1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Alloction in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* Kernel fs node for "info" directory under root */ 43 static struct kernfs_node *kn_info; 44 45 /* Kernel fs node for "mon_groups" directory under root */ 46 static struct kernfs_node *kn_mongrp; 47 48 /* Kernel fs node for "mon_data" directory under root */ 49 static struct kernfs_node *kn_mondata; 50 51 static struct seq_buf last_cmd_status; 52 static char last_cmd_status_buf[512]; 53 54 struct dentry *debugfs_resctrl; 55 56 void rdt_last_cmd_clear(void) 57 { 58 lockdep_assert_held(&rdtgroup_mutex); 59 seq_buf_clear(&last_cmd_status); 60 } 61 62 void rdt_last_cmd_puts(const char *s) 63 { 64 lockdep_assert_held(&rdtgroup_mutex); 65 seq_buf_puts(&last_cmd_status, s); 66 } 67 68 void rdt_last_cmd_printf(const char *fmt, ...) 69 { 70 va_list ap; 71 72 va_start(ap, fmt); 73 lockdep_assert_held(&rdtgroup_mutex); 74 seq_buf_vprintf(&last_cmd_status, fmt, ap); 75 va_end(ap); 76 } 77 78 /* 79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 80 * we can keep a bitmap of free CLOSIDs in a single integer. 81 * 82 * Using a global CLOSID across all resources has some advantages and 83 * some drawbacks: 84 * + We can simply set "current->closid" to assign a task to a resource 85 * group. 86 * + Context switch code can avoid extra memory references deciding which 87 * CLOSID to load into the PQR_ASSOC MSR 88 * - We give up some options in configuring resource groups across multi-socket 89 * systems. 90 * - Our choices on how to configure each resource become progressively more 91 * limited as the number of resources grows. 92 */ 93 static int closid_free_map; 94 static int closid_free_map_len; 95 96 int closids_supported(void) 97 { 98 return closid_free_map_len; 99 } 100 101 static void closid_init(void) 102 { 103 struct rdt_resource *r; 104 int rdt_min_closid = 32; 105 106 /* Compute rdt_min_closid across all resources */ 107 for_each_alloc_enabled_rdt_resource(r) 108 rdt_min_closid = min(rdt_min_closid, r->num_closid); 109 110 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 111 112 /* CLOSID 0 is always reserved for the default group */ 113 closid_free_map &= ~1; 114 closid_free_map_len = rdt_min_closid; 115 } 116 117 static int closid_alloc(void) 118 { 119 u32 closid = ffs(closid_free_map); 120 121 if (closid == 0) 122 return -ENOSPC; 123 closid--; 124 closid_free_map &= ~(1 << closid); 125 126 return closid; 127 } 128 129 void closid_free(int closid) 130 { 131 closid_free_map |= 1 << closid; 132 } 133 134 /** 135 * closid_allocated - test if provided closid is in use 136 * @closid: closid to be tested 137 * 138 * Return: true if @closid is currently associated with a resource group, 139 * false if @closid is free 140 */ 141 static bool closid_allocated(unsigned int closid) 142 { 143 return (closid_free_map & (1 << closid)) == 0; 144 } 145 146 /** 147 * rdtgroup_mode_by_closid - Return mode of resource group with closid 148 * @closid: closid if the resource group 149 * 150 * Each resource group is associated with a @closid. Here the mode 151 * of a resource group can be queried by searching for it using its closid. 152 * 153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 154 */ 155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 156 { 157 struct rdtgroup *rdtgrp; 158 159 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 160 if (rdtgrp->closid == closid) 161 return rdtgrp->mode; 162 } 163 164 return RDT_NUM_MODES; 165 } 166 167 static const char * const rdt_mode_str[] = { 168 [RDT_MODE_SHAREABLE] = "shareable", 169 [RDT_MODE_EXCLUSIVE] = "exclusive", 170 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 171 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 172 }; 173 174 /** 175 * rdtgroup_mode_str - Return the string representation of mode 176 * @mode: the resource group mode as &enum rdtgroup_mode 177 * 178 * Return: string representation of valid mode, "unknown" otherwise 179 */ 180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 181 { 182 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 183 return "unknown"; 184 185 return rdt_mode_str[mode]; 186 } 187 188 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 190 { 191 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 192 .ia_uid = current_fsuid(), 193 .ia_gid = current_fsgid(), }; 194 195 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 196 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 197 return 0; 198 199 return kernfs_setattr(kn, &iattr); 200 } 201 202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 203 { 204 struct kernfs_node *kn; 205 int ret; 206 207 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 208 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 209 0, rft->kf_ops, rft, NULL, NULL); 210 if (IS_ERR(kn)) 211 return PTR_ERR(kn); 212 213 ret = rdtgroup_kn_set_ugid(kn); 214 if (ret) { 215 kernfs_remove(kn); 216 return ret; 217 } 218 219 return 0; 220 } 221 222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 223 { 224 struct kernfs_open_file *of = m->private; 225 struct rftype *rft = of->kn->priv; 226 227 if (rft->seq_show) 228 return rft->seq_show(of, m, arg); 229 return 0; 230 } 231 232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 233 size_t nbytes, loff_t off) 234 { 235 struct rftype *rft = of->kn->priv; 236 237 if (rft->write) 238 return rft->write(of, buf, nbytes, off); 239 240 return -EINVAL; 241 } 242 243 static struct kernfs_ops rdtgroup_kf_single_ops = { 244 .atomic_write_len = PAGE_SIZE, 245 .write = rdtgroup_file_write, 246 .seq_show = rdtgroup_seqfile_show, 247 }; 248 249 static struct kernfs_ops kf_mondata_ops = { 250 .atomic_write_len = PAGE_SIZE, 251 .seq_show = rdtgroup_mondata_show, 252 }; 253 254 static bool is_cpu_list(struct kernfs_open_file *of) 255 { 256 struct rftype *rft = of->kn->priv; 257 258 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 259 } 260 261 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 262 struct seq_file *s, void *v) 263 { 264 struct rdtgroup *rdtgrp; 265 struct cpumask *mask; 266 int ret = 0; 267 268 rdtgrp = rdtgroup_kn_lock_live(of->kn); 269 270 if (rdtgrp) { 271 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 272 if (!rdtgrp->plr->d) { 273 rdt_last_cmd_clear(); 274 rdt_last_cmd_puts("Cache domain offline\n"); 275 ret = -ENODEV; 276 } else { 277 mask = &rdtgrp->plr->d->cpu_mask; 278 seq_printf(s, is_cpu_list(of) ? 279 "%*pbl\n" : "%*pb\n", 280 cpumask_pr_args(mask)); 281 } 282 } else { 283 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 284 cpumask_pr_args(&rdtgrp->cpu_mask)); 285 } 286 } else { 287 ret = -ENOENT; 288 } 289 rdtgroup_kn_unlock(of->kn); 290 291 return ret; 292 } 293 294 /* 295 * This is safe against resctrl_sched_in() called from __switch_to() 296 * because __switch_to() is executed with interrupts disabled. A local call 297 * from update_closid_rmid() is proteced against __switch_to() because 298 * preemption is disabled. 299 */ 300 static void update_cpu_closid_rmid(void *info) 301 { 302 struct rdtgroup *r = info; 303 304 if (r) { 305 this_cpu_write(pqr_state.default_closid, r->closid); 306 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 307 } 308 309 /* 310 * We cannot unconditionally write the MSR because the current 311 * executing task might have its own closid selected. Just reuse 312 * the context switch code. 313 */ 314 resctrl_sched_in(); 315 } 316 317 /* 318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 319 * 320 * Per task closids/rmids must have been set up before calling this function. 321 */ 322 static void 323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 324 { 325 int cpu = get_cpu(); 326 327 if (cpumask_test_cpu(cpu, cpu_mask)) 328 update_cpu_closid_rmid(r); 329 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1); 330 put_cpu(); 331 } 332 333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 334 cpumask_var_t tmpmask) 335 { 336 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 337 struct list_head *head; 338 339 /* Check whether cpus belong to parent ctrl group */ 340 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 341 if (cpumask_weight(tmpmask)) { 342 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 343 return -EINVAL; 344 } 345 346 /* Check whether cpus are dropped from this group */ 347 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 348 if (cpumask_weight(tmpmask)) { 349 /* Give any dropped cpus to parent rdtgroup */ 350 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 351 update_closid_rmid(tmpmask, prgrp); 352 } 353 354 /* 355 * If we added cpus, remove them from previous group that owned them 356 * and update per-cpu rmid 357 */ 358 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 359 if (cpumask_weight(tmpmask)) { 360 head = &prgrp->mon.crdtgrp_list; 361 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 362 if (crgrp == rdtgrp) 363 continue; 364 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 365 tmpmask); 366 } 367 update_closid_rmid(tmpmask, rdtgrp); 368 } 369 370 /* Done pushing/pulling - update this group with new mask */ 371 cpumask_copy(&rdtgrp->cpu_mask, newmask); 372 373 return 0; 374 } 375 376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 377 { 378 struct rdtgroup *crgrp; 379 380 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 381 /* update the child mon group masks as well*/ 382 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 383 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 384 } 385 386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 387 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 388 { 389 struct rdtgroup *r, *crgrp; 390 struct list_head *head; 391 392 /* Check whether cpus are dropped from this group */ 393 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 394 if (cpumask_weight(tmpmask)) { 395 /* Can't drop from default group */ 396 if (rdtgrp == &rdtgroup_default) { 397 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 398 return -EINVAL; 399 } 400 401 /* Give any dropped cpus to rdtgroup_default */ 402 cpumask_or(&rdtgroup_default.cpu_mask, 403 &rdtgroup_default.cpu_mask, tmpmask); 404 update_closid_rmid(tmpmask, &rdtgroup_default); 405 } 406 407 /* 408 * If we added cpus, remove them from previous group and 409 * the prev group's child groups that owned them 410 * and update per-cpu closid/rmid. 411 */ 412 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 413 if (cpumask_weight(tmpmask)) { 414 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 415 if (r == rdtgrp) 416 continue; 417 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 418 if (cpumask_weight(tmpmask1)) 419 cpumask_rdtgrp_clear(r, tmpmask1); 420 } 421 update_closid_rmid(tmpmask, rdtgrp); 422 } 423 424 /* Done pushing/pulling - update this group with new mask */ 425 cpumask_copy(&rdtgrp->cpu_mask, newmask); 426 427 /* 428 * Clear child mon group masks since there is a new parent mask 429 * now and update the rmid for the cpus the child lost. 430 */ 431 head = &rdtgrp->mon.crdtgrp_list; 432 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 