1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Allocation in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* list of entries for the schemata file */ 43 LIST_HEAD(resctrl_schema_all); 44 45 /* Kernel fs node for "info" directory under root */ 46 static struct kernfs_node *kn_info; 47 48 /* Kernel fs node for "mon_groups" directory under root */ 49 static struct kernfs_node *kn_mongrp; 50 51 /* Kernel fs node for "mon_data" directory under root */ 52 static struct kernfs_node *kn_mondata; 53 54 static struct seq_buf last_cmd_status; 55 static char last_cmd_status_buf[512]; 56 57 struct dentry *debugfs_resctrl; 58 59 void rdt_last_cmd_clear(void) 60 { 61 lockdep_assert_held(&rdtgroup_mutex); 62 seq_buf_clear(&last_cmd_status); 63 } 64 65 void rdt_last_cmd_puts(const char *s) 66 { 67 lockdep_assert_held(&rdtgroup_mutex); 68 seq_buf_puts(&last_cmd_status, s); 69 } 70 71 void rdt_last_cmd_printf(const char *fmt, ...) 72 { 73 va_list ap; 74 75 va_start(ap, fmt); 76 lockdep_assert_held(&rdtgroup_mutex); 77 seq_buf_vprintf(&last_cmd_status, fmt, ap); 78 va_end(ap); 79 } 80 81 void rdt_staged_configs_clear(void) 82 { 83 struct rdt_resource *r; 84 struct rdt_domain *dom; 85 86 lockdep_assert_held(&rdtgroup_mutex); 87 88 for_each_alloc_capable_rdt_resource(r) { 89 list_for_each_entry(dom, &r->domains, list) 90 memset(dom->staged_config, 0, sizeof(dom->staged_config)); 91 } 92 } 93 94 /* 95 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 96 * we can keep a bitmap of free CLOSIDs in a single integer. 97 * 98 * Using a global CLOSID across all resources has some advantages and 99 * some drawbacks: 100 * + We can simply set "current->closid" to assign a task to a resource 101 * group. 102 * + Context switch code can avoid extra memory references deciding which 103 * CLOSID to load into the PQR_ASSOC MSR 104 * - We give up some options in configuring resource groups across multi-socket 105 * systems. 106 * - Our choices on how to configure each resource become progressively more 107 * limited as the number of resources grows. 108 */ 109 static int closid_free_map; 110 static int closid_free_map_len; 111 112 int closids_supported(void) 113 { 114 return closid_free_map_len; 115 } 116 117 static void closid_init(void) 118 { 119 struct resctrl_schema *s; 120 u32 rdt_min_closid = 32; 121 122 /* Compute rdt_min_closid across all resources */ 123 list_for_each_entry(s, &resctrl_schema_all, list) 124 rdt_min_closid = min(rdt_min_closid, s->num_closid); 125 126 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 127 128 /* CLOSID 0 is always reserved for the default group */ 129 closid_free_map &= ~1; 130 closid_free_map_len = rdt_min_closid; 131 } 132 133 static int closid_alloc(void) 134 { 135 u32 closid = ffs(closid_free_map); 136 137 if (closid == 0) 138 return -ENOSPC; 139 closid--; 140 closid_free_map &= ~(1 << closid); 141 142 return closid; 143 } 144 145 void closid_free(int closid) 146 { 147 closid_free_map |= 1 << closid; 148 } 149 150 /** 151 * closid_allocated - test if provided closid is in use 152 * @closid: closid to be tested 153 * 154 * Return: true if @closid is currently associated with a resource group, 155 * false if @closid is free 156 */ 157 static bool closid_allocated(unsigned int closid) 158 { 159 return (closid_free_map & (1 << closid)) == 0; 160 } 161 162 /** 163 * rdtgroup_mode_by_closid - Return mode of resource group with closid 164 * @closid: closid if the resource group 165 * 166 * Each resource group is associated with a @closid. Here the mode 167 * of a resource group can be queried by searching for it using its closid. 168 * 169 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 170 */ 171 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 172 { 173 struct rdtgroup *rdtgrp; 174 175 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 176 if (rdtgrp->closid == closid) 177 return rdtgrp->mode; 178 } 179 180 return RDT_NUM_MODES; 181 } 182 183 static const char * const rdt_mode_str[] = { 184 [RDT_MODE_SHAREABLE] = "shareable", 185 [RDT_MODE_EXCLUSIVE] = "exclusive", 186 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 187 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 188 }; 189 190 /** 191 * rdtgroup_mode_str - Return the string representation of mode 192 * @mode: the resource group mode as &enum rdtgroup_mode 193 * 194 * Return: string representation of valid mode, "unknown" otherwise 195 */ 196 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 197 { 198 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 199 return "unknown"; 200 201 return rdt_mode_str[mode]; 202 } 203 204 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 205 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 206 { 207 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 208 .ia_uid = current_fsuid(), 209 .ia_gid = current_fsgid(), }; 210 211 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 212 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 213 return 0; 214 215 return kernfs_setattr(kn, &iattr); 216 } 217 218 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 219 { 220 struct kernfs_node *kn; 221 int ret; 222 223 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 224 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 225 0, rft->kf_ops, rft, NULL, NULL); 226 if (IS_ERR(kn)) 227 return PTR_ERR(kn); 228 229 ret = rdtgroup_kn_set_ugid(kn); 230 if (ret) { 231 kernfs_remove(kn); 232 return ret; 233 } 234 235 return 0; 236 } 237 238 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 239 { 240 struct kernfs_open_file *of = m->private; 241 struct rftype *rft = of->kn->priv; 242 243 if (rft->seq_show) 244 return rft->seq_show(of, m, arg); 245 return 0; 246 } 247 248 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 249 size_t nbytes, loff_t off) 250 { 251 struct rftype *rft = of->kn->priv; 252 253 if (rft->write) 254 return rft->write(of, buf, nbytes, off); 255 256 return -EINVAL; 257 } 258 259 static const struct kernfs_ops rdtgroup_kf_single_ops = { 260 .atomic_write_len = PAGE_SIZE, 261 .write = rdtgroup_file_write, 262 .seq_show = rdtgroup_seqfile_show, 263 }; 264 265 static const struct kernfs_ops kf_mondata_ops = { 266 .atomic_write_len = PAGE_SIZE, 267 .seq_show = rdtgroup_mondata_show, 268 }; 269 270 static bool is_cpu_list(struct kernfs_open_file *of) 271 { 272 struct rftype *rft = of->kn->priv; 273 274 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 275 } 276 277 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 278 struct seq_file *s, void *v) 279 { 280 struct rdtgroup *rdtgrp; 281 struct cpumask *mask; 282 int ret = 0; 283 284 rdtgrp = rdtgroup_kn_lock_live(of->kn); 285 286 if (rdtgrp) { 287 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 288 if (!rdtgrp->plr->d) { 289 rdt_last_cmd_clear(); 290 rdt_last_cmd_puts("Cache domain offline\n"); 291 ret = -ENODEV; 292 } else { 293 mask = &rdtgrp->plr->d->cpu_mask; 294 seq_printf(s, is_cpu_list(of) ? 295 "%*pbl\n" : "%*pb\n", 296 cpumask_pr_args(mask)); 297 } 298 } else { 299 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 300 cpumask_pr_args(&rdtgrp->cpu_mask)); 301 } 302 } else { 303 ret = -ENOENT; 304 } 305 rdtgroup_kn_unlock(of->kn); 306 307 return ret; 308 } 309 310 /* 311 * This is safe against resctrl_sched_in() called from __switch_to() 312 * because __switch_to() is executed with interrupts disabled. A local call 313 * from update_closid_rmid() is protected against __switch_to() because 314 * preemption is disabled. 315 */ 316 static void update_cpu_closid_rmid(void *info) 317 { 318 struct rdtgroup *r = info; 319 320 if (r) { 321 this_cpu_write(pqr_state.default_closid, r->closid); 322 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 323 } 324 325 /* 326 * We cannot unconditionally write the MSR because the current 327 * executing task might have its own closid selected. Just reuse 328 * the context switch code. 329 */ 330 resctrl_sched_in(current); 331 } 332 333 /* 334 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 335 * 336 * Per task closids/rmids must have been set up before calling this function. 