105 	switch (r->rid) {
1106 	case RDT_RESOURCE_L3DATA:
1107 		_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1108 		break;
1109 	case RDT_RESOURCE_L3CODE:
1110 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1111 		break;
1112 	case RDT_RESOURCE_L2DATA:
1113 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1114 		break;
1115 	case RDT_RESOURCE_L2CODE:
1116 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1117 		break;
1118 	default:
1119 		ret = -ENOENT;
1120 		goto out;
1121 	}
1122 
1123 	/*
1124 	 * When a new CPU comes online and CDP is enabled then the new
1125 	 * RDT domains (if any) associated with both CDP RDT resources
1126 	 * are added in the same CPU online routine while the
1127 	 * rdtgroup_mutex is held. It should thus not happen for one
1128 	 * RDT domain to exist and be associated with its RDT CDP
1129 	 * resource but there is no RDT domain associated with the
1130 	 * peer RDT CDP resource. Hence the WARN.
1131 	 */
1132 	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1133 	if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1134 		_r_cdp = NULL;
1135 		_d_cdp = NULL;
1136 		ret = -EINVAL;
1137 	}
1138 
1139 out:
1140 	*r_cdp = _r_cdp;
1141 	*d_cdp = _d_cdp;
1142 
1143 	return ret;
1144 }
1145 
1146 /**
1147  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1148  * @r: Resource to which domain instance @d belongs.
1149  * @d: The domain instance for which @closid is being tested.
1150  * @cbm: Capacity bitmask being tested.
1151  * @closid: Intended closid for @cbm.
1152  * @exclusive: Only check if overlaps with exclusive resource groups
1153  *
1154  * Checks if provided @cbm intended to be used for @closid on domain
1155  * @d overlaps with any other closids or other hardware usage associated
1156  * with this domain. If @exclusive is true then only overlaps with
1157  * resource groups in exclusive mode will be considered. If @exclusive
1158  * is false then overlaps with any resource group or hardware entities
1159  * will be considered.
1160  *
1161  * @cbm is unsigned long, even if only 32 bits are used, to make the
1162  * bitmap functions work correctly.
1163  *
1164  * Return: false if CBM does not overlap, true if it does.
1165  */
1166 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1167 				    unsigned long cbm, int closid, bool exclusive)
1168 {
1169 	enum rdtgrp_mode mode;
1170 	unsigned long ctrl_b;
1171 	u32 *ctrl;
1172 	int i;
1173 
1174 	/* Check for any overlap with regions used by hardware directly */
1175 	if (!exclusive) {
1176 		ctrl_b = r->cache.shareable_bits;
1177 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1178 			return true;
1179 	}
1180 
1181 	/* Check for overlap with other resource groups */
1182 	ctrl = d->ctrl_val;
1183 	for (i = 0; i < closids_supported(); i++, ctrl++) {
1184 		ctrl_b = *ctrl;
1185 		mode = rdtgroup_mode_by_closid(i);
1186 		if (closid_allocated(i) && i != closid &&
1187 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1188 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1189 				if (exclusive) {
1190 					if (mode == RDT_MODE_EXCLUSIVE)
1191 						return true;
1192 					continue;
1193 				}
1194 				return true;
1195 			}
1196 		}
1197 	}
1198 
1199 	return false;
1200 }
1201 
1202 /**
1203  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1204  * @r: Resource to which domain instance @d belongs.
1205  * @d: The domain instance for which @closid is being tested.
1206  * @cbm: Capacity bitmask being tested.
1207  * @closid: Intended closid for @cbm.
1208  * @exclusive: Only check if overlaps with exclusive resource groups
1209  *
1210  * Resources that can be allocated using a CBM can use the CBM to control
1211  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1212  * for overlap. Overlap test is not limited to the specific resource for
1213  * which the CBM is intended though - when dealing with CDP resources that
1214  * share the underlying hardware the overlap check should be performed on
1215  * the CDP resource sharing the hardware also.
1216  *
1217  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1218  * overlap test.
1219  *
1220  * Return: true if CBM overlap detected, false if there is no overlap
1221  */
1222 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1223 			   unsigned long cbm, int closid, bool exclusive)
1224 {
1225 	struct rdt_resource *r_cdp;
1226 	struct rdt_domain *d_cdp;
1227 
1228 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1229 		return true;
1230 
1231 	if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1232 		return false;
1233 
1234 	return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1235 }
1236 
1237 /**
1238  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1239  *
1240  * An exclusive resource group implies that there should be no sharing of
1241  * its allocated resources. At the time this group is considered to be
1242  * exclusive this test can determine if its current schemata supports this
1243  * setting by testing for overlap with all other resource groups.
1244  *
1245  * Return: true if resource group can be exclusive, false if there is overlap
1246  * with allocations of other resource groups and thus this resource group
1247  * cannot be exclusive.
1248  */
1249 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1250 {
1251 	int closid = rdtgrp->closid;
1252 	struct rdt_resource *r;
1253 	bool has_cache = false;
1254 	struct rdt_domain *d;
1255 
1256 	for_each_alloc_enabled_rdt_resource(r) {
1257 		if (r->rid == RDT_RESOURCE_MBA)
1258 			continue;
1259 		has_cache = true;
1260 		list_for_each_entry(d, &r->domains, list) {
1261 			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1262 						  rdtgrp->closid, false)) {
1263 				rdt_last_cmd_puts("Schemata overlaps\n");
1264 				return false;
1265 			}
1266 		}
1267 	}
1268 
1269 	if (!has_cache) {
1270 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1271 		return false;
1272 	}
1273 
1274 	return true;
1275 }
1276 
1277 /**
1278  * rdtgroup_mode_write - Modify the resource group's mode
1279  *
1280  */
1281 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1282 				   char *buf, size_t nbytes, loff_t off)
1283 {
1284 	struct rdtgroup *rdtgrp;
1285 	enum rdtgrp_mode mode;
1286 	int ret = 0;
1287 
1288 	/* Valid input requires a trailing newline */
1289 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1290 		return -EINVAL;
1291 	buf[nbytes - 1] = '\0';
1292 
1293 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1294 	if (!rdtgrp) {
1295 		rdtgroup_kn_unlock(of->kn);
1296 		return -ENOENT;
1297 	}
1298 
1299 	rdt_last_cmd_clear();
1300 
1301 	mode = rdtgrp->mode;
1302 
1303 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1304 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1305 	    (!strcmp(buf, "pseudo-locksetup") &&
1306 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1307 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1308 		goto out;
1309 
1310 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1311 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1312 		ret = -EINVAL;
1313 		goto out;
1314 	}
1315 
1316 	if (!strcmp(buf, "shareable")) {
1317 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1318 			ret = rdtgroup_locksetup_exit(rdtgrp);
1319 			if (ret)
1320 				goto out;
1321 		}
1322 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1323 	} else if (!strcmp(buf, "exclusive")) {
1324 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1325 			ret = -EINVAL;
1326 			goto out;
1327 		}
1328 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1329 			ret = rdtgroup_locksetup_exit(rdtgrp);
1330 			if (ret)
1331 				goto out;
1332 		}
1333 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1334 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1335 		ret = rdtgroup_locksetup_enter(rdtgrp);
1336 		if (ret)
1337 			goto out;
1338 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1339 	} else {
1340 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1341 		ret = -EINVAL;
1342 	}
1343 
1344 out:
1345 	rdtgroup_kn_unlock(of->kn);
1346 	return ret ?: nbytes;
1347 }
1348 
1349 /**
1350  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1351  * @r: RDT resource to which @d belongs.
1352  * @d: RDT domain instance.
1353  * @cbm: bitmask for which the size should be computed.
1354  *
1355  * The bitmask provided associated with the RDT domain instance @d will be
1356  * translated into how many bytes it represents. The size in bytes is
1357  * computed by first dividing the total cache size by the CBM length to
1358  * determine how many bytes each bit in the bitmask represents. The result
1359  * is multiplied with the number of bits set in the bitmask.
1360  *
1361  * @cbm is unsigned long, even if only 32 bits are used to make the
1362  * bitmap functions work correctly.
