1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Alloction in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44 
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47 
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50 
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53 
54 struct dentry *debugfs_resctrl;
55 
56 void rdt_last_cmd_clear(void)
57 {
58 	lockdep_assert_held(&rdtgroup_mutex);
59 	seq_buf_clear(&last_cmd_status);
60 }
61 
62 void rdt_last_cmd_puts(const char *s)
63 {
64 	lockdep_assert_held(&rdtgroup_mutex);
65 	seq_buf_puts(&last_cmd_status, s);
66 }
67 
68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 	va_list ap;
71 
72 	va_start(ap, fmt);
73 	lockdep_assert_held(&rdtgroup_mutex);
74 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 	va_end(ap);
76 }
77 
78 /*
79  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80  * we can keep a bitmap of free CLOSIDs in a single integer.
81  *
82  * Using a global CLOSID across all resources has some advantages and
83  * some drawbacks:
84  * + We can simply set "current->closid" to assign a task to a resource
85  *   group.
86  * + Context switch code can avoid extra memory references deciding which
87  *   CLOSID to load into the PQR_ASSOC MSR
88  * - We give up some options in configuring resource groups across multi-socket
89  *   systems.
90  * - Our choices on how to configure each resource become progressively more
91  *   limited as the number of resources grows.
92  */
93 static int closid_free_map;
94 static int closid_free_map_len;
95 
96 int closids_supported(void)
97 {
98 	return closid_free_map_len;
99 }
100 
101 static void closid_init(void)
102 {
103 	struct rdt_resource *r;
104 	int rdt_min_closid = 32;
105 
106 	/* Compute rdt_min_closid across all resources */
107 	for_each_alloc_enabled_rdt_resource(r)
108 		rdt_min_closid = min(rdt_min_closid, r->num_closid);
109 
110 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111 
112 	/* CLOSID 0 is always reserved for the default group */
113 	closid_free_map &= ~1;
114 	closid_free_map_len = rdt_min_closid;
115 }
116 
117 static int closid_alloc(void)
118 {
119 	u32 closid = ffs(closid_free_map);
120 
121 	if (closid == 0)
122 		return -ENOSPC;
123 	closid--;
124 	closid_free_map &= ~(1 << closid);
125 
126 	return closid;
127 }
128 
129 void closid_free(int closid)
130 {
131 	closid_free_map |= 1 << closid;
132 }
133 
134 /**
135  * closid_allocated - test if provided closid is in use
136  * @closid: closid to be tested
137  *
138  * Return: true if @closid is currently associated with a resource group,
139  * false if @closid is free
140  */
141 static bool closid_allocated(unsigned int closid)
142 {
143 	return (closid_free_map & (1 << closid)) == 0;
144 }
145 
146 /**
147  * rdtgroup_mode_by_closid - Return mode of resource group with closid
148  * @closid: closid if the resource group
149  *
150  * Each resource group is associated with a @closid. Here the mode
151  * of a resource group can be queried by searching for it using its closid.
152  *
153  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154  */
155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 	struct rdtgroup *rdtgrp;
158 
159 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 		if (rdtgrp->closid == closid)
161 			return rdtgrp->mode;
162 	}
163 
164 	return RDT_NUM_MODES;
165 }
166 
167 static const char * const rdt_mode_str[] = {
168 	[RDT_MODE_SHAREABLE]		= "shareable",
169 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
170 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
171 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
172 };
173 
174 /**
175  * rdtgroup_mode_str - Return the string representation of mode
176  * @mode: the resource group mode as &enum rdtgroup_mode
177  *
178  * Return: string representation of valid mode, "unknown" otherwise
179  */
180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 		return "unknown";
184 
185 	return rdt_mode_str[mode];
186 }
187 
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 				.ia_uid = current_fsuid(),
193 				.ia_gid = current_fsgid(), };
194 
195 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 		return 0;
198 
199 	return kernfs_setattr(kn, &iattr);
200 }
201 
202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 	struct kernfs_node *kn;
205 	int ret;
206 
207 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 				  0, rft->kf_ops, rft, NULL, NULL);
210 	if (IS_ERR(kn))
211 		return PTR_ERR(kn);
212 
213 	ret = rdtgroup_kn_set_ugid(kn);
214 	if (ret) {
215 		kernfs_remove(kn);
216 		return ret;
217 	}
218 
219 	return 0;
220 }
221 
222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 	struct kernfs_open_file *of = m->private;
225 	struct rftype *rft = of->kn->priv;
226 
227 	if (rft->seq_show)
228 		return rft->seq_show(of, m, arg);
229 	return 0;
230 }
231 
232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 				   size_t nbytes, loff_t off)
234 {
235 	struct rftype *rft = of->kn->priv;
236 
237 	if (rft->write)
238 		return rft->write(of, buf, nbytes, off);
239 
240 	return -EINVAL;
241 }
242 
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 	.atomic_write_len	= PAGE_SIZE,
245 	.write			= rdtgroup_file_write,
246 	.seq_show		= rdtgroup_seqfile_show,
247 };
248 
249 static struct kernfs_ops kf_mondata_ops = {
250 	.atomic_write_len	= PAGE_SIZE,
251 	.seq_show		= rdtgroup_mondata_show,
252 };
253 
254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 	struct rftype *rft = of->kn->priv;
257 
258 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260 
261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 			      struct seq_file *s, void *v)
263 {
264 	struct rdtgroup *rdtgrp;
265 	struct cpumask *mask;
266 	int ret = 0;
267 
268 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
269 
270 	if (rdtgrp) {
271 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 			if (!rdtgrp->plr->d) {
273 				rdt_last_cmd_clear();
274 				rdt_last_cmd_puts("Cache domain offline\n");
275 				ret = -ENODEV;
276 			} else {
277 				mask = &rdtgrp->plr->d->cpu_mask;
278 				seq_printf(s, is_cpu_list(of) ?
279 					   "%*pbl\n" : "%*pb\n",
280 					   cpumask_pr_args(mask));
281 			}
282 		} else {
283 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 				   cpumask_pr_args(&rdtgrp->cpu_mask));
285 		}
286 	} else {
287 		ret = -ENOENT;
288 	}
289 	rdtgroup_kn_unlock(of->kn);
290 
291 	return ret;
292 }
293 
294 /*
295  * This is safe against resctrl_sched_in() called from __switch_to()
296  * because __switch_to() is executed with interrupts disabled. A local call
297  * from update_closid_rmid() is proteced against __switch_to() because
298  * preemption is disabled.
299  */
300 static void update_cpu_closid_rmid(void *info)
301 {
302 	struct rdtgroup *r = info;
303 
304 	if (r) {
305 		this_cpu_write(pqr_state.default_closid, r->closid);
306 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 	}
308 
309 	/*
310 	 * We cannot unconditionally write the MSR because the current
311 	 * executing task might have its own closid selected. Just reuse
312 	 * the context switch code.
313 	 */
314 	resctrl_sched_in();
315 }
316 
317 /*
318  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319  *
320  * Per task closids/rmids must have been set up before calling this function.
321  */
322 static void
323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 	int cpu = get_cpu();
326 
327 	if (cpumask_test_cpu(cpu, cpu_mask))
328 		update_cpu_closid_rmid(r);
329 	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 	put_cpu();
331 }
332 
333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 			  cpumask_var_t tmpmask)
335 {
336 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 	struct list_head *head;
338 
339 	/* Check whether cpus belong to parent ctrl group */
340 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 	if (cpumask_weight(tmpmask)) {
342 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 		return -EINVAL;
344 	}
345 
346 	/* Check whether cpus are dropped from this group */
347 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 	if (cpumask_weight(tmpmask)) {
349 		/* Give any dropped cpus to parent rdtgroup */
350 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 		update_closid_rmid(tmpmask, prgrp);
352 	}
353 
354 	/*
355 	 * If we added cpus, remove them from previous group that owned them
356 	 * and update per-cpu rmid
357 	 */
358 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 	if (cpumask_weight(tmpmask)) {
360 		head = &prgrp->mon.crdtgrp_list;
361 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 			if (crgrp == rdtgrp)
363 				continue;
364 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 				       tmpmask);
366 		}
367 		update_closid_rmid(tmpmask, rdtgrp);
368 	}
369 
370 	/* Done pushing/pulling - update this group with new mask */
371 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
372 
373 	return 0;
374 }
375 
376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 	struct rdtgroup *crgrp;
379 
380 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 	/* update the child mon group masks as well*/
382 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385 
386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 	struct rdtgroup *r, *crgrp;
390 	struct list_head *head;
391 
392 	/* Check whether cpus are dropped from this group */
393 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 	if (cpumask_weight(tmpmask)) {
395 		/* Can't drop from default group */
396 		if (rdtgrp == &rdtgroup_default) {
397 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 			return -EINVAL;
399 		}
400 
401 		/* Give any dropped cpus to rdtgroup_default */
402 		cpumask_or(&rdtgroup_default.cpu_mask,
403 			   &rdtgroup_default.cpu_mask, tmpmask);
404 		update_closid_rmid(tmpmask, &rdtgroup_default);
405 	}
406 
407 	/*
408 	 * If we added cpus, remove them from previous group and
409 	 * the prev group's child groups that owned them
410 	 * and update per-cpu closid/rmid.
411 	 */
412 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 	if (cpumask_weight(tmpmask)) {
414 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 			if (r == rdtgrp)
416 				continue;
417 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 			if (cpumask_weight(tmpmask1))
419 				cpumask_rdtgrp_clear(r, tmpmask1);
420 		}
421 		update_closid_rmid(tmpmask, rdtgrp);
422 	}
423 
424 	/* Done pushing/pulling - update this group with new mask */
425 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
426 
427 	/*
428 	 * Clear child mon group masks since there is a new parent mask
429 	 * now and update the rmid for the cpus the child lost.
430 	 */
431 	head = &rdtgrp->mon.crdtgrp_list;
432 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 		update_closid_rmid(tmpmask, rdtgrp);
435 		cpumask_clear(&crgrp->cpu_mask);
436 	}
437 
438 	return 0;
439 }
440 
441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 				   char *buf, size_t nbytes, loff_t off)
443 {
444 	cpumask_var_t tmpmask, newmask, tmpmask1;
445 	struct rdtgroup *rdtgrp;
446 	int ret;
447 
448 	if (!buf)
449 		return -EINVAL;
450 
451 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 		return -ENOMEM;
453 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 		free_cpumask_var(tmpmask);
455 		return -ENOMEM;
456 	}
457 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 		free_cpumask_var(tmpmask);
459 		free_cpumask_var(newmask);
460 		return -ENOMEM;
461 	}
462 
463 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 	if (!rdtgrp) {
465 		ret = -ENOENT;
466 		goto unlock;
467 	}
468 
469 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
470 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
471 		ret = -EINVAL;
472 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
473 		goto unlock;
474 	}
475 
476 	if (is_cpu_list(of))
477 		ret = cpulist_parse(buf, newmask);
478 	else
479 		ret = cpumask_parse(buf, newmask);
480 
481 	if (ret) {
482 		rdt_last_cmd_puts("Bad CPU list/mask\n");
483 		goto unlock;
484 	}
485 
486 	/* check that user didn't specify any offline cpus */
487 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
488 	if (cpumask_weight(tmpmask)) {
489 		ret = -EINVAL;
490 		rdt_last_cmd_puts("Can only assign online CPUs\n");
491 		goto unlock;
492 	}
493 
494 	if (rdtgrp->type == RDTCTRL_GROUP)
495 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
496 	else if (rdtgrp->type == RDTMON_GROUP)
497 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
498 	else
499 		ret = -EINVAL;
500 
501 unlock:
502 	rdtgroup_kn_unlock(of->kn);
503 	free_cpumask_var(tmpmask);
504 	free_cpumask_var(newmask);
505 	free_cpumask_var(tmpmask1);
506 
507 	return ret ?: nbytes;
508 }
509 
510 struct task_move_callback {
511 	struct callback_head	work;
512 	struct rdtgroup		*rdtgrp;
513 };
514 
515 static void move_myself(struct callback_head *head)
516 {
517 	struct task_move_callback *callback;
518 	struct rdtgroup *rdtgrp;
519 
520 	callback = container_of(head, struct task_move_callback, work);
521 	rdtgrp = callback->rdtgrp;
522 
523 	/*
524 	 * If resource group was deleted before this task work callback
525 	 * was invoked, then assign the task to root group and free the
526 	 * resource group.