337 */ 338 static void 339 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 340 { 341 on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1); 342 } 343 344 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 345 cpumask_var_t tmpmask) 346 { 347 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 348 struct list_head *head; 349 350 /* Check whether cpus belong to parent ctrl group */ 351 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 352 if (!cpumask_empty(tmpmask)) { 353 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 354 return -EINVAL; 355 } 356 357 /* Check whether cpus are dropped from this group */ 358 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 359 if (!cpumask_empty(tmpmask)) { 360 /* Give any dropped cpus to parent rdtgroup */ 361 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 362 update_closid_rmid(tmpmask, prgrp); 363 } 364 365 /* 366 * If we added cpus, remove them from previous group that owned them 367 * and update per-cpu rmid 368 */ 369 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 370 if (!cpumask_empty(tmpmask)) { 371 head = &prgrp->mon.crdtgrp_list; 372 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 373 if (crgrp == rdtgrp) 374 continue; 375 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 376 tmpmask); 377 } 378 update_closid_rmid(tmpmask, rdtgrp); 379 } 380 381 /* Done pushing/pulling - update this group with new mask */ 382 cpumask_copy(&rdtgrp->cpu_mask, newmask); 383 384 return 0; 385 } 386 387 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 388 { 389 struct rdtgroup *crgrp; 390 391 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 392 /* update the child mon group masks as well*/ 393 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 394 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 395 } 396 397 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 398 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 399 { 400 struct rdtgroup *r, *crgrp; 401 struct list_head *head; 402 403 /* Check whether cpus are dropped from this group */ 404 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 405 if (!cpumask_empty(tmpmask)) { 406 /* Can't drop from default group */ 407 if (rdtgrp == &rdtgroup_default) { 408 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 409 return -EINVAL; 410 } 411 412 /* Give any dropped cpus to rdtgroup_default */ 413 cpumask_or(&rdtgroup_default.cpu_mask, 414 &rdtgroup_default.cpu_mask, tmpmask); 415 update_closid_rmid(tmpmask, &rdtgroup_default); 416 } 417 418 /* 419 * If we added cpus, remove them from previous group and 420 * the prev group's child groups that owned them 421 * and update per-cpu closid/rmid. 422 */ 423 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 424 if (!cpumask_empty(tmpmask)) { 425 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 426 if (r == rdtgrp) 427 continue; 428 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 429 if (!cpumask_empty(tmpmask1)) 430 cpumask_rdtgrp_clear(r, tmpmask1); 431 } 432 update_closid_rmid(tmpmask, rdtgrp); 433 } 434 435 /* Done pushing/pulling - update this group with new mask */ 436 cpumask_copy(&rdtgrp->cpu_mask, newmask); 437 438 /* 439 * Clear child mon group masks since there is a new parent mask 440 * now and update the rmid for the cpus the child lost. 441 */ 442 head = &rdtgrp->mon.crdtgrp_list; 443 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 444 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 445 update_closid_rmid(tmpmask, rdtgrp); 446 cpumask_clear(&crgrp->cpu_mask); 447 } 448 449 return 0; 450 } 451 452 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 453 char *buf, size_t nbytes, loff_t off) 454 { 455 cpumask_var_t tmpmask, newmask, tmpmask1; 456 struct rdtgroup *rdtgrp; 457 int ret; 458 459 if (!buf) 460 return -EINVAL; 461 462 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 463 return -ENOMEM; 464 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 465 free_cpumask_var(tmpmask); 466 return -ENOMEM; 467 } 468 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 469 free_cpumask_var(tmpmask); 470 free_cpumask_var(newmask); 471 return -ENOMEM; 472 } 473 474 rdtgrp = rdtgroup_kn_lock_live(of->kn); 475 if (!rdtgrp) { 476 ret = -ENOENT; 477 goto unlock; 478 } 479 480 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 481 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 482 ret = -EINVAL; 483 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 484 goto unlock; 485 } 486 487 if (is_cpu_list(of)) 488 ret = cpulist_parse(buf, newmask); 489 else 490 ret = cpumask_parse(buf, newmask); 491 492 if (ret) { 493 rdt_last_cmd_puts("Bad CPU list/mask\n"); 494 goto unlock; 495 } 496 497 /* check that user didn't specify any offline cpus */ 498 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 499 if (!cpumask_empty(tmpmask)) { 500 ret = -EINVAL; 501 rdt_last_cmd_puts("Can only assign online CPUs\n"); 502 goto unlock; 503 } 504 505 if (rdtgrp->type == RDTCTRL_GROUP) 506 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 507 else if (rdtgrp->type == RDTMON_GROUP) 508 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 509 else 510 ret = -EINVAL; 511 512 unlock: 513 rdtgroup_kn_unlock(of->kn); 514 free_cpumask_var(tmpmask); 515 free_cpumask_var(newmask); 516 free_cpumask_var(tmpmask1); 517 518 return ret ?: nbytes; 519 } 520 521 /** 522 * rdtgroup_remove - the helper to remove resource group safely 523 * @rdtgrp: resource group to remove 524 * 525 * On resource group creation via a mkdir, an extra kernfs_node reference is 526 * taken to ensure that the rdtgroup structure remains accessible for the 527 * rdtgroup_kn_unlock() calls where it is removed. 528 * 529 * Drop the extra reference here, then free the rdtgroup structure. 530 * 531 * Return: void 532 */ 533 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 534 { 535 kernfs_put(rdtgrp->kn); 536 kfree(rdtgrp); 537 } 538 539 static void _update_task_closid_rmid(void *task) 540 { 541 /* 542 * If the task is still current on this CPU, update PQR_ASSOC MSR. 543 * Otherwise, the MSR is updated when the task is scheduled in. 544 */ 545 if (task == current) 546 resctrl_sched_in(task); 547 } 548 549 static void update_task_closid_rmid(struct task_struct *t) 550 { 551 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 552 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 553 else 554 _update_task_closid_rmid(t); 555 } 556 557 static int __rdtgroup_move_task(struct task_struct *tsk, 558 struct rdtgroup *rdtgrp) 559 { 560 /* If the task is already in rdtgrp, no need to move the task. */ 561 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid && 562 tsk->rmid == rdtgrp->mon.rmid) || 563 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid && 564 tsk->closid == rdtgrp->mon.parent->closid)) 565 return 0; 566 567 /* 568 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 569 * updated by them. 570 * 571 * For ctrl_mon groups, move both closid and rmid. 572 * For monitor groups, can move the tasks only from 573 * their parent CTRL group. 574 */ 575 576 if (rdtgrp->type == RDTCTRL_GROUP) { 577 WRITE_ONCE(tsk->closid, rdtgrp->closid); 578 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 579 } else if (rdtgrp->type == RDTMON_GROUP) { 580 if (rdtgrp->mon.parent->closid == tsk->closid) { 581 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 582 } else { 583 rdt_last_cmd_puts("Can't move task to different control group\n"); 584 return -EINVAL; 585 } 586 } 587 588 /* 589 * Ensure the task's closid and rmid are written before determining if 590 * the task is current that will decide if it will be interrupted. 591 * This pairs with the full barrier between the rq->curr update and 592 * resctrl_sched_in() during context switch. 