1363  */
1364 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1365 				  struct rdt_domain *d, unsigned long cbm)
1366 {
1367 	struct cpu_cacheinfo *ci;
1368 	unsigned int size = 0;
1369 	int num_b, i;
1370 
1371 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1372 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1373 	for (i = 0; i < ci->num_leaves; i++) {
1374 		if (ci->info_list[i].level == r->cache_level) {
1375 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1376 			break;
1377 		}
1378 	}
1379 
1380 	return size;
1381 }
1382 
1383 /**
1384  * rdtgroup_size_show - Display size in bytes of allocated regions
1385  *
1386  * The "size" file mirrors the layout of the "schemata" file, printing the
1387  * size in bytes of each region instead of the capacity bitmask.
1388  *
1389  */
1390 static int rdtgroup_size_show(struct kernfs_open_file *of,
1391 			      struct seq_file *s, void *v)
1392 {
1393 	struct rdtgroup *rdtgrp;
1394 	struct rdt_resource *r;
1395 	struct rdt_domain *d;
1396 	unsigned int size;
1397 	int ret = 0;
1398 	bool sep;
1399 	u32 ctrl;
1400 
1401 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1402 	if (!rdtgrp) {
1403 		rdtgroup_kn_unlock(of->kn);
1404 		return -ENOENT;
1405 	}
1406 
1407 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1408 		if (!rdtgrp->plr->d) {
1409 			rdt_last_cmd_clear();
1410 			rdt_last_cmd_puts("Cache domain offline\n");
1411 			ret = -ENODEV;
1412 		} else {
1413 			seq_printf(s, "%*s:", max_name_width,
1414 				   rdtgrp->plr->r->name);
1415 			size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1416 						    rdtgrp->plr->d,
1417 						    rdtgrp->plr->cbm);
1418 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1419 		}
1420 		goto out;
1421 	}
1422 
1423 	for_each_alloc_enabled_rdt_resource(r) {
1424 		sep = false;
1425 		seq_printf(s, "%*s:", max_name_width, r->name);
1426 		list_for_each_entry(d, &r->domains, list) {
1427 			if (sep)
1428 				seq_putc(s, ';');
1429 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1430 				size = 0;
1431 			} else {
1432 				ctrl = (!is_mba_sc(r) ?
1433 						d->ctrl_val[rdtgrp->closid] :
1434 						d->mbps_val[rdtgrp->closid]);
1435 				if (r->rid == RDT_RESOURCE_MBA)
1436 					size = ctrl;
1437 				else
1438 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1439 			}
1440 			seq_printf(s, "%d=%u", d->id, size);
1441 			sep = true;
1442 		}
1443 		seq_putc(s, '\n');
1444 	}
1445 
1446 out:
1447 	rdtgroup_kn_unlock(of->kn);
1448 
1449 	return ret;
1450 }
1451 
1452 /* rdtgroup information files for one cache resource. */
1453 static struct rftype res_common_files[] = {
1454 	{
1455 		.name		= "last_cmd_status",
1456 		.mode		= 0444,
1457 		.kf_ops		= &rdtgroup_kf_single_ops,
1458 		.seq_show	= rdt_last_cmd_status_show,
1459 		.fflags		= RF_TOP_INFO,
1460 	},
1461 	{
1462 		.name		= "num_closids",
1463 		.mode		= 0444,
1464 		.kf_ops		= &rdtgroup_kf_single_ops,
1465 		.seq_show	= rdt_num_closids_show,
1466 		.fflags		= RF_CTRL_INFO,
1467 	},
1468 	{
1469 		.name		= "mon_features",
1470 		.mode		= 0444,
1471 		.kf_ops		= &rdtgroup_kf_single_ops,
1472 		.seq_show	= rdt_mon_features_show,
1473 		.fflags		= RF_MON_INFO,
1474 	},
1475 	{
1476 		.name		= "num_rmids",
1477 		.mode		= 0444,
1478 		.kf_ops		= &rdtgroup_kf_single_ops,
1479 		.seq_show	= rdt_num_rmids_show,
1480 		.fflags		= RF_MON_INFO,
1481 	},
1482 	{
1483 		.name		= "cbm_mask",
1484 		.mode		= 0444,
1485 		.kf_ops		= &rdtgroup_kf_single_ops,
1486 		.seq_show	= rdt_default_ctrl_show,
1487 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1488 	},
1489 	{
1490 		.name		= "min_cbm_bits",
1491 		.mode		= 0444,
1492 		.kf_ops		= &rdtgroup_kf_single_ops,
1493 		.seq_show	= rdt_min_cbm_bits_show,
1494 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1495 	},
1496 	{
1497 		.name		= "shareable_bits",
1498 		.mode		= 0444,
1499 		.kf_ops		= &rdtgroup_kf_single_ops,
1500 		.seq_show	= rdt_shareable_bits_show,
1501 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1502 	},
1503 	{
1504 		.name		= "bit_usage",
1505 		.mode		= 0444,
1506 		.kf_ops		= &rdtgroup_kf_single_ops,
1507 		.seq_show	= rdt_bit_usage_show,
1508 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1509 	},
1510 	{
1511 		.name		= "min_bandwidth",
1512 		.mode		= 0444,
1513 		.kf_ops		= &rdtgroup_kf_single_ops,
1514 		.seq_show	= rdt_min_bw_show,
1515 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1516 	},
1517 	{
1518 		.name		= "bandwidth_gran",
1519 		.mode		= 0444,
1520 		.kf_ops		= &rdtgroup_kf_single_ops,
1521 		.seq_show	= rdt_bw_gran_show,
1522 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1523 	},
1524 	{
1525 		.name		= "delay_linear",
1526 		.mode		= 0444,
1527 		.kf_ops		= &rdtgroup_kf_single_ops,
1528 		.seq_show	= rdt_delay_linear_show,
1529 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1530 	},
1531 	/*
1532 	 * Platform specific which (if any) capabilities are provided by
1533 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1534 	 * discovery.
1535 	 */
1536 	{
1537 		.name		= "thread_throttle_mode",
1538 		.mode		= 0444,
1539 		.kf_ops		= &rdtgroup_kf_single_ops,
1540 		.seq_show	= rdt_thread_throttle_mode_show,
1541 	},
1542 	{
1543 		.name		= "max_threshold_occupancy",
1544 		.mode		= 0644,
1545 		.kf_ops		= &rdtgroup_kf_single_ops,
1546 		.write		= max_threshold_occ_write,
1547 		.seq_show	= max_threshold_occ_show,
1548 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1549 	},
1550 	{
1551 		.name		= "cpus",
1552 		.mode		= 0644,
1553 		.kf_ops		= &rdtgroup_kf_single_ops,
1554 		.write		= rdtgroup_cpus_write,
1555 		.seq_show	= rdtgroup_cpus_show,
1556 		.fflags		= RFTYPE_BASE,
1557 	},
1558 	{
1559 		.name		= "cpus_list",
1560 		.mode		= 0644,
1561 		.kf_ops		= &rdtgroup_kf_single_ops,
1562 		.write		= rdtgroup_cpus_write,
1563 		.seq_show	= rdtgroup_cpus_show,
1564 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1565 		.fflags		= RFTYPE_BASE,
1566 	},
1567 	{
1568 		.name		= "tasks",
1569 		.mode		= 0644,
1570 		.kf_ops		= &rdtgroup_kf_single_ops,
1571 		.write		= rdtgroup_tasks_write,
1572 		.seq_show	= rdtgroup_tasks_show,
1573 		.fflags		= RFTYPE_BASE,
1574 	},
1575 	{
1576 		.name		= "schemata",
1577 		.mode		= 0644,
1578 		.kf_ops		= &rdtgroup_kf_single_ops,
1579 		.write		= rdtgroup_schemata_write,
1580 		.seq_show	= rdtgroup_schemata_show,
1581 		.fflags		= RF_CTRL_BASE,
1582 	},
1583 	{
1584 		.name		= "mode",
1585 		.mode		= 0644,
1586 		.kf_ops		= &rdtgroup_kf_single_ops,
1587 		.write		= rdtgroup_mode_write,
1588 		.seq_show	= rdtgroup_mode_show,
1589 		.fflags		= RF_CTRL_BASE,
1590 	},
1591 	{
1592 		.name		= "size",
1593 		.mode		= 0444,
1594 		.kf_ops		= &rdtgroup_kf_single_ops,
1595 		.seq_show	= rdtgroup_size_show,
1596 		.fflags		= RF_CTRL_BASE,
1597 	},
1598 
1599 };
1600 
1601 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1602 {
1603 	struct rftype *rfts, *rft;
1604 	int ret, len;
1605 
1606 	rfts = res_common_files;
1607 	len = ARRAY_SIZE(res_common_files);
1608 
1609 	lockdep_assert_held(&rdtgroup_mutex);
1610 
1611 	for (rft = rfts; rft < rfts + len; rft++) {
1612 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1613 			ret = rdtgroup_add_file(kn, rft);
1614 			if (ret)
1615 				goto error;
1616 		}
1617 	}
1618 
1619 	return 0;
1620 error:
1621 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1622 	while (--rft >= rfts) {
1623 		if ((fflags & rft->fflags) == rft->fflags)
1624 			kernfs_remove_by_name(kn, rft->name);
1625 	}
1626 	return ret;
1627 }
1628 
1629 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1630 {
1631 	struct rftype *rfts, *rft;
1632 	int len;
1633 
1634 	rfts = res_common_files;
1635 	len = ARRAY_SIZE(res_common_files);
1636 
1637 	for (rft = rfts; rft < rfts + len; rft++) {
1638 		if (!strcmp(rft->name, name))
1639 			return rft;
1640 	}
1641 
1642 	return NULL;
1643 }
1644 
1645 void __init thread_throttle_mode_init(void)
1646 {
1647 	struct rftype *rft;
1648 
1649 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1650 	if (!rft)
1651 		return;
1652 
1653 	rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1654 }
1655 
1656 /**
1657  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1658  * @r: The resource group with which the file is associated.