527 	 */
528 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
529 	    (rdtgrp->flags & RDT_DELETED)) {
530 		current->closid = 0;
531 		current->rmid = 0;
532 		kfree(rdtgrp);
533 	}
534 
535 	if (unlikely(current->flags & PF_EXITING))
536 		goto out;
537 
538 	preempt_disable();
539 	/* update PQR_ASSOC MSR to make resource group go into effect */
540 	resctrl_sched_in();
541 	preempt_enable();
542 
543 out:
544 	kfree(callback);
545 }
546 
547 static int __rdtgroup_move_task(struct task_struct *tsk,
548 				struct rdtgroup *rdtgrp)
549 {
550 	struct task_move_callback *callback;
551 	int ret;
552 
553 	callback = kzalloc(sizeof(*callback), GFP_KERNEL);
554 	if (!callback)
555 		return -ENOMEM;
556 	callback->work.func = move_myself;
557 	callback->rdtgrp = rdtgrp;
558 
559 	/*
560 	 * Take a refcount, so rdtgrp cannot be freed before the
561 	 * callback has been invoked.
562 	 */
563 	atomic_inc(&rdtgrp->waitcount);
564 	ret = task_work_add(tsk, &callback->work, true);
565 	if (ret) {
566 		/*
567 		 * Task is exiting. Drop the refcount and free the callback.
568 		 * No need to check the refcount as the group cannot be
569 		 * deleted before the write function unlocks rdtgroup_mutex.
570 		 */
571 		atomic_dec(&rdtgrp->waitcount);
572 		kfree(callback);
573 		rdt_last_cmd_puts("Task exited\n");
574 	} else {
575 		/*
576 		 * For ctrl_mon groups move both closid and rmid.
577 		 * For monitor groups, can move the tasks only from
578 		 * their parent CTRL group.
579 		 */
580 		if (rdtgrp->type == RDTCTRL_GROUP) {
581 			tsk->closid = rdtgrp->closid;
582 			tsk->rmid = rdtgrp->mon.rmid;
583 		} else if (rdtgrp->type == RDTMON_GROUP) {
584 			if (rdtgrp->mon.parent->closid == tsk->closid) {
585 				tsk->rmid = rdtgrp->mon.rmid;
586 			} else {
587 				rdt_last_cmd_puts("Can't move task to different control group\n");
588 				ret = -EINVAL;
589 			}
590 		}
591 	}
592 	return ret;
593 }
594 
595 /**
596  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
597  * @r: Resource group
598  *
599  * Return: 1 if tasks have been assigned to @r, 0 otherwise
600  */
601 int rdtgroup_tasks_assigned(struct rdtgroup *r)
602 {
603 	struct task_struct *p, *t;
604 	int ret = 0;
605 
606 	lockdep_assert_held(&rdtgroup_mutex);
607 
608 	rcu_read_lock();
609 	for_each_process_thread(p, t) {
610 		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
611 		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
612 			ret = 1;
613 			break;
614 		}
615 	}
616 	rcu_read_unlock();
617 
618 	return ret;
619 }
620 
621 static int rdtgroup_task_write_permission(struct task_struct *task,
622 					  struct kernfs_open_file *of)
623 {
624 	const struct cred *tcred = get_task_cred(task);
625 	const struct cred *cred = current_cred();
626 	int ret = 0;
627 
628 	/*
629 	 * Even if we're attaching all tasks in the thread group, we only
630 	 * need to check permissions on one of them.
631 	 */
632 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
633 	    !uid_eq(cred->euid, tcred->uid) &&
634 	    !uid_eq(cred->euid, tcred->suid)) {
635 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
636 		ret = -EPERM;
637 	}
638 
639 	put_cred(tcred);
640 	return ret;
641 }
642 
643 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
644 			      struct kernfs_open_file *of)
645 {
646 	struct task_struct *tsk;
647 	int ret;
648 
649 	rcu_read_lock();
650 	if (pid) {
651 		tsk = find_task_by_vpid(pid);
652 		if (!tsk) {
653 			rcu_read_unlock();
654 			rdt_last_cmd_printf("No task %d\n", pid);
655 			return -ESRCH;
656 		}
657 	} else {
658 		tsk = current;
659 	}
660 
661 	get_task_struct(tsk);
662 	rcu_read_unlock();
663 
664 	ret = rdtgroup_task_write_permission(tsk, of);
665 	if (!ret)
666 		ret = __rdtgroup_move_task(tsk, rdtgrp);
667 
668 	put_task_struct(tsk);
669 	return ret;
670 }
671 
672 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
673 				    char *buf, size_t nbytes, loff_t off)
674 {
675 	struct rdtgroup *rdtgrp;
676 	int ret = 0;
677 	pid_t pid;
678 
679 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
680 		return -EINVAL;
681 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
682 	if (!rdtgrp) {
683 		rdtgroup_kn_unlock(of->kn);
684 		return -ENOENT;
685 	}
686 	rdt_last_cmd_clear();
687 
688 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
689 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
690 		ret = -EINVAL;
691 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
692 		goto unlock;
693 	}
694 
695 	ret = rdtgroup_move_task(pid, rdtgrp, of);
696 
697 unlock:
698 	rdtgroup_kn_unlock(of->kn);
699 
700 	return ret ?: nbytes;
701 }
702 
703 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
704 {
705 	struct task_struct *p, *t;
706 
707 	rcu_read_lock();
708 	for_each_process_thread(p, t) {
709 		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
710 		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
711 			seq_printf(s, "%d\n", t->pid);
712 	}
713 	rcu_read_unlock();
714 }
715 
716 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
717 			       struct seq_file *s, void *v)
718 {
719 	struct rdtgroup *rdtgrp;
720 	int ret = 0;
721 
722 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
723 	if (rdtgrp)
724 		show_rdt_tasks(rdtgrp, s);
725 	else
726 		ret = -ENOENT;
727 	rdtgroup_kn_unlock(of->kn);
728 
729 	return ret;
730 }
731 
732 #ifdef CONFIG_PROC_CPU_RESCTRL
733 
734 /*
735  * A task can only be part of one resctrl control group and of one monitor
736  * group which is associated to that control group.
737  *
738  * 1)   res:
739  *      mon:
740  *
741  *    resctrl is not available.
742  *
743  * 2)   res:/
744  *      mon:
745  *
746  *    Task is part of the root resctrl control group, and it is not associated
747  *    to any monitor group.
748  *
749  * 3)  res:/
750  *     mon:mon0
751  *
752  *    Task is part of the root resctrl control group and monitor group mon0.
753  *
754  * 4)  res:group0
755  *     mon:
756  *
757  *    Task is part of resctrl control group group0, and it is not associated
758  *    to any monitor group.
759  *
760  * 5) res:group0
761  *    mon:mon1
762  *
763  *    Task is part of resctrl control group group0 and monitor group mon1.
764  */
765 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
766 		      struct pid *pid, struct task_struct *tsk)
767 {
768 	struct rdtgroup *rdtg;
769 	int ret = 0;
770 
771 	mutex_lock(&rdtgroup_mutex);
772 
773 	/* Return empty if resctrl has not been mounted. */
774 	if (!static_branch_unlikely(&rdt_enable_key)) {
775 		seq_puts(s, "res:\nmon:\n");
776 		goto unlock;
777 	}
778 
779 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
780 		struct rdtgroup *crg;
781 
782 		/*
783 		 * Task information is only relevant for shareable
784 		 * and exclusive groups.
785 		 */
786 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
787 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
788 			continue;
789 
790 		if (rdtg->closid != tsk->closid)
791 			continue;
792 
793 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
794 			   rdtg->kn->name);
795 		seq_puts(s, "mon:");
796 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
797 				    mon.crdtgrp_list) {
798 			if (tsk->rmid != crg->mon.rmid)
799 				continue;
800 			seq_printf(s, "%s", crg->kn->name);
801 			break;
802 		}
803 		seq_putc(s, '\n');
804 		goto unlock;
805 	}
806 	/*
807 	 * The above search should succeed. Otherwise return
808 	 * with an error.
809 	 */
810 	ret = -ENOENT;
811 unlock:
812 	mutex_unlock(&rdtgroup_mutex);
813 
814 	return ret;
815 }
816 #endif
817 
818 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
819 				    struct seq_file *seq, void *v)
820 {
821 	int len;
822 
823 	mutex_lock(&rdtgroup_mutex);
824 	len = seq_buf_used(&last_cmd_status);
825 	if (len)
826 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
827 	else
828 		seq_puts(seq, "ok\n");
829 	mutex_unlock(&rdtgroup_mutex);
830 	return 0;
831 }
832 
833 static int rdt_num_closids_show(struct kernfs_open_file *of,
834 				struct seq_file *seq, void *v)
835 {
836 	struct rdt_resource *r = of->kn->parent->priv;
837 
838 	seq_printf(seq, "%d\n", r->num_closid);
839 	return 0;
840 }
841 
842 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
843 			     struct seq_file *seq, void *v)
844 {
845 	struct rdt_resource *r = of->kn->parent->priv;
846 
847 	seq_printf(seq, "%x\n", r->default_ctrl);
848 	return 0;
849 }
850 
851 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
852 			     struct seq_file *seq, void *v)
853 {
854 	struct rdt_resource *r = of->kn->parent->priv;
855 
856 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
857 	return 0;
858 }
859 
860 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
861 				   struct seq_file *seq, void *v)
862 {
863 	struct rdt_resource *r = of->kn->parent->priv;
864 
865 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
866 	return 0;
867 }
868 
869 /**
870  * rdt_bit_usage_show - Display current usage of resources
871  *
872  * A domain is a shared resource that can now be allocated differently. Here
873  * we display the current regions of the domain as an annotated bitmask.
874  * For each domain of this resource its allocation bitmask
875  * is annotated as below to indicate the current usage of the corresponding bit:
876  *   0 - currently unused
877  *   X - currently available for sharing and used by software and hardware
878  *   H - currently used by hardware only but available for software use
879  *   S - currently used and shareable by software only
880  *   E - currently used exclusively by one resource group
881  *   P - currently pseudo-locked by one resource group
882  */
883 static int rdt_bit_usage_show(struct kernfs_open_file *of,
884 			      struct seq_file *seq, void *v)
885 {
886 	struct rdt_resource *r = of->kn->parent->priv;
887 	/*
888 	 * Use unsigned long even though only 32 bits are used to ensure
889 	 * test_bit() is used safely.
890 	 */
891 	unsigned long sw_shareable = 0, hw_shareable = 0;
892 	unsigned long exclusive = 0, pseudo_locked = 0;
893 	struct rdt_domain *dom;
894 	int i, hwb, swb, excl, psl;
895 	enum rdtgrp_mode mode;
896 	bool sep = false;
897 	u32 *ctrl;
898 
899 	mutex_lock(&rdtgroup_mutex);
900 	hw_shareable = r->cache.shareable_bits;
901 	list_for_each_entry(dom, &r->domains, list) {
902 		if (sep)
903 			seq_putc(seq, ';');
904 		ctrl = dom->ctrl_val;
905 		sw_shareable = 0;
906 		exclusive = 0;
907 		seq_printf(seq, "%d=", dom->id);
908 		for (i = 0; i < closids_supported(); i++, ctrl++) {
909 			if (!closid_allocated(i))
910 				continue;
911 			mode = rdtgroup_mode_by_closid(i);
912 			switch (mode) {
913 			case RDT_MODE_SHAREABLE:
914 				sw_shareable |= *ctrl;
915 				break;
916 			case RDT_MODE_EXCLUSIVE:
917 				exclusive |= *ctrl;
918 				break;
919 			case RDT_MODE_PSEUDO_LOCKSETUP:
920 			/*
921 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
922 			 * here but not included since the CBM
923 			 * associated with this CLOSID in this mode
924 			 * is not initialized and no task or cpu can be
925 			 * assigned this CLOSID.