593 */ 594 smp_mb(); 595 596 /* 597 * By now, the task's closid and rmid are set. If the task is current 598 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 599 * group go into effect. If the task is not current, the MSR will be 600 * updated when the task is scheduled in. 601 */ 602 update_task_closid_rmid(tsk); 603 604 return 0; 605 } 606 607 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 608 { 609 return (rdt_alloc_capable && 610 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 611 } 612 613 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 614 { 615 return (rdt_mon_capable && 616 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 617 } 618 619 /** 620 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 621 * @r: Resource group 622 * 623 * Return: 1 if tasks have been assigned to @r, 0 otherwise 624 */ 625 int rdtgroup_tasks_assigned(struct rdtgroup *r) 626 { 627 struct task_struct *p, *t; 628 int ret = 0; 629 630 lockdep_assert_held(&rdtgroup_mutex); 631 632 rcu_read_lock(); 633 for_each_process_thread(p, t) { 634 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 635 ret = 1; 636 break; 637 } 638 } 639 rcu_read_unlock(); 640 641 return ret; 642 } 643 644 static int rdtgroup_task_write_permission(struct task_struct *task, 645 struct kernfs_open_file *of) 646 { 647 const struct cred *tcred = get_task_cred(task); 648 const struct cred *cred = current_cred(); 649 int ret = 0; 650 651 /* 652 * Even if we're attaching all tasks in the thread group, we only 653 * need to check permissions on one of them. 654 */ 655 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 656 !uid_eq(cred->euid, tcred->uid) && 657 !uid_eq(cred->euid, tcred->suid)) { 658 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 659 ret = -EPERM; 660 } 661 662 put_cred(tcred); 663 return ret; 664 } 665 666 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 667 struct kernfs_open_file *of) 668 { 669 struct task_struct *tsk; 670 int ret; 671 672 rcu_read_lock(); 673 if (pid) { 674 tsk = find_task_by_vpid(pid); 675 if (!tsk) { 676 rcu_read_unlock(); 677 rdt_last_cmd_printf("No task %d\n", pid); 678 return -ESRCH; 679 } 680 } else { 681 tsk = current; 682 } 683 684 get_task_struct(tsk); 685 rcu_read_unlock(); 686 687 ret = rdtgroup_task_write_permission(tsk, of); 688 if (!ret) 689 ret = __rdtgroup_move_task(tsk, rdtgrp); 690 691 put_task_struct(tsk); 692 return ret; 693 } 694 695 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 696 char *buf, size_t nbytes, loff_t off) 697 { 698 struct rdtgroup *rdtgrp; 699 int ret = 0; 700 pid_t pid; 701 702 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 703 return -EINVAL; 704 rdtgrp = rdtgroup_kn_lock_live(of->kn); 705 if (!rdtgrp) { 706 rdtgroup_kn_unlock(of->kn); 707 return -ENOENT; 708 } 709 rdt_last_cmd_clear(); 710 711 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 712 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 713 ret = -EINVAL; 714 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 715 goto unlock; 716 } 717 718 ret = rdtgroup_move_task(pid, rdtgrp, of); 719 720 unlock: 721 rdtgroup_kn_unlock(of->kn); 722 723 return ret ?: nbytes; 724 } 725 726 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 727 { 728 struct task_struct *p, *t; 729 pid_t pid; 730 731 rcu_read_lock(); 732 for_each_process_thread(p, t) { 733 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 734 pid = task_pid_vnr(t); 735 if (pid) 736 seq_printf(s, "%d\n", pid); 737 } 738 } 739 rcu_read_unlock(); 740 } 741 742 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 743 struct seq_file *s, void *v) 744 { 745 struct rdtgroup *rdtgrp; 746 int ret = 0; 747 748 rdtgrp = rdtgroup_kn_lock_live(of->kn); 749 if (rdtgrp) 750 show_rdt_tasks(rdtgrp, s); 751 else 752 ret = -ENOENT; 753 rdtgroup_kn_unlock(of->kn); 754 755 return ret; 756 } 757 758 #ifdef CONFIG_PROC_CPU_RESCTRL 759 760 /* 761 * A task can only be part of one resctrl control group and of one monitor 762 * group which is associated to that control group. 763 * 764 * 1) res: 765 * mon: 766 * 767 * resctrl is not available. 768 * 769 * 2) res:/ 770 * mon: 771 * 772 * Task is part of the root resctrl control group, and it is not associated 773 * to any monitor group. 774 * 775 * 3) res:/ 776 * mon:mon0 777 * 778 * Task is part of the root resctrl control group and monitor group mon0. 779 * 780 * 4) res:group0 781 * mon: 782 * 783 * Task is part of resctrl control group group0, and it is not associated 784 * to any monitor group. 785 * 786 * 5) res:group0 787 * mon:mon1 788 * 789 * Task is part of resctrl control group group0 and monitor group mon1. 790 */ 791 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 792 struct pid *pid, struct task_struct *tsk) 793 { 794 struct rdtgroup *rdtg; 795 int ret = 0; 796 797 mutex_lock(&rdtgroup_mutex); 798 799 /* Return empty if resctrl has not been mounted. */ 800 if (!static_branch_unlikely(&rdt_enable_key)) { 801 seq_puts(s, "res:\nmon:\n"); 802 goto unlock; 803 } 804 805 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 806 struct rdtgroup *crg; 807 808 /* 809 * Task information is only relevant for shareable 810 * and exclusive groups. 811 */ 812 if (rdtg->mode != RDT_MODE_SHAREABLE && 813 rdtg->mode != RDT_MODE_EXCLUSIVE) 814 continue; 815 816 if (rdtg->closid != tsk->closid) 817 continue; 818 819 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 820 rdtg->kn->name); 821 seq_puts(s, "mon:"); 822 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 823 mon.crdtgrp_list) { 824 if (tsk->rmid != crg->mon.rmid) 825 continue; 826 seq_printf(s, "%s", crg->kn->name); 827 break; 828 } 829 seq_putc(s, '\n'); 830 goto unlock; 831 } 832 /* 833 * The above search should succeed. Otherwise return 834 * with an error. 835 */ 836 ret = -ENOENT; 837 unlock: 838 mutex_unlock(&rdtgroup_mutex); 839 840 return ret; 841 } 842 #endif 843 844 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 845 struct seq_file *seq, void *v) 846 { 847 int len; 848 849 mutex_lock(&rdtgroup_mutex); 850 len = seq_buf_used(&last_cmd_status); 851 if (len) 852 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 853 else 854 seq_puts(seq, "ok\n"); 855 mutex_unlock(&rdtgroup_mutex); 856 return 0; 857 } 858 859 static int rdt_num_closids_show(struct kernfs_open_file *of, 860 struct seq_file *seq, void *v) 861 { 862 struct resctrl_schema *s = of->kn->parent->priv; 863 864 seq_printf(seq, "%u\n", s->num_closid); 865 return 0; 866 } 867 868 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 869 struct seq_file *seq, void *v) 870 { 871 struct resctrl_schema *s = of->kn->parent->priv; 872 struct rdt_resource *r = s->res; 873 874 seq_printf(seq, "%x\n", r->default_ctrl); 875 return 0; 876 } 877 878 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 879 struct seq_file *seq, void *v) 880 { 881 struct resctrl_schema *s = of->kn->parent->priv; 882 struct rdt_resource *r = s->res; 883 884 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 885 return 0; 886 } 887 888 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 889 struct seq_file *seq, void *v) 890 { 891 struct resctrl_schema *s = of->kn->parent->priv; 892 struct rdt_resource *r = s->res; 893 894 seq_printf(seq, "%x\n", r->cache.shareable_bits); 895 return 0; 896 } 897 898 /** 899 * rdt_bit_usage_show - Display current usage of resources 900 * 901 * A domain is a shared resource that can now be allocated differently. Here 902 * we display the current regions of the domain as an annotated bitmask. 903 * For each domain of this resource its allocation bitmask 904 * is annotated as below to indicate the current usage of the corresponding bit: 905 * 0 - currently unused 906 * X - currently available for sharing and used by software and hardware 907 * H - currently used by hardware only but available for software use 908 * S - currently used and shareable by software only 909 * E - currently used exclusively by one resource group 910 * P - currently pseudo-locked by one resource group 911 */ 912 static int rdt_bit_usage_show(struct kernfs_open_file *of, 913 struct seq_file *seq, void *v) 914 { 915 struct resctrl_schema *s = of->kn->parent->priv; 916 /* 917 * Use unsigned long even though only 32 bits are used to ensure 918 * test_bit() is used safely. 