1659  * @name: Name of the file
1660  *
1661  * The permissions of named resctrl file, directory, or link are modified
1662  * to not allow read, write, or execute by any user.
1663  *
1664  * WARNING: This function is intended to communicate to the user that the
1665  * resctrl file has been locked down - that it is not relevant to the
1666  * particular state the system finds itself in. It should not be relied
1667  * on to protect from user access because after the file's permissions
1668  * are restricted the user can still change the permissions using chmod
1669  * from the command line.
1670  *
1671  * Return: 0 on success, <0 on failure.
1672  */
1673 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1674 {
1675 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1676 	struct kernfs_node *kn;
1677 	int ret = 0;
1678 
1679 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1680 	if (!kn)
1681 		return -ENOENT;
1682 
1683 	switch (kernfs_type(kn)) {
1684 	case KERNFS_DIR:
1685 		iattr.ia_mode = S_IFDIR;
1686 		break;
1687 	case KERNFS_FILE:
1688 		iattr.ia_mode = S_IFREG;
1689 		break;
1690 	case KERNFS_LINK:
1691 		iattr.ia_mode = S_IFLNK;
1692 		break;
1693 	}
1694 
1695 	ret = kernfs_setattr(kn, &iattr);
1696 	kernfs_put(kn);
1697 	return ret;
1698 }
1699 
1700 /**
1701  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1702  * @r: The resource group with which the file is associated.
1703  * @name: Name of the file
1704  * @mask: Mask of permissions that should be restored
1705  *
1706  * Restore the permissions of the named file. If @name is a directory the
1707  * permissions of its parent will be used.
1708  *
1709  * Return: 0 on success, <0 on failure.
1710  */
1711 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1712 			     umode_t mask)
1713 {
1714 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1715 	struct kernfs_node *kn, *parent;
1716 	struct rftype *rfts, *rft;
1717 	int ret, len;
1718 
1719 	rfts = res_common_files;
1720 	len = ARRAY_SIZE(res_common_files);
1721 
1722 	for (rft = rfts; rft < rfts + len; rft++) {
1723 		if (!strcmp(rft->name, name))
1724 			iattr.ia_mode = rft->mode & mask;
1725 	}
1726 
1727 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1728 	if (!kn)
1729 		return -ENOENT;
1730 
1731 	switch (kernfs_type(kn)) {
1732 	case KERNFS_DIR:
1733 		parent = kernfs_get_parent(kn);
1734 		if (parent) {
1735 			iattr.ia_mode |= parent->mode;
1736 			kernfs_put(parent);
1737 		}
1738 		iattr.ia_mode |= S_IFDIR;
1739 		break;
1740 	case KERNFS_FILE:
1741 		iattr.ia_mode |= S_IFREG;
1742 		break;
1743 	case KERNFS_LINK:
1744 		iattr.ia_mode |= S_IFLNK;
1745 		break;
1746 	}
1747 
1748 	ret = kernfs_setattr(kn, &iattr);
1749 	kernfs_put(kn);
1750 	return ret;
1751 }
1752 
1753 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1754 				      unsigned long fflags)
1755 {
1756 	struct kernfs_node *kn_subdir;
1757 	int ret;
1758 
1759 	kn_subdir = kernfs_create_dir(kn_info, name,
1760 				      kn_info->mode, r);
1761 	if (IS_ERR(kn_subdir))
1762 		return PTR_ERR(kn_subdir);
1763 
1764 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1765 	if (ret)
1766 		return ret;
1767 
1768 	ret = rdtgroup_add_files(kn_subdir, fflags);
1769 	if (!ret)
1770 		kernfs_activate(kn_subdir);
1771 
1772 	return ret;
1773 }
1774 
1775 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1776 {
1777 	struct rdt_resource *r;
1778 	unsigned long fflags;
1779 	char name[32];
1780 	int ret;
1781 
1782 	/* create the directory */
1783 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1784 	if (IS_ERR(kn_info))
1785 		return PTR_ERR(kn_info);
1786 
1787 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1788 	if (ret)
1789 		goto out_destroy;
1790 
1791 	for_each_alloc_enabled_rdt_resource(r) {
1792 		fflags =  r->fflags | RF_CTRL_INFO;
1793 		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1794 		if (ret)
1795 			goto out_destroy;
1796 	}
1797 
1798 	for_each_mon_enabled_rdt_resource(r) {
1799 		fflags =  r->fflags | RF_MON_INFO;
1800 		sprintf(name, "%s_MON", r->name);
1801 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1802 		if (ret)
1803 			goto out_destroy;
1804 	}
1805 
1806 	ret = rdtgroup_kn_set_ugid(kn_info);
1807 	if (ret)
1808 		goto out_destroy;
1809 
1810 	kernfs_activate(kn_info);
1811 
1812 	return 0;
1813 
1814 out_destroy:
1815 	kernfs_remove(kn_info);
1816 	return ret;
1817 }
1818 
1819 static int
1820 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1821 		    char *name, struct kernfs_node **dest_kn)
1822 {
1823 	struct kernfs_node *kn;
1824 	int ret;
1825 
1826 	/* create the directory */
1827 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1828 	if (IS_ERR(kn))
1829 		return PTR_ERR(kn);
1830 
1831 	if (dest_kn)
1832 		*dest_kn = kn;
1833 
1834 	ret = rdtgroup_kn_set_ugid(kn);
1835 	if (ret)
1836 		goto out_destroy;
1837 
1838 	kernfs_activate(kn);
1839 
1840 	return 0;
1841 
1842 out_destroy:
1843 	kernfs_remove(kn);
1844 	return ret;
1845 }
1846 
1847 static void l3_qos_cfg_update(void *arg)
1848 {
1849 	bool *enable = arg;
1850 
1851 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1852 }
1853 
1854 static void l2_qos_cfg_update(void *arg)
1855 {
1856 	bool *enable = arg;
1857 
1858 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1859 }
1860 
1861 static inline bool is_mba_linear(void)
1862 {
1863 	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1864 }
1865 
1866 static int set_cache_qos_cfg(int level, bool enable)
1867 {
1868 	void (*update)(void *arg);
1869 	struct rdt_resource *r_l;
1870 	cpumask_var_t cpu_mask;
1871 	struct rdt_domain *d;
1872 	int cpu;
1873 
1874 	if (level == RDT_RESOURCE_L3)
1875 		update = l3_qos_cfg_update;
1876 	else if (level == RDT_RESOURCE_L2)
1877 		update = l2_qos_cfg_update;
1878 	else
1879 		return -EINVAL;
1880 
1881 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1882 		return -ENOMEM;
1883 
1884 	r_l = &rdt_resources_all[level];
1885 	list_for_each_entry(d, &r_l->domains, list) {
1886 		if (r_l->cache.arch_has_per_cpu_cfg)
1887 			/* Pick all the CPUs in the domain instance */
1888 			for_each_cpu(cpu, &d->cpu_mask)
1889 				cpumask_set_cpu(cpu, cpu_mask);
1890 		else
1891 			/* Pick one CPU from each domain instance to update MSR */
1892 			cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1893 	}
1894 	cpu = get_cpu();
1895 	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1896 	if (cpumask_test_cpu(cpu, cpu_mask))
1897 		update(&enable);
1898 	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1899 	smp_call_function_many(cpu_mask, update, &enable, 1);
1900 	put_cpu();
1901 
1902 	free_cpumask_var(cpu_mask);
1903 
1904 	return 0;
1905 }
1906 
1907 /* Restore the qos cfg state when a domain comes online */
1908 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1909 {
1910 	if (!r->alloc_capable)
1911 		return;
1912 
1913 	if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
1914 		l2_qos_cfg_update(&r->alloc_enabled);
1915 
1916 	if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
1917 		l3_qos_cfg_update(&r->alloc_enabled);
1918 }
1919 
1920 /*
1921  * Enable or disable the MBA software controller
1922  * which helps user specify bandwidth in MBps.