433 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 434 update_closid_rmid(tmpmask, rdtgrp); 435 cpumask_clear(&crgrp->cpu_mask); 436 } 437 438 return 0; 439 } 440 441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 442 char *buf, size_t nbytes, loff_t off) 443 { 444 cpumask_var_t tmpmask, newmask, tmpmask1; 445 struct rdtgroup *rdtgrp; 446 int ret; 447 448 if (!buf) 449 return -EINVAL; 450 451 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 452 return -ENOMEM; 453 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 454 free_cpumask_var(tmpmask); 455 return -ENOMEM; 456 } 457 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 458 free_cpumask_var(tmpmask); 459 free_cpumask_var(newmask); 460 return -ENOMEM; 461 } 462 463 rdtgrp = rdtgroup_kn_lock_live(of->kn); 464 if (!rdtgrp) { 465 ret = -ENOENT; 466 goto unlock; 467 } 468 469 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 470 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 471 ret = -EINVAL; 472 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 473 goto unlock; 474 } 475 476 if (is_cpu_list(of)) 477 ret = cpulist_parse(buf, newmask); 478 else 479 ret = cpumask_parse(buf, newmask); 480 481 if (ret) { 482 rdt_last_cmd_puts("Bad CPU list/mask\n"); 483 goto unlock; 484 } 485 486 /* check that user didn't specify any offline cpus */ 487 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 488 if (cpumask_weight(tmpmask)) { 489 ret = -EINVAL; 490 rdt_last_cmd_puts("Can only assign online CPUs\n"); 491 goto unlock; 492 } 493 494 if (rdtgrp->type == RDTCTRL_GROUP) 495 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 496 else if (rdtgrp->type == RDTMON_GROUP) 497 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 498 else 499 ret = -EINVAL; 500 501 unlock: 502 rdtgroup_kn_unlock(of->kn); 503 free_cpumask_var(tmpmask); 504 free_cpumask_var(newmask); 505 free_cpumask_var(tmpmask1); 506 507 return ret ?: nbytes; 508 } 509 510 struct task_move_callback { 511 struct callback_head work; 512 struct rdtgroup *rdtgrp; 513 }; 514 515 static void move_myself(struct callback_head *head) 516 { 517 struct task_move_callback *callback; 518 struct rdtgroup *rdtgrp; 519 520 callback = container_of(head, struct task_move_callback, work); 521 rdtgrp = callback->rdtgrp; 522 523 /* 524 * If resource group was deleted before this task work callback 525 * was invoked, then assign the task to root group and free the 526 * resource group. 527 */ 528 if (atomic_dec_and_test(&rdtgrp->waitcount) && 529 (rdtgrp->flags & RDT_DELETED)) { 530 current->closid = 0; 531 current->rmid = 0; 532 kfree(rdtgrp); 533 } 534 535 if (unlikely(current->flags & PF_EXITING)) 536 goto out; 537 538 preempt_disable(); 539 /* update PQR_ASSOC MSR to make resource group go into effect */ 540 resctrl_sched_in(); 541 preempt_enable(); 542 543 out: 544 kfree(callback); 545 } 546 547 static int __rdtgroup_move_task(struct task_struct *tsk, 548 struct rdtgroup *rdtgrp) 549 { 550 struct task_move_callback *callback; 551 int ret; 552 553 callback = kzalloc(sizeof(*callback), GFP_KERNEL); 554 if (!callback) 555 return -ENOMEM; 556 callback->work.func = move_myself; 557 callback->rdtgrp = rdtgrp; 558 559 /* 560 * Take a refcount, so rdtgrp cannot be freed before the 561 * callback has been invoked. 562 */ 563 atomic_inc(&rdtgrp->waitcount); 564 ret = task_work_add(tsk, &callback->work, true); 565 if (ret) { 566 /* 567 * Task is exiting. Drop the refcount and free the callback. 568 * No need to check the refcount as the group cannot be 569 * deleted before the write function unlocks rdtgroup_mutex. 570 */ 571 atomic_dec(&rdtgrp->waitcount); 572 kfree(callback); 573 rdt_last_cmd_puts("Task exited\n"); 574 } else { 575 /* 576 * For ctrl_mon groups move both closid and rmid. 577 * For monitor groups, can move the tasks only from 578 * their parent CTRL group. 579 */ 580 if (rdtgrp->type == RDTCTRL_GROUP) { 581 tsk->closid = rdtgrp->closid; 582 tsk->rmid = rdtgrp->mon.rmid; 583 } else if (rdtgrp->type == RDTMON_GROUP) { 584 if (rdtgrp->mon.parent->closid == tsk->closid) { 585 tsk->rmid = rdtgrp->mon.rmid; 586 } else { 587 rdt_last_cmd_puts("Can't move task to different control group\n"); 588 ret = -EINVAL; 589 } 590 } 591 } 592 return ret; 593 } 594 595 /** 596 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 597 * @r: Resource group 598 * 599 * Return: 1 if tasks have been assigned to @r, 0 otherwise 600 */ 601 int rdtgroup_tasks_assigned(struct rdtgroup *r) 602 { 603 struct task_struct *p, *t; 604 int ret = 0; 605 606 lockdep_assert_held(&rdtgroup_mutex); 607 608 rcu_read_lock(); 609 for_each_process_thread(p, t) { 610 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) || 611 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) { 612 ret = 1; 613 break; 614 } 615 } 616 rcu_read_unlock(); 617 618 return ret; 619 } 620 621 static int rdtgroup_task_write_permission(struct task_struct *task, 622 struct kernfs_open_file *of) 623 { 624 const struct cred *tcred = get_task_cred(task); 625 const struct cred *cred = current_cred(); 626 int ret = 0; 627 628 /* 629 * Even if we're attaching all tasks in the thread group, we only 630 * need to check permissions on one of them. 631 */ 632 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 633 !uid_eq(cred->euid, tcred->uid) && 634 !uid_eq(cred->euid, tcred->suid)) { 635 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 636 ret = -EPERM; 637 } 638 639 put_cred(tcred); 640 return ret; 641 } 642 643 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 644 struct kernfs_open_file *of) 645 { 646 struct task_struct *tsk; 647 int ret; 648 649 rcu_read_lock(); 650 if (pid) { 651 tsk = find_task_by_vpid(pid); 652 if (!tsk) { 653 rcu_read_unlock(); 654 rdt_last_cmd_printf("No task %d\n", pid); 655 return -ESRCH; 656 } 657 } else { 658 tsk = current; 659 } 660 661 get_task_struct(tsk); 662 rcu_read_unlock(); 663 664 ret = rdtgroup_task_write_permission(tsk, of); 665 if (!ret) 666 ret = __rdtgroup_move_task(tsk, rdtgrp); 667 668 put_task_struct(tsk); 669 return ret; 670 } 671 672 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 673 char *buf, size_t nbytes, loff_t off) 674 { 675 struct rdtgroup *rdtgrp; 676 int ret = 0; 677 pid_t pid; 678 679 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 680 return -EINVAL; 681 rdtgrp = rdtgroup_kn_lock_live(of->kn); 682 if (!rdtgrp) { 683 rdtgroup_kn_unlock(of->kn); 684 return -ENOENT; 685 } 686 rdt_last_cmd_clear(); 687 688 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 689 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 690 ret = -EINVAL; 691 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 692 goto unlock; 693 } 694 695 ret = rdtgroup_move_task(pid, rdtgrp, of); 696 697 unlock: 698 rdtgroup_kn_unlock(of->kn); 699 700 return ret ?: nbytes; 701 } 702 703 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 704 { 705 struct task_struct *p, *t; 706 707 rcu_read_lock(); 708 for_each_process_thread(p, t) { 709 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) || 710 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) 711 seq_printf(s, "%d\n", t->pid); 712 } 713 rcu_read_unlock(); 714 } 715 716 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 717 struct seq_file *s, void *v) 718 { 719 struct rdtgroup *rdtgrp; 720 int ret = 0; 721 722 rdtgrp = rdtgroup_kn_lock_live(of->kn); 723 if (rdtgrp) 724 show_rdt_tasks(rdtgrp, s); 725 else 726 ret = -ENOENT; 727 rdtgroup_kn_unlock(of->kn); 728 729 return ret; 730 } 731 732 #ifdef CONFIG_PROC_CPU_RESCTRL 733 734 /* 735 * A task can only be part of one resctrl control group and of one monitor 736 * group which is associated to that control group. 737 * 738 * 1) res: 739 * mon: 740 * 741 * resctrl is not available. 742 * 743 * 2) res:/ 744 * mon: 745 * 746 * Task is part of the root resctrl control group, and it is not associated 747 * to any monitor group. 748 * 749 * 3) res:/ 750 * mon:mon0 751 * 752 * Task is part of the root resctrl control group and monitor group mon0. 753 * 754 * 4) res:group0 755 * mon: 756 * 757 * Task is part of resctrl control group group0, and it is not associated 758 * to any monitor group. 759 * 760 * 5) res:group0 761 * mon:mon1 762 * 763 * Task is part of resctrl control group group0 and monitor group mon1. 764 */ 765 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 766 struct pid *pid, struct task_struct *tsk) 767 { 768 struct rdtgroup *rdtg; 769 int ret = 0; 770 771 mutex_lock(&rdtgroup_mutex); 772 773 /* Return empty if resctrl has not been mounted. */ 774 if (!static_branch_unlikely(&rdt_enable_key)) { 775 seq_puts(s, "res:\nmon:\n"); 776 goto unlock; 777 } 778 779 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 780 struct rdtgroup *crg; 781 782 /* 783 * Task information is only relevant for shareable 784 * and exclusive groups. 785 */ 786 if (rdtg->mode != RDT_MODE_SHAREABLE && 787 rdtg->mode != RDT_MODE_EXCLUSIVE) 788 continue; 789 790 if (rdtg->closid != tsk->closid) 791 continue; 792 793 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 794 rdtg->kn->name); 795 seq_puts(s, "mon:"); 796 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 797 mon.crdtgrp_list) { 798 if (tsk->rmid != crg->mon.rmid) 799 continue; 800 seq_printf(s, "%s", crg->kn->name); 801 break; 802 } 803 seq_putc(s, '\n'); 804 goto unlock; 805 } 806 /* 807 * The above search should succeed. Otherwise return 808 * with an error. 809 */ 810 ret = -ENOENT; 811 unlock: 812 mutex_unlock(&rdtgroup_mutex); 813 814 return ret; 815 } 816 #endif 817 818 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 819 struct seq_file *seq, void *v) 820 { 821 int len; 822 823 mutex_lock(&rdtgroup_mutex); 824 len = seq_buf_used(&last_cmd_status); 825 if (len) 826 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 827 else 828 seq_puts(seq, "ok\n"); 829 mutex_unlock(&rdtgroup_mutex); 830 return 0; 831 } 832 833 static int rdt_num_closids_show(struct kernfs_open_file *of, 834 struct seq_file *seq, void *v) 835 { 836 struct rdt_resource *r = of->kn->parent->priv; 837 838 seq_printf(seq, "%d\n", r->num_closid); 839 return 0; 840 } 841 842 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 843 struct seq_file *seq, void *v) 844 { 845 struct rdt_resource *r = of->kn->parent->priv; 846 847 seq_printf(seq, "%x\n", r->default_ctrl); 848 return 0; 849 } 850 851 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 852 struct seq_file *seq, void *v) 853 { 854 struct rdt_resource *r = of->kn->parent->priv; 855 856 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 857 return 0; 858 } 859 860 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 861 struct seq_file *seq, void *v) 862 { 863 struct rdt_resource *r = of->kn->parent->priv; 864 865 seq_printf(seq, "%x\n", r->cache.shareable_bits); 866 return 0; 867 } 868 869 /** 870 * rdt_bit_usage_show - Display current usage of resources 871 * 872 * A domain is a shared resource that can now be allocated differently. Here 873 * we display the current regions of the domain as an annotated bitmask. 