919 */ 920 unsigned long sw_shareable = 0, hw_shareable = 0; 921 unsigned long exclusive = 0, pseudo_locked = 0; 922 struct rdt_resource *r = s->res; 923 struct rdt_domain *dom; 924 int i, hwb, swb, excl, psl; 925 enum rdtgrp_mode mode; 926 bool sep = false; 927 u32 ctrl_val; 928 929 mutex_lock(&rdtgroup_mutex); 930 hw_shareable = r->cache.shareable_bits; 931 list_for_each_entry(dom, &r->domains, list) { 932 if (sep) 933 seq_putc(seq, ';'); 934 sw_shareable = 0; 935 exclusive = 0; 936 seq_printf(seq, "%d=", dom->id); 937 for (i = 0; i < closids_supported(); i++) { 938 if (!closid_allocated(i)) 939 continue; 940 ctrl_val = resctrl_arch_get_config(r, dom, i, 941 s->conf_type); 942 mode = rdtgroup_mode_by_closid(i); 943 switch (mode) { 944 case RDT_MODE_SHAREABLE: 945 sw_shareable |= ctrl_val; 946 break; 947 case RDT_MODE_EXCLUSIVE: 948 exclusive |= ctrl_val; 949 break; 950 case RDT_MODE_PSEUDO_LOCKSETUP: 951 /* 952 * RDT_MODE_PSEUDO_LOCKSETUP is possible 953 * here but not included since the CBM 954 * associated with this CLOSID in this mode 955 * is not initialized and no task or cpu can be 956 * assigned this CLOSID. 957 */ 958 break; 959 case RDT_MODE_PSEUDO_LOCKED: 960 case RDT_NUM_MODES: 961 WARN(1, 962 "invalid mode for closid %d\n", i); 963 break; 964 } 965 } 966 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 967 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 968 hwb = test_bit(i, &hw_shareable); 969 swb = test_bit(i, &sw_shareable); 970 excl = test_bit(i, &exclusive); 971 psl = test_bit(i, &pseudo_locked); 972 if (hwb && swb) 973 seq_putc(seq, 'X'); 974 else if (hwb && !swb) 975 seq_putc(seq, 'H'); 976 else if (!hwb && swb) 977 seq_putc(seq, 'S'); 978 else if (excl) 979 seq_putc(seq, 'E'); 980 else if (psl) 981 seq_putc(seq, 'P'); 982 else /* Unused bits remain */ 983 seq_putc(seq, '0'); 984 } 985 sep = true; 986 } 987 seq_putc(seq, '\n'); 988 mutex_unlock(&rdtgroup_mutex); 989 return 0; 990 } 991 992 static int rdt_min_bw_show(struct kernfs_open_file *of, 993 struct seq_file *seq, void *v) 994 { 995 struct resctrl_schema *s = of->kn->parent->priv; 996 struct rdt_resource *r = s->res; 997 998 seq_printf(seq, "%u\n", r->membw.min_bw); 999 return 0; 1000 } 1001 1002 static int rdt_num_rmids_show(struct kernfs_open_file *of, 1003 struct seq_file *seq, void *v) 1004 { 1005 struct rdt_resource *r = of->kn->parent->priv; 1006 1007 seq_printf(seq, "%d\n", r->num_rmid); 1008 1009 return 0; 1010 } 1011 1012 static int rdt_mon_features_show(struct kernfs_open_file *of, 1013 struct seq_file *seq, void *v) 1014 { 1015 struct rdt_resource *r = of->kn->parent->priv; 1016 struct mon_evt *mevt; 1017 1018 list_for_each_entry(mevt, &r->evt_list, list) { 1019 seq_printf(seq, "%s\n", mevt->name); 1020 if (mevt->configurable) 1021 seq_printf(seq, "%s_config\n", mevt->name); 1022 } 1023 1024 return 0; 1025 } 1026 1027 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1028 struct seq_file *seq, void *v) 1029 { 1030 struct resctrl_schema *s = of->kn->parent->priv; 1031 struct rdt_resource *r = s->res; 1032 1033 seq_printf(seq, "%u\n", r->membw.bw_gran); 1034 return 0; 1035 } 1036 1037 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1038 struct seq_file *seq, void *v) 1039 { 1040 struct resctrl_schema *s = of->kn->parent->priv; 1041 struct rdt_resource *r = s->res; 1042 1043 seq_printf(seq, "%u\n", r->membw.delay_linear); 1044 return 0; 1045 } 1046 1047 static int max_threshold_occ_show(struct kernfs_open_file *of, 1048 struct seq_file *seq, void *v) 1049 { 1050 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold); 1051 1052 return 0; 1053 } 1054 1055 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1056 struct seq_file *seq, void *v) 1057 { 1058 struct resctrl_schema *s = of->kn->parent->priv; 1059 struct rdt_resource *r = s->res; 1060 1061 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD) 1062 seq_puts(seq, "per-thread\n"); 1063 else 1064 seq_puts(seq, "max\n"); 1065 1066 return 0; 1067 } 1068 1069 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1070 char *buf, size_t nbytes, loff_t off) 1071 { 1072 unsigned int bytes; 1073 int ret; 1074 1075 ret = kstrtouint(buf, 0, &bytes); 1076 if (ret) 1077 return ret; 1078 1079 if (bytes > resctrl_rmid_realloc_limit) 1080 return -EINVAL; 1081 1082 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes); 1083 1084 return nbytes; 1085 } 1086 1087 /* 1088 * rdtgroup_mode_show - Display mode of this resource group 1089 */ 1090 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1091 struct seq_file *s, void *v) 1092 { 1093 struct rdtgroup *rdtgrp; 1094 1095 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1096 if (!rdtgrp) { 1097 rdtgroup_kn_unlock(of->kn); 1098 return -ENOENT; 1099 } 1100 1101 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1102 1103 rdtgroup_kn_unlock(of->kn); 1104 return 0; 1105 } 1106 1107 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type) 1108 { 1109 switch (my_type) { 1110 case CDP_CODE: 1111 return CDP_DATA; 1112 case CDP_DATA: 1113 return CDP_CODE; 1114 default: 1115 case CDP_NONE: 1116 return CDP_NONE; 1117 } 1118 } 1119 1120 /** 1121 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1122 * @r: Resource to which domain instance @d belongs. 1123 * @d: The domain instance for which @closid is being tested. 1124 * @cbm: Capacity bitmask being tested. 1125 * @closid: Intended closid for @cbm. 1126 * @exclusive: Only check if overlaps with exclusive resource groups 1127 * 1128 * Checks if provided @cbm intended to be used for @closid on domain 1129 * @d overlaps with any other closids or other hardware usage associated 1130 * with this domain. If @exclusive is true then only overlaps with 1131 * resource groups in exclusive mode will be considered. If @exclusive 1132 * is false then overlaps with any resource group or hardware entities 1133 * will be considered. 1134 * 1135 * @cbm is unsigned long, even if only 32 bits are used, to make the 1136 * bitmap functions work correctly. 1137 * 1138 * Return: false if CBM does not overlap, true if it does. 1139 */ 1140 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1141 unsigned long cbm, int closid, 1142 enum resctrl_conf_type type, bool exclusive) 1143 { 1144 enum rdtgrp_mode mode; 1145 unsigned long ctrl_b; 1146 int i; 1147 1148 /* Check for any overlap with regions used by hardware directly */ 1149 if (!exclusive) { 1150 ctrl_b = r->cache.shareable_bits; 1151 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1152 return true; 1153 } 1154 1155 /* Check for overlap with other resource groups */ 1156 for (i = 0; i < closids_supported(); i++) { 1157 ctrl_b = resctrl_arch_get_config(r, d, i, type); 1158 mode = rdtgroup_mode_by_closid(i); 1159 if (closid_allocated(i) && i != closid && 1160 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1161 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1162 if (exclusive) { 1163 if (mode == RDT_MODE_EXCLUSIVE) 1164 return true; 1165 continue; 1166 } 1167 return true; 1168 } 1169 } 1170 } 1171 1172 return false; 1173 } 1174 1175 /** 1176 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1177 * @s: Schema for the resource to which domain instance @d belongs. 1178 * @d: The domain instance for which @closid is being tested. 1179 * @cbm: Capacity bitmask being tested. 