1923  * MBA software controller is supported only if
1924  * MBM is supported and MBA is in linear scale.
1925  */
1926 static int set_mba_sc(bool mba_sc)
1927 {
1928 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1929 	struct rdt_domain *d;
1930 
1931 	if (!is_mbm_enabled() || !is_mba_linear() ||
1932 	    mba_sc == is_mba_sc(r))
1933 		return -EINVAL;
1934 
1935 	r->membw.mba_sc = mba_sc;
1936 	list_for_each_entry(d, &r->domains, list)
1937 		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1938 
1939 	return 0;
1940 }
1941 
1942 static int cdp_enable(int level, int data_type, int code_type)
1943 {
1944 	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1945 	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1946 	struct rdt_resource *r_l = &rdt_resources_all[level];
1947 	int ret;
1948 
1949 	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1950 	    !r_lcode->alloc_capable)
1951 		return -EINVAL;
1952 
1953 	ret = set_cache_qos_cfg(level, true);
1954 	if (!ret) {
1955 		r_l->alloc_enabled = false;
1956 		r_ldata->alloc_enabled = true;
1957 		r_lcode->alloc_enabled = true;
1958 	}
1959 	return ret;
1960 }
1961 
1962 static int cdpl3_enable(void)
1963 {
1964 	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1965 			  RDT_RESOURCE_L3CODE);
1966 }
1967 
1968 static int cdpl2_enable(void)
1969 {
1970 	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1971 			  RDT_RESOURCE_L2CODE);
1972 }
1973 
1974 static void cdp_disable(int level, int data_type, int code_type)
1975 {
1976 	struct rdt_resource *r = &rdt_resources_all[level];
1977 
1978 	r->alloc_enabled = r->alloc_capable;
1979 
1980 	if (rdt_resources_all[data_type].alloc_enabled) {
1981 		rdt_resources_all[data_type].alloc_enabled = false;
1982 		rdt_resources_all[code_type].alloc_enabled = false;
1983 		set_cache_qos_cfg(level, false);
1984 	}
1985 }
1986 
1987 static void cdpl3_disable(void)
1988 {
1989 	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1990 }
1991 
1992 static void cdpl2_disable(void)
1993 {
1994 	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1995 }
1996 
1997 static void cdp_disable_all(void)
1998 {
1999 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2000 		cdpl3_disable();
2001 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
2002 		cdpl2_disable();
2003 }
2004 
2005 /*
2006  * We don't allow rdtgroup directories to be created anywhere
2007  * except the root directory. Thus when looking for the rdtgroup
2008  * structure for a kernfs node we are either looking at a directory,
2009  * in which case the rdtgroup structure is pointed at by the "priv"
2010  * field, otherwise we have a file, and need only look to the parent
2011  * to find the rdtgroup.
2012  */
2013 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2014 {
2015 	if (kernfs_type(kn) == KERNFS_DIR) {
2016 		/*
2017 		 * All the resource directories use "kn->priv"
2018 		 * to point to the "struct rdtgroup" for the
2019 		 * resource. "info" and its subdirectories don't
2020 		 * have rdtgroup structures, so return NULL here.
2021 		 */
2022 		if (kn == kn_info || kn->parent == kn_info)
2023 			return NULL;
2024 		else
2025 			return kn->priv;
2026 	} else {
2027 		return kn->parent->priv;
2028 	}
2029 }
2030 
2031 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2032 {
2033 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2034 
2035 	if (!rdtgrp)
2036 		return NULL;
2037 
2038 	atomic_inc(&rdtgrp->waitcount);
2039 	kernfs_break_active_protection(kn);
2040 
2041 	mutex_lock(&rdtgroup_mutex);
2042 
2043 	/* Was this group deleted while we waited? */
2044 	if (rdtgrp->flags & RDT_DELETED)
2045 		return NULL;
2046 
2047 	return rdtgrp;
2048 }
2049 
2050 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2051 {
2052 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2053 
2054 	if (!rdtgrp)
2055 		return;
2056 
2057 	mutex_unlock(&rdtgroup_mutex);
2058 
2059 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2060 	    (rdtgrp->flags & RDT_DELETED)) {
2061 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2062 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2063 			rdtgroup_pseudo_lock_remove(rdtgrp);
2064 		kernfs_unbreak_active_protection(kn);
2065 		rdtgroup_remove(rdtgrp);
2066 	} else {
2067 		kernfs_unbreak_active_protection(kn);
2068 	}
2069 }
2070 
2071 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2072 			     struct rdtgroup *prgrp,
2073 			     struct kernfs_node **mon_data_kn);
2074 
2075 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2076 {
2077 	int ret = 0;
2078 
2079 	if (ctx->enable_cdpl2)
2080 		ret = cdpl2_enable();
2081 
2082 	if (!ret && ctx->enable_cdpl3)
2083 		ret = cdpl3_enable();
2084 
2085 	if (!ret && ctx->enable_mba_mbps)
2086 		ret = set_mba_sc(true);
2087 
2088 	return ret;
2089 }
2090 
2091 static int rdt_get_tree(struct fs_context *fc)
2092 {
2093 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2094 	struct rdt_domain *dom;
2095 	struct rdt_resource *r;
2096 	int ret;
2097 
2098 	cpus_read_lock();
2099 	mutex_lock(&rdtgroup_mutex);
2100 	/*
2101 	 * resctrl file system can only be mounted once.