874 * For each domain of this resource its allocation bitmask 875 * is annotated as below to indicate the current usage of the corresponding bit: 876 * 0 - currently unused 877 * X - currently available for sharing and used by software and hardware 878 * H - currently used by hardware only but available for software use 879 * S - currently used and shareable by software only 880 * E - currently used exclusively by one resource group 881 * P - currently pseudo-locked by one resource group 882 */ 883 static int rdt_bit_usage_show(struct kernfs_open_file *of, 884 struct seq_file *seq, void *v) 885 { 886 struct rdt_resource *r = of->kn->parent->priv; 887 /* 888 * Use unsigned long even though only 32 bits are used to ensure 889 * test_bit() is used safely. 890 */ 891 unsigned long sw_shareable = 0, hw_shareable = 0; 892 unsigned long exclusive = 0, pseudo_locked = 0; 893 struct rdt_domain *dom; 894 int i, hwb, swb, excl, psl; 895 enum rdtgrp_mode mode; 896 bool sep = false; 897 u32 *ctrl; 898 899 mutex_lock(&rdtgroup_mutex); 900 hw_shareable = r->cache.shareable_bits; 901 list_for_each_entry(dom, &r->domains, list) { 902 if (sep) 903 seq_putc(seq, ';'); 904 ctrl = dom->ctrl_val; 905 sw_shareable = 0; 906 exclusive = 0; 907 seq_printf(seq, "%d=", dom->id); 908 for (i = 0; i < closids_supported(); i++, ctrl++) { 909 if (!closid_allocated(i)) 910 continue; 911 mode = rdtgroup_mode_by_closid(i); 912 switch (mode) { 913 case RDT_MODE_SHAREABLE: 914 sw_shareable |= *ctrl; 915 break; 916 case RDT_MODE_EXCLUSIVE: 917 exclusive |= *ctrl; 918 break; 919 case RDT_MODE_PSEUDO_LOCKSETUP: 920 /* 921 * RDT_MODE_PSEUDO_LOCKSETUP is possible 922 * here but not included since the CBM 923 * associated with this CLOSID in this mode 924 * is not initialized and no task or cpu can be 925 * assigned this CLOSID. 926 */ 927 break; 928 case RDT_MODE_PSEUDO_LOCKED: 929 case RDT_NUM_MODES: 930 WARN(1, 931 "invalid mode for closid %d\n", i); 932 break; 933 } 934 } 935 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 936 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 937 hwb = test_bit(i, &hw_shareable); 938 swb = test_bit(i, &sw_shareable); 939 excl = test_bit(i, &exclusive); 940 psl = test_bit(i, &pseudo_locked); 941 if (hwb && swb) 942 seq_putc(seq, 'X'); 943 else if (hwb && !swb) 944 seq_putc(seq, 'H'); 945 else if (!hwb && swb) 946 seq_putc(seq, 'S'); 947 else if (excl) 948 seq_putc(seq, 'E'); 949 else if (psl) 950 seq_putc(seq, 'P'); 951 else /* Unused bits remain */ 952 seq_putc(seq, '0'); 953 } 954 sep = true; 955 } 956 seq_putc(seq, '\n'); 957 mutex_unlock(&rdtgroup_mutex); 958 return 0; 959 } 960 961 static int rdt_min_bw_show(struct kernfs_open_file *of, 962 struct seq_file *seq, void *v) 963 { 964 struct rdt_resource *r = of->kn->parent->priv; 965 966 seq_printf(seq, "%u\n", r->membw.min_bw); 967 return 0; 968 } 969 970 static int rdt_num_rmids_show(struct kernfs_open_file *of, 971 struct seq_file *seq, void *v) 972 { 973 struct rdt_resource *r = of->kn->parent->priv; 974 975 seq_printf(seq, "%d\n", r->num_rmid); 976 977 return 0; 978 } 979 980 static int rdt_mon_features_show(struct kernfs_open_file *of, 981 struct seq_file *seq, void *v) 982 { 983 struct rdt_resource *r = of->kn->parent->priv; 984 struct mon_evt *mevt; 985 986 list_for_each_entry(mevt, &r->evt_list, list) 987 seq_printf(seq, "%s\n", mevt->name); 988 989 return 0; 990 } 991 992 static int rdt_bw_gran_show(struct kernfs_open_file *of, 993 struct seq_file *seq, void *v) 994 { 995 struct rdt_resource *r = of->kn->parent->priv; 996 997 seq_printf(seq, "%u\n", r->membw.bw_gran); 998 return 0; 999 } 1000 1001 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1002 struct seq_file *seq, void *v) 1003 { 1004 struct rdt_resource *r = of->kn->parent->priv; 1005 1006 seq_printf(seq, "%u\n", r->membw.delay_linear); 1007 return 0; 1008 } 1009 1010 static int max_threshold_occ_show(struct kernfs_open_file *of, 1011 struct seq_file *seq, void *v) 1012 { 1013 struct rdt_resource *r = of->kn->parent->priv; 1014 1015 seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale); 1016 1017 return 0; 1018 } 1019 1020 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1021 char *buf, size_t nbytes, loff_t off) 1022 { 1023 struct rdt_resource *r = of->kn->parent->priv; 1024 unsigned int bytes; 1025 int ret; 1026 1027 ret = kstrtouint(buf, 0, &bytes); 1028 if (ret) 1029 return ret; 1030 1031 if (bytes > (boot_cpu_data.x86_cache_size * 1024)) 1032 return -EINVAL; 1033 1034 resctrl_cqm_threshold = bytes / r->mon_scale; 1035 1036 return nbytes; 1037 } 1038 1039 /* 1040 * rdtgroup_mode_show - Display mode of this resource group 1041 */ 1042 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1043 struct seq_file *s, void *v) 1044 { 1045 struct rdtgroup *rdtgrp; 1046 1047 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1048 if (!rdtgrp) { 1049 rdtgroup_kn_unlock(of->kn); 1050 return -ENOENT; 1051 } 1052 1053 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1054 1055 rdtgroup_kn_unlock(of->kn); 1056 return 0; 1057 } 1058 1059 /** 1060 * rdt_cdp_peer_get - Retrieve CDP peer if it exists 1061 * @r: RDT resource to which RDT domain @d belongs 1062 * @d: Cache instance for which a CDP peer is requested 1063 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer) 1064 * Used to return the result. 1065 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer) 1066 * Used to return the result. 1067 * 1068 * RDT resources are managed independently and by extension the RDT domains 1069 * (RDT resource instances) are managed independently also. The Code and 1070 * Data Prioritization (CDP) RDT resources, while managed independently, 1071 * could refer to the same underlying hardware. For example, 1072 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache. 1073 * 1074 * When provided with an RDT resource @r and an instance of that RDT 1075 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT 1076 * resource and the exact instance that shares the same hardware. 1077 * 1078 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists. 1079 * If a CDP peer was found, @r_cdp will point to the peer RDT resource 1080 * and @d_cdp will point to the peer RDT domain. 1081 */ 1082 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d, 1083 struct rdt_resource **r_cdp, 1084 struct rdt_domain **d_cdp) 1085 { 1086 struct rdt_resource *_r_cdp = NULL; 1087 struct rdt_domain *_d_cdp = NULL; 1088 int ret = 0; 1089 1090 switch (r->rid) { 1091 case RDT_RESOURCE_L3DATA: 1092 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE]; 1093 break; 1094 case RDT_RESOURCE_L3CODE: 1095 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA]; 1096 break; 1097 case RDT_RESOURCE_L2DATA: 1098 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE]; 1099 break; 1100 case RDT_RESOURCE_L2CODE: 1101 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA]; 1102 break; 1103 default: 1104 ret = -ENOENT; 1105 goto out; 1106 } 1107 1108 /* 1109 * When a new CPU comes online and CDP is enabled then the new 1110 * RDT domains (if any) associated with both CDP RDT resources 1111 * are added in the same CPU online routine while the 1112 * rdtgroup_mutex is held. It should thus not happen for one 1113 * RDT domain to exist and be associated with its RDT CDP 1114 * resource but there is no RDT domain associated with the 1115 * peer RDT CDP resource. Hence the WARN. 1116 */ 1117 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL); 1118 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) { 1119 _r_cdp = NULL; 1120 _d_cdp = NULL; 1121 ret = -EINVAL; 1122 } 1123 1124 out: 1125 *r_cdp = _r_cdp; 1126 *d_cdp = _d_cdp; 1127 1128 return ret; 1129 } 1130 1131 /** 1132 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1133 * @r: Resource to which domain instance @d belongs. 1134 * @d: The domain instance for which @closid is being tested. 1135 * @cbm: Capacity bitmask being tested. 1136 * @closid: Intended closid for @cbm. 1137 * @exclusive: Only check if overlaps with exclusive resource groups 1138 * 1139 * Checks if provided @cbm intended to be used for @closid on domain 1140 * @d overlaps with any other closids or other hardware usage associated 1141 * with this domain. If @exclusive is true then only overlaps with 1142 * resource groups in exclusive mode will be considered. If @exclusive 1143 * is false then overlaps with any resource group or hardware entities 1144 * will be considered. 1145 * 1146 * @cbm is unsigned long, even if only 32 bits are used, to make the 1147 * bitmap functions work correctly. 1148 * 1149 * Return: false if CBM does not overlap, true if it does. 1150 */ 1151 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1152 unsigned long cbm, int closid, bool exclusive) 1153 { 1154 enum rdtgrp_mode mode; 1155 unsigned long ctrl_b; 1156 u32 *ctrl; 1157 int i; 1158 1159 /* Check for any overlap with regions used by hardware directly */ 1160 if (!exclusive) { 1161 ctrl_b = r->cache.shareable_bits; 1162 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1163 return true; 1164 } 1165 1166 /* Check for overlap with other resource groups */ 1167 ctrl = d->ctrl_val; 1168 for (i = 0; i < closids_supported(); i++, ctrl++) { 1169 ctrl_b = *ctrl; 1170 mode = rdtgroup_mode_by_closid(i); 1171 if (closid_allocated(i) && i != closid && 1172 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1173 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1174 if (exclusive) { 1175 if (mode == RDT_MODE_EXCLUSIVE) 1176 return true; 1177 continue; 1178 } 1179 return true; 1180 } 1181 } 1182 } 1183 1184 return false; 1185 } 1186 1187 /** 1188 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1189 * @r: Resource to which domain instance @d belongs. 1190 * @d: The domain instance for which @closid is being tested. 1191 * @cbm: Capacity bitmask being tested. 1192 * @closid: Intended closid for @cbm. 1193 * @exclusive: Only check if overlaps with exclusive resource groups 1194 * 1195 * Resources that can be allocated using a CBM can use the CBM to control 1196 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1197 * for overlap. Overlap test is not limited to the specific resource for 1198 * which the CBM is intended though - when dealing with CDP resources that 1199 * share the underlying hardware the overlap check should be performed on 1200 * the CDP resource sharing the hardware also. 1201 * 1202 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1203 * overlap test. 1204 * 1205 * Return: true if CBM overlap detected, false if there is no overlap 1206 */ 1207 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1208 unsigned long cbm, int closid, bool exclusive) 1209 { 1210 struct rdt_resource *r_cdp; 1211 struct rdt_domain *d_cdp; 1212 1213 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive)) 1214 return true; 1215 1216 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0) 1217 return false; 1218 1219 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive); 1220 } 1221 1222 /** 1223 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1224 * 1225 * An exclusive resource group implies that there should be no sharing of 1226 * its allocated resources. At the time this group is considered to be 1227 * exclusive this test can determine if its current schemata supports this 1228 * setting by testing for overlap with all other resource groups. 