926 			 */
927 				break;
928 			case RDT_MODE_PSEUDO_LOCKED:
929 			case RDT_NUM_MODES:
930 				WARN(1,
931 				     "invalid mode for closid %d\n", i);
932 				break;
933 			}
934 		}
935 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
936 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
937 			hwb = test_bit(i, &hw_shareable);
938 			swb = test_bit(i, &sw_shareable);
939 			excl = test_bit(i, &exclusive);
940 			psl = test_bit(i, &pseudo_locked);
941 			if (hwb && swb)
942 				seq_putc(seq, 'X');
943 			else if (hwb && !swb)
944 				seq_putc(seq, 'H');
945 			else if (!hwb && swb)
946 				seq_putc(seq, 'S');
947 			else if (excl)
948 				seq_putc(seq, 'E');
949 			else if (psl)
950 				seq_putc(seq, 'P');
951 			else /* Unused bits remain */
952 				seq_putc(seq, '0');
953 		}
954 		sep = true;
955 	}
956 	seq_putc(seq, '\n');
957 	mutex_unlock(&rdtgroup_mutex);
958 	return 0;
959 }
960 
961 static int rdt_min_bw_show(struct kernfs_open_file *of,
962 			     struct seq_file *seq, void *v)
963 {
964 	struct rdt_resource *r = of->kn->parent->priv;
965 
966 	seq_printf(seq, "%u\n", r->membw.min_bw);
967 	return 0;
968 }
969 
970 static int rdt_num_rmids_show(struct kernfs_open_file *of,
971 			      struct seq_file *seq, void *v)
972 {
973 	struct rdt_resource *r = of->kn->parent->priv;
974 
975 	seq_printf(seq, "%d\n", r->num_rmid);
976 
977 	return 0;
978 }
979 
980 static int rdt_mon_features_show(struct kernfs_open_file *of,
981 				 struct seq_file *seq, void *v)
982 {
983 	struct rdt_resource *r = of->kn->parent->priv;
984 	struct mon_evt *mevt;
985 
986 	list_for_each_entry(mevt, &r->evt_list, list)
987 		seq_printf(seq, "%s\n", mevt->name);
988 
989 	return 0;
990 }
991 
992 static int rdt_bw_gran_show(struct kernfs_open_file *of,
993 			     struct seq_file *seq, void *v)
994 {
995 	struct rdt_resource *r = of->kn->parent->priv;
996 
997 	seq_printf(seq, "%u\n", r->membw.bw_gran);
998 	return 0;
999 }
1000 
1001 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1002 			     struct seq_file *seq, void *v)
1003 {
1004 	struct rdt_resource *r = of->kn->parent->priv;
1005 
1006 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1007 	return 0;
1008 }
1009 
1010 static int max_threshold_occ_show(struct kernfs_open_file *of,
1011 				  struct seq_file *seq, void *v)
1012 {
1013 	struct rdt_resource *r = of->kn->parent->priv;
1014 
1015 	seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
1016 
1017 	return 0;
1018 }
1019 
1020 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1021 				       char *buf, size_t nbytes, loff_t off)
1022 {
1023 	struct rdt_resource *r = of->kn->parent->priv;
1024 	unsigned int bytes;
1025 	int ret;
1026 
1027 	ret = kstrtouint(buf, 0, &bytes);
1028 	if (ret)
1029 		return ret;
1030 
1031 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
1032 		return -EINVAL;
1033 
1034 	resctrl_cqm_threshold = bytes / r->mon_scale;
1035 
1036 	return nbytes;
1037 }
1038 
1039 /*
1040  * rdtgroup_mode_show - Display mode of this resource group
1041  */
1042 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1043 			      struct seq_file *s, void *v)
1044 {
1045 	struct rdtgroup *rdtgrp;
1046 
1047 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1048 	if (!rdtgrp) {
1049 		rdtgroup_kn_unlock(of->kn);
1050 		return -ENOENT;
1051 	}
1052 
1053 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1054 
1055 	rdtgroup_kn_unlock(of->kn);
1056 	return 0;
1057 }
1058 
1059 /**
1060  * rdt_cdp_peer_get - Retrieve CDP peer if it exists
1061  * @r: RDT resource to which RDT domain @d belongs
1062  * @d: Cache instance for which a CDP peer is requested
1063  * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
1064  *         Used to return the result.
1065  * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
1066  *         Used to return the result.
1067  *
1068  * RDT resources are managed independently and by extension the RDT domains
1069  * (RDT resource instances) are managed independently also. The Code and
1070  * Data Prioritization (CDP) RDT resources, while managed independently,
1071  * could refer to the same underlying hardware. For example,
1072  * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
1073  *
1074  * When provided with an RDT resource @r and an instance of that RDT
1075  * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
1076  * resource and the exact instance that shares the same hardware.
1077  *
1078  * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
1079  *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
1080  *         and @d_cdp will point to the peer RDT domain.
1081  */
1082 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
1083 			    struct rdt_resource **r_cdp,
1084 			    struct rdt_domain **d_cdp)
1085 {
1086 	struct rdt_resource *_r_cdp = NULL;
1087 	struct rdt_domain *_d_cdp = NULL;
1088 	int ret = 0;
1089 
1090 	switch (r->rid) {
1091 	case RDT_RESOURCE_L3DATA:
1092 		_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1093 		break;
1094 	case RDT_RESOURCE_L3CODE:
1095 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1096 		break;
1097 	case RDT_RESOURCE_L2DATA:
1098 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1099 		break;
1100 	case RDT_RESOURCE_L2CODE:
1101 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1102 		break;
1103 	default:
1104 		ret = -ENOENT;
1105 		goto out;
1106 	}
1107 
1108 	/*
1109 	 * When a new CPU comes online and CDP is enabled then the new
1110 	 * RDT domains (if any) associated with both CDP RDT resources
1111 	 * are added in the same CPU online routine while the
1112 	 * rdtgroup_mutex is held. It should thus not happen for one
1113 	 * RDT domain to exist and be associated with its RDT CDP
1114 	 * resource but there is no RDT domain associated with the
1115 	 * peer RDT CDP resource. Hence the WARN.
1116 	 */
1117 	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1118 	if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1119 		_r_cdp = NULL;
1120 		_d_cdp = NULL;
1121 		ret = -EINVAL;
1122 	}
1123 
1124 out:
1125 	*r_cdp = _r_cdp;
1126 	*d_cdp = _d_cdp;
1127 
1128 	return ret;
1129 }
1130 
1131 /**
1132  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1133  * @r: Resource to which domain instance @d belongs.
1134  * @d: The domain instance for which @closid is being tested.
1135  * @cbm: Capacity bitmask being tested.
1136  * @closid: Intended closid for @cbm.
1137  * @exclusive: Only check if overlaps with exclusive resource groups
1138  *
1139  * Checks if provided @cbm intended to be used for @closid on domain
1140  * @d overlaps with any other closids or other hardware usage associated
1141  * with this domain. If @exclusive is true then only overlaps with
1142  * resource groups in exclusive mode will be considered. If @exclusive
1143  * is false then overlaps with any resource group or hardware entities
1144  * will be considered.
1145  *
1146  * @cbm is unsigned long, even if only 32 bits are used, to make the
1147  * bitmap functions work correctly.
1148  *
1149  * Return: false if CBM does not overlap, true if it does.
1150  */
1151 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1152 				    unsigned long cbm, int closid, bool exclusive)
1153 {
1154 	enum rdtgrp_mode mode;
1155 	unsigned long ctrl_b;
1156 	u32 *ctrl;
1157 	int i;
1158 
1159 	/* Check for any overlap with regions used by hardware directly */
1160 	if (!exclusive) {
1161 		ctrl_b = r->cache.shareable_bits;
1162 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1163 			return true;
1164 	}
1165 
1166 	/* Check for overlap with other resource groups */
1167 	ctrl = d->ctrl_val;
1168 	for (i = 0; i < closids_supported(); i++, ctrl++) {
1169 		ctrl_b = *ctrl;
1170 		mode = rdtgroup_mode_by_closid(i);
1171 		if (closid_allocated(i) && i != closid &&
1172 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1173 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1174 				if (exclusive) {
1175 					if (mode == RDT_MODE_EXCLUSIVE)
1176 						return true;
1177 					continue;
1178 				}
1179 				return true;
1180 			}
1181 		}
1182 	}
1183 
1184 	return false;
1185 }
1186 
1187 /**
1188  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1189  * @r: Resource to which domain instance @d belongs.
1190  * @d: The domain instance for which @closid is being tested.
1191  * @cbm: Capacity bitmask being tested.
1192  * @closid: Intended closid for @cbm.
1193  * @exclusive: Only check if overlaps with exclusive resource groups
1194  *
1195  * Resources that can be allocated using a CBM can use the CBM to control
1196  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1197  * for overlap. Overlap test is not limited to the specific resource for
1198  * which the CBM is intended though - when dealing with CDP resources that
1199  * share the underlying hardware the overlap check should be performed on
1200  * the CDP resource sharing the hardware also.
1201  *
1202  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1203  * overlap test.
1204  *
1205  * Return: true if CBM overlap detected, false if there is no overlap
1206  */
1207 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1208 			   unsigned long cbm, int closid, bool exclusive)
1209 {
1210 	struct rdt_resource *r_cdp;
1211 	struct rdt_domain *d_cdp;
1212 
1213 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1214 		return true;
1215 
1216 	if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1217 		return false;
1218 
1219 	return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1220 }
1221 
1222 /**
1223  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1224  *
1225  * An exclusive resource group implies that there should be no sharing of
1226  * its allocated resources. At the time this group is considered to be
1227  * exclusive this test can determine if its current schemata supports this
1228  * setting by testing for overlap with all other resource groups.
1229  *
1230  * Return: true if resource group can be exclusive, false if there is overlap
1231  * with allocations of other resource groups and thus this resource group
1232  * cannot be exclusive.
1233  */
1234 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1235 {
1236 	int closid = rdtgrp->closid;
1237 	struct rdt_resource *r;
1238 	bool has_cache = false;
1239 	struct rdt_domain *d;
1240 
1241 	for_each_alloc_enabled_rdt_resource(r) {
1242 		if (r->rid == RDT_RESOURCE_MBA)
1243 			continue;
1244 		has_cache = true;
1245 		list_for_each_entry(d, &r->domains, list) {
1246 			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1247 						  rdtgrp->closid, false)) {
1248 				rdt_last_cmd_puts("Schemata overlaps\n");
1249 				return false;
1250 			}
1251 		}
1252 	}
1253 
1254 	if (!has_cache) {
1255 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1256 		return false;
1257 	}
1258 
1259 	return true;
1260 }
1261 
1262 /**
1263  * rdtgroup_mode_write - Modify the resource group's mode
1264  *
1265  */
1266 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1267 				   char *buf, size_t nbytes, loff_t off)
1268 {
1269 	struct rdtgroup *rdtgrp;
1270 	enum rdtgrp_mode mode;
1271 	int ret = 0;
1272 
1273 	/* Valid input requires a trailing newline */
1274 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1275 		return -EINVAL;
1276 	buf[nbytes - 1] = '\0';
1277 
1278 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1279 	if (!rdtgrp) {
1280 		rdtgroup_kn_unlock(of->kn);
1281 		return -ENOENT;
1282 	}
1283 
1284 	rdt_last_cmd_clear();
1285 
1286 	mode = rdtgrp->mode;
1287 
1288 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1289 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1290 	    (!strcmp(buf, "pseudo-locksetup") &&
1291 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1292 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1293 		goto out;
1294 
1295 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1296 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1297 		ret = -EINVAL;
1298 		goto out;
1299 	}
1300 
1301 	if (!strcmp(buf, "shareable")) {
1302 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1303 			ret = rdtgroup_locksetup_exit(rdtgrp);
1304 			if (ret)
1305 				goto out;
1306 		}
1307 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1308 	} else if (!strcmp(buf, "exclusive")) {
1309 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1310 			ret = -EINVAL;
1311 			goto out;
1312 		}
1313 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1314 			ret = rdtgroup_locksetup_exit(rdtgrp);
1315 			if (ret)
1316 				goto out;
1317 		}
1318 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1319 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1320 		ret = rdtgroup_locksetup_enter(rdtgrp);
1321 		if (ret)
1322 			goto out;
1323 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1324 	} else {
1325 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1326 		ret = -EINVAL;
1327 	}
1328 
1329 out:
1330 	rdtgroup_kn_unlock(of->kn);
1331 	return ret ?: nbytes;
1332 }
1333 
1334 /**
1335  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1336  * @r: RDT resource to which @d belongs.