2102 	 */
2103 	if (static_branch_unlikely(&rdt_enable_key)) {
2104 		ret = -EBUSY;
2105 		goto out;
2106 	}
2107 
2108 	ret = rdt_enable_ctx(ctx);
2109 	if (ret < 0)
2110 		goto out_cdp;
2111 
2112 	closid_init();
2113 
2114 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2115 	if (ret < 0)
2116 		goto out_mba;
2117 
2118 	if (rdt_mon_capable) {
2119 		ret = mongroup_create_dir(rdtgroup_default.kn,
2120 					  &rdtgroup_default, "mon_groups",
2121 					  &kn_mongrp);
2122 		if (ret < 0)
2123 			goto out_info;
2124 
2125 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2126 					&rdtgroup_default, &kn_mondata);
2127 		if (ret < 0)
2128 			goto out_mongrp;
2129 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2130 	}
2131 
2132 	ret = rdt_pseudo_lock_init();
2133 	if (ret)
2134 		goto out_mondata;
2135 
2136 	ret = kernfs_get_tree(fc);
2137 	if (ret < 0)
2138 		goto out_psl;
2139 
2140 	if (rdt_alloc_capable)
2141 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2142 	if (rdt_mon_capable)
2143 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2144 
2145 	if (rdt_alloc_capable || rdt_mon_capable)
2146 		static_branch_enable_cpuslocked(&rdt_enable_key);
2147 
2148 	if (is_mbm_enabled()) {
2149 		r = &rdt_resources_all[RDT_RESOURCE_L3];
2150 		list_for_each_entry(dom, &r->domains, list)
2151 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2152 	}
2153 
2154 	goto out;
2155 
2156 out_psl:
2157 	rdt_pseudo_lock_release();
2158 out_mondata:
2159 	if (rdt_mon_capable)
2160 		kernfs_remove(kn_mondata);
2161 out_mongrp:
2162 	if (rdt_mon_capable)
2163 		kernfs_remove(kn_mongrp);
2164 out_info:
2165 	kernfs_remove(kn_info);
2166 out_mba:
2167 	if (ctx->enable_mba_mbps)
2168 		set_mba_sc(false);
2169 out_cdp:
2170 	cdp_disable_all();
2171 out:
2172 	rdt_last_cmd_clear();
2173 	mutex_unlock(&rdtgroup_mutex);
2174 	cpus_read_unlock();
2175 	return ret;
2176 }
2177 
2178 enum rdt_param {
2179 	Opt_cdp,
2180 	Opt_cdpl2,
2181 	Opt_mba_mbps,
2182 	nr__rdt_params
2183 };
2184 
2185 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2186 	fsparam_flag("cdp",		Opt_cdp),
2187 	fsparam_flag("cdpl2",		Opt_cdpl2),
2188 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2189 	{}
2190 };
2191 
2192 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2193 {
2194 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2195 	struct fs_parse_result result;
2196 	int opt;
2197 
2198 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2199 	if (opt < 0)
2200 		return opt;
2201 
2202 	switch (opt) {
2203 	case Opt_cdp:
2204 		ctx->enable_cdpl3 = true;
2205 		return 0;
2206 	case Opt_cdpl2:
2207 		ctx->enable_cdpl2 = true;
2208 		return 0;
2209 	case Opt_mba_mbps:
2210 		if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2211 			return -EINVAL;
2212 		ctx->enable_mba_mbps = true;
2213 		return 0;
2214 	}
2215 
2216 	return -EINVAL;
2217 }
2218 
2219 static void rdt_fs_context_free(struct fs_context *fc)
2220 {
2221 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2222 
2223 	kernfs_free_fs_context(fc);
2224 	kfree(ctx);
2225 }
2226 
2227 static const struct fs_context_operations rdt_fs_context_ops = {
2228 	.free		= rdt_fs_context_free,
2229 	.parse_param	= rdt_parse_param,
2230 	.get_tree	= rdt_get_tree,
2231 };
2232 
2233 static int rdt_init_fs_context(struct fs_context *fc)
2234 {
2235 	struct rdt_fs_context *ctx;
2236 
2237 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2238 	if (!ctx)
2239 		return -ENOMEM;
2240 
2241 	ctx->kfc.root = rdt_root;
2242 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2243 	fc->fs_private = &ctx->kfc;
2244 	fc->ops = &rdt_fs_context_ops;
2245 	put_user_ns(fc->user_ns);
2246 	fc->user_ns = get_user_ns(&init_user_ns);
2247 	fc->global = true;
2248 	return 0;
2249 }
2250 
2251 static int reset_all_ctrls(struct rdt_resource *r)
2252 {
2253 	struct msr_param msr_param;
2254 	cpumask_var_t cpu_mask;
2255 	struct rdt_domain *d;
2256 	int i, cpu;
2257 
2258 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2259 		return -ENOMEM;
2260 
2261 	msr_param.res = r;
2262 	msr_param.low = 0;
2263 	msr_param.high = r->num_closid;
2264 
2265 	/*
2266 	 * Disable resource control for this resource by setting all
2267 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2268 	 * from each domain to update the MSRs below.
2269 	 */
2270 	list_for_each_entry(d, &r->domains, list) {
2271 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2272 
2273 		for (i = 0; i < r->num_closid; i++)
2274 			d->ctrl_val[i] = r->default_ctrl;
2275 	}
2276 	cpu = get_cpu();
2277 	/* Update CBM on this cpu if it's in cpu_mask. */
2278 	if (cpumask_test_cpu(cpu, cpu_mask))
2279 		rdt_ctrl_update(&msr_param);
2280 	/* Update CBM on all other cpus in cpu_mask. */
2281 	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2282 	put_cpu();
2283 
2284 	free_cpumask_var(cpu_mask);
2285 
2286 	return 0;
2287 }
2288 
2289 /*
2290  * Move tasks from one to the other group. If @from is NULL, then all tasks
2291  * in the systems are moved unconditionally (used for teardown).
2292  *
2293  * If @mask is not NULL the cpus on which moved tasks are running are set
2294  * in that mask so the update smp function call is restricted to affected
2295  * cpus.
2296  */
2297 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2298 				 struct cpumask *mask)
2299 {
2300 	struct task_struct *p, *t;
2301 
2302 	read_lock(&tasklist_lock);
2303 	for_each_process_thread(p, t) {
2304 		if (!from || is_closid_match(t, from) ||
2305 		    is_rmid_match(t, from)) {
2306 			t->closid = to->closid;
2307 			t->rmid = to->mon.rmid;
2308 
2309 #ifdef CONFIG_SMP
2310 			/*
2311 			 * This is safe on x86 w/o barriers as the ordering
2312 			 * of writing to task_cpu() and t->on_cpu is
2313 			 * reverse to the reading here. The detection is
2314 			 * inaccurate as tasks might move or schedule
2315 			 * before the smp function call takes place. In
2316 			 * such a case the function call is pointless, but
2317 			 * there is no other side effect.
2318 			 */
2319 			if (mask && t->on_cpu)
2320 				cpumask_set_cpu(task_cpu(t), mask);
2321 #endif
2322 		}
2323 	}
2324 	read_unlock(&tasklist_lock);
2325 }
2326 
2327 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2328 {
2329 	struct rdtgroup *sentry, *stmp;
2330 	struct list_head *head;
2331 
2332 	head = &rdtgrp->mon.crdtgrp_list;
2333 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2334 		free_rmid(sentry->mon.rmid);
2335 		list_del(&sentry->mon.crdtgrp_list);
2336 
2337 		if (atomic_read(&sentry->waitcount) != 0)
2338 			sentry->flags = RDT_DELETED;
2339 		else
2340 			rdtgroup_remove(sentry);
2341 	}
2342 }
2343 
2344 /*
2345  * Forcibly remove all of subdirectories under root.
2346  */
2347 static void rmdir_all_sub(void)
2348 {
2349 	struct rdtgroup *rdtgrp, *tmp;
2350 
2351 	/* Move all tasks to the default resource group */
2352 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2353 
2354 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2355 		/* Free any child rmids */
2356 		free_all_child_rdtgrp(rdtgrp);
2357 
2358 		/* Remove each rdtgroup other than root */
2359 		if (rdtgrp == &rdtgroup_default)
2360 			continue;
2361 
2362 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2363 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2364 			rdtgroup_pseudo_lock_remove(rdtgrp);
2365 
2366 		/*
2367 		 * Give any CPUs back to the default group. We cannot copy
2368 		 * cpu_online_mask because a CPU might have executed the
2369 		 * offline callback already, but is still marked online.
2370 		 */
2371 		cpumask_or(&rdtgroup_default.cpu_mask,
2372 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2373 
2374 		free_rmid(rdtgrp->mon.rmid);
2375 
2376 		kernfs_remove(rdtgrp->kn);
2377 		list_del(&rdtgrp->rdtgroup_list);
2378 
2379 		if (atomic_read(&rdtgrp->waitcount) != 0)
2380 			rdtgrp->flags = RDT_DELETED;
2381 		else
2382 			rdtgroup_remove(rdtgrp);
2383 	}
2384 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2385 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2386 
2387 	kernfs_remove(kn_info);
2388 	kernfs_remove(kn_mongrp);
2389 	kernfs_remove(kn_mondata);
2390 }
2391 
2392 static void rdt_kill_sb(struct super_block *sb)
2393 {
2394 	struct rdt_resource *r;
2395 
2396 	cpus_read_lock();
2397 	mutex_lock(&rdtgroup_mutex);
2398 
2399 	set_mba_sc(false);
2400 
2401 	/*Put everything back to default values. */
2402 	for_each_alloc_enabled_rdt_resource(r)
2403 		reset_all_ctrls(r);
2404 	cdp_disable_all();
2405 	rmdir_all_sub();
2406 	rdt_pseudo_lock_release();
2407 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2408 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2409 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2410 	static_branch_disable_cpuslocked(&rdt_enable_key);
2411 	kernfs_kill_sb(sb);
2412 	mutex_unlock(&rdtgroup_mutex);
2413 	cpus_read_unlock();
2414 }
2415 
2416 static struct file_system_type rdt_fs_type = {
2417 	.name			= "resctrl",
2418 	.init_fs_context	= rdt_init_fs_context,
2419 	.parameters		= rdt_fs_parameters,
2420 	.kill_sb		= rdt_kill_sb,
2421 };
2422 
2423 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2424 		       void *priv)
2425 {
2426 	struct kernfs_node *kn;
2427 	int ret = 0;
2428 
2429 	kn = __kernfs_create_file(parent_kn, name, 0444,
2430 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2431 				  &kf_mondata_ops, priv, NULL, NULL);
2432 	if (IS_ERR(kn))
2433 		return PTR_ERR(kn);
2434 
2435 	ret = rdtgroup_kn_set_ugid(kn);
2436 	if (ret) {
2437 		kernfs_remove(kn);
2438 		return ret;
2439 	}
2440 
2441 	return ret;
2442 }
2443 
2444 /*
2445  * Remove all subdirectories of mon_data of ctrl_mon groups
2446  * and monitor groups with given domain id.