1229 * 1230 * Return: true if resource group can be exclusive, false if there is overlap 1231 * with allocations of other resource groups and thus this resource group 1232 * cannot be exclusive. 1233 */ 1234 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1235 { 1236 int closid = rdtgrp->closid; 1237 struct rdt_resource *r; 1238 bool has_cache = false; 1239 struct rdt_domain *d; 1240 1241 for_each_alloc_enabled_rdt_resource(r) { 1242 if (r->rid == RDT_RESOURCE_MBA) 1243 continue; 1244 has_cache = true; 1245 list_for_each_entry(d, &r->domains, list) { 1246 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid], 1247 rdtgrp->closid, false)) { 1248 rdt_last_cmd_puts("Schemata overlaps\n"); 1249 return false; 1250 } 1251 } 1252 } 1253 1254 if (!has_cache) { 1255 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1256 return false; 1257 } 1258 1259 return true; 1260 } 1261 1262 /** 1263 * rdtgroup_mode_write - Modify the resource group's mode 1264 * 1265 */ 1266 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1267 char *buf, size_t nbytes, loff_t off) 1268 { 1269 struct rdtgroup *rdtgrp; 1270 enum rdtgrp_mode mode; 1271 int ret = 0; 1272 1273 /* Valid input requires a trailing newline */ 1274 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1275 return -EINVAL; 1276 buf[nbytes - 1] = '\0'; 1277 1278 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1279 if (!rdtgrp) { 1280 rdtgroup_kn_unlock(of->kn); 1281 return -ENOENT; 1282 } 1283 1284 rdt_last_cmd_clear(); 1285 1286 mode = rdtgrp->mode; 1287 1288 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1289 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1290 (!strcmp(buf, "pseudo-locksetup") && 1291 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1292 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1293 goto out; 1294 1295 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1296 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1297 ret = -EINVAL; 1298 goto out; 1299 } 1300 1301 if (!strcmp(buf, "shareable")) { 1302 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1303 ret = rdtgroup_locksetup_exit(rdtgrp); 1304 if (ret) 1305 goto out; 1306 } 1307 rdtgrp->mode = RDT_MODE_SHAREABLE; 1308 } else if (!strcmp(buf, "exclusive")) { 1309 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1310 ret = -EINVAL; 1311 goto out; 1312 } 1313 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1314 ret = rdtgroup_locksetup_exit(rdtgrp); 1315 if (ret) 1316 goto out; 1317 } 1318 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1319 } else if (!strcmp(buf, "pseudo-locksetup")) { 1320 ret = rdtgroup_locksetup_enter(rdtgrp); 1321 if (ret) 1322 goto out; 1323 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1324 } else { 1325 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1326 ret = -EINVAL; 1327 } 1328 1329 out: 1330 rdtgroup_kn_unlock(of->kn); 1331 return ret ?: nbytes; 1332 } 1333 1334 /** 1335 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1336 * @r: RDT resource to which @d belongs. 1337 * @d: RDT domain instance. 1338 * @cbm: bitmask for which the size should be computed. 1339 * 1340 * The bitmask provided associated with the RDT domain instance @d will be 1341 * translated into how many bytes it represents. The size in bytes is 1342 * computed by first dividing the total cache size by the CBM length to 1343 * determine how many bytes each bit in the bitmask represents. The result 1344 * is multiplied with the number of bits set in the bitmask. 1345 * 1346 * @cbm is unsigned long, even if only 32 bits are used to make the 1347 * bitmap functions work correctly. 1348 */ 1349 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1350 struct rdt_domain *d, unsigned long cbm) 1351 { 1352 struct cpu_cacheinfo *ci; 1353 unsigned int size = 0; 1354 int num_b, i; 1355 1356 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1357 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1358 for (i = 0; i < ci->num_leaves; i++) { 1359 if (ci->info_list[i].level == r->cache_level) { 1360 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1361 break; 1362 } 1363 } 1364 1365 return size; 1366 } 1367 1368 /** 1369 * rdtgroup_size_show - Display size in bytes of allocated regions 1370 * 1371 * The "size" file mirrors the layout of the "schemata" file, printing the 1372 * size in bytes of each region instead of the capacity bitmask. 1373 * 1374 */ 1375 static int rdtgroup_size_show(struct kernfs_open_file *of, 1376 struct seq_file *s, void *v) 1377 { 1378 struct rdtgroup *rdtgrp; 1379 struct rdt_resource *r; 1380 struct rdt_domain *d; 1381 unsigned int size; 1382 int ret = 0; 1383 bool sep; 1384 u32 ctrl; 1385 1386 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1387 if (!rdtgrp) { 1388 rdtgroup_kn_unlock(of->kn); 1389 return -ENOENT; 1390 } 1391 1392 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1393 if (!rdtgrp->plr->d) { 1394 rdt_last_cmd_clear(); 1395 rdt_last_cmd_puts("Cache domain offline\n"); 1396 ret = -ENODEV; 1397 } else { 1398 seq_printf(s, "%*s:", max_name_width, 1399 rdtgrp->plr->r->name); 1400 size = rdtgroup_cbm_to_size(rdtgrp->plr->r, 1401 rdtgrp->plr->d, 1402 rdtgrp->plr->cbm); 1403 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1404 } 1405 goto out; 1406 } 1407 1408 for_each_alloc_enabled_rdt_resource(r) { 1409 sep = false; 1410 seq_printf(s, "%*s:", max_name_width, r->name); 1411 list_for_each_entry(d, &r->domains, list) { 1412 if (sep) 1413 seq_putc(s, ';'); 1414 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1415 size = 0; 1416 } else { 1417 ctrl = (!is_mba_sc(r) ? 1418 d->ctrl_val[rdtgrp->closid] : 1419 d->mbps_val[rdtgrp->closid]); 1420 if (r->rid == RDT_RESOURCE_MBA) 1421 size = ctrl; 1422 else 1423 size = rdtgroup_cbm_to_size(r, d, ctrl); 1424 } 1425 seq_printf(s, "%d=%u", d->id, size); 1426 sep = true; 1427 } 1428 seq_putc(s, '\n'); 1429 } 1430 1431 out: 1432 rdtgroup_kn_unlock(of->kn); 1433 1434 return ret; 1435 } 1436 1437 /* rdtgroup information files for one cache resource. */ 1438 static struct rftype res_common_files[] = { 1439 { 1440 .name = "last_cmd_status", 1441 .mode = 0444, 1442 .kf_ops = &rdtgroup_kf_single_ops, 1443 .seq_show = rdt_last_cmd_status_show, 1444 .fflags = RF_TOP_INFO, 1445 }, 1446 { 1447 .name = "num_closids", 1448 .mode = 0444, 1449 .kf_ops = &rdtgroup_kf_single_ops, 1450 .seq_show = rdt_num_closids_show, 1451 .fflags = RF_CTRL_INFO, 1452 }, 1453 { 1454 .name = "mon_features", 1455 .mode = 0444, 1456 .kf_ops = &rdtgroup_kf_single_ops, 1457 .seq_show = rdt_mon_features_show, 1458 .fflags = RF_MON_INFO, 1459 }, 1460 { 1461 .name = "num_rmids", 1462 .mode = 0444, 1463 .kf_ops = &rdtgroup_kf_single_ops, 1464 .seq_show = rdt_num_rmids_show, 1465 .fflags = RF_MON_INFO, 1466 }, 1467 { 1468 .name = "cbm_mask", 1469 .mode = 0444, 1470 .kf_ops = &rdtgroup_kf_single_ops, 1471 .seq_show = rdt_default_ctrl_show, 1472 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1473 }, 1474 { 1475 .name = "min_cbm_bits", 1476 .mode = 0444, 1477 .kf_ops = &rdtgroup_kf_single_ops, 1478 .seq_show = rdt_min_cbm_bits_show, 1479 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1480 }, 1481 { 1482 .name = "shareable_bits", 1483 .mode = 0444, 1484 .kf_ops = &rdtgroup_kf_single_ops, 1485 .seq_show = rdt_shareable_bits_show, 1486 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1487 }, 1488 { 1489 .name = "bit_usage", 1490 .mode = 0444, 1491 .kf_ops = &rdtgroup_kf_single_ops, 1492 .seq_show = rdt_bit_usage_show, 1493 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1494 }, 1495 { 1496 .name = "min_bandwidth", 1497 .mode = 0444, 1498 .kf_ops = &rdtgroup_kf_single_ops, 1499 .seq_show = rdt_min_bw_show, 1500 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1501 }, 1502 { 1503 .name = "bandwidth_gran", 1504 .mode = 0444, 1505 .kf_ops = &rdtgroup_kf_single_ops, 1506 .seq_show = rdt_bw_gran_show, 1507 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1508 }, 1509 { 1510 .name = "delay_linear", 1511 .mode = 0444, 1512 .kf_ops = &rdtgroup_kf_single_ops, 1513 .seq_show = rdt_delay_linear_show, 1514 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1515 }, 1516 { 1517 .name = "max_threshold_occupancy", 1518 .mode = 0644, 1519 .kf_ops = &rdtgroup_kf_single_ops, 1520 .write = max_threshold_occ_write, 1521 .seq_show = max_threshold_occ_show, 1522 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1523 }, 1524 { 1525 .name = "cpus", 1526 .mode = 0644, 1527 .kf_ops = &rdtgroup_kf_single_ops, 1528 .write = rdtgroup_cpus_write, 1529 .seq_show = rdtgroup_cpus_show, 1530 .fflags = RFTYPE_BASE, 1531 }, 1532 { 1533 .name = "cpus_list", 1534 .mode = 0644, 1535 .kf_ops = &rdtgroup_kf_single_ops, 1536 .write = rdtgroup_cpus_write, 1537 .seq_show = rdtgroup_cpus_show, 1538 .flags = RFTYPE_FLAGS_CPUS_LIST, 1539 .fflags = RFTYPE_BASE, 1540 }, 1541 { 1542 .name = "tasks", 1543 .mode = 0644, 1544 .kf_ops = &rdtgroup_kf_single_ops, 1545 .write = rdtgroup_tasks_write, 1546 .seq_show = rdtgroup_tasks_show, 1547 .fflags = RFTYPE_BASE, 1548 }, 1549 { 1550 .name = "schemata", 1551 .mode = 0644, 1552 .kf_ops = &rdtgroup_kf_single_ops, 1553 .write = rdtgroup_schemata_write, 1554 .seq_show = rdtgroup_schemata_show, 1555 .fflags = RF_CTRL_BASE, 1556 }, 1557 { 1558 .name = "mode", 1559 .mode = 0644, 1560 .kf_ops = &rdtgroup_kf_single_ops, 1561 .write = rdtgroup_mode_write, 1562 .seq_show = rdtgroup_mode_show, 1563 .fflags = RF_CTRL_BASE, 1564 }, 1565 { 1566 .name = "size", 1567 .mode = 0444, 1568 .kf_ops = &rdtgroup_kf_single_ops, 1569 .seq_show = rdtgroup_size_show, 1570 .fflags = RF_CTRL_BASE, 1571 }, 1572 1573 }; 1574 1575 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1576 { 1577 struct rftype *rfts, *rft; 1578 int ret, len; 1579 1580 rfts = res_common_files; 1581 len = ARRAY_SIZE(res_common_files); 1582 1583 lockdep_assert_held(&rdtgroup_mutex); 1584 1585 for (rft = rfts; rft < rfts + len; rft++) { 1586 if ((fflags & rft->fflags) == rft->fflags) { 1587 ret = rdtgroup_add_file(kn, rft); 1588 if (ret) 1589 goto error; 1590 } 1591 } 1592 1593 return 0; 1594 error: 1595 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1596 while (--rft >= rfts) { 1597 if ((fflags & rft->fflags) == rft->fflags) 1598 kernfs_remove_by_name(kn, rft->name); 1599 } 1600 return ret; 1601 } 1602 1603 /** 1604 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1605 * @r: The resource group with which the file is associated. 1606 * @name: Name of the file 1607 * 1608 * The permissions of named resctrl file, directory, or link are modified 1609 * to not allow read, write, or execute by any user. 1610 * 1611 * WARNING: This function is intended to communicate to the user that the 1612 * resctrl file has been locked down - that it is not relevant to the 1613 * particular state the system finds itself in. It should not be relied 1614 * on to protect from user access because after the file's permissions 1615 * are restricted the user can still change the permissions using chmod 1616 * from the command line. 1617 * 1618 * Return: 0 on success, <0 on failure. 