1337  * @d: RDT domain instance.
1338  * @cbm: bitmask for which the size should be computed.
1339  *
1340  * The bitmask provided associated with the RDT domain instance @d will be
1341  * translated into how many bytes it represents. The size in bytes is
1342  * computed by first dividing the total cache size by the CBM length to
1343  * determine how many bytes each bit in the bitmask represents. The result
1344  * is multiplied with the number of bits set in the bitmask.
1345  *
1346  * @cbm is unsigned long, even if only 32 bits are used to make the
1347  * bitmap functions work correctly.
1348  */
1349 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1350 				  struct rdt_domain *d, unsigned long cbm)
1351 {
1352 	struct cpu_cacheinfo *ci;
1353 	unsigned int size = 0;
1354 	int num_b, i;
1355 
1356 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1357 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1358 	for (i = 0; i < ci->num_leaves; i++) {
1359 		if (ci->info_list[i].level == r->cache_level) {
1360 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1361 			break;
1362 		}
1363 	}
1364 
1365 	return size;
1366 }
1367 
1368 /**
1369  * rdtgroup_size_show - Display size in bytes of allocated regions
1370  *
1371  * The "size" file mirrors the layout of the "schemata" file, printing the
1372  * size in bytes of each region instead of the capacity bitmask.
1373  *
1374  */
1375 static int rdtgroup_size_show(struct kernfs_open_file *of,
1376 			      struct seq_file *s, void *v)
1377 {
1378 	struct rdtgroup *rdtgrp;
1379 	struct rdt_resource *r;
1380 	struct rdt_domain *d;
1381 	unsigned int size;
1382 	int ret = 0;
1383 	bool sep;
1384 	u32 ctrl;
1385 
1386 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1387 	if (!rdtgrp) {
1388 		rdtgroup_kn_unlock(of->kn);
1389 		return -ENOENT;
1390 	}
1391 
1392 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1393 		if (!rdtgrp->plr->d) {
1394 			rdt_last_cmd_clear();
1395 			rdt_last_cmd_puts("Cache domain offline\n");
1396 			ret = -ENODEV;
1397 		} else {
1398 			seq_printf(s, "%*s:", max_name_width,
1399 				   rdtgrp->plr->r->name);
1400 			size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1401 						    rdtgrp->plr->d,
1402 						    rdtgrp->plr->cbm);
1403 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1404 		}
1405 		goto out;
1406 	}
1407 
1408 	for_each_alloc_enabled_rdt_resource(r) {
1409 		sep = false;
1410 		seq_printf(s, "%*s:", max_name_width, r->name);
1411 		list_for_each_entry(d, &r->domains, list) {
1412 			if (sep)
1413 				seq_putc(s, ';');
1414 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1415 				size = 0;
1416 			} else {
1417 				ctrl = (!is_mba_sc(r) ?
1418 						d->ctrl_val[rdtgrp->closid] :
1419 						d->mbps_val[rdtgrp->closid]);
1420 				if (r->rid == RDT_RESOURCE_MBA)
1421 					size = ctrl;
1422 				else
1423 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1424 			}
1425 			seq_printf(s, "%d=%u", d->id, size);
1426 			sep = true;
1427 		}
1428 		seq_putc(s, '\n');
1429 	}
1430 
1431 out:
1432 	rdtgroup_kn_unlock(of->kn);
1433 
1434 	return ret;
1435 }
1436 
1437 /* rdtgroup information files for one cache resource. */
1438 static struct rftype res_common_files[] = {
1439 	{
1440 		.name		= "last_cmd_status",
1441 		.mode		= 0444,
1442 		.kf_ops		= &rdtgroup_kf_single_ops,
1443 		.seq_show	= rdt_last_cmd_status_show,
1444 		.fflags		= RF_TOP_INFO,
1445 	},
1446 	{
1447 		.name		= "num_closids",
1448 		.mode		= 0444,
1449 		.kf_ops		= &rdtgroup_kf_single_ops,
1450 		.seq_show	= rdt_num_closids_show,
1451 		.fflags		= RF_CTRL_INFO,
1452 	},
1453 	{
1454 		.name		= "mon_features",
1455 		.mode		= 0444,
1456 		.kf_ops		= &rdtgroup_kf_single_ops,
1457 		.seq_show	= rdt_mon_features_show,
1458 		.fflags		= RF_MON_INFO,
1459 	},
1460 	{
1461 		.name		= "num_rmids",
1462 		.mode		= 0444,
1463 		.kf_ops		= &rdtgroup_kf_single_ops,
1464 		.seq_show	= rdt_num_rmids_show,
1465 		.fflags		= RF_MON_INFO,
1466 	},
1467 	{
1468 		.name		= "cbm_mask",
1469 		.mode		= 0444,
1470 		.kf_ops		= &rdtgroup_kf_single_ops,
1471 		.seq_show	= rdt_default_ctrl_show,
1472 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1473 	},
1474 	{
1475 		.name		= "min_cbm_bits",
1476 		.mode		= 0444,
1477 		.kf_ops		= &rdtgroup_kf_single_ops,
1478 		.seq_show	= rdt_min_cbm_bits_show,
1479 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1480 	},
1481 	{
1482 		.name		= "shareable_bits",
1483 		.mode		= 0444,
1484 		.kf_ops		= &rdtgroup_kf_single_ops,
1485 		.seq_show	= rdt_shareable_bits_show,
1486 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1487 	},
1488 	{
1489 		.name		= "bit_usage",
1490 		.mode		= 0444,
1491 		.kf_ops		= &rdtgroup_kf_single_ops,
1492 		.seq_show	= rdt_bit_usage_show,
1493 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1494 	},
1495 	{
1496 		.name		= "min_bandwidth",
1497 		.mode		= 0444,
1498 		.kf_ops		= &rdtgroup_kf_single_ops,
1499 		.seq_show	= rdt_min_bw_show,
1500 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1501 	},
1502 	{
1503 		.name		= "bandwidth_gran",
1504 		.mode		= 0444,
1505 		.kf_ops		= &rdtgroup_kf_single_ops,
1506 		.seq_show	= rdt_bw_gran_show,
1507 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1508 	},
1509 	{
1510 		.name		= "delay_linear",
1511 		.mode		= 0444,
1512 		.kf_ops		= &rdtgroup_kf_single_ops,
1513 		.seq_show	= rdt_delay_linear_show,
1514 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1515 	},
1516 	{
1517 		.name		= "max_threshold_occupancy",
1518 		.mode		= 0644,
1519 		.kf_ops		= &rdtgroup_kf_single_ops,
1520 		.write		= max_threshold_occ_write,
1521 		.seq_show	= max_threshold_occ_show,
1522 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1523 	},
1524 	{
1525 		.name		= "cpus",
1526 		.mode		= 0644,
1527 		.kf_ops		= &rdtgroup_kf_single_ops,
1528 		.write		= rdtgroup_cpus_write,
1529 		.seq_show	= rdtgroup_cpus_show,
1530 		.fflags		= RFTYPE_BASE,
1531 	},
1532 	{
1533 		.name		= "cpus_list",
1534 		.mode		= 0644,
1535 		.kf_ops		= &rdtgroup_kf_single_ops,
1536 		.write		= rdtgroup_cpus_write,
1537 		.seq_show	= rdtgroup_cpus_show,
1538 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1539 		.fflags		= RFTYPE_BASE,
1540 	},
1541 	{
1542 		.name		= "tasks",
1543 		.mode		= 0644,
1544 		.kf_ops		= &rdtgroup_kf_single_ops,
1545 		.write		= rdtgroup_tasks_write,
1546 		.seq_show	= rdtgroup_tasks_show,
1547 		.fflags		= RFTYPE_BASE,
1548 	},
1549 	{
1550 		.name		= "schemata",
1551 		.mode		= 0644,
1552 		.kf_ops		= &rdtgroup_kf_single_ops,
1553 		.write		= rdtgroup_schemata_write,
1554 		.seq_show	= rdtgroup_schemata_show,
1555 		.fflags		= RF_CTRL_BASE,
1556 	},
1557 	{
1558 		.name		= "mode",
1559 		.mode		= 0644,
1560 		.kf_ops		= &rdtgroup_kf_single_ops,
1561 		.write		= rdtgroup_mode_write,
1562 		.seq_show	= rdtgroup_mode_show,
1563 		.fflags		= RF_CTRL_BASE,
1564 	},
1565 	{
1566 		.name		= "size",
1567 		.mode		= 0444,
1568 		.kf_ops		= &rdtgroup_kf_single_ops,
1569 		.seq_show	= rdtgroup_size_show,
1570 		.fflags		= RF_CTRL_BASE,
1571 	},
1572 
1573 };
1574 
1575 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1576 {
1577 	struct rftype *rfts, *rft;
1578 	int ret, len;
1579 
1580 	rfts = res_common_files;
1581 	len = ARRAY_SIZE(res_common_files);
1582 
1583 	lockdep_assert_held(&rdtgroup_mutex);
1584 
1585 	for (rft = rfts; rft < rfts + len; rft++) {
1586 		if ((fflags & rft->fflags) == rft->fflags) {
1587 			ret = rdtgroup_add_file(kn, rft);
1588 			if (ret)
1589 				goto error;
1590 		}
1591 	}
1592 
1593 	return 0;
1594 error:
1595 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1596 	while (--rft >= rfts) {
1597 		if ((fflags & rft->fflags) == rft->fflags)
1598 			kernfs_remove_by_name(kn, rft->name);
1599 	}
1600 	return ret;
1601 }
1602 
1603 /**
1604  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1605  * @r: The resource group with which the file is associated.
1606  * @name: Name of the file
1607  *
1608  * The permissions of named resctrl file, directory, or link are modified
1609  * to not allow read, write, or execute by any user.
1610  *
1611  * WARNING: This function is intended to communicate to the user that the
1612  * resctrl file has been locked down - that it is not relevant to the
1613  * particular state the system finds itself in. It should not be relied
1614  * on to protect from user access because after the file's permissions
1615  * are restricted the user can still change the permissions using chmod
1616  * from the command line.
1617  *
1618  * Return: 0 on success, <0 on failure.
1619  */
1620 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1621 {
1622 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1623 	struct kernfs_node *kn;
1624 	int ret = 0;
1625 
1626 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1627 	if (!kn)
1628 		return -ENOENT;
1629 
1630 	switch (kernfs_type(kn)) {
1631 	case KERNFS_DIR:
1632 		iattr.ia_mode = S_IFDIR;
1633 		break;
1634 	case KERNFS_FILE:
1635 		iattr.ia_mode = S_IFREG;
1636 		break;
1637 	case KERNFS_LINK:
1638 		iattr.ia_mode = S_IFLNK;
1639 		break;
1640 	}
1641 
1642 	ret = kernfs_setattr(kn, &iattr);
1643 	kernfs_put(kn);
1644 	return ret;
1645 }
1646 
1647 /**
1648  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1649  * @r: The resource group with which the file is associated.
1650  * @name: Name of the file
1651  * @mask: Mask of permissions that should be restored
1652  *
1653  * Restore the permissions of the named file. If @name is a directory the
1654  * permissions of its parent will be used.