2447  */
2448 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2449 {
2450 	struct rdtgroup *prgrp, *crgrp;
2451 	char name[32];
2452 
2453 	if (!r->mon_enabled)
2454 		return;
2455 
2456 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2457 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2458 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2459 
2460 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2461 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2462 	}
2463 }
2464 
2465 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2466 				struct rdt_domain *d,
2467 				struct rdt_resource *r, struct rdtgroup *prgrp)
2468 {
2469 	union mon_data_bits priv;
2470 	struct kernfs_node *kn;
2471 	struct mon_evt *mevt;
2472 	struct rmid_read rr;
2473 	char name[32];
2474 	int ret;
2475 
2476 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2477 	/* create the directory */
2478 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2479 	if (IS_ERR(kn))
2480 		return PTR_ERR(kn);
2481 
2482 	ret = rdtgroup_kn_set_ugid(kn);
2483 	if (ret)
2484 		goto out_destroy;
2485 
2486 	if (WARN_ON(list_empty(&r->evt_list))) {
2487 		ret = -EPERM;
2488 		goto out_destroy;
2489 	}
2490 
2491 	priv.u.rid = r->rid;
2492 	priv.u.domid = d->id;
2493 	list_for_each_entry(mevt, &r->evt_list, list) {
2494 		priv.u.evtid = mevt->evtid;
2495 		ret = mon_addfile(kn, mevt->name, priv.priv);
2496 		if (ret)
2497 			goto out_destroy;
2498 
2499 		if (is_mbm_event(mevt->evtid))
2500 			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2501 	}
2502 	kernfs_activate(kn);
2503 	return 0;
2504 
2505 out_destroy:
2506 	kernfs_remove(kn);
2507 	return ret;
2508 }
2509 
2510 /*
2511  * Add all subdirectories of mon_data for "ctrl_mon" groups
2512  * and "monitor" groups with given domain id.
2513  */
2514 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2515 				    struct rdt_domain *d)
2516 {
2517 	struct kernfs_node *parent_kn;
2518 	struct rdtgroup *prgrp, *crgrp;
2519 	struct list_head *head;
2520 
2521 	if (!r->mon_enabled)
2522 		return;
2523 
2524 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2525 		parent_kn = prgrp->mon.mon_data_kn;
2526 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2527 
2528 		head = &prgrp->mon.crdtgrp_list;
2529 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2530 			parent_kn = crgrp->mon.mon_data_kn;
2531 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2532 		}
2533 	}
2534 }
2535 
2536 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2537 				       struct rdt_resource *r,
2538 				       struct rdtgroup *prgrp)
2539 {
2540 	struct rdt_domain *dom;
2541 	int ret;
2542 
2543 	list_for_each_entry(dom, &r->domains, list) {
2544 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2545 		if (ret)
2546 			return ret;
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 /*
2553  * This creates a directory mon_data which contains the monitored data.
2554  *
2555  * mon_data has one directory for each domain whic are named
2556  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2557  * with L3 domain looks as below:
2558  * ./mon_data:
2559  * mon_L3_00
2560  * mon_L3_01
2561  * mon_L3_02
2562  * ...
2563  *
2564  * Each domain directory has one file per event:
2565  * ./mon_L3_00/:
2566  * llc_occupancy
2567  *
2568  */
2569 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2570 			     struct rdtgroup *prgrp,
2571 			     struct kernfs_node **dest_kn)
2572 {
2573 	struct rdt_resource *r;
2574 	struct kernfs_node *kn;
2575 	int ret;
2576 
2577 	/*
2578 	 * Create the mon_data directory first.
2579 	 */
2580 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2581 	if (ret)
2582 		return ret;
2583 
2584 	if (dest_kn)
2585 		*dest_kn = kn;
2586 
2587 	/*
2588 	 * Create the subdirectories for each domain. Note that all events
2589 	 * in a domain like L3 are grouped into a resource whose domain is L3
2590 	 */
2591 	for_each_mon_enabled_rdt_resource(r) {
2592 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2593 		if (ret)
2594 			goto out_destroy;
2595 	}
2596 
2597 	return 0;
2598 
2599 out_destroy:
2600 	kernfs_remove(kn);
2601 	return ret;
2602 }
2603 
2604 /**
2605  * cbm_ensure_valid - Enforce validity on provided CBM
2606  * @_val:	Candidate CBM
2607  * @r:		RDT resource to which the CBM belongs
2608  *
2609  * The provided CBM represents all cache portions available for use. This
2610  * may be represented by a bitmap that does not consist of contiguous ones
2611  * and thus be an invalid CBM.
2612  * Here the provided CBM is forced to be a valid CBM by only considering
2613  * the first set of contiguous bits as valid and clearing all bits.
2614  * The intention here is to provide a valid default CBM with which a new
2615  * resource group is initialized. The user can follow this with a
2616  * modification to the CBM if the default does not satisfy the
2617  * requirements.
2618  */
2619 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2620 {
2621 	unsigned int cbm_len = r->cache.cbm_len;
2622 	unsigned long first_bit, zero_bit;
2623 	unsigned long val = _val;
2624 
2625 	if (!val)
2626 		return 0;
2627 
2628 	first_bit = find_first_bit(&val, cbm_len);
2629 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2630 
2631 	/* Clear any remaining bits to ensure contiguous region */
2632 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2633 	return (u32)val;
2634 }
2635 
2636 /*
2637  * Initialize cache resources per RDT domain
2638  *
2639  * Set the RDT domain up to start off with all usable allocations. That is,
2640  * all shareable and unused bits. All-zero CBM is invalid.
2641  */
2642 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2643 				 u32 closid)
2644 {
2645 	struct rdt_resource *r_cdp = NULL;
2646 	struct rdt_domain *d_cdp = NULL;
2647 	u32 used_b = 0, unused_b = 0;
2648 	unsigned long tmp_cbm;
2649 	enum rdtgrp_mode mode;
2650 	u32 peer_ctl, *ctrl;
2651 	int i;
2652 
2653 	rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2654 	d->have_new_ctrl = false;
2655 	d->new_ctrl = r->cache.shareable_bits;
2656 	used_b = r->cache.shareable_bits;
2657 	ctrl = d->ctrl_val;
2658 	for (i = 0; i < closids_supported(); i++, ctrl++) {
2659 		if (closid_allocated(i) && i != closid) {
2660 			mode = rdtgroup_mode_by_closid(i);
2661 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2662 				/*
2663 				 * ctrl values for locksetup aren't relevant
2664 				 * until the schemata is written, and the mode
2665 				 * becomes RDT_MODE_PSEUDO_LOCKED.
2666 				 */
2667 				continue;
2668 			/*
2669 			 * If CDP is active include peer domain's
2670 			 * usage to ensure there is no overlap
2671 			 * with an exclusive group.
2672 			 */
2673 			if (d_cdp)
2674 				peer_ctl = d_cdp->ctrl_val[i];
2675 			else
2676 				peer_ctl = 0;
2677 			used_b |= *ctrl | peer_ctl;
2678 			if (mode == RDT_MODE_SHAREABLE)
2679 				d->new_ctrl |= *ctrl | peer_ctl;
2680 		}
2681 	}
2682 	if (d->plr && d->plr->cbm > 0)
2683 		used_b |= d->plr->cbm;
2684 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2685 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2686 	d->new_ctrl |= unused_b;
2687 	/*
2688 	 * Force the initial CBM to be valid, user can
2689 	 * modify the CBM based on system availability.