1619 */ 1620 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1621 { 1622 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1623 struct kernfs_node *kn; 1624 int ret = 0; 1625 1626 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1627 if (!kn) 1628 return -ENOENT; 1629 1630 switch (kernfs_type(kn)) { 1631 case KERNFS_DIR: 1632 iattr.ia_mode = S_IFDIR; 1633 break; 1634 case KERNFS_FILE: 1635 iattr.ia_mode = S_IFREG; 1636 break; 1637 case KERNFS_LINK: 1638 iattr.ia_mode = S_IFLNK; 1639 break; 1640 } 1641 1642 ret = kernfs_setattr(kn, &iattr); 1643 kernfs_put(kn); 1644 return ret; 1645 } 1646 1647 /** 1648 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1649 * @r: The resource group with which the file is associated. 1650 * @name: Name of the file 1651 * @mask: Mask of permissions that should be restored 1652 * 1653 * Restore the permissions of the named file. If @name is a directory the 1654 * permissions of its parent will be used. 1655 * 1656 * Return: 0 on success, <0 on failure. 1657 */ 1658 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1659 umode_t mask) 1660 { 1661 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1662 struct kernfs_node *kn, *parent; 1663 struct rftype *rfts, *rft; 1664 int ret, len; 1665 1666 rfts = res_common_files; 1667 len = ARRAY_SIZE(res_common_files); 1668 1669 for (rft = rfts; rft < rfts + len; rft++) { 1670 if (!strcmp(rft->name, name)) 1671 iattr.ia_mode = rft->mode & mask; 1672 } 1673 1674 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1675 if (!kn) 1676 return -ENOENT; 1677 1678 switch (kernfs_type(kn)) { 1679 case KERNFS_DIR: 1680 parent = kernfs_get_parent(kn); 1681 if (parent) { 1682 iattr.ia_mode |= parent->mode; 1683 kernfs_put(parent); 1684 } 1685 iattr.ia_mode |= S_IFDIR; 1686 break; 1687 case KERNFS_FILE: 1688 iattr.ia_mode |= S_IFREG; 1689 break; 1690 case KERNFS_LINK: 1691 iattr.ia_mode |= S_IFLNK; 1692 break; 1693 } 1694 1695 ret = kernfs_setattr(kn, &iattr); 1696 kernfs_put(kn); 1697 return ret; 1698 } 1699 1700 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name, 1701 unsigned long fflags) 1702 { 1703 struct kernfs_node *kn_subdir; 1704 int ret; 1705 1706 kn_subdir = kernfs_create_dir(kn_info, name, 1707 kn_info->mode, r); 1708 if (IS_ERR(kn_subdir)) 1709 return PTR_ERR(kn_subdir); 1710 1711 kernfs_get(kn_subdir); 1712 ret = rdtgroup_kn_set_ugid(kn_subdir); 1713 if (ret) 1714 return ret; 1715 1716 ret = rdtgroup_add_files(kn_subdir, fflags); 1717 if (!ret) 1718 kernfs_activate(kn_subdir); 1719 1720 return ret; 1721 } 1722 1723 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 1724 { 1725 struct rdt_resource *r; 1726 unsigned long fflags; 1727 char name[32]; 1728 int ret; 1729 1730 /* create the directory */ 1731 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 1732 if (IS_ERR(kn_info)) 1733 return PTR_ERR(kn_info); 1734 kernfs_get(kn_info); 1735 1736 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 1737 if (ret) 1738 goto out_destroy; 1739 1740 for_each_alloc_enabled_rdt_resource(r) { 1741 fflags = r->fflags | RF_CTRL_INFO; 1742 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags); 1743 if (ret) 1744 goto out_destroy; 1745 } 1746 1747 for_each_mon_enabled_rdt_resource(r) { 1748 fflags = r->fflags | RF_MON_INFO; 1749 sprintf(name, "%s_MON", r->name); 1750 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 1751 if (ret) 1752 goto out_destroy; 1753 } 1754 1755 /* 1756 * This extra ref will be put in kernfs_remove() and guarantees 1757 * that @rdtgrp->kn is always accessible. 1758 */ 1759 kernfs_get(kn_info); 1760 1761 ret = rdtgroup_kn_set_ugid(kn_info); 1762 if (ret) 1763 goto out_destroy; 1764 1765 kernfs_activate(kn_info); 1766 1767 return 0; 1768 1769 out_destroy: 1770 kernfs_remove(kn_info); 1771 return ret; 1772 } 1773 1774 static int 1775 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 1776 char *name, struct kernfs_node **dest_kn) 1777 { 1778 struct kernfs_node *kn; 1779 int ret; 1780 1781 /* create the directory */ 1782 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 1783 if (IS_ERR(kn)) 1784 return PTR_ERR(kn); 1785 1786 if (dest_kn) 1787 *dest_kn = kn; 1788 1789 /* 1790 * This extra ref will be put in kernfs_remove() and guarantees 1791 * that @rdtgrp->kn is always accessible. 1792 */ 1793 kernfs_get(kn); 1794 1795 ret = rdtgroup_kn_set_ugid(kn); 1796 if (ret) 1797 goto out_destroy; 1798 1799 kernfs_activate(kn); 1800 1801 return 0; 1802 1803 out_destroy: 1804 kernfs_remove(kn); 1805 return ret; 1806 } 1807 1808 static void l3_qos_cfg_update(void *arg) 1809 { 1810 bool *enable = arg; 1811 1812 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 1813 } 1814 1815 static void l2_qos_cfg_update(void *arg) 1816 { 1817 bool *enable = arg; 1818 1819 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 1820 } 1821 1822 static inline bool is_mba_linear(void) 1823 { 1824 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear; 1825 } 1826 1827 static int set_cache_qos_cfg(int level, bool enable) 1828 { 1829 void (*update)(void *arg); 1830 struct rdt_resource *r_l; 1831 cpumask_var_t cpu_mask; 1832 struct rdt_domain *d; 1833 int cpu; 1834 1835 if (level == RDT_RESOURCE_L3) 1836 update = l3_qos_cfg_update; 1837 else if (level == RDT_RESOURCE_L2) 1838 update = l2_qos_cfg_update; 1839 else 1840 return -EINVAL; 1841 1842 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 1843 return -ENOMEM; 1844 1845 r_l = &rdt_resources_all[level]; 1846 list_for_each_entry(d, &r_l->domains, list) { 1847 /* Pick one CPU from each domain instance to update MSR */ 1848 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 1849 } 1850 cpu = get_cpu(); 1851 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */ 1852 if (cpumask_test_cpu(cpu, cpu_mask)) 1853 update(&enable); 1854 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */ 1855 smp_call_function_many(cpu_mask, update, &enable, 1); 1856 put_cpu(); 1857 1858 free_cpumask_var(cpu_mask); 1859 1860 return 0; 1861 } 1862 1863 /* Restore the qos cfg state when a domain comes online */ 1864 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 1865 { 1866 if (!r->alloc_capable) 1867 return; 1868 1869 if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA]) 1870 l2_qos_cfg_update(&r->alloc_enabled); 1871 1872 if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA]) 1873 l3_qos_cfg_update(&r->alloc_enabled); 1874 } 1875 1876 /* 1877 * Enable or disable the MBA software controller 1878 * which helps user specify bandwidth in MBps. 1879 * MBA software controller is supported only if 1880 * MBM is supported and MBA is in linear scale. 1881 */ 1882 static int set_mba_sc(bool mba_sc) 1883 { 1884 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA]; 1885 struct rdt_domain *d; 1886 1887 if (!is_mbm_enabled() || !is_mba_linear() || 1888 mba_sc == is_mba_sc(r)) 1889 return -EINVAL; 1890 1891 r->membw.mba_sc = mba_sc; 1892 list_for_each_entry(d, &r->domains, list) 1893 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val); 1894 1895 return 0; 1896 } 1897 1898 static int cdp_enable(int level, int data_type, int code_type) 1899 { 1900 struct rdt_resource *r_ldata = &rdt_resources_all[data_type]; 1901 struct rdt_resource *r_lcode = &rdt_resources_all[code_type]; 1902 struct rdt_resource *r_l = &rdt_resources_all[level]; 1903 int ret; 1904 1905 if (!r_l->alloc_capable || !r_ldata->alloc_capable || 1906 !r_lcode->alloc_capable) 1907 return -EINVAL; 1908 1909 ret = set_cache_qos_cfg(level, true); 1910 if (!ret) { 1911 r_l->alloc_enabled = false; 1912 r_ldata->alloc_enabled = true; 1913 r_lcode->alloc_enabled = true; 1914 } 1915 return ret; 1916 } 1917 1918 static int cdpl3_enable(void) 1919 { 1920 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, 1921 RDT_RESOURCE_L3CODE); 1922 } 1923 1924 static int cdpl2_enable(void) 1925 { 1926 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, 1927 RDT_RESOURCE_L2CODE); 1928 } 1929 1930 static void cdp_disable(int level, int data_type, int code_type) 1931 { 1932 struct rdt_resource *r = &rdt_resources_all[level]; 1933 1934 r->alloc_enabled = r->alloc_capable; 1935 1936 if (rdt_resources_all[data_type].alloc_enabled) { 1937 rdt_resources_all[data_type].alloc_enabled = false; 1938 rdt_resources_all[code_type].alloc_enabled = false; 1939 set_cache_qos_cfg(level, false); 1940 } 1941 } 1942 1943 static void cdpl3_disable(void) 1944 { 1945 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE); 1946 } 1947 1948 static void cdpl2_disable(void) 1949 { 1950 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE); 1951 } 1952 1953 static void cdp_disable_all(void) 1954 { 1955 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) 1956 cdpl3_disable(); 1957 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) 1958 cdpl2_disable(); 1959 } 1960 1961 /* 1962 * We don't allow rdtgroup directories to be created anywhere 1963 * except the root directory. Thus when looking for the rdtgroup 1964 * structure for a kernfs node we are either looking at a directory, 1965 * in which case the rdtgroup structure is pointed at by the "priv" 1966 * field, otherwise we have a file, and need only look to the parent 1967 * to find the rdtgroup. 1968 */ 1969 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 1970 { 1971 if (kernfs_type(kn) == KERNFS_DIR) { 1972 /* 1973 * All the resource directories use "kn->priv" 1974 * to point to the "struct rdtgroup" for the 1975 * resource. "info" and its subdirectories don't 1976 * have rdtgroup structures, so return NULL here. 1977 */ 1978 if (kn == kn_info || kn->parent == kn_info) 1979 return NULL; 1980 else 1981 return kn->priv; 1982 } else { 1983 return kn->parent->priv; 1984 } 1985 } 1986 1987 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 1988 { 1989 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 1990 1991 if (!rdtgrp) 1992 return NULL; 1993 1994 atomic_inc(&rdtgrp->waitcount); 1995 kernfs_break_active_protection(kn); 1996 1997 mutex_lock(&rdtgroup_mutex); 1998 1999 /* Was this group deleted while we waited? */ 2000 if (rdtgrp->flags & RDT_DELETED) 2001 return NULL; 2002 2003 return rdtgrp; 2004 } 2005 2006 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2007 { 2008 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2009 2010 if (!rdtgrp) 2011 return; 2012 2013 mutex_unlock(&rdtgroup_mutex); 2014 2015 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2016 (rdtgrp->flags & RDT_DELETED)) { 2017 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2018 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2019 rdtgroup_pseudo_lock_remove(rdtgrp); 2020 kernfs_unbreak_active_protection(kn); 2021 kernfs_put(rdtgrp->kn); 2022 kfree(rdtgrp); 2023 } else { 2024 kernfs_unbreak_active_protection(kn); 2025 } 2026 } 2027 2028 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2029 struct rdtgroup *prgrp, 2030 struct kernfs_node **mon_data_kn); 2031 2032 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2033 { 2034 int ret = 0; 2035 