1655  *
1656  * Return: 0 on success, <0 on failure.
1657  */
1658 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1659 			     umode_t mask)
1660 {
1661 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1662 	struct kernfs_node *kn, *parent;
1663 	struct rftype *rfts, *rft;
1664 	int ret, len;
1665 
1666 	rfts = res_common_files;
1667 	len = ARRAY_SIZE(res_common_files);
1668 
1669 	for (rft = rfts; rft < rfts + len; rft++) {
1670 		if (!strcmp(rft->name, name))
1671 			iattr.ia_mode = rft->mode & mask;
1672 	}
1673 
1674 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1675 	if (!kn)
1676 		return -ENOENT;
1677 
1678 	switch (kernfs_type(kn)) {
1679 	case KERNFS_DIR:
1680 		parent = kernfs_get_parent(kn);
1681 		if (parent) {
1682 			iattr.ia_mode |= parent->mode;
1683 			kernfs_put(parent);
1684 		}
1685 		iattr.ia_mode |= S_IFDIR;
1686 		break;
1687 	case KERNFS_FILE:
1688 		iattr.ia_mode |= S_IFREG;
1689 		break;
1690 	case KERNFS_LINK:
1691 		iattr.ia_mode |= S_IFLNK;
1692 		break;
1693 	}
1694 
1695 	ret = kernfs_setattr(kn, &iattr);
1696 	kernfs_put(kn);
1697 	return ret;
1698 }
1699 
1700 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1701 				      unsigned long fflags)
1702 {
1703 	struct kernfs_node *kn_subdir;
1704 	int ret;
1705 
1706 	kn_subdir = kernfs_create_dir(kn_info, name,
1707 				      kn_info->mode, r);
1708 	if (IS_ERR(kn_subdir))
1709 		return PTR_ERR(kn_subdir);
1710 
1711 	kernfs_get(kn_subdir);
1712 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1713 	if (ret)
1714 		return ret;
1715 
1716 	ret = rdtgroup_add_files(kn_subdir, fflags);
1717 	if (!ret)
1718 		kernfs_activate(kn_subdir);
1719 
1720 	return ret;
1721 }
1722 
1723 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1724 {
1725 	struct rdt_resource *r;
1726 	unsigned long fflags;
1727 	char name[32];
1728 	int ret;
1729 
1730 	/* create the directory */
1731 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1732 	if (IS_ERR(kn_info))
1733 		return PTR_ERR(kn_info);
1734 	kernfs_get(kn_info);
1735 
1736 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1737 	if (ret)
1738 		goto out_destroy;
1739 
1740 	for_each_alloc_enabled_rdt_resource(r) {
1741 		fflags =  r->fflags | RF_CTRL_INFO;
1742 		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1743 		if (ret)
1744 			goto out_destroy;
1745 	}
1746 
1747 	for_each_mon_enabled_rdt_resource(r) {
1748 		fflags =  r->fflags | RF_MON_INFO;
1749 		sprintf(name, "%s_MON", r->name);
1750 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1751 		if (ret)
1752 			goto out_destroy;
1753 	}
1754 
1755 	/*
1756 	 * This extra ref will be put in kernfs_remove() and guarantees
1757 	 * that @rdtgrp->kn is always accessible.
1758 	 */
1759 	kernfs_get(kn_info);
1760 
1761 	ret = rdtgroup_kn_set_ugid(kn_info);
1762 	if (ret)
1763 		goto out_destroy;
1764 
1765 	kernfs_activate(kn_info);
1766 
1767 	return 0;
1768 
1769 out_destroy:
1770 	kernfs_remove(kn_info);
1771 	return ret;
1772 }
1773 
1774 static int
1775 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1776 		    char *name, struct kernfs_node **dest_kn)
1777 {
1778 	struct kernfs_node *kn;
1779 	int ret;
1780 
1781 	/* create the directory */
1782 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1783 	if (IS_ERR(kn))
1784 		return PTR_ERR(kn);
1785 
1786 	if (dest_kn)
1787 		*dest_kn = kn;
1788 
1789 	/*
1790 	 * This extra ref will be put in kernfs_remove() and guarantees
1791 	 * that @rdtgrp->kn is always accessible.
1792 	 */
1793 	kernfs_get(kn);
1794 
1795 	ret = rdtgroup_kn_set_ugid(kn);
1796 	if (ret)
1797 		goto out_destroy;
1798 
1799 	kernfs_activate(kn);
1800 
1801 	return 0;
1802 
1803 out_destroy:
1804 	kernfs_remove(kn);
1805 	return ret;
1806 }
1807 
1808 static void l3_qos_cfg_update(void *arg)
1809 {
1810 	bool *enable = arg;
1811 
1812 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1813 }
1814 
1815 static void l2_qos_cfg_update(void *arg)
1816 {
1817 	bool *enable = arg;
1818 
1819 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1820 }
1821 
1822 static inline bool is_mba_linear(void)
1823 {
1824 	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1825 }
1826 
1827 static int set_cache_qos_cfg(int level, bool enable)
1828 {
1829 	void (*update)(void *arg);
1830 	struct rdt_resource *r_l;
1831 	cpumask_var_t cpu_mask;
1832 	struct rdt_domain *d;
1833 	int cpu;
1834 
1835 	if (level == RDT_RESOURCE_L3)
1836 		update = l3_qos_cfg_update;
1837 	else if (level == RDT_RESOURCE_L2)
1838 		update = l2_qos_cfg_update;
1839 	else
1840 		return -EINVAL;
1841 
1842 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1843 		return -ENOMEM;
1844 
1845 	r_l = &rdt_resources_all[level];
1846 	list_for_each_entry(d, &r_l->domains, list) {
1847 		/* Pick one CPU from each domain instance to update MSR */
1848 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1849 	}
1850 	cpu = get_cpu();
1851 	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1852 	if (cpumask_test_cpu(cpu, cpu_mask))
1853 		update(&enable);
1854 	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1855 	smp_call_function_many(cpu_mask, update, &enable, 1);
1856 	put_cpu();
1857 
1858 	free_cpumask_var(cpu_mask);
1859 
1860 	return 0;
1861 }
1862 
1863 /* Restore the qos cfg state when a domain comes online */
1864 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1865 {
1866 	if (!r->alloc_capable)
1867 		return;
1868 
1869 	if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
1870 		l2_qos_cfg_update(&r->alloc_enabled);
1871 
1872 	if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
1873 		l3_qos_cfg_update(&r->alloc_enabled);
1874 }
1875 
1876 /*
1877  * Enable or disable the MBA software controller
1878  * which helps user specify bandwidth in MBps.
1879  * MBA software controller is supported only if
1880  * MBM is supported and MBA is in linear scale.
1881  */
1882 static int set_mba_sc(bool mba_sc)
1883 {
1884 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1885 	struct rdt_domain *d;
1886 
1887 	if (!is_mbm_enabled() || !is_mba_linear() ||
1888 	    mba_sc == is_mba_sc(r))
1889 		return -EINVAL;
1890 
1891 	r->membw.mba_sc = mba_sc;
1892 	list_for_each_entry(d, &r->domains, list)
1893 		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1894 
1895 	return 0;
1896 }
1897 
1898 static int cdp_enable(int level, int data_type, int code_type)
1899 {
1900 	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1901 	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1902 	struct rdt_resource *r_l = &rdt_resources_all[level];
1903 	int ret;
1904 
1905 	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1906 	    !r_lcode->alloc_capable)
1907 		return -EINVAL;
1908 
1909 	ret = set_cache_qos_cfg(level, true);
1910 	if (!ret) {
1911 		r_l->alloc_enabled = false;
1912 		r_ldata->alloc_enabled = true;
1913 		r_lcode->alloc_enabled = true;
1914 	}
1915 	return ret;
1916 }
1917 
1918 static int cdpl3_enable(void)
1919 {
1920 	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1921 			  RDT_RESOURCE_L3CODE);
1922 }
1923 
1924 static int cdpl2_enable(void)
1925 {
1926 	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1927 			  RDT_RESOURCE_L2CODE);
1928 }
1929 
1930 static void cdp_disable(int level, int data_type, int code_type)
1931 {
1932 	struct rdt_resource *r = &rdt_resources_all[level];
1933 
1934 	r->alloc_enabled = r->alloc_capable;
1935 
1936 	if (rdt_resources_all[data_type].alloc_enabled) {
1937 		rdt_resources_all[data_type].alloc_enabled = false;
1938 		rdt_resources_all[code_type].alloc_enabled = false;
1939 		set_cache_qos_cfg(level, false);
1940 	}
1941 }
1942 
1943 static void cdpl3_disable(void)
1944 {
1945 	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1946 }
1947 
1948 static void cdpl2_disable(void)
1949 {
1950 	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1951 }
1952 
1953 static void cdp_disable_all(void)
1954 {
1955 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1956 		cdpl3_disable();
1957 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1958 		cdpl2_disable();
1959 }
1960 
1961 /*
1962  * We don't allow rdtgroup directories to be created anywhere
1963  * except the root directory. Thus when looking for the rdtgroup
1964  * structure for a kernfs node we are either looking at a directory,
1965  * in which case the rdtgroup structure is pointed at by the "priv"
1966  * field, otherwise we have a file, and need only look to the parent
1967  * to find the rdtgroup.
1968  */
1969 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1970 {
1971 	if (kernfs_type(kn) == KERNFS_DIR) {
1972 		/*
1973 		 * All the resource directories use "kn->priv"
1974 		 * to point to the "struct rdtgroup" for the
1975 		 * resource. "info" and its subdirectories don't
1976 		 * have rdtgroup structures, so return NULL here.
1977 		 */
1978 		if (kn == kn_info || kn->parent == kn_info)
1979 			return NULL;
1980 		else
1981 			return kn->priv;
1982 	} else {
1983 		return kn->parent->priv;
1984 	}
1985 }
1986 
1987 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1988 {
1989 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1990 
1991 	if (!rdtgrp)
1992 		return NULL;
1993 
1994 	atomic_inc(&rdtgrp->waitcount);
1995 	kernfs_break_active_protection(kn);
1996 
1997 	mutex_lock(&rdtgroup_mutex);
1998 
1999 	/* Was this group deleted while we waited? */
2000 	if (rdtgrp->flags & RDT_DELETED)
2001 		return NULL;
2002 
2003 	return rdtgrp;
2004 }
2005 
2006 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2007 {
2008 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2009 
2010 	if (!rdtgrp)
2011 		return;
2012 
2013 	mutex_unlock(&rdtgroup_mutex);
2014 
2015 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2016 	    (rdtgrp->flags & RDT_DELETED)) {
2017 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2018 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2019 			rdtgroup_pseudo_lock_remove(rdtgrp);
2020 		kernfs_unbreak_active_protection(kn);
2021 		kernfs_put(rdtgrp->kn);
2022 		kfree(rdtgrp);
2023 	} else {
2024 		kernfs_unbreak_active_protection(kn);
2025 	}
2026 }
2027 
2028 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2029 			     struct rdtgroup *prgrp,
2030 			     struct kernfs_node **mon_data_kn);
2031 
2032 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2033 {
2034 	int ret = 0;
2035 
2036 	if (ctx->enable_cdpl2)
2037 		ret = cdpl2_enable();
2038 
2039 	if (!ret && ctx->enable_cdpl3)
2040 		ret = cdpl3_enable();
2041 
2042 	if (!ret && ctx->enable_mba_mbps)
2043 		ret = set_mba_sc(true);
2044 
2045 	return ret;
2046 }
2047 
2048 static int rdt_get_tree(struct fs_context *fc)
2049 {
2050 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2051 	struct rdt_domain *dom;
2052 	struct rdt_resource *r;
2053 	int ret;
2054 
2055 	cpus_read_lock();
2056 	mutex_lock(&rdtgroup_mutex);
2057 	/*
2058 	 * resctrl file system can only be mounted once.