2690 	 */
2691 	d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2692 	/*
2693 	 * Assign the u32 CBM to an unsigned long to ensure that
2694 	 * bitmap_weight() does not access out-of-bound memory.
2695 	 */
2696 	tmp_cbm = d->new_ctrl;
2697 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2698 		rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2699 		return -ENOSPC;
2700 	}
2701 	d->have_new_ctrl = true;
2702 
2703 	return 0;
2704 }
2705 
2706 /*
2707  * Initialize cache resources with default values.
2708  *
2709  * A new RDT group is being created on an allocation capable (CAT)
2710  * supporting system. Set this group up to start off with all usable
2711  * allocations.
2712  *
2713  * If there are no more shareable bits available on any domain then
2714  * the entire allocation will fail.
2715  */
2716 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2717 {
2718 	struct rdt_domain *d;
2719 	int ret;
2720 
2721 	list_for_each_entry(d, &r->domains, list) {
2722 		ret = __init_one_rdt_domain(d, r, closid);
2723 		if (ret < 0)
2724 			return ret;
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 /* Initialize MBA resource with default values. */
2731 static void rdtgroup_init_mba(struct rdt_resource *r)
2732 {
2733 	struct rdt_domain *d;
2734 
2735 	list_for_each_entry(d, &r->domains, list) {
2736 		d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2737 		d->have_new_ctrl = true;
2738 	}
2739 }
2740 
2741 /* Initialize the RDT group's allocations. */
2742 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2743 {
2744 	struct rdt_resource *r;
2745 	int ret;
2746 
2747 	for_each_alloc_enabled_rdt_resource(r) {
2748 		if (r->rid == RDT_RESOURCE_MBA) {
2749 			rdtgroup_init_mba(r);
2750 		} else {
2751 			ret = rdtgroup_init_cat(r, rdtgrp->closid);
2752 			if (ret < 0)
2753 				return ret;
2754 		}
2755 
2756 		ret = update_domains(r, rdtgrp->closid);
2757 		if (ret < 0) {
2758 			rdt_last_cmd_puts("Failed to initialize allocations\n");
2759 			return ret;
2760 		}
2761 
2762 	}
2763 
2764 	rdtgrp->mode = RDT_MODE_SHAREABLE;
2765 
2766 	return 0;
2767 }
2768 
2769 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2770 			     const char *name, umode_t mode,
2771 			     enum rdt_group_type rtype, struct rdtgroup **r)
2772 {
2773 	struct rdtgroup *prdtgrp, *rdtgrp;
2774 	struct kernfs_node *kn;
2775 	uint files = 0;
2776 	int ret;
2777 
2778 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2779 	if (!prdtgrp) {
2780 		ret = -ENODEV;
2781 		goto out_unlock;
2782 	}
2783 
2784 	if (rtype == RDTMON_GROUP &&
2785 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2786 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2787 		ret = -EINVAL;
2788 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
2789 		goto out_unlock;
2790 	}
2791 
2792 	/* allocate the rdtgroup. */
2793 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2794 	if (!rdtgrp) {
2795 		ret = -ENOSPC;
2796 		rdt_last_cmd_puts("Kernel out of memory\n");
2797 		goto out_unlock;
2798 	}
2799 	*r = rdtgrp;
2800 	rdtgrp->mon.parent = prdtgrp;
2801 	rdtgrp->type = rtype;
2802 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2803 
2804 	/* kernfs creates the directory for rdtgrp */
2805 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2806 	if (IS_ERR(kn)) {
2807 		ret = PTR_ERR(kn);
2808 		rdt_last_cmd_puts("kernfs create error\n");
2809 		goto out_free_rgrp;
2810 	}
2811 	rdtgrp->kn = kn;
2812 
2813 	/*
2814 	 * kernfs_remove() will drop the reference count on "kn" which
2815 	 * will free it. But we still need it to stick around for the
2816 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2817 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
2818 	 */
2819 	kernfs_get(kn);
2820 
2821 	ret = rdtgroup_kn_set_ugid(kn);
2822 	if (ret) {
2823 		rdt_last_cmd_puts("kernfs perm error\n");
2824 		goto out_destroy;
2825 	}
2826 
2827 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2828 	ret = rdtgroup_add_files(kn, files);
2829 	if (ret) {
2830 		rdt_last_cmd_puts("kernfs fill error\n");
2831 		goto out_destroy;
2832 	}
2833 
2834 	if (rdt_mon_capable) {
2835 		ret = alloc_rmid();
2836 		if (ret < 0) {
2837 			rdt_last_cmd_puts("Out of RMIDs\n");
2838 			goto out_destroy;
2839 		}
2840 		rdtgrp->mon.rmid = ret;
2841 
2842 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2843 		if (ret) {
2844 			rdt_last_cmd_puts("kernfs subdir error\n");
2845 			goto out_idfree;
2846 		}
2847 	}
2848 	kernfs_activate(kn);
2849 
2850 	/*
2851 	 * The caller unlocks the parent_kn upon success.
2852 	 */
2853 	return 0;
2854 
2855 out_idfree:
2856 	free_rmid(rdtgrp->mon.rmid);
2857 out_destroy:
2858 	kernfs_put(rdtgrp->kn);
2859 	kernfs_remove(rdtgrp->kn);
2860 out_free_rgrp:
2861 	kfree(rdtgrp);
2862 out_unlock:
2863 	rdtgroup_kn_unlock(parent_kn);
2864 	return ret;
2865 }
2866 
2867 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2868 {
2869 	kernfs_remove(rgrp->kn);
2870 	free_rmid(rgrp->mon.rmid);
2871 	rdtgroup_remove(rgrp);
2872 }
2873 
2874 /*
2875  * Create a monitor group under "mon_groups" directory of a control
2876  * and monitor group(ctrl_mon). This is a resource group
2877  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2878  */
2879 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2880 			      const char *name, umode_t mode)
2881 {
2882 	struct rdtgroup *rdtgrp, *prgrp;
2883 	int ret;
2884 
2885 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
2886 	if (ret)
2887 		return ret;
2888 
2889 	prgrp = rdtgrp->mon.parent;
2890 	rdtgrp->closid = prgrp->closid;
2891 
2892 	/*
2893 	 * Add the rdtgrp to the list of rdtgrps the parent
2894 	 * ctrl_mon group has to track.
2895 	 */
2896 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2897 
2898 	rdtgroup_kn_unlock(parent_kn);
2899 	return ret;
2900 }
2901 
2902 /*
2903  * These are rdtgroups created under the root directory. Can be used
2904  * to allocate and monitor resources.
2905  */
2906 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2907 				   const char *name, umode_t mode)
2908 {
2909 	struct rdtgroup *rdtgrp;
2910 	struct kernfs_node *kn;
2911 	u32 closid;
2912 	int ret;
2913 
2914 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
2915 	if (ret)
2916 		return ret;
2917 
2918 	kn = rdtgrp->kn;
2919 	ret = closid_alloc();
2920 	if (ret < 0) {
2921 		rdt_last_cmd_puts("Out of CLOSIDs\n");
2922 		goto out_common_fail;
2923 	}
2924 	closid = ret;
2925 	ret = 0;
2926 
2927 	rdtgrp->closid = closid;
2928 	ret = rdtgroup_init_alloc(rdtgrp);
2929 	if (ret < 0)
2930 		goto out_id_free;
2931 
2932 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2933 
2934 	if (rdt_mon_capable) {
2935 		/*
2936 		 * Create an empty mon_groups directory to hold the subset
2937 		 * of tasks and cpus to monitor.
2938 		 */
2939 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
2940 		if (ret) {
2941 			rdt_last_cmd_puts("kernfs subdir error\n");
2942 			goto out_del_list;
2943 		}
2944 	}
2945 
2946 	goto out_unlock;
2947 
2948 out_del_list:
2949 	list_del(&rdtgrp->rdtgroup_list);
2950 out_id_free:
2951 	closid_free(closid);
2952 out_common_fail:
2953 	mkdir_rdt_prepare_clean(rdtgrp);
2954 out_unlock:
2955 	rdtgroup_kn_unlock(parent_kn);
2956 	return ret;
2957 }
2958 
2959 /*
2960  * We allow creating mon groups only with in a directory called "mon_groups"
2961  * which is present in every ctrl_mon group. Check if this is a valid
2962  * "mon_groups" directory.
2963  *
2964  * 1. The directory should be named "mon_groups".