2036 if (ctx->enable_cdpl2) 2037 ret = cdpl2_enable(); 2038 2039 if (!ret && ctx->enable_cdpl3) 2040 ret = cdpl3_enable(); 2041 2042 if (!ret && ctx->enable_mba_mbps) 2043 ret = set_mba_sc(true); 2044 2045 return ret; 2046 } 2047 2048 static int rdt_get_tree(struct fs_context *fc) 2049 { 2050 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2051 struct rdt_domain *dom; 2052 struct rdt_resource *r; 2053 int ret; 2054 2055 cpus_read_lock(); 2056 mutex_lock(&rdtgroup_mutex); 2057 /* 2058 * resctrl file system can only be mounted once. 2059 */ 2060 if (static_branch_unlikely(&rdt_enable_key)) { 2061 ret = -EBUSY; 2062 goto out; 2063 } 2064 2065 ret = rdt_enable_ctx(ctx); 2066 if (ret < 0) 2067 goto out_cdp; 2068 2069 closid_init(); 2070 2071 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2072 if (ret < 0) 2073 goto out_mba; 2074 2075 if (rdt_mon_capable) { 2076 ret = mongroup_create_dir(rdtgroup_default.kn, 2077 &rdtgroup_default, "mon_groups", 2078 &kn_mongrp); 2079 if (ret < 0) 2080 goto out_info; 2081 kernfs_get(kn_mongrp); 2082 2083 ret = mkdir_mondata_all(rdtgroup_default.kn, 2084 &rdtgroup_default, &kn_mondata); 2085 if (ret < 0) 2086 goto out_mongrp; 2087 kernfs_get(kn_mondata); 2088 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2089 } 2090 2091 ret = rdt_pseudo_lock_init(); 2092 if (ret) 2093 goto out_mondata; 2094 2095 ret = kernfs_get_tree(fc); 2096 if (ret < 0) 2097 goto out_psl; 2098 2099 if (rdt_alloc_capable) 2100 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 2101 if (rdt_mon_capable) 2102 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 2103 2104 if (rdt_alloc_capable || rdt_mon_capable) 2105 static_branch_enable_cpuslocked(&rdt_enable_key); 2106 2107 if (is_mbm_enabled()) { 2108 r = &rdt_resources_all[RDT_RESOURCE_L3]; 2109 list_for_each_entry(dom, &r->domains, list) 2110 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2111 } 2112 2113 goto out; 2114 2115 out_psl: 2116 rdt_pseudo_lock_release(); 2117 out_mondata: 2118 if (rdt_mon_capable) 2119 kernfs_remove(kn_mondata); 2120 out_mongrp: 2121 if (rdt_mon_capable) 2122 kernfs_remove(kn_mongrp); 2123 out_info: 2124 kernfs_remove(kn_info); 2125 out_mba: 2126 if (ctx->enable_mba_mbps) 2127 set_mba_sc(false); 2128 out_cdp: 2129 cdp_disable_all(); 2130 out: 2131 rdt_last_cmd_clear(); 2132 mutex_unlock(&rdtgroup_mutex); 2133 cpus_read_unlock(); 2134 return ret; 2135 } 2136 2137 enum rdt_param { 2138 Opt_cdp, 2139 Opt_cdpl2, 2140 Opt_mba_mbps, 2141 nr__rdt_params 2142 }; 2143 2144 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2145 fsparam_flag("cdp", Opt_cdp), 2146 fsparam_flag("cdpl2", Opt_cdpl2), 2147 fsparam_flag("mba_MBps", Opt_mba_mbps), 2148 {} 2149 }; 2150 2151 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2152 { 2153 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2154 struct fs_parse_result result; 2155 int opt; 2156 2157 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2158 if (opt < 0) 2159 return opt; 2160 2161 switch (opt) { 2162 case Opt_cdp: 2163 ctx->enable_cdpl3 = true; 2164 return 0; 2165 case Opt_cdpl2: 2166 ctx->enable_cdpl2 = true; 2167 return 0; 2168 case Opt_mba_mbps: 2169 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 2170 return -EINVAL; 2171 ctx->enable_mba_mbps = true; 2172 return 0; 2173 } 2174 2175 return -EINVAL; 2176 } 2177 2178 static void rdt_fs_context_free(struct fs_context *fc) 2179 { 2180 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2181 2182 kernfs_free_fs_context(fc); 2183 kfree(ctx); 2184 } 2185 2186 static const struct fs_context_operations rdt_fs_context_ops = { 2187 .free = rdt_fs_context_free, 2188 .parse_param = rdt_parse_param, 2189 .get_tree = rdt_get_tree, 2190 }; 2191 2192 static int rdt_init_fs_context(struct fs_context *fc) 2193 { 2194 struct rdt_fs_context *ctx; 2195 2196 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2197 if (!ctx) 2198 return -ENOMEM; 2199 2200 ctx->kfc.root = rdt_root; 2201 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2202 fc->fs_private = &ctx->kfc; 2203 fc->ops = &rdt_fs_context_ops; 2204 put_user_ns(fc->user_ns); 2205 fc->user_ns = get_user_ns(&init_user_ns); 2206 fc->global = true; 2207 return 0; 2208 } 2209 2210 static int reset_all_ctrls(struct rdt_resource *r) 2211 { 2212 struct msr_param msr_param; 2213 cpumask_var_t cpu_mask; 2214 struct rdt_domain *d; 2215 int i, cpu; 2216 2217 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2218 return -ENOMEM; 2219 2220 msr_param.res = r; 2221 msr_param.low = 0; 2222 msr_param.high = r->num_closid; 2223 2224 /* 2225 * Disable resource control for this resource by setting all 2226 * CBMs in all domains to the maximum mask value. Pick one CPU 2227 * from each domain to update the MSRs below. 2228 */ 2229 list_for_each_entry(d, &r->domains, list) { 2230 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2231 2232 for (i = 0; i < r->num_closid; i++) 2233 d->ctrl_val[i] = r->default_ctrl; 2234 } 2235 cpu = get_cpu(); 2236 /* Update CBM on this cpu if it's in cpu_mask. */ 2237 if (cpumask_test_cpu(cpu, cpu_mask)) 2238 rdt_ctrl_update(&msr_param); 2239 /* Update CBM on all other cpus in cpu_mask. */ 2240 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2241 put_cpu(); 2242 2243 free_cpumask_var(cpu_mask); 2244 2245 return 0; 2246 } 2247 2248 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 2249 { 2250 return (rdt_alloc_capable && 2251 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 2252 } 2253 2254 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 2255 { 2256 return (rdt_mon_capable && 2257 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 2258 } 2259 2260 /* 2261 * Move tasks from one to the other group. If @from is NULL, then all tasks 2262 * in the systems are moved unconditionally (used for teardown). 2263 * 2264 * If @mask is not NULL the cpus on which moved tasks are running are set 2265 * in that mask so the update smp function call is restricted to affected 2266 * cpus. 2267 */ 2268 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2269 struct cpumask *mask) 2270 { 2271 struct task_struct *p, *t; 2272 2273 read_lock(&tasklist_lock); 2274 for_each_process_thread(p, t) { 2275 if (!from || is_closid_match(t, from) || 2276 is_rmid_match(t, from)) { 2277 t->closid = to->closid; 2278 t->rmid = to->mon.rmid; 2279 2280 #ifdef CONFIG_SMP 2281 /* 2282 * This is safe on x86 w/o barriers as the ordering 2283 * of writing to task_cpu() and t->on_cpu is 2284 * reverse to the reading here. The detection is 2285 * inaccurate as tasks might move or schedule 2286 * before the smp function call takes place. In 2287 * such a case the function call is pointless, but 2288 * there is no other side effect. 2289 */ 2290 if (mask && t->on_cpu) 2291 cpumask_set_cpu(task_cpu(t), mask); 2292 #endif 2293 } 2294 } 2295 read_unlock(&tasklist_lock); 2296 } 2297 2298 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2299 { 2300 struct rdtgroup *sentry, *stmp; 2301 struct list_head *head; 2302 2303 head = &rdtgrp->mon.crdtgrp_list; 2304 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2305 free_rmid(sentry->mon.rmid); 2306 list_del(&sentry->mon.crdtgrp_list); 2307 2308 if (atomic_read(&sentry->waitcount) != 0) 2309 sentry->flags = RDT_DELETED; 2310 else 2311 kfree(sentry); 2312 } 2313 } 2314 2315 /* 2316 * Forcibly remove all of subdirectories under root. 2317 */ 2318 static void rmdir_all_sub(void) 2319 { 2320 struct rdtgroup *rdtgrp, *tmp; 2321 2322 /* Move all tasks to the default resource group */ 2323 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2324 2325 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2326 /* Free any child rmids */ 2327 free_all_child_rdtgrp(rdtgrp); 2328 2329 /* Remove each rdtgroup other than root */ 2330 if (rdtgrp == &rdtgroup_default) 2331 continue; 2332 2333 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2334 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2335 rdtgroup_pseudo_lock_remove(rdtgrp); 2336 2337 /* 2338 * Give any CPUs back to the default group. We cannot copy 2339 * cpu_online_mask because a CPU might have executed the 2340 * offline callback already, but is still marked online. 2341 */ 2342 cpumask_or(&rdtgroup_default.cpu_mask, 2343 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2344 2345 free_rmid(rdtgrp->mon.rmid); 2346 2347 kernfs_remove(rdtgrp->kn); 2348 list_del(&rdtgrp->rdtgroup_list); 2349 2350 if (atomic_read(&rdtgrp->waitcount) != 0) 2351 rdtgrp->flags = RDT_DELETED; 2352 else 2353 kfree(rdtgrp); 2354 } 2355 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2356 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2357 2358 kernfs_remove(kn_info); 2359 kernfs_remove(kn_mongrp); 2360 kernfs_remove(kn_mondata); 2361 } 2362 2363 static void rdt_kill_sb(struct super_block *sb) 2364 { 2365 struct rdt_resource *r; 2366 2367 cpus_read_lock(); 2368 mutex_lock(&rdtgroup_mutex); 2369 2370 set_mba_sc(false); 2371 2372 /*Put everything back to default values. */ 2373 for_each_alloc_enabled_rdt_resource(r) 2374 reset_all_ctrls(r); 2375 cdp_disable_all(); 2376 rmdir_all_sub(); 2377 rdt_pseudo_lock_release(); 2378 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2379 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2380 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2381 static_branch_disable_cpuslocked(&rdt_enable_key); 2382 kernfs_kill_sb(sb); 2383 mutex_unlock(&rdtgroup_mutex); 2384 cpus_read_unlock(); 2385 } 2386 2387 static struct file_system_type rdt_fs_type = { 2388 .name = "resctrl", 2389 .init_fs_context = rdt_init_fs_context, 2390 .parameters = rdt_fs_parameters, 2391 .kill_sb = rdt_kill_sb, 2392 }; 2393 2394 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2395 void *priv) 2396 { 2397 struct kernfs_node *kn; 2398 int ret = 0; 2399 2400 kn = __kernfs_create_file(parent_kn, name, 0444, 2401 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2402 &kf_mondata_ops, priv, NULL, NULL); 2403 if (IS_ERR(kn)) 2404 return PTR_ERR(kn); 2405 2406 ret = rdtgroup_kn_set_ugid(kn); 2407 if (ret) { 2408 kernfs_remove(kn); 2409 return ret; 2410 } 2411 2412 return ret; 2413 } 2414 2415 /* 2416 * Remove all subdirectories of mon_data of ctrl_mon groups 2417 * and monitor groups with given domain id. 2418 */ 2419 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id) 2420 { 2421 struct rdtgroup *prgrp, *crgrp; 2422 char name[32]; 2423 2424 if (!r->mon_enabled) 2425 return; 2426 2427 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2428 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2429 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2430 2431 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2432 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2433 } 2434 } 2435 2436 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2437 struct rdt_domain *d, 2438 struct rdt_resource *r, struct rdtgroup *prgrp) 2439 { 2440 union mon_data_bits priv; 2441 struct kernfs_node *kn; 2442 struct mon_evt *mevt; 2443 struct rmid_read rr; 2444 char name[32]; 2445 int ret; 2446 2447 sprintf(name, "mon_%s_%02d", r->name, d->id); 2448 /* create the directory */ 2449 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2450 if (IS_ERR(kn)) 2451 return PTR_ERR(kn); 2452 2453 /* 2454 * This extra ref will be put in kernfs_remove() and guarantees 2455 * that kn is always accessible. 