2059 	 */
2060 	if (static_branch_unlikely(&rdt_enable_key)) {
2061 		ret = -EBUSY;
2062 		goto out;
2063 	}
2064 
2065 	ret = rdt_enable_ctx(ctx);
2066 	if (ret < 0)
2067 		goto out_cdp;
2068 
2069 	closid_init();
2070 
2071 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2072 	if (ret < 0)
2073 		goto out_mba;
2074 
2075 	if (rdt_mon_capable) {
2076 		ret = mongroup_create_dir(rdtgroup_default.kn,
2077 					  &rdtgroup_default, "mon_groups",
2078 					  &kn_mongrp);
2079 		if (ret < 0)
2080 			goto out_info;
2081 		kernfs_get(kn_mongrp);
2082 
2083 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2084 					&rdtgroup_default, &kn_mondata);
2085 		if (ret < 0)
2086 			goto out_mongrp;
2087 		kernfs_get(kn_mondata);
2088 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2089 	}
2090 
2091 	ret = rdt_pseudo_lock_init();
2092 	if (ret)
2093 		goto out_mondata;
2094 
2095 	ret = kernfs_get_tree(fc);
2096 	if (ret < 0)
2097 		goto out_psl;
2098 
2099 	if (rdt_alloc_capable)
2100 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2101 	if (rdt_mon_capable)
2102 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2103 
2104 	if (rdt_alloc_capable || rdt_mon_capable)
2105 		static_branch_enable_cpuslocked(&rdt_enable_key);
2106 
2107 	if (is_mbm_enabled()) {
2108 		r = &rdt_resources_all[RDT_RESOURCE_L3];
2109 		list_for_each_entry(dom, &r->domains, list)
2110 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2111 	}
2112 
2113 	goto out;
2114 
2115 out_psl:
2116 	rdt_pseudo_lock_release();
2117 out_mondata:
2118 	if (rdt_mon_capable)
2119 		kernfs_remove(kn_mondata);
2120 out_mongrp:
2121 	if (rdt_mon_capable)
2122 		kernfs_remove(kn_mongrp);
2123 out_info:
2124 	kernfs_remove(kn_info);
2125 out_mba:
2126 	if (ctx->enable_mba_mbps)
2127 		set_mba_sc(false);
2128 out_cdp:
2129 	cdp_disable_all();
2130 out:
2131 	rdt_last_cmd_clear();
2132 	mutex_unlock(&rdtgroup_mutex);
2133 	cpus_read_unlock();
2134 	return ret;
2135 }
2136 
2137 enum rdt_param {
2138 	Opt_cdp,
2139 	Opt_cdpl2,
2140 	Opt_mba_mbps,
2141 	nr__rdt_params
2142 };
2143 
2144 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2145 	fsparam_flag("cdp",		Opt_cdp),
2146 	fsparam_flag("cdpl2",		Opt_cdpl2),
2147 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2148 	{}
2149 };
2150 
2151 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2152 {
2153 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2154 	struct fs_parse_result result;
2155 	int opt;
2156 
2157 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2158 	if (opt < 0)
2159 		return opt;
2160 
2161 	switch (opt) {
2162 	case Opt_cdp:
2163 		ctx->enable_cdpl3 = true;
2164 		return 0;
2165 	case Opt_cdpl2:
2166 		ctx->enable_cdpl2 = true;
2167 		return 0;
2168 	case Opt_mba_mbps:
2169 		if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2170 			return -EINVAL;
2171 		ctx->enable_mba_mbps = true;
2172 		return 0;
2173 	}
2174 
2175 	return -EINVAL;
2176 }
2177 
2178 static void rdt_fs_context_free(struct fs_context *fc)
2179 {
2180 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2181 
2182 	kernfs_free_fs_context(fc);
2183 	kfree(ctx);
2184 }
2185 
2186 static const struct fs_context_operations rdt_fs_context_ops = {
2187 	.free		= rdt_fs_context_free,
2188 	.parse_param	= rdt_parse_param,
2189 	.get_tree	= rdt_get_tree,
2190 };
2191 
2192 static int rdt_init_fs_context(struct fs_context *fc)
2193 {
2194 	struct rdt_fs_context *ctx;
2195 
2196 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2197 	if (!ctx)
2198 		return -ENOMEM;
2199 
2200 	ctx->kfc.root = rdt_root;
2201 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2202 	fc->fs_private = &ctx->kfc;
2203 	fc->ops = &rdt_fs_context_ops;
2204 	put_user_ns(fc->user_ns);
2205 	fc->user_ns = get_user_ns(&init_user_ns);
2206 	fc->global = true;
2207 	return 0;
2208 }
2209 
2210 static int reset_all_ctrls(struct rdt_resource *r)
2211 {
2212 	struct msr_param msr_param;
2213 	cpumask_var_t cpu_mask;
2214 	struct rdt_domain *d;
2215 	int i, cpu;
2216 
2217 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2218 		return -ENOMEM;
2219 
2220 	msr_param.res = r;
2221 	msr_param.low = 0;
2222 	msr_param.high = r->num_closid;
2223 
2224 	/*
2225 	 * Disable resource control for this resource by setting all
2226 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2227 	 * from each domain to update the MSRs below.
2228 	 */
2229 	list_for_each_entry(d, &r->domains, list) {
2230 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2231 
2232 		for (i = 0; i < r->num_closid; i++)
2233 			d->ctrl_val[i] = r->default_ctrl;
2234 	}
2235 	cpu = get_cpu();
2236 	/* Update CBM on this cpu if it's in cpu_mask. */
2237 	if (cpumask_test_cpu(cpu, cpu_mask))
2238 		rdt_ctrl_update(&msr_param);
2239 	/* Update CBM on all other cpus in cpu_mask. */
2240 	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2241 	put_cpu();
2242 
2243 	free_cpumask_var(cpu_mask);
2244 
2245 	return 0;
2246 }
2247 
2248 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2249 {
2250 	return (rdt_alloc_capable &&
2251 		(r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2252 }
2253 
2254 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2255 {
2256 	return (rdt_mon_capable &&
2257 		(r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2258 }
2259 
2260 /*
2261  * Move tasks from one to the other group. If @from is NULL, then all tasks
2262  * in the systems are moved unconditionally (used for teardown).
2263  *
2264  * If @mask is not NULL the cpus on which moved tasks are running are set
2265  * in that mask so the update smp function call is restricted to affected
2266  * cpus.
2267  */
2268 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2269 				 struct cpumask *mask)
2270 {
2271 	struct task_struct *p, *t;
2272 
2273 	read_lock(&tasklist_lock);
2274 	for_each_process_thread(p, t) {
2275 		if (!from || is_closid_match(t, from) ||
2276 		    is_rmid_match(t, from)) {
2277 			t->closid = to->closid;
2278 			t->rmid = to->mon.rmid;
2279 
2280 #ifdef CONFIG_SMP
2281 			/*
2282 			 * This is safe on x86 w/o barriers as the ordering
2283 			 * of writing to task_cpu() and t->on_cpu is
2284 			 * reverse to the reading here. The detection is
2285 			 * inaccurate as tasks might move or schedule
2286 			 * before the smp function call takes place. In
2287 			 * such a case the function call is pointless, but
2288 			 * there is no other side effect.
2289 			 */
2290 			if (mask && t->on_cpu)
2291 				cpumask_set_cpu(task_cpu(t), mask);
2292 #endif
2293 		}
2294 	}
2295 	read_unlock(&tasklist_lock);
2296 }
2297 
2298 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2299 {
2300 	struct rdtgroup *sentry, *stmp;
2301 	struct list_head *head;
2302 
2303 	head = &rdtgrp->mon.crdtgrp_list;
2304 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2305 		free_rmid(sentry->mon.rmid);
2306 		list_del(&sentry->mon.crdtgrp_list);
2307 
2308 		if (atomic_read(&sentry->waitcount) != 0)
2309 			sentry->flags = RDT_DELETED;
2310 		else
2311 			kfree(sentry);
2312 	}
2313 }
2314 
2315 /*
2316  * Forcibly remove all of subdirectories under root.
2317  */
2318 static void rmdir_all_sub(void)
2319 {
2320 	struct rdtgroup *rdtgrp, *tmp;
2321 
2322 	/* Move all tasks to the default resource group */
2323 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2324 
2325 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2326 		/* Free any child rmids */
2327 		free_all_child_rdtgrp(rdtgrp);
2328 
2329 		/* Remove each rdtgroup other than root */
2330 		if (rdtgrp == &rdtgroup_default)
2331 			continue;
2332 
2333 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2334 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2335 			rdtgroup_pseudo_lock_remove(rdtgrp);
2336 
2337 		/*
2338 		 * Give any CPUs back to the default group. We cannot copy
2339 		 * cpu_online_mask because a CPU might have executed the
2340 		 * offline callback already, but is still marked online.
2341 		 */
2342 		cpumask_or(&rdtgroup_default.cpu_mask,
2343 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2344 
2345 		free_rmid(rdtgrp->mon.rmid);
2346 
2347 		kernfs_remove(rdtgrp->kn);
2348 		list_del(&rdtgrp->rdtgroup_list);
2349 
2350 		if (atomic_read(&rdtgrp->waitcount) != 0)
2351 			rdtgrp->flags = RDT_DELETED;
2352 		else
2353 			kfree(rdtgrp);
2354 	}
2355 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2356 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2357 
2358 	kernfs_remove(kn_info);
2359 	kernfs_remove(kn_mongrp);
2360 	kernfs_remove(kn_mondata);
2361 }
2362 
2363 static void rdt_kill_sb(struct super_block *sb)
2364 {
2365 	struct rdt_resource *r;
2366 
2367 	cpus_read_lock();
2368 	mutex_lock(&rdtgroup_mutex);
2369 
2370 	set_mba_sc(false);
2371 
2372 	/*Put everything back to default values. */
2373 	for_each_alloc_enabled_rdt_resource(r)
2374 		reset_all_ctrls(r);
2375 	cdp_disable_all();
2376 	rmdir_all_sub();
2377 	rdt_pseudo_lock_release();
2378 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2379 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2380 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2381 	static_branch_disable_cpuslocked(&rdt_enable_key);
2382 	kernfs_kill_sb(sb);
2383 	mutex_unlock(&rdtgroup_mutex);
2384 	cpus_read_unlock();
2385 }
2386 
2387 static struct file_system_type rdt_fs_type = {
2388 	.name			= "resctrl",
2389 	.init_fs_context	= rdt_init_fs_context,
2390 	.parameters		= rdt_fs_parameters,
2391 	.kill_sb		= rdt_kill_sb,
2392 };
2393 
2394 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2395 		       void *priv)
2396 {
2397 	struct kernfs_node *kn;
2398 	int ret = 0;
2399 
2400 	kn = __kernfs_create_file(parent_kn, name, 0444,
2401 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2402 				  &kf_mondata_ops, priv, NULL, NULL);
2403 	if (IS_ERR(kn))
2404 		return PTR_ERR(kn);
2405 
2406 	ret = rdtgroup_kn_set_ugid(kn);
2407 	if (ret) {
2408 		kernfs_remove(kn);
2409 		return ret;
2410 	}
2411 
2412 	return ret;
2413 }
2414 
2415 /*
2416  * Remove all subdirectories of mon_data of ctrl_mon groups
2417  * and monitor groups with given domain id.
2418  */
2419 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2420 {
2421 	struct rdtgroup *prgrp, *crgrp;
2422 	char name[32];
2423 
2424 	if (!r->mon_enabled)
2425 		return;
2426 
2427 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2428 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2429 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2430 
2431 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2432 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2433 	}
2434 }
2435 
2436 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2437 				struct rdt_domain *d,
2438 				struct rdt_resource *r, struct rdtgroup *prgrp)
2439 {
2440 	union mon_data_bits priv;
2441 	struct kernfs_node *kn;
2442 	struct mon_evt *mevt;
2443 	struct rmid_read rr;
2444 	char name[32];
2445 	int ret;
2446 
2447 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2448 	/* create the directory */
2449 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2450 	if (IS_ERR(kn))
2451 		return PTR_ERR(kn);
2452 
2453 	/*
2454 	 * This extra ref will be put in kernfs_remove() and guarantees
2455 	 * that kn is always accessible.