1180 * @closid: Intended closid for @cbm. 1181 * @exclusive: Only check if overlaps with exclusive resource groups 1182 * 1183 * Resources that can be allocated using a CBM can use the CBM to control 1184 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1185 * for overlap. Overlap test is not limited to the specific resource for 1186 * which the CBM is intended though - when dealing with CDP resources that 1187 * share the underlying hardware the overlap check should be performed on 1188 * the CDP resource sharing the hardware also. 1189 * 1190 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1191 * overlap test. 1192 * 1193 * Return: true if CBM overlap detected, false if there is no overlap 1194 */ 1195 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d, 1196 unsigned long cbm, int closid, bool exclusive) 1197 { 1198 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 1199 struct rdt_resource *r = s->res; 1200 1201 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type, 1202 exclusive)) 1203 return true; 1204 1205 if (!resctrl_arch_get_cdp_enabled(r->rid)) 1206 return false; 1207 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive); 1208 } 1209 1210 /** 1211 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1212 * 1213 * An exclusive resource group implies that there should be no sharing of 1214 * its allocated resources. At the time this group is considered to be 1215 * exclusive this test can determine if its current schemata supports this 1216 * setting by testing for overlap with all other resource groups. 1217 * 1218 * Return: true if resource group can be exclusive, false if there is overlap 1219 * with allocations of other resource groups and thus this resource group 1220 * cannot be exclusive. 1221 */ 1222 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1223 { 1224 int closid = rdtgrp->closid; 1225 struct resctrl_schema *s; 1226 struct rdt_resource *r; 1227 bool has_cache = false; 1228 struct rdt_domain *d; 1229 u32 ctrl; 1230 1231 list_for_each_entry(s, &resctrl_schema_all, list) { 1232 r = s->res; 1233 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA) 1234 continue; 1235 has_cache = true; 1236 list_for_each_entry(d, &r->domains, list) { 1237 ctrl = resctrl_arch_get_config(r, d, closid, 1238 s->conf_type); 1239 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) { 1240 rdt_last_cmd_puts("Schemata overlaps\n"); 1241 return false; 1242 } 1243 } 1244 } 1245 1246 if (!has_cache) { 1247 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1248 return false; 1249 } 1250 1251 return true; 1252 } 1253 1254 /** 1255 * rdtgroup_mode_write - Modify the resource group's mode 1256 * 1257 */ 1258 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1259 char *buf, size_t nbytes, loff_t off) 1260 { 1261 struct rdtgroup *rdtgrp; 1262 enum rdtgrp_mode mode; 1263 int ret = 0; 1264 1265 /* Valid input requires a trailing newline */ 1266 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1267 return -EINVAL; 1268 buf[nbytes - 1] = '\0'; 1269 1270 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1271 if (!rdtgrp) { 1272 rdtgroup_kn_unlock(of->kn); 1273 return -ENOENT; 1274 } 1275 1276 rdt_last_cmd_clear(); 1277 1278 mode = rdtgrp->mode; 1279 1280 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1281 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1282 (!strcmp(buf, "pseudo-locksetup") && 1283 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1284 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1285 goto out; 1286 1287 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1288 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1289 ret = -EINVAL; 1290 goto out; 1291 } 1292 1293 if (!strcmp(buf, "shareable")) { 1294 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1295 ret = rdtgroup_locksetup_exit(rdtgrp); 1296 if (ret) 1297 goto out; 1298 } 1299 rdtgrp->mode = RDT_MODE_SHAREABLE; 1300 } else if (!strcmp(buf, "exclusive")) { 1301 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1302 ret = -EINVAL; 1303 goto out; 1304 } 1305 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1306 ret = rdtgroup_locksetup_exit(rdtgrp); 1307 if (ret) 1308 goto out; 1309 } 1310 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1311 } else if (!strcmp(buf, "pseudo-locksetup")) { 1312 ret = rdtgroup_locksetup_enter(rdtgrp); 1313 if (ret) 1314 goto out; 1315 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1316 } else { 1317 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1318 ret = -EINVAL; 1319 } 1320 1321 out: 1322 rdtgroup_kn_unlock(of->kn); 1323 return ret ?: nbytes; 1324 } 1325 1326 /** 1327 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1328 * @r: RDT resource to which @d belongs. 1329 * @d: RDT domain instance. 1330 * @cbm: bitmask for which the size should be computed. 1331 * 1332 * The bitmask provided associated with the RDT domain instance @d will be 1333 * translated into how many bytes it represents. The size in bytes is 1334 * computed by first dividing the total cache size by the CBM length to 1335 * determine how many bytes each bit in the bitmask represents. The result 1336 * is multiplied with the number of bits set in the bitmask. 1337 * 1338 * @cbm is unsigned long, even if only 32 bits are used to make the 1339 * bitmap functions work correctly. 1340 */ 1341 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1342 struct rdt_domain *d, unsigned long cbm) 1343 { 1344 struct cpu_cacheinfo *ci; 1345 unsigned int size = 0; 1346 int num_b, i; 1347 1348 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1349 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1350 for (i = 0; i < ci->num_leaves; i++) { 1351 if (ci->info_list[i].level == r->cache_level) { 1352 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1353 break; 1354 } 1355 } 1356 1357 return size; 1358 } 1359 1360 /** 1361 * rdtgroup_size_show - Display size in bytes of allocated regions 1362 * 1363 * The "size" file mirrors the layout of the "schemata" file, printing the 1364 * size in bytes of each region instead of the capacity bitmask. 1365 * 1366 */ 1367 static int rdtgroup_size_show(struct kernfs_open_file *of, 1368 struct seq_file *s, void *v) 1369 { 1370 struct resctrl_schema *schema; 1371 enum resctrl_conf_type type; 1372 struct rdtgroup *rdtgrp; 1373 struct rdt_resource *r; 1374 struct rdt_domain *d; 1375 unsigned int size; 1376 int ret = 0; 1377 u32 closid; 1378 bool sep; 1379 u32 ctrl; 1380 1381 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1382 if (!rdtgrp) { 1383 rdtgroup_kn_unlock(of->kn); 1384 return -ENOENT; 1385 } 1386 1387 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1388 if (!rdtgrp->plr->d) { 1389 rdt_last_cmd_clear(); 1390 rdt_last_cmd_puts("Cache domain offline\n"); 1391 ret = -ENODEV; 1392 } else { 1393 seq_printf(s, "%*s:", max_name_width, 1394 rdtgrp->plr->s->name); 1395 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res, 1396 rdtgrp->plr->d, 1397 rdtgrp->plr->cbm); 1398 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1399 } 1400 goto out; 1401 } 1402 1403 closid = rdtgrp->closid; 1404 1405 list_for_each_entry(schema, &resctrl_schema_all, list) { 1406 r = schema->res; 1407 type = schema->conf_type; 1408 sep = false; 1409 seq_printf(s, "%*s:", max_name_width, schema->name); 1410 list_for_each_entry(d, &r->domains, list) { 1411 if (sep) 1412 seq_putc(s, ';'); 1413 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1414 size = 0; 1415 } else { 1416 if (is_mba_sc(r)) 1417 ctrl = d->mbps_val[closid]; 1418 else 1419 ctrl = resctrl_arch_get_config(r, d, 1420 closid, 1421 type); 1422 if (r->rid == RDT_RESOURCE_MBA || 1423 r->rid == RDT_RESOURCE_SMBA) 1424 size = ctrl; 1425 else 1426 size = rdtgroup_cbm_to_size(r, d, ctrl); 1427 } 1428 seq_printf(s, "%d=%u", d->id, size); 1429 sep = true; 1430 } 1431 seq_putc(s, '\n'); 1432 } 1433 1434 out: 1435 rdtgroup_kn_unlock(of->kn); 1436 1437 return ret; 1438 } 1439 1440 struct mon_config_info { 1441 u32 evtid; 1442 u32 mon_config; 1443 }; 1444 1445 #define INVALID_CONFIG_INDEX UINT_MAX 1446 1447 /** 1448 * mon_event_config_index_get - get the hardware index for the 1449 * configurable event 1450 * @evtid: event id. 1451 * 1452 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID 1453 * 1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID 1454 * INVALID_CONFIG_INDEX for invalid evtid 1455 */ 1456 static inline unsigned int mon_event_config_index_get(u32 evtid) 1457 { 1458 switch (evtid) { 1459 case QOS_L3_MBM_TOTAL_EVENT_ID: 1460 return 0; 1461 case QOS_L3_MBM_LOCAL_EVENT_ID: 1462 return 1; 1463 default: 1464 /* Should never reach here */ 1465 return INVALID_CONFIG_INDEX; 1466 } 1467 } 1468 1469 static void mon_event_config_read(void *info) 1470 { 1471 struct mon_config_info *mon_info = info; 1472 unsigned int index; 1473 u64 msrval; 1474 1475 index = mon_event_config_index_get(mon_info->evtid); 1476 if (index == INVALID_CONFIG_INDEX) { 1477 pr_warn_once("Invalid event id %d\n", mon_info->evtid); 1478 return; 1479 } 1480 rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval); 1481 1482 /* Report only the valid event configuration bits */ 1483 mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS; 1484 } 1485 1486 static void mondata_config_read(struct rdt_domain *d, struct mon_config_info *mon_info) 1487 { 1488 smp_call_function_any(&d->cpu_mask, mon_event_config_read, mon_info, 1); 1489 } 1490 1491 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid) 1492 { 1493 struct mon_config_info mon_info = {0}; 1494 struct rdt_domain *dom; 1495 bool sep = false; 1496 1497 mutex_lock(&rdtgroup_mutex); 1498 1499 list_for_each_entry(dom, &r->domains, list) { 1500 if (sep) 1501 seq_puts(s, ";"); 1502 1503 memset(&mon_info, 0, sizeof(struct mon_config_info)); 1504 mon_info.evtid = evtid; 1505 mondata_config_read(dom, &mon_info); 1506 1507 seq_printf(s, "%d=0x%02x", dom->id, mon_info.mon_config); 1508 sep = true; 1509 } 1510 seq_puts(s, "\n"); 1511 1512 mutex_unlock(&rdtgroup_mutex); 1513 1514 return 0; 1515 } 1516 1517 static int mbm_total_bytes_config_show(struct kernfs_open_file *of, 1518 struct seq_file *seq, void *v) 1519 { 1520 struct rdt_resource *r = of->kn->parent->priv; 1521 1522 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID); 1523 1524 return 0; 1525 } 1526 1527 static int mbm_local_bytes_config_show(struct kernfs_open_file *of, 1528 struct seq_file *seq, void *v) 1529 { 1530 struct rdt_resource *r = of->kn->parent->priv; 1531 1532 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID); 1533 1534 return 0; 1535 } 1536 1537 static void mon_event_config_write(void *info) 1538 { 1539 struct mon_config_info *mon_info = info; 1540 unsigned int index; 1541 1542 index = mon_event_config_index_get(mon_info->evtid); 1543 if (index == INVALID_CONFIG_INDEX) { 1544 pr_warn_once("Invalid event id %d\n", mon_info->evtid); 1545 return; 1546 } 1547 wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0); 1548 } 1549 1550 static int mbm_config_write_domain(struct rdt_resource *r, 1551 struct rdt_domain *d, u32 evtid, u32 val) 1552 { 1553 struct mon_config_info mon_info = {0}; 1554 int ret = 0; 1555 1556 /* mon_config cannot be more than the supported set of events */ 1557 if (val > MAX_EVT_CONFIG_BITS) { 1558 rdt_last_cmd_puts("Invalid event configuration\n"); 1559 return -EINVAL; 1560 } 1561 1562 /* 1563 * Read the current config value first. If both are the same then 1564 * no need to write it again. 1565 */ 1566 mon_info.evtid = evtid; 1567 mondata_config_read(d, &mon_info); 1568 if (mon_info.mon_config == val) 1569 goto out; 1570 1571 mon_info.mon_config = val; 1572 1573 /* 1574 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the 1575 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE 1576 * are scoped at the domain level. Writing any of these MSRs 1577 * on one CPU is observed by all the CPUs in the domain. 1578 */ 1579 smp_call_function_any(&d->cpu_mask, mon_event_config_write, 1580 &mon_info, 1); 1581 1582 /* 1583 * When an Event Configuration is changed, the bandwidth counters 1584 * for all RMIDs and Events will be cleared by the hardware. The 1585 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for 1586 * every RMID on the next read to any event for every RMID. 1587 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62) 1588 * cleared while it is tracked by the hardware. Clear the 1589 * mbm_local and mbm_total counts for all the RMIDs. 1590 */ 1591 resctrl_arch_reset_rmid_all(r, d); 1592 1593 out: 1594 return ret; 1595 } 1596 1597 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid) 1598 { 1599 char *dom_str = NULL, *id_str; 1600 unsigned long dom_id, val; 1601 struct rdt_domain *d; 1602 int ret = 0; 1603 1604 next: 1605 if (!tok || tok[0] == '\0') 1606 return 0; 1607 1608 /* Start processing the strings for each domain */ 1609 dom_str = strim(strsep(&tok, ";")); 1610 id_str = strsep(&dom_str, "="); 1611 1612 if (!id_str || kstrtoul(id_str, 10, &dom_id)) { 1613 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n"); 1614 return -EINVAL; 1615 } 1616 1617 if (!dom_str || kstrtoul(dom_str, 16, &val)) { 1618 rdt_last_cmd_puts("Non-numeric event configuration value\n"); 1619 return -EINVAL; 1620 } 1621 1622 list_for_each_entry(d, &r->domains, list) { 1623 if (d->id == dom_id) { 1624 ret = mbm_config_write_domain(r, d, evtid, val); 1625 if (ret) 1626 return -EINVAL; 1627 goto next; 1628 } 1629 } 1630 1631 return -EINVAL; 1632 } 1633 1634 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of, 1635 char *buf, size_t nbytes, 1636 loff_t off) 1637 { 1638 struct rdt_resource *r = of->kn->parent->priv; 1639 int ret; 1640 1641 /* Valid input requires a trailing newline */ 1642 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1643 return -EINVAL; 1644 1645 mutex_lock(&rdtgroup_mutex); 1646 1647 rdt_last_cmd_clear(); 1648 1649 buf[nbytes - 1] = '\0'; 1650 1651 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID); 1652 1653 mutex_unlock(&rdtgroup_mutex); 1654 1655 return ret ?: nbytes; 1656 } 1657 1658 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of, 1659 char *buf, size_t nbytes, 1660 loff_t off) 1661 { 1662 struct rdt_resource *r = of->kn->parent->priv; 1663 int ret; 1664 1665 /* Valid input requires a trailing newline */ 1666 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1667 return -EINVAL; 1668 1669 mutex_lock(&rdtgroup_mutex); 1670 1671 rdt_last_cmd_clear(); 1672 1673 buf[nbytes - 1] = '\0'; 1674 1675 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID); 1676 1677 mutex_unlock(&rdtgroup_mutex); 1678 1679 return ret ?: nbytes; 1680 } 1681 1682 /* rdtgroup information files for one cache resource. */ 1683 static struct rftype res_common_files[] = { 1684 { 1685 .name = "last_cmd_status", 1686 .mode = 0444, 1687 .kf_ops = &rdtgroup_kf_single_ops, 1688 .seq_show = rdt_last_cmd_status_show, 1689 .fflags = RF_TOP_INFO, 1690 }, 1691 { 1692 .name = "num_closids", 1693 .mode = 0444, 1694 .kf_ops = &rdtgroup_kf_single_ops, 1695 .seq_show = rdt_num_closids_show, 1696 .fflags = RF_CTRL_INFO, 1697 }, 1698 { 1699 .name = "mon_features", 1700 .mode = 0444, 1701 .kf_ops = &rdtgroup_kf_single_ops, 1702 .seq_show = rdt_mon_features_show, 1703 .fflags = RF_MON_INFO, 1704 }, 1705 { 1706 .name = "num_rmids", 1707 .mode = 0444, 1708 .kf_ops = &rdtgroup_kf_single_ops, 1709 .seq_show = rdt_num_rmids_show, 1710 .fflags = RF_MON_INFO, 1711 }, 1712 { 1713 .name = "cbm_mask", 1714 .mode = 0444, 1715 .kf_ops = &rdtgroup_kf_single_ops, 1716 .seq_show = rdt_default_ctrl_show, 1717 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1718 }, 1719 { 1720 .name = "min_cbm_bits", 1721 .mode = 0444, 1722 .kf_ops = &rdtgroup_kf_single_ops, 1723 .seq_show = rdt_min_cbm_bits_show, 1724 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1725 }, 1726 { 1727 .name = "shareable_bits", 1728 .mode = 0444, 1729 .kf_ops = &rdtgroup_kf_single_ops, 1730 .seq_show = rdt_shareable_bits_show, 1731 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1732 }, 1733 { 1734 .name = "bit_usage", 1735 .mode = 0444, 1736 .kf_ops = &rdtgroup_kf_single_ops, 1737 .seq_show = rdt_bit_usage_show, 1738 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1739 }, 1740 { 1741 .name = "min_bandwidth", 1742 .mode = 0444, 1743 .kf_ops = &rdtgroup_kf_single_ops, 1744 .seq_show = rdt_min_bw_show, 1745 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1746 }, 1747 { 1748 .name = "bandwidth_gran", 1749 .mode = 0444, 1750 .kf_ops = &rdtgroup_kf_single_ops, 1751 .seq_show = rdt_bw_gran_show, 1752 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1753 }, 1754 { 1755 .name = "delay_linear", 1756 .mode = 0444, 1757 .kf_ops = &rdtgroup_kf_single_ops, 1758 .seq_show = rdt_delay_linear_show, 1759 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1760 }, 1761 /* 1762 * Platform specific which (if any) capabilities are provided by 1763 * thread_throttle_mode. Defer "fflags" initialization to platform 1764 * discovery. 