2456 */ 2457 kernfs_get(kn); 2458 ret = rdtgroup_kn_set_ugid(kn); 2459 if (ret) 2460 goto out_destroy; 2461 2462 if (WARN_ON(list_empty(&r->evt_list))) { 2463 ret = -EPERM; 2464 goto out_destroy; 2465 } 2466 2467 priv.u.rid = r->rid; 2468 priv.u.domid = d->id; 2469 list_for_each_entry(mevt, &r->evt_list, list) { 2470 priv.u.evtid = mevt->evtid; 2471 ret = mon_addfile(kn, mevt->name, priv.priv); 2472 if (ret) 2473 goto out_destroy; 2474 2475 if (is_mbm_event(mevt->evtid)) 2476 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true); 2477 } 2478 kernfs_activate(kn); 2479 return 0; 2480 2481 out_destroy: 2482 kernfs_remove(kn); 2483 return ret; 2484 } 2485 2486 /* 2487 * Add all subdirectories of mon_data for "ctrl_mon" groups 2488 * and "monitor" groups with given domain id. 2489 */ 2490 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2491 struct rdt_domain *d) 2492 { 2493 struct kernfs_node *parent_kn; 2494 struct rdtgroup *prgrp, *crgrp; 2495 struct list_head *head; 2496 2497 if (!r->mon_enabled) 2498 return; 2499 2500 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2501 parent_kn = prgrp->mon.mon_data_kn; 2502 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2503 2504 head = &prgrp->mon.crdtgrp_list; 2505 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2506 parent_kn = crgrp->mon.mon_data_kn; 2507 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2508 } 2509 } 2510 } 2511 2512 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2513 struct rdt_resource *r, 2514 struct rdtgroup *prgrp) 2515 { 2516 struct rdt_domain *dom; 2517 int ret; 2518 2519 list_for_each_entry(dom, &r->domains, list) { 2520 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2521 if (ret) 2522 return ret; 2523 } 2524 2525 return 0; 2526 } 2527 2528 /* 2529 * This creates a directory mon_data which contains the monitored data. 2530 * 2531 * mon_data has one directory for each domain whic are named 2532 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2533 * with L3 domain looks as below: 2534 * ./mon_data: 2535 * mon_L3_00 2536 * mon_L3_01 2537 * mon_L3_02 2538 * ... 2539 * 2540 * Each domain directory has one file per event: 2541 * ./mon_L3_00/: 2542 * llc_occupancy 2543 * 2544 */ 2545 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2546 struct rdtgroup *prgrp, 2547 struct kernfs_node **dest_kn) 2548 { 2549 struct rdt_resource *r; 2550 struct kernfs_node *kn; 2551 int ret; 2552 2553 /* 2554 * Create the mon_data directory first. 2555 */ 2556 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 2557 if (ret) 2558 return ret; 2559 2560 if (dest_kn) 2561 *dest_kn = kn; 2562 2563 /* 2564 * Create the subdirectories for each domain. Note that all events 2565 * in a domain like L3 are grouped into a resource whose domain is L3 2566 */ 2567 for_each_mon_enabled_rdt_resource(r) { 2568 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2569 if (ret) 2570 goto out_destroy; 2571 } 2572 2573 return 0; 2574 2575 out_destroy: 2576 kernfs_remove(kn); 2577 return ret; 2578 } 2579 2580 /** 2581 * cbm_ensure_valid - Enforce validity on provided CBM 2582 * @_val: Candidate CBM 2583 * @r: RDT resource to which the CBM belongs 2584 * 2585 * The provided CBM represents all cache portions available for use. This 2586 * may be represented by a bitmap that does not consist of contiguous ones 2587 * and thus be an invalid CBM. 2588 * Here the provided CBM is forced to be a valid CBM by only considering 2589 * the first set of contiguous bits as valid and clearing all bits. 2590 * The intention here is to provide a valid default CBM with which a new 2591 * resource group is initialized. The user can follow this with a 2592 * modification to the CBM if the default does not satisfy the 2593 * requirements. 2594 */ 2595 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 2596 { 2597 unsigned int cbm_len = r->cache.cbm_len; 2598 unsigned long first_bit, zero_bit; 2599 unsigned long val = _val; 2600 2601 if (!val) 2602 return 0; 2603 2604 first_bit = find_first_bit(&val, cbm_len); 2605 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 2606 2607 /* Clear any remaining bits to ensure contiguous region */ 2608 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 2609 return (u32)val; 2610 } 2611 2612 /* 2613 * Initialize cache resources per RDT domain 2614 * 2615 * Set the RDT domain up to start off with all usable allocations. That is, 2616 * all shareable and unused bits. All-zero CBM is invalid. 2617 */ 2618 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r, 2619 u32 closid) 2620 { 2621 struct rdt_resource *r_cdp = NULL; 2622 struct rdt_domain *d_cdp = NULL; 2623 u32 used_b = 0, unused_b = 0; 2624 unsigned long tmp_cbm; 2625 enum rdtgrp_mode mode; 2626 u32 peer_ctl, *ctrl; 2627 int i; 2628 2629 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp); 2630 d->have_new_ctrl = false; 2631 d->new_ctrl = r->cache.shareable_bits; 2632 used_b = r->cache.shareable_bits; 2633 ctrl = d->ctrl_val; 2634 for (i = 0; i < closids_supported(); i++, ctrl++) { 2635 if (closid_allocated(i) && i != closid) { 2636 mode = rdtgroup_mode_by_closid(i); 2637 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 2638 /* 2639 * ctrl values for locksetup aren't relevant 2640 * until the schemata is written, and the mode 2641 * becomes RDT_MODE_PSEUDO_LOCKED. 2642 */ 2643 continue; 2644 /* 2645 * If CDP is active include peer domain's 2646 * usage to ensure there is no overlap 2647 * with an exclusive group. 2648 */ 2649 if (d_cdp) 2650 peer_ctl = d_cdp->ctrl_val[i]; 2651 else 2652 peer_ctl = 0; 2653 used_b |= *ctrl | peer_ctl; 2654 if (mode == RDT_MODE_SHAREABLE) 2655 d->new_ctrl |= *ctrl | peer_ctl; 2656 } 2657 } 2658 if (d->plr && d->plr->cbm > 0) 2659 used_b |= d->plr->cbm; 2660 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 2661 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 2662 d->new_ctrl |= unused_b; 2663 /* 2664 * Force the initial CBM to be valid, user can 2665 * modify the CBM based on system availability. 2666 */ 2667 d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r); 2668 /* 2669 * Assign the u32 CBM to an unsigned long to ensure that 2670 * bitmap_weight() does not access out-of-bound memory. 2671 */ 2672 tmp_cbm = d->new_ctrl; 2673 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 2674 rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id); 2675 return -ENOSPC; 2676 } 2677 d->have_new_ctrl = true; 2678 2679 return 0; 2680 } 2681 2682 /* 2683 * Initialize cache resources with default values. 2684 * 2685 * A new RDT group is being created on an allocation capable (CAT) 2686 * supporting system. Set this group up to start off with all usable 2687 * allocations. 2688 * 2689 * If there are no more shareable bits available on any domain then 2690 * the entire allocation will fail. 2691 */ 2692 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid) 2693 { 2694 struct rdt_domain *d; 2695 int ret; 2696 2697 list_for_each_entry(d, &r->domains, list) { 2698 ret = __init_one_rdt_domain(d, r, closid); 2699 if (ret < 0) 2700 return ret; 2701 } 2702 2703 return 0; 2704 } 2705 2706 /* Initialize MBA resource with default values. */ 2707 static void rdtgroup_init_mba(struct rdt_resource *r) 2708 { 2709 struct rdt_domain *d; 2710 2711 list_for_each_entry(d, &r->domains, list) { 2712 d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl; 2713 d->have_new_ctrl = true; 2714 } 2715 } 2716 2717 /* Initialize the RDT group's allocations. */ 2718 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 2719 { 2720 struct rdt_resource *r; 2721 int ret; 2722 2723 for_each_alloc_enabled_rdt_resource(r) { 2724 if (r->rid == RDT_RESOURCE_MBA) { 2725 rdtgroup_init_mba(r); 2726 } else { 2727 ret = rdtgroup_init_cat(r, rdtgrp->closid); 2728 if (ret < 0) 2729 return ret; 2730 } 2731 2732 ret = update_domains(r, rdtgrp->closid); 2733 if (ret < 0) { 2734 rdt_last_cmd_puts("Failed to initialize allocations\n"); 2735 return ret; 2736 } 2737 2738 } 2739 2740 rdtgrp->mode = RDT_MODE_SHAREABLE; 2741 2742 return 0; 2743 } 2744 2745 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 2746 const char *name, umode_t mode, 2747 enum rdt_group_type rtype, struct rdtgroup **r) 2748 { 2749 struct rdtgroup *prdtgrp, *rdtgrp; 2750 struct kernfs_node *kn; 2751 uint files = 0; 2752 int ret; 2753 2754 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 2755 if (!prdtgrp) { 2756 ret = -ENODEV; 2757 goto out_unlock; 2758 } 2759 2760 if (rtype == RDTMON_GROUP && 2761 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2762 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 2763 ret = -EINVAL; 2764 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 2765 goto out_unlock; 2766 } 2767 2768 /* allocate the rdtgroup. */ 2769 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 2770 if (!rdtgrp) { 2771 ret = -ENOSPC; 2772 rdt_last_cmd_puts("Kernel out of memory\n"); 2773 goto out_unlock; 2774 } 2775 *r = rdtgrp; 2776 rdtgrp->mon.parent = prdtgrp; 2777 rdtgrp->type = rtype; 2778 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 2779 2780 /* kernfs creates the directory for rdtgrp */ 2781 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 2782 if (IS_ERR(kn)) { 2783 ret = PTR_ERR(kn); 2784 rdt_last_cmd_puts("kernfs create error\n"); 2785 goto out_free_rgrp; 2786 } 2787 rdtgrp->kn = kn; 2788 2789 /* 2790 * kernfs_remove() will drop the reference count on "kn" which 2791 * will free it. But we still need it to stick around for the 2792 * rdtgroup_kn_unlock(kn} call below. Take one extra reference 2793 * here, which will be dropped inside rdtgroup_kn_unlock(). 2794 */ 2795 kernfs_get(kn); 2796 2797 ret = rdtgroup_kn_set_ugid(kn); 2798 if (ret) { 2799 rdt_last_cmd_puts("kernfs perm error\n"); 2800 goto out_destroy; 2801 } 2802 2803 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 2804 ret = rdtgroup_add_files(kn, files); 2805 if (ret) { 2806 rdt_last_cmd_puts("kernfs fill error\n"); 2807 goto out_destroy; 2808 } 2809 2810 if (rdt_mon_capable) { 2811 ret = alloc_rmid(); 2812 if (ret < 0) { 2813 rdt_last_cmd_puts("Out of RMIDs\n"); 2814 goto out_destroy; 2815 } 2816 rdtgrp->mon.rmid = ret; 2817 2818 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 2819 if (ret) { 2820 rdt_last_cmd_puts("kernfs subdir error\n"); 2821 goto out_idfree; 2822 } 2823 } 2824 kernfs_activate(kn); 2825 2826 /* 2827 * The caller unlocks the parent_kn upon success. 