2965  * 2. The mon group itself should "not" be named "mon_groups".
2966  *   This makes sure "mon_groups" directory always has a ctrl_mon group
2967  *   as parent.
2968  */
2969 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2970 {
2971 	return (!strcmp(kn->name, "mon_groups") &&
2972 		strcmp(name, "mon_groups"));
2973 }
2974 
2975 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2976 			  umode_t mode)
2977 {
2978 	/* Do not accept '\n' to avoid unparsable situation. */
2979 	if (strchr(name, '\n'))
2980 		return -EINVAL;
2981 
2982 	/*
2983 	 * If the parent directory is the root directory and RDT
2984 	 * allocation is supported, add a control and monitoring
2985 	 * subdirectory
2986 	 */
2987 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2988 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
2989 
2990 	/*
2991 	 * If RDT monitoring is supported and the parent directory is a valid
2992 	 * "mon_groups" directory, add a monitoring subdirectory.
2993 	 */
2994 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2995 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
2996 
2997 	return -EPERM;
2998 }
2999 
3000 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
3001 			      cpumask_var_t tmpmask)
3002 {
3003 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3004 	int cpu;
3005 
3006 	/* Give any tasks back to the parent group */
3007 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3008 
3009 	/* Update per cpu rmid of the moved CPUs first */
3010 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3011 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3012 	/*
3013 	 * Update the MSR on moved CPUs and CPUs which have moved
3014 	 * task running on them.
3015 	 */
3016 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3017 	update_closid_rmid(tmpmask, NULL);
3018 
3019 	rdtgrp->flags = RDT_DELETED;
3020 	free_rmid(rdtgrp->mon.rmid);
3021 
3022 	/*
3023 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3024 	 */
3025 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3026 	list_del(&rdtgrp->mon.crdtgrp_list);
3027 
3028 	kernfs_remove(rdtgrp->kn);
3029 
3030 	return 0;
3031 }
3032 
3033 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
3034 				struct rdtgroup *rdtgrp)
3035 {
3036 	rdtgrp->flags = RDT_DELETED;
3037 	list_del(&rdtgrp->rdtgroup_list);
3038 
3039 	kernfs_remove(rdtgrp->kn);
3040 	return 0;
3041 }
3042 
3043 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
3044 			       cpumask_var_t tmpmask)
3045 {
3046 	int cpu;
3047 
3048 	/* Give any tasks back to the default group */
3049 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3050 
3051 	/* Give any CPUs back to the default group */
3052 	cpumask_or(&rdtgroup_default.cpu_mask,
3053 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3054 
3055 	/* Update per cpu closid and rmid of the moved CPUs first */
3056 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3057 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3058 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3059 	}
3060 
3061 	/*
3062 	 * Update the MSR on moved CPUs and CPUs which have moved
3063 	 * task running on them.
3064 	 */
3065 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3066 	update_closid_rmid(tmpmask, NULL);
3067 
3068 	closid_free(rdtgrp->closid);
3069 	free_rmid(rdtgrp->mon.rmid);
3070 
3071 	rdtgroup_ctrl_remove(kn, rdtgrp);
3072 
3073 	/*
3074 	 * Free all the child monitor group rmids.
3075 	 */
3076 	free_all_child_rdtgrp(rdtgrp);
3077 
3078 	return 0;
3079 }
3080 
3081 static int rdtgroup_rmdir(struct kernfs_node *kn)
3082 {
3083 	struct kernfs_node *parent_kn = kn->parent;
3084 	struct rdtgroup *rdtgrp;
3085 	cpumask_var_t tmpmask;
3086 	int ret = 0;
3087 
3088 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3089 		return -ENOMEM;
3090 
3091 	rdtgrp = rdtgroup_kn_lock_live(kn);
3092 	if (!rdtgrp) {
3093 		ret = -EPERM;
3094 		goto out;
3095 	}
3096 
3097 	/*
3098 	 * If the rdtgroup is a ctrl_mon group and parent directory
3099 	 * is the root directory, remove the ctrl_mon group.
3100 	 *
3101 	 * If the rdtgroup is a mon group and parent directory
3102 	 * is a valid "mon_groups" directory, remove the mon group.
3103 	 */
3104 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3105 	    rdtgrp != &rdtgroup_default) {
3106 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3107 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3108 			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
3109 		} else {
3110 			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
3111 		}
3112 	} else if (rdtgrp->type == RDTMON_GROUP &&
3113 		 is_mon_groups(parent_kn, kn->name)) {
3114 		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3115 	} else {
3116 		ret = -EPERM;
3117 	}
3118 
3119 out:
3120 	rdtgroup_kn_unlock(kn);
3121 	free_cpumask_var(tmpmask);
3122 	return ret;
3123 }
3124 
3125 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3126 {
3127 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3128 		seq_puts(seq, ",cdp");
3129 
3130 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3131 		seq_puts(seq, ",cdpl2");
3132 
3133 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3134 		seq_puts(seq, ",mba_MBps");
3135 
3136 	return 0;
3137 }
3138 
3139 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3140 	.mkdir		= rdtgroup_mkdir,
3141 	.rmdir		= rdtgroup_rmdir,
3142 	.show_options	= rdtgroup_show_options,
3143 };
3144 
3145 static int __init rdtgroup_setup_root(void)
3146 {
3147 	int ret;
3148 
3149 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3150 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3151 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3152 				      &rdtgroup_default);
3153 	if (IS_ERR(rdt_root))
3154 		return PTR_ERR(rdt_root);
3155 
3156 	mutex_lock(&rdtgroup_mutex);
3157 
3158 	rdtgroup_default.closid = 0;
3159 	rdtgroup_default.mon.rmid = 0;
3160 	rdtgroup_default.type = RDTCTRL_GROUP;
3161 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3162 
3163 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3164 
3165 	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3166 	if (ret) {
3167 		kernfs_destroy_root(rdt_root);
3168 		goto out;
3169 	}
3170 
3171 	rdtgroup_default.kn = rdt_root->kn;
3172 	kernfs_activate(rdtgroup_default.kn);
3173 
3174 out:
3175 	mutex_unlock(&rdtgroup_mutex);
3176 
3177 	return ret;
3178 }
3179 
3180 /*
3181  * rdtgroup_init - rdtgroup initialization
3182  *
3183  * Setup resctrl file system including set up root, create mount point,
3184  * register rdtgroup filesystem, and initialize files under root directory.
3185  *
3186  * Return: 0 on success or -errno
3187  */
3188 int __init rdtgroup_init(void)
3189 {
3190 	int ret = 0;
3191 
3192 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3193 		     sizeof(last_cmd_status_buf));
3194 
3195 	ret = rdtgroup_setup_root();
3196 	if (ret)
3197 		return ret;
3198 
3199 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3200 	if (ret)
3201 		goto cleanup_root;
3202 
3203 	ret = register_filesystem(&rdt_fs_type);
3204 	if (ret)
3205 		goto cleanup_mountpoint;
3206 
3207 	/*
3208 	 * Adding the resctrl debugfs directory here may not be ideal since
3209 	 * it would let the resctrl debugfs directory appear on the debugfs
3210 	 * filesystem before the resctrl filesystem is mounted.
3211 	 * It may also be ok since that would enable debugging of RDT before
3212 	 * resctrl is mounted.
3213 	 * The reason why the debugfs directory is created here and not in
3214 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3215 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3216 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3217 	 * interactions (eg. SyS_getdents) have the lock ordering:
3218 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3219 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3220 	 * is taken, thus creating dependency:
3221 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3222 	 * issues considering the other two lock dependencies.
3223 	 * By creating the debugfs directory here we avoid a dependency
3224 	 * that may cause deadlock (even though file operations cannot
3225 	 * occur until the filesystem is mounted, but I do not know how to
3226 	 * tell lockdep that).
3227 	 */
3228 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3229 
3230 	return 0;
3231 
3232 cleanup_mountpoint:
3233 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3234 cleanup_root:
3235 	kernfs_destroy_root(rdt_root);
3236 
3237 	return ret;
3238 }
3239 
3240 void __exit rdtgroup_exit(void)
3241 {
3242 	debugfs_remove_recursive(debugfs_resctrl);
3243 	unregister_filesystem(&rdt_fs_type);
3244 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3245 	kernfs_destroy_root(rdt_root);
3246 }
3247