2456 	 */
2457 	kernfs_get(kn);
2458 	ret = rdtgroup_kn_set_ugid(kn);
2459 	if (ret)
2460 		goto out_destroy;
2461 
2462 	if (WARN_ON(list_empty(&r->evt_list))) {
2463 		ret = -EPERM;
2464 		goto out_destroy;
2465 	}
2466 
2467 	priv.u.rid = r->rid;
2468 	priv.u.domid = d->id;
2469 	list_for_each_entry(mevt, &r->evt_list, list) {
2470 		priv.u.evtid = mevt->evtid;
2471 		ret = mon_addfile(kn, mevt->name, priv.priv);
2472 		if (ret)
2473 			goto out_destroy;
2474 
2475 		if (is_mbm_event(mevt->evtid))
2476 			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2477 	}
2478 	kernfs_activate(kn);
2479 	return 0;
2480 
2481 out_destroy:
2482 	kernfs_remove(kn);
2483 	return ret;
2484 }
2485 
2486 /*
2487  * Add all subdirectories of mon_data for "ctrl_mon" groups
2488  * and "monitor" groups with given domain id.
2489  */
2490 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2491 				    struct rdt_domain *d)
2492 {
2493 	struct kernfs_node *parent_kn;
2494 	struct rdtgroup *prgrp, *crgrp;
2495 	struct list_head *head;
2496 
2497 	if (!r->mon_enabled)
2498 		return;
2499 
2500 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2501 		parent_kn = prgrp->mon.mon_data_kn;
2502 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2503 
2504 		head = &prgrp->mon.crdtgrp_list;
2505 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2506 			parent_kn = crgrp->mon.mon_data_kn;
2507 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2508 		}
2509 	}
2510 }
2511 
2512 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2513 				       struct rdt_resource *r,
2514 				       struct rdtgroup *prgrp)
2515 {
2516 	struct rdt_domain *dom;
2517 	int ret;
2518 
2519 	list_for_each_entry(dom, &r->domains, list) {
2520 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2521 		if (ret)
2522 			return ret;
2523 	}
2524 
2525 	return 0;
2526 }
2527 
2528 /*
2529  * This creates a directory mon_data which contains the monitored data.
2530  *
2531  * mon_data has one directory for each domain whic are named
2532  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2533  * with L3 domain looks as below:
2534  * ./mon_data:
2535  * mon_L3_00
2536  * mon_L3_01
2537  * mon_L3_02
2538  * ...
2539  *
2540  * Each domain directory has one file per event:
2541  * ./mon_L3_00/:
2542  * llc_occupancy
2543  *
2544  */
2545 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2546 			     struct rdtgroup *prgrp,
2547 			     struct kernfs_node **dest_kn)
2548 {
2549 	struct rdt_resource *r;
2550 	struct kernfs_node *kn;
2551 	int ret;
2552 
2553 	/*
2554 	 * Create the mon_data directory first.
2555 	 */
2556 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2557 	if (ret)
2558 		return ret;
2559 
2560 	if (dest_kn)
2561 		*dest_kn = kn;
2562 
2563 	/*
2564 	 * Create the subdirectories for each domain. Note that all events
2565 	 * in a domain like L3 are grouped into a resource whose domain is L3
2566 	 */
2567 	for_each_mon_enabled_rdt_resource(r) {
2568 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2569 		if (ret)
2570 			goto out_destroy;
2571 	}
2572 
2573 	return 0;
2574 
2575 out_destroy:
2576 	kernfs_remove(kn);
2577 	return ret;
2578 }
2579 
2580 /**
2581  * cbm_ensure_valid - Enforce validity on provided CBM
2582  * @_val:	Candidate CBM
2583  * @r:		RDT resource to which the CBM belongs
2584  *
2585  * The provided CBM represents all cache portions available for use. This
2586  * may be represented by a bitmap that does not consist of contiguous ones
2587  * and thus be an invalid CBM.
2588  * Here the provided CBM is forced to be a valid CBM by only considering
2589  * the first set of contiguous bits as valid and clearing all bits.
2590  * The intention here is to provide a valid default CBM with which a new
2591  * resource group is initialized. The user can follow this with a
2592  * modification to the CBM if the default does not satisfy the
2593  * requirements.
2594  */
2595 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2596 {
2597 	unsigned int cbm_len = r->cache.cbm_len;
2598 	unsigned long first_bit, zero_bit;
2599 	unsigned long val = _val;
2600 
2601 	if (!val)
2602 		return 0;
2603 
2604 	first_bit = find_first_bit(&val, cbm_len);
2605 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2606 
2607 	/* Clear any remaining bits to ensure contiguous region */
2608 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2609 	return (u32)val;
2610 }
2611 
2612 /*
2613  * Initialize cache resources per RDT domain
2614  *
2615  * Set the RDT domain up to start off with all usable allocations. That is,
2616  * all shareable and unused bits. All-zero CBM is invalid.
2617  */
2618 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2619 				 u32 closid)
2620 {
2621 	struct rdt_resource *r_cdp = NULL;
2622 	struct rdt_domain *d_cdp = NULL;
2623 	u32 used_b = 0, unused_b = 0;
2624 	unsigned long tmp_cbm;
2625 	enum rdtgrp_mode mode;
2626 	u32 peer_ctl, *ctrl;
2627 	int i;
2628 
2629 	rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2630 	d->have_new_ctrl = false;
2631 	d->new_ctrl = r->cache.shareable_bits;
2632 	used_b = r->cache.shareable_bits;
2633 	ctrl = d->ctrl_val;
2634 	for (i = 0; i < closids_supported(); i++, ctrl++) {
2635 		if (closid_allocated(i) && i != closid) {
2636 			mode = rdtgroup_mode_by_closid(i);
2637 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2638 				/*
2639 				 * ctrl values for locksetup aren't relevant
2640 				 * until the schemata is written, and the mode
2641 				 * becomes RDT_MODE_PSEUDO_LOCKED.
2642 				 */
2643 				continue;
2644 			/*
2645 			 * If CDP is active include peer domain's
2646 			 * usage to ensure there is no overlap
2647 			 * with an exclusive group.
2648 			 */
2649 			if (d_cdp)
2650 				peer_ctl = d_cdp->ctrl_val[i];
2651 			else
2652 				peer_ctl = 0;
2653 			used_b |= *ctrl | peer_ctl;
2654 			if (mode == RDT_MODE_SHAREABLE)
2655 				d->new_ctrl |= *ctrl | peer_ctl;
2656 		}
2657 	}
2658 	if (d->plr && d->plr->cbm > 0)
2659 		used_b |= d->plr->cbm;
2660 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2661 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2662 	d->new_ctrl |= unused_b;
2663 	/*
2664 	 * Force the initial CBM to be valid, user can
2665 	 * modify the CBM based on system availability.
2666 	 */
2667 	d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2668 	/*
2669 	 * Assign the u32 CBM to an unsigned long to ensure that
2670 	 * bitmap_weight() does not access out-of-bound memory.
2671 	 */
2672 	tmp_cbm = d->new_ctrl;
2673 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2674 		rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2675 		return -ENOSPC;
2676 	}
2677 	d->have_new_ctrl = true;
2678 
2679 	return 0;
2680 }
2681 
2682 /*
2683  * Initialize cache resources with default values.
2684  *
2685  * A new RDT group is being created on an allocation capable (CAT)
2686  * supporting system. Set this group up to start off with all usable
2687  * allocations.
2688  *
2689  * If there are no more shareable bits available on any domain then
2690  * the entire allocation will fail.
2691  */
2692 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2693 {
2694 	struct rdt_domain *d;
2695 	int ret;
2696 
2697 	list_for_each_entry(d, &r->domains, list) {
2698 		ret = __init_one_rdt_domain(d, r, closid);
2699 		if (ret < 0)
2700 			return ret;
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 /* Initialize MBA resource with default values. */
2707 static void rdtgroup_init_mba(struct rdt_resource *r)
2708 {
2709 	struct rdt_domain *d;
2710 
2711 	list_for_each_entry(d, &r->domains, list) {
2712 		d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2713 		d->have_new_ctrl = true;
2714 	}
2715 }
2716 
2717 /* Initialize the RDT group's allocations. */
2718 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2719 {
2720 	struct rdt_resource *r;
2721 	int ret;
2722 
2723 	for_each_alloc_enabled_rdt_resource(r) {
2724 		if (r->rid == RDT_RESOURCE_MBA) {
2725 			rdtgroup_init_mba(r);
2726 		} else {
2727 			ret = rdtgroup_init_cat(r, rdtgrp->closid);
2728 			if (ret < 0)
2729 				return ret;
2730 		}
2731 
2732 		ret = update_domains(r, rdtgrp->closid);
2733 		if (ret < 0) {
2734 			rdt_last_cmd_puts("Failed to initialize allocations\n");
2735 			return ret;
2736 		}
2737 
2738 	}
2739 
2740 	rdtgrp->mode = RDT_MODE_SHAREABLE;
2741 
2742 	return 0;
2743 }
2744 
2745 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2746 			     const char *name, umode_t mode,
2747 			     enum rdt_group_type rtype, struct rdtgroup **r)
2748 {
2749 	struct rdtgroup *prdtgrp, *rdtgrp;
2750 	struct kernfs_node *kn;
2751 	uint files = 0;
2752 	int ret;
2753 
2754 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2755 	if (!prdtgrp) {
2756 		ret = -ENODEV;
2757 		goto out_unlock;
2758 	}
2759 
2760 	if (rtype == RDTMON_GROUP &&
2761 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2762 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2763 		ret = -EINVAL;
2764 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
2765 		goto out_unlock;
2766 	}
2767 
2768 	/* allocate the rdtgroup. */
2769 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2770 	if (!rdtgrp) {
2771 		ret = -ENOSPC;
2772 		rdt_last_cmd_puts("Kernel out of memory\n");
2773 		goto out_unlock;
2774 	}
2775 	*r = rdtgrp;
2776 	rdtgrp->mon.parent = prdtgrp;
2777 	rdtgrp->type = rtype;
2778 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2779 
2780 	/* kernfs creates the directory for rdtgrp */
2781 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2782 	if (IS_ERR(kn)) {
2783 		ret = PTR_ERR(kn);
2784 		rdt_last_cmd_puts("kernfs create error\n");
2785 		goto out_free_rgrp;
2786 	}
2787 	rdtgrp->kn = kn;
2788 
2789 	/*
2790 	 * kernfs_remove() will drop the reference count on "kn" which
2791 	 * will free it. But we still need it to stick around for the
2792 	 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2793 	 * here, which will be dropped inside rdtgroup_kn_unlock().
2794 	 */
2795 	kernfs_get(kn);
2796 
2797 	ret = rdtgroup_kn_set_ugid(kn);
2798 	if (ret) {
2799 		rdt_last_cmd_puts("kernfs perm error\n");
2800 		goto out_destroy;
2801 	}
2802 
2803 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2804 	ret = rdtgroup_add_files(kn, files);
2805 	if (ret) {
2806 		rdt_last_cmd_puts("kernfs fill error\n");
2807 		goto out_destroy;
2808 	}
2809 
2810 	if (rdt_mon_capable) {
2811 		ret = alloc_rmid();
2812 		if (ret < 0) {
2813 			rdt_last_cmd_puts("Out of RMIDs\n");
2814 			goto out_destroy;
2815 		}
2816 		rdtgrp->mon.rmid = ret;
2817 
2818 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2819 		if (ret) {
2820 			rdt_last_cmd_puts("kernfs subdir error\n");
2821 			goto out_idfree;
2822 		}
2823 	}
2824 	kernfs_activate(kn);
2825 
2826 	/*
2827 	 * The caller unlocks the parent_kn upon success.