2828 */ 2829 return 0; 2830 2831 out_idfree: 2832 free_rmid(rdtgrp->mon.rmid); 2833 out_destroy: 2834 kernfs_remove(rdtgrp->kn); 2835 out_free_rgrp: 2836 kfree(rdtgrp); 2837 out_unlock: 2838 rdtgroup_kn_unlock(parent_kn); 2839 return ret; 2840 } 2841 2842 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 2843 { 2844 kernfs_remove(rgrp->kn); 2845 free_rmid(rgrp->mon.rmid); 2846 kfree(rgrp); 2847 } 2848 2849 /* 2850 * Create a monitor group under "mon_groups" directory of a control 2851 * and monitor group(ctrl_mon). This is a resource group 2852 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 2853 */ 2854 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 2855 const char *name, umode_t mode) 2856 { 2857 struct rdtgroup *rdtgrp, *prgrp; 2858 int ret; 2859 2860 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 2861 if (ret) 2862 return ret; 2863 2864 prgrp = rdtgrp->mon.parent; 2865 rdtgrp->closid = prgrp->closid; 2866 2867 /* 2868 * Add the rdtgrp to the list of rdtgrps the parent 2869 * ctrl_mon group has to track. 2870 */ 2871 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 2872 2873 rdtgroup_kn_unlock(parent_kn); 2874 return ret; 2875 } 2876 2877 /* 2878 * These are rdtgroups created under the root directory. Can be used 2879 * to allocate and monitor resources. 2880 */ 2881 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 2882 const char *name, umode_t mode) 2883 { 2884 struct rdtgroup *rdtgrp; 2885 struct kernfs_node *kn; 2886 u32 closid; 2887 int ret; 2888 2889 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 2890 if (ret) 2891 return ret; 2892 2893 kn = rdtgrp->kn; 2894 ret = closid_alloc(); 2895 if (ret < 0) { 2896 rdt_last_cmd_puts("Out of CLOSIDs\n"); 2897 goto out_common_fail; 2898 } 2899 closid = ret; 2900 ret = 0; 2901 2902 rdtgrp->closid = closid; 2903 ret = rdtgroup_init_alloc(rdtgrp); 2904 if (ret < 0) 2905 goto out_id_free; 2906 2907 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 2908 2909 if (rdt_mon_capable) { 2910 /* 2911 * Create an empty mon_groups directory to hold the subset 2912 * of tasks and cpus to monitor. 2913 */ 2914 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 2915 if (ret) { 2916 rdt_last_cmd_puts("kernfs subdir error\n"); 2917 goto out_del_list; 2918 } 2919 } 2920 2921 goto out_unlock; 2922 2923 out_del_list: 2924 list_del(&rdtgrp->rdtgroup_list); 2925 out_id_free: 2926 closid_free(closid); 2927 out_common_fail: 2928 mkdir_rdt_prepare_clean(rdtgrp); 2929 out_unlock: 2930 rdtgroup_kn_unlock(parent_kn); 2931 return ret; 2932 } 2933 2934 /* 2935 * We allow creating mon groups only with in a directory called "mon_groups" 2936 * which is present in every ctrl_mon group. Check if this is a valid 2937 * "mon_groups" directory. 2938 * 2939 * 1. The directory should be named "mon_groups". 2940 * 2. The mon group itself should "not" be named "mon_groups". 2941 * This makes sure "mon_groups" directory always has a ctrl_mon group 2942 * as parent. 2943 */ 2944 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 2945 { 2946 return (!strcmp(kn->name, "mon_groups") && 2947 strcmp(name, "mon_groups")); 2948 } 2949 2950 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 2951 umode_t mode) 2952 { 2953 /* Do not accept '\n' to avoid unparsable situation. */ 2954 if (strchr(name, '\n')) 2955 return -EINVAL; 2956 2957 /* 2958 * If the parent directory is the root directory and RDT 2959 * allocation is supported, add a control and monitoring 2960 * subdirectory 2961 */ 2962 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 2963 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 2964 2965 /* 2966 * If RDT monitoring is supported and the parent directory is a valid 2967 * "mon_groups" directory, add a monitoring subdirectory. 2968 */ 2969 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 2970 return rdtgroup_mkdir_mon(parent_kn, name, mode); 2971 2972 return -EPERM; 2973 } 2974 2975 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp, 2976 cpumask_var_t tmpmask) 2977 { 2978 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 2979 int cpu; 2980 2981 /* Give any tasks back to the parent group */ 2982 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 2983 2984 /* Update per cpu rmid of the moved CPUs first */ 2985 for_each_cpu(cpu, &rdtgrp->cpu_mask) 2986 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 2987 /* 2988 * Update the MSR on moved CPUs and CPUs which have moved 2989 * task running on them. 2990 */ 2991 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 2992 update_closid_rmid(tmpmask, NULL); 2993 2994 rdtgrp->flags = RDT_DELETED; 2995 free_rmid(rdtgrp->mon.rmid); 2996 2997 /* 2998 * Remove the rdtgrp from the parent ctrl_mon group's list 2999 */ 3000 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3001 list_del(&rdtgrp->mon.crdtgrp_list); 3002 3003 /* 3004 * one extra hold on this, will drop when we kfree(rdtgrp) 3005 * in rdtgroup_kn_unlock() 3006 */ 3007 kernfs_get(kn); 3008 kernfs_remove(rdtgrp->kn); 3009 3010 return 0; 3011 } 3012 3013 static int rdtgroup_ctrl_remove(struct kernfs_node *kn, 3014 struct rdtgroup *rdtgrp) 3015 { 3016 rdtgrp->flags = RDT_DELETED; 3017 list_del(&rdtgrp->rdtgroup_list); 3018 3019 /* 3020 * one extra hold on this, will drop when we kfree(rdtgrp) 3021 * in rdtgroup_kn_unlock() 3022 */ 3023 kernfs_get(kn); 3024 kernfs_remove(rdtgrp->kn); 3025 return 0; 3026 } 3027 3028 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp, 3029 cpumask_var_t tmpmask) 3030 { 3031 int cpu; 3032 3033 /* Give any tasks back to the default group */ 3034 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3035 3036 /* Give any CPUs back to the default group */ 3037 cpumask_or(&rdtgroup_default.cpu_mask, 3038 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3039 3040 /* Update per cpu closid and rmid of the moved CPUs first */ 3041 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3042 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3043 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3044 } 3045 3046 /* 3047 * Update the MSR on moved CPUs and CPUs which have moved 3048 * task running on them. 3049 */ 3050 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3051 update_closid_rmid(tmpmask, NULL); 3052 3053 closid_free(rdtgrp->closid); 3054 free_rmid(rdtgrp->mon.rmid); 3055 3056 rdtgroup_ctrl_remove(kn, rdtgrp); 3057 3058 /* 3059 * Free all the child monitor group rmids. 3060 */ 3061 free_all_child_rdtgrp(rdtgrp); 3062 3063 return 0; 3064 } 3065 3066 static int rdtgroup_rmdir(struct kernfs_node *kn) 3067 { 3068 struct kernfs_node *parent_kn = kn->parent; 3069 struct rdtgroup *rdtgrp; 3070 cpumask_var_t tmpmask; 3071 int ret = 0; 3072 3073 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3074 return -ENOMEM; 3075 3076 rdtgrp = rdtgroup_kn_lock_live(kn); 3077 if (!rdtgrp) { 3078 ret = -EPERM; 3079 goto out; 3080 } 3081 3082 /* 3083 * If the rdtgroup is a ctrl_mon group and parent directory 3084 * is the root directory, remove the ctrl_mon group. 3085 * 3086 * If the rdtgroup is a mon group and parent directory 3087 * is a valid "mon_groups" directory, remove the mon group. 3088 */ 3089 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3090 rdtgrp != &rdtgroup_default) { 3091 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3092 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3093 ret = rdtgroup_ctrl_remove(kn, rdtgrp); 3094 } else { 3095 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask); 3096 } 3097 } else if (rdtgrp->type == RDTMON_GROUP && 3098 is_mon_groups(parent_kn, kn->name)) { 3099 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask); 3100 } else { 3101 ret = -EPERM; 3102 } 3103 3104 out: 3105 rdtgroup_kn_unlock(kn); 3106 free_cpumask_var(tmpmask); 3107 return ret; 3108 } 3109 3110 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3111 { 3112 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) 3113 seq_puts(seq, ",cdp"); 3114 3115 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) 3116 seq_puts(seq, ",cdpl2"); 3117 3118 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA])) 3119 seq_puts(seq, ",mba_MBps"); 3120 3121 return 0; 3122 } 3123 3124 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3125 .mkdir = rdtgroup_mkdir, 3126 .rmdir = rdtgroup_rmdir, 3127 .show_options = rdtgroup_show_options, 3128 }; 3129 3130 static int __init rdtgroup_setup_root(void) 3131 { 3132 int ret; 3133 3134 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3135 KERNFS_ROOT_CREATE_DEACTIVATED | 3136 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3137 &rdtgroup_default); 3138 if (IS_ERR(rdt_root)) 3139 return PTR_ERR(rdt_root); 3140 3141 mutex_lock(&rdtgroup_mutex); 3142 3143 rdtgroup_default.closid = 0; 3144 rdtgroup_default.mon.rmid = 0; 3145 rdtgroup_default.type = RDTCTRL_GROUP; 3146 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3147 3148 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3149 3150 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE); 3151 if (ret) { 3152 kernfs_destroy_root(rdt_root); 3153 goto out; 3154 } 3155 3156 rdtgroup_default.kn = rdt_root->kn; 3157 kernfs_activate(rdtgroup_default.kn); 3158 3159 out: 3160 mutex_unlock(&rdtgroup_mutex); 3161 3162 return ret; 3163 } 3164 3165 /* 3166 * rdtgroup_init - rdtgroup initialization 3167 * 3168 * Setup resctrl file system including set up root, create mount point, 3169 * register rdtgroup filesystem, and initialize files under root directory. 3170 * 3171 * Return: 0 on success or -errno 3172 */ 3173 int __init rdtgroup_init(void) 3174 { 3175 int ret = 0; 3176 3177 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3178 sizeof(last_cmd_status_buf)); 3179 3180 ret = rdtgroup_setup_root(); 3181 if (ret) 3182 return ret; 3183 3184 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3185 if (ret) 3186 goto cleanup_root; 3187 3188 ret = register_filesystem(&rdt_fs_type); 3189 if (ret) 3190 goto cleanup_mountpoint; 3191 3192 /* 3193 * Adding the resctrl debugfs directory here may not be ideal since 3194 * it would let the resctrl debugfs directory appear on the debugfs 3195 * filesystem before the resctrl filesystem is mounted. 3196 * It may also be ok since that would enable debugging of RDT before 3197 * resctrl is mounted. 3198 * The reason why the debugfs directory is created here and not in 3199 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and 3200 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3201 * (the lockdep class of inode->i_rwsem). Other filesystem 3202 * interactions (eg. SyS_getdents) have the lock ordering: 3203 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 3204 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 3205 * is taken, thus creating dependency: 3206 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 3207 * issues considering the other two lock dependencies. 3208 * By creating the debugfs directory here we avoid a dependency 3209 * that may cause deadlock (even though file operations cannot 3210 * occur until the filesystem is mounted, but I do not know how to 3211 * tell lockdep that). 3212 */ 3213 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3214 3215 return 0; 3216 3217 cleanup_mountpoint: 3218 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3219 cleanup_root: 3220 kernfs_destroy_root(rdt_root); 3221 3222 return ret; 3223 } 3224 3225 void __exit rdtgroup_exit(void) 3226 { 3227 debugfs_remove_recursive(debugfs_resctrl); 3228 unregister_filesystem(&rdt_fs_type); 3229 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3230 kernfs_destroy_root(rdt_root); 3231 } 3232