1765 */ 1766 { 1767 .name = "thread_throttle_mode", 1768 .mode = 0444, 1769 .kf_ops = &rdtgroup_kf_single_ops, 1770 .seq_show = rdt_thread_throttle_mode_show, 1771 }, 1772 { 1773 .name = "max_threshold_occupancy", 1774 .mode = 0644, 1775 .kf_ops = &rdtgroup_kf_single_ops, 1776 .write = max_threshold_occ_write, 1777 .seq_show = max_threshold_occ_show, 1778 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1779 }, 1780 { 1781 .name = "mbm_total_bytes_config", 1782 .mode = 0644, 1783 .kf_ops = &rdtgroup_kf_single_ops, 1784 .seq_show = mbm_total_bytes_config_show, 1785 .write = mbm_total_bytes_config_write, 1786 }, 1787 { 1788 .name = "mbm_local_bytes_config", 1789 .mode = 0644, 1790 .kf_ops = &rdtgroup_kf_single_ops, 1791 .seq_show = mbm_local_bytes_config_show, 1792 .write = mbm_local_bytes_config_write, 1793 }, 1794 { 1795 .name = "cpus", 1796 .mode = 0644, 1797 .kf_ops = &rdtgroup_kf_single_ops, 1798 .write = rdtgroup_cpus_write, 1799 .seq_show = rdtgroup_cpus_show, 1800 .fflags = RFTYPE_BASE, 1801 }, 1802 { 1803 .name = "cpus_list", 1804 .mode = 0644, 1805 .kf_ops = &rdtgroup_kf_single_ops, 1806 .write = rdtgroup_cpus_write, 1807 .seq_show = rdtgroup_cpus_show, 1808 .flags = RFTYPE_FLAGS_CPUS_LIST, 1809 .fflags = RFTYPE_BASE, 1810 }, 1811 { 1812 .name = "tasks", 1813 .mode = 0644, 1814 .kf_ops = &rdtgroup_kf_single_ops, 1815 .write = rdtgroup_tasks_write, 1816 .seq_show = rdtgroup_tasks_show, 1817 .fflags = RFTYPE_BASE, 1818 }, 1819 { 1820 .name = "schemata", 1821 .mode = 0644, 1822 .kf_ops = &rdtgroup_kf_single_ops, 1823 .write = rdtgroup_schemata_write, 1824 .seq_show = rdtgroup_schemata_show, 1825 .fflags = RF_CTRL_BASE, 1826 }, 1827 { 1828 .name = "mode", 1829 .mode = 0644, 1830 .kf_ops = &rdtgroup_kf_single_ops, 1831 .write = rdtgroup_mode_write, 1832 .seq_show = rdtgroup_mode_show, 1833 .fflags = RF_CTRL_BASE, 1834 }, 1835 { 1836 .name = "size", 1837 .mode = 0444, 1838 .kf_ops = &rdtgroup_kf_single_ops, 1839 .seq_show = rdtgroup_size_show, 1840 .fflags = RF_CTRL_BASE, 1841 }, 1842 1843 }; 1844 1845 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1846 { 1847 struct rftype *rfts, *rft; 1848 int ret, len; 1849 1850 rfts = res_common_files; 1851 len = ARRAY_SIZE(res_common_files); 1852 1853 lockdep_assert_held(&rdtgroup_mutex); 1854 1855 for (rft = rfts; rft < rfts + len; rft++) { 1856 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 1857 ret = rdtgroup_add_file(kn, rft); 1858 if (ret) 1859 goto error; 1860 } 1861 } 1862 1863 return 0; 1864 error: 1865 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1866 while (--rft >= rfts) { 1867 if ((fflags & rft->fflags) == rft->fflags) 1868 kernfs_remove_by_name(kn, rft->name); 1869 } 1870 return ret; 1871 } 1872 1873 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 1874 { 1875 struct rftype *rfts, *rft; 1876 int len; 1877 1878 rfts = res_common_files; 1879 len = ARRAY_SIZE(res_common_files); 1880 1881 for (rft = rfts; rft < rfts + len; rft++) { 1882 if (!strcmp(rft->name, name)) 1883 return rft; 1884 } 1885 1886 return NULL; 1887 } 1888 1889 void __init thread_throttle_mode_init(void) 1890 { 1891 struct rftype *rft; 1892 1893 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode"); 1894 if (!rft) 1895 return; 1896 1897 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB; 1898 } 1899 1900 void __init mbm_config_rftype_init(const char *config) 1901 { 1902 struct rftype *rft; 1903 1904 rft = rdtgroup_get_rftype_by_name(config); 1905 if (rft) 1906 rft->fflags = RF_MON_INFO | RFTYPE_RES_CACHE; 1907 } 1908 1909 /** 1910 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1911 * @r: The resource group with which the file is associated. 1912 * @name: Name of the file 1913 * 1914 * The permissions of named resctrl file, directory, or link are modified 1915 * to not allow read, write, or execute by any user. 1916 * 1917 * WARNING: This function is intended to communicate to the user that the 1918 * resctrl file has been locked down - that it is not relevant to the 1919 * particular state the system finds itself in. It should not be relied 1920 * on to protect from user access because after the file's permissions 1921 * are restricted the user can still change the permissions using chmod 1922 * from the command line. 1923 * 1924 * Return: 0 on success, <0 on failure. 1925 */ 1926 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1927 { 1928 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1929 struct kernfs_node *kn; 1930 int ret = 0; 1931 1932 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1933 if (!kn) 1934 return -ENOENT; 1935 1936 switch (kernfs_type(kn)) { 1937 case KERNFS_DIR: 1938 iattr.ia_mode = S_IFDIR; 1939 break; 1940 case KERNFS_FILE: 1941 iattr.ia_mode = S_IFREG; 1942 break; 1943 case KERNFS_LINK: 1944 iattr.ia_mode = S_IFLNK; 1945 break; 1946 } 1947 1948 ret = kernfs_setattr(kn, &iattr); 1949 kernfs_put(kn); 1950 return ret; 1951 } 1952 1953 /** 1954 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1955 * @r: The resource group with which the file is associated. 1956 * @name: Name of the file 1957 * @mask: Mask of permissions that should be restored 1958 * 1959 * Restore the permissions of the named file. If @name is a directory the 1960 * permissions of its parent will be used. 1961 * 1962 * Return: 0 on success, <0 on failure. 1963 */ 1964 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1965 umode_t mask) 1966 { 1967 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1968 struct kernfs_node *kn, *parent; 1969 struct rftype *rfts, *rft; 1970 int ret, len; 1971 1972 rfts = res_common_files; 1973 len = ARRAY_SIZE(res_common_files); 1974 1975 for (rft = rfts; rft < rfts + len; rft++) { 1976 if (!strcmp(rft->name, name)) 1977 iattr.ia_mode = rft->mode & mask; 1978 } 1979 1980 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1981 if (!kn) 1982 return -ENOENT; 1983 1984 switch (kernfs_type(kn)) { 1985 case KERNFS_DIR: 1986 parent = kernfs_get_parent(kn); 1987 if (parent) { 1988 iattr.ia_mode |= parent->mode; 1989 kernfs_put(parent); 1990 } 1991 iattr.ia_mode |= S_IFDIR; 1992 break; 1993 case KERNFS_FILE: 1994 iattr.ia_mode |= S_IFREG; 1995 break; 1996 case KERNFS_LINK: 1997 iattr.ia_mode |= S_IFLNK; 1998 break; 1999 } 2000 2001 ret = kernfs_setattr(kn, &iattr); 2002 kernfs_put(kn); 2003 return ret; 2004 } 2005 2006 static int rdtgroup_mkdir_info_resdir(void *priv, char *name, 2007 unsigned long fflags) 2008 { 2009 struct kernfs_node *kn_subdir; 2010 int ret; 2011 2012 kn_subdir = kernfs_create_dir(kn_info, name, 2013 kn_info->mode, priv); 2014 if (IS_ERR(kn_subdir)) 2015 return PTR_ERR(kn_subdir); 2016 2017 ret = rdtgroup_kn_set_ugid(kn_subdir); 2018 if (ret) 2019 return ret; 2020 2021 ret = rdtgroup_add_files(kn_subdir, fflags); 2022 if (!ret) 2023 kernfs_activate(kn_subdir); 2024 2025 return ret; 2026 } 2027 2028 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 2029 { 2030 struct resctrl_schema *s; 2031 struct rdt_resource *r; 2032 unsigned long fflags; 2033 char name[32]; 2034 int ret; 2035 2036 /* create the directory */ 2037 