2828 	 */
2829 	return 0;
2830 
2831 out_idfree:
2832 	free_rmid(rdtgrp->mon.rmid);
2833 out_destroy:
2834 	kernfs_remove(rdtgrp->kn);
2835 out_free_rgrp:
2836 	kfree(rdtgrp);
2837 out_unlock:
2838 	rdtgroup_kn_unlock(parent_kn);
2839 	return ret;
2840 }
2841 
2842 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2843 {
2844 	kernfs_remove(rgrp->kn);
2845 	free_rmid(rgrp->mon.rmid);
2846 	kfree(rgrp);
2847 }
2848 
2849 /*
2850  * Create a monitor group under "mon_groups" directory of a control
2851  * and monitor group(ctrl_mon). This is a resource group
2852  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2853  */
2854 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2855 			      const char *name, umode_t mode)
2856 {
2857 	struct rdtgroup *rdtgrp, *prgrp;
2858 	int ret;
2859 
2860 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
2861 	if (ret)
2862 		return ret;
2863 
2864 	prgrp = rdtgrp->mon.parent;
2865 	rdtgrp->closid = prgrp->closid;
2866 
2867 	/*
2868 	 * Add the rdtgrp to the list of rdtgrps the parent
2869 	 * ctrl_mon group has to track.
2870 	 */
2871 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2872 
2873 	rdtgroup_kn_unlock(parent_kn);
2874 	return ret;
2875 }
2876 
2877 /*
2878  * These are rdtgroups created under the root directory. Can be used
2879  * to allocate and monitor resources.
2880  */
2881 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2882 				   const char *name, umode_t mode)
2883 {
2884 	struct rdtgroup *rdtgrp;
2885 	struct kernfs_node *kn;
2886 	u32 closid;
2887 	int ret;
2888 
2889 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
2890 	if (ret)
2891 		return ret;
2892 
2893 	kn = rdtgrp->kn;
2894 	ret = closid_alloc();
2895 	if (ret < 0) {
2896 		rdt_last_cmd_puts("Out of CLOSIDs\n");
2897 		goto out_common_fail;
2898 	}
2899 	closid = ret;
2900 	ret = 0;
2901 
2902 	rdtgrp->closid = closid;
2903 	ret = rdtgroup_init_alloc(rdtgrp);
2904 	if (ret < 0)
2905 		goto out_id_free;
2906 
2907 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2908 
2909 	if (rdt_mon_capable) {
2910 		/*
2911 		 * Create an empty mon_groups directory to hold the subset
2912 		 * of tasks and cpus to monitor.
2913 		 */
2914 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
2915 		if (ret) {
2916 			rdt_last_cmd_puts("kernfs subdir error\n");
2917 			goto out_del_list;
2918 		}
2919 	}
2920 
2921 	goto out_unlock;
2922 
2923 out_del_list:
2924 	list_del(&rdtgrp->rdtgroup_list);
2925 out_id_free:
2926 	closid_free(closid);
2927 out_common_fail:
2928 	mkdir_rdt_prepare_clean(rdtgrp);
2929 out_unlock:
2930 	rdtgroup_kn_unlock(parent_kn);
2931 	return ret;
2932 }
2933 
2934 /*
2935  * We allow creating mon groups only with in a directory called "mon_groups"
2936  * which is present in every ctrl_mon group. Check if this is a valid
2937  * "mon_groups" directory.
2938  *
2939  * 1. The directory should be named "mon_groups".
2940  * 2. The mon group itself should "not" be named "mon_groups".
2941  *   This makes sure "mon_groups" directory always has a ctrl_mon group
2942  *   as parent.
2943  */
2944 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2945 {
2946 	return (!strcmp(kn->name, "mon_groups") &&
2947 		strcmp(name, "mon_groups"));
2948 }
2949 
2950 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2951 			  umode_t mode)
2952 {
2953 	/* Do not accept '\n' to avoid unparsable situation. */
2954 	if (strchr(name, '\n'))
2955 		return -EINVAL;
2956 
2957 	/*
2958 	 * If the parent directory is the root directory and RDT
2959 	 * allocation is supported, add a control and monitoring
2960 	 * subdirectory
2961 	 */
2962 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2963 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
2964 
2965 	/*
2966 	 * If RDT monitoring is supported and the parent directory is a valid
2967 	 * "mon_groups" directory, add a monitoring subdirectory.
2968 	 */
2969 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2970 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
2971 
2972 	return -EPERM;
2973 }
2974 
2975 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2976 			      cpumask_var_t tmpmask)
2977 {
2978 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2979 	int cpu;
2980 
2981 	/* Give any tasks back to the parent group */
2982 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2983 
2984 	/* Update per cpu rmid of the moved CPUs first */
2985 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
2986 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2987 	/*
2988 	 * Update the MSR on moved CPUs and CPUs which have moved
2989 	 * task running on them.
2990 	 */
2991 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2992 	update_closid_rmid(tmpmask, NULL);
2993 
2994 	rdtgrp->flags = RDT_DELETED;
2995 	free_rmid(rdtgrp->mon.rmid);
2996 
2997 	/*
2998 	 * Remove the rdtgrp from the parent ctrl_mon group's list
2999 	 */
3000 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3001 	list_del(&rdtgrp->mon.crdtgrp_list);
3002 
3003 	/*
3004 	 * one extra hold on this, will drop when we kfree(rdtgrp)
3005 	 * in rdtgroup_kn_unlock()
3006 	 */
3007 	kernfs_get(kn);
3008 	kernfs_remove(rdtgrp->kn);
3009 
3010 	return 0;
3011 }
3012 
3013 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
3014 				struct rdtgroup *rdtgrp)
3015 {
3016 	rdtgrp->flags = RDT_DELETED;
3017 	list_del(&rdtgrp->rdtgroup_list);
3018 
3019 	/*
3020 	 * one extra hold on this, will drop when we kfree(rdtgrp)
3021 	 * in rdtgroup_kn_unlock()
3022 	 */
3023 	kernfs_get(kn);
3024 	kernfs_remove(rdtgrp->kn);
3025 	return 0;
3026 }
3027 
3028 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
3029 			       cpumask_var_t tmpmask)
3030 {
3031 	int cpu;
3032 
3033 	/* Give any tasks back to the default group */
3034 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3035 
3036 	/* Give any CPUs back to the default group */
3037 	cpumask_or(&rdtgroup_default.cpu_mask,
3038 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3039 
3040 	/* Update per cpu closid and rmid of the moved CPUs first */
3041 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3042 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3043 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3044 	}
3045 
3046 	/*
3047 	 * Update the MSR on moved CPUs and CPUs which have moved
3048 	 * task running on them.
3049 	 */
3050 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3051 	update_closid_rmid(tmpmask, NULL);
3052 
3053 	closid_free(rdtgrp->closid);
3054 	free_rmid(rdtgrp->mon.rmid);
3055 
3056 	rdtgroup_ctrl_remove(kn, rdtgrp);
3057 
3058 	/*
3059 	 * Free all the child monitor group rmids.
3060 	 */
3061 	free_all_child_rdtgrp(rdtgrp);
3062 
3063 	return 0;
3064 }
3065 
3066 static int rdtgroup_rmdir(struct kernfs_node *kn)
3067 {
3068 	struct kernfs_node *parent_kn = kn->parent;
3069 	struct rdtgroup *rdtgrp;
3070 	cpumask_var_t tmpmask;
3071 	int ret = 0;
3072 
3073 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3074 		return -ENOMEM;
3075 
3076 	rdtgrp = rdtgroup_kn_lock_live(kn);
3077 	if (!rdtgrp) {
3078 		ret = -EPERM;
3079 		goto out;
3080 	}
3081 
3082 	/*
3083 	 * If the rdtgroup is a ctrl_mon group and parent directory
3084 	 * is the root directory, remove the ctrl_mon group.
3085 	 *
3086 	 * If the rdtgroup is a mon group and parent directory
3087 	 * is a valid "mon_groups" directory, remove the mon group.
3088 	 */
3089 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3090 	    rdtgrp != &rdtgroup_default) {
3091 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3092 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3093 			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
3094 		} else {
3095 			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
3096 		}
3097 	} else if (rdtgrp->type == RDTMON_GROUP &&
3098 		 is_mon_groups(parent_kn, kn->name)) {
3099 		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3100 	} else {
3101 		ret = -EPERM;
3102 	}
3103 
3104 out:
3105 	rdtgroup_kn_unlock(kn);
3106 	free_cpumask_var(tmpmask);
3107 	return ret;
3108 }
3109 
3110 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3111 {
3112 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3113 		seq_puts(seq, ",cdp");
3114 
3115 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3116 		seq_puts(seq, ",cdpl2");
3117 
3118 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3119 		seq_puts(seq, ",mba_MBps");
3120 
3121 	return 0;
3122 }
3123 
3124 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3125 	.mkdir		= rdtgroup_mkdir,
3126 	.rmdir		= rdtgroup_rmdir,
3127 	.show_options	= rdtgroup_show_options,
3128 };
3129 
3130 static int __init rdtgroup_setup_root(void)
3131 {
3132 	int ret;
3133 
3134 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3135 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3136 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3137 				      &rdtgroup_default);
3138 	if (IS_ERR(rdt_root))
3139 		return PTR_ERR(rdt_root);
3140 
3141 	mutex_lock(&rdtgroup_mutex);
3142 
3143 	rdtgroup_default.closid = 0;
3144 	rdtgroup_default.mon.rmid = 0;
3145 	rdtgroup_default.type = RDTCTRL_GROUP;
3146 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3147 
3148 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3149 
3150 	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3151 	if (ret) {
3152 		kernfs_destroy_root(rdt_root);
3153 		goto out;
3154 	}
3155 
3156 	rdtgroup_default.kn = rdt_root->kn;
3157 	kernfs_activate(rdtgroup_default.kn);
3158 
3159 out:
3160 	mutex_unlock(&rdtgroup_mutex);
3161 
3162 	return ret;
3163 }
3164 
3165 /*
3166  * rdtgroup_init - rdtgroup initialization
3167  *
3168  * Setup resctrl file system including set up root, create mount point,
3169  * register rdtgroup filesystem, and initialize files under root directory.
3170  *
3171  * Return: 0 on success or -errno
3172  */
3173 int __init rdtgroup_init(void)
3174 {
3175 	int ret = 0;
3176 
3177 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3178 		     sizeof(last_cmd_status_buf));
3179 
3180 	ret = rdtgroup_setup_root();
3181 	if (ret)
3182 		return ret;
3183 
3184 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3185 	if (ret)
3186 		goto cleanup_root;
3187 
3188 	ret = register_filesystem(&rdt_fs_type);
3189 	if (ret)
3190 		goto cleanup_mountpoint;
3191 
3192 	/*
3193 	 * Adding the resctrl debugfs directory here may not be ideal since
3194 	 * it would let the resctrl debugfs directory appear on the debugfs
3195 	 * filesystem before the resctrl filesystem is mounted.
3196 	 * It may also be ok since that would enable debugging of RDT before
3197 	 * resctrl is mounted.
3198 	 * The reason why the debugfs directory is created here and not in
3199 	 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3200 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3201 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3202 	 * interactions (eg. SyS_getdents) have the lock ordering:
3203 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3204 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3205 	 * is taken, thus creating dependency:
3206 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3207 	 * issues considering the other two lock dependencies.
3208 	 * By creating the debugfs directory here we avoid a dependency
3209 	 * that may cause deadlock (even though file operations cannot
3210 	 * occur until the filesystem is mounted, but I do not know how to
3211 	 * tell lockdep that).
3212 	 */
3213 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3214 
3215 	return 0;
3216 
3217 cleanup_mountpoint:
3218 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3219 cleanup_root:
3220 	kernfs_destroy_root(rdt_root);
3221 
3222 	return ret;
3223 }
3224 
3225 void __exit rdtgroup_exit(void)
3226 {
3227 	debugfs_remove_recursive(debugfs_resctrl);
3228 	unregister_filesystem(&rdt_fs_type);
3229 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3230 	kernfs_destroy_root(rdt_root);
3231 }
3232