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 2038 if (IS_ERR(kn_info)) 2039 return PTR_ERR(kn_info); 2040 2041 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 2042 if (ret) 2043 goto out_destroy; 2044 2045 /* loop over enabled controls, these are all alloc_capable */ 2046 list_for_each_entry(s, &resctrl_schema_all, list) { 2047 r = s->res; 2048 fflags = r->fflags | RF_CTRL_INFO; 2049 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags); 2050 if (ret) 2051 goto out_destroy; 2052 } 2053 2054 for_each_mon_capable_rdt_resource(r) { 2055 fflags = r->fflags | RF_MON_INFO; 2056 sprintf(name, "%s_MON", r->name); 2057 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 2058 if (ret) 2059 goto out_destroy; 2060 } 2061 2062 ret = rdtgroup_kn_set_ugid(kn_info); 2063 if (ret) 2064 goto out_destroy; 2065 2066 kernfs_activate(kn_info); 2067 2068 return 0; 2069 2070 out_destroy: 2071 kernfs_remove(kn_info); 2072 return ret; 2073 } 2074 2075 static int 2076 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 2077 char *name, struct kernfs_node **dest_kn) 2078 { 2079 struct kernfs_node *kn; 2080 int ret; 2081 2082 /* create the directory */ 2083 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2084 if (IS_ERR(kn)) 2085 return PTR_ERR(kn); 2086 2087 if (dest_kn) 2088 *dest_kn = kn; 2089 2090 ret = rdtgroup_kn_set_ugid(kn); 2091 if (ret) 2092 goto out_destroy; 2093 2094 kernfs_activate(kn); 2095 2096 return 0; 2097 2098 out_destroy: 2099 kernfs_remove(kn); 2100 return ret; 2101 } 2102 2103 static void l3_qos_cfg_update(void *arg) 2104 { 2105 bool *enable = arg; 2106 2107 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 2108 } 2109 2110 static void l2_qos_cfg_update(void *arg) 2111 { 2112 bool *enable = arg; 2113 2114 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 2115 } 2116 2117 static inline bool is_mba_linear(void) 2118 { 2119 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear; 2120 } 2121 2122 static int set_cache_qos_cfg(int level, bool enable) 2123 { 2124 void (*update)(void *arg); 2125 struct rdt_resource *r_l; 2126 cpumask_var_t cpu_mask; 2127 struct rdt_domain *d; 2128 int cpu; 2129 2130 if (level == RDT_RESOURCE_L3) 2131 update = l3_qos_cfg_update; 2132 else if (level == RDT_RESOURCE_L2) 2133 update = l2_qos_cfg_update; 2134 else 2135 return -EINVAL; 2136 2137 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2138 return -ENOMEM; 2139 2140 r_l = &rdt_resources_all[level].r_resctrl; 2141 list_for_each_entry(d, &r_l->domains, list) { 2142 if (r_l->cache.arch_has_per_cpu_cfg) 2143 /* Pick all the CPUs in the domain instance */ 2144 for_each_cpu(cpu, &d->cpu_mask) 2145 cpumask_set_cpu(cpu, cpu_mask); 2146 else 2147 /* Pick one CPU from each domain instance to update MSR */ 2148 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2149 } 2150 2151 /* Update QOS_CFG MSR on all the CPUs in cpu_mask */ 2152 on_each_cpu_mask(cpu_mask, update, &enable, 1); 2153 2154 free_cpumask_var(cpu_mask); 2155 2156 return 0; 2157 } 2158 2159 /* Restore the qos cfg state when a domain comes online */ 2160 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 2161 { 2162 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2163 2164 if (!r->cdp_capable) 2165 return; 2166 2167 if (r->rid == RDT_RESOURCE_L2) 2168 l2_qos_cfg_update(&hw_res->cdp_enabled); 2169 2170 if (r->rid == RDT_RESOURCE_L3) 2171 l3_qos_cfg_update(&hw_res->cdp_enabled); 2172 } 2173 2174 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d) 2175 { 2176 u32 num_closid = resctrl_arch_get_num_closid(r); 2177 int cpu = cpumask_any(&d->cpu_mask); 2178 int i; 2179 2180 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val), 2181 GFP_KERNEL, cpu_to_node(cpu)); 2182 if (!d->mbps_val) 2183 return -ENOMEM; 2184 2185 for (i = 0; i < num_closid; i++) 2186 d->mbps_val[i] = MBA_MAX_MBPS; 2187 2188 return 0; 2189 } 2190 2191 static void mba_sc_domain_destroy(struct rdt_resource *r, 2192 struct rdt_domain *d) 2193 { 2194 kfree(d->mbps_val); 2195 d->mbps_val = NULL; 2196 } 2197 2198 /* 2199 * MBA software controller is supported only if 2200 * MBM is supported and MBA is in linear scale. 2201 */ 2202 static bool supports_mba_mbps(void) 2203 { 2204 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 2205 2206 return (is_mbm_local_enabled() && 2207 r->alloc_capable && is_mba_linear()); 2208 } 2209 2210 /* 2211 * Enable or disable the MBA software controller 2212 * which helps user specify bandwidth in MBps. 2213 */ 2214 static int set_mba_sc(bool mba_sc) 2215 { 2216 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 2217 u32 num_closid = resctrl_arch_get_num_closid(r); 2218 struct rdt_domain *d; 2219 int i; 2220 2221 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r)) 2222 return -EINVAL; 2223 2224 r->membw.mba_sc = mba_sc; 2225 2226 list_for_each_entry(d, &r->domains, list) { 2227 for (i = 0; i < num_closid; i++) 2228 d->mbps_val[i] = MBA_MAX_MBPS; 2229 } 2230 2231 return 0; 2232 } 2233 2234 static int cdp_enable(int level) 2235 { 2236 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl; 2237 int ret; 2238 2239 if (!r_l->alloc_capable) 2240 return -EINVAL; 2241 2242 ret = set_cache_qos_cfg(level, true); 2243 if (!ret) 2244 rdt_resources_all[level].cdp_enabled = true; 2245 2246 return ret; 2247 } 2248 2249 static void cdp_disable(int level) 2250 { 2251 struct rdt_hw_resource *r_hw = &rdt_resources_all[level]; 2252 2253 if (r_hw->cdp_enabled) { 2254 set_cache_qos_cfg(level, false); 2255 r_hw->cdp_enabled = false; 2256 } 2257 } 2258 2259 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable) 2260 { 2261 struct rdt_hw_resource *hw_res = &rdt_resources_all[l]; 2262 2263 if (!hw_res->r_resctrl.cdp_capable) 2264 return -EINVAL; 2265 2266 if (enable) 2267 return cdp_enable(l); 2268 2269 cdp_disable(l); 2270 2271 return 0; 2272 } 2273 2274 static void cdp_disable_all(void) 2275 { 2276 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 2277 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2278 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 2279 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2280 } 2281 2282 /* 2283 * We don't allow rdtgroup directories to be created anywhere 2284 * except the root directory. Thus when looking for the rdtgroup 2285 * structure for a kernfs node we are either looking at a directory, 2286 * in which case the rdtgroup structure is pointed at by the "priv" 2287 * field, otherwise we have a file, and need only look to the parent 2288 * to find the rdtgroup. 2289 */ 2290 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2291 { 2292 if (kernfs_type(kn) == KERNFS_DIR) { 2293 /* 2294 * All the resource directories use "kn->priv" 2295 * to point to the "struct rdtgroup" for the 2296 * resource. "info" and its subdirectories don't 2297 * have rdtgroup structures, so return NULL here. 2298 */ 2299 if (kn == kn_info || kn->parent == kn_info) 2300 return NULL; 2301 else 2302 return kn->priv; 2303 } else { 2304 return kn->parent->priv; 2305 } 2306 } 2307 2308 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2309 { 2310 atomic_inc(&rdtgrp->waitcount); 2311 kernfs_break_active_protection(kn); 2312 } 2313 2314 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2315 { 2316 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2317 (rdtgrp->flags & RDT_DELETED)) { 2318 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2319 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2320 rdtgroup_pseudo_lock_remove(rdtgrp); 2321 kernfs_unbreak_active_protection(kn); 2322 rdtgroup_remove(rdtgrp); 2323 } else { 2324 kernfs_unbreak_active_protection(kn); 2325 } 2326 } 2327 2328 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2329 { 2330 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2331 2332 if (!rdtgrp) 2333 return NULL; 2334 2335 rdtgroup_kn_get(rdtgrp, kn); 2336 2337 mutex_lock(&rdtgroup_mutex); 2338 2339 /* Was this group deleted while we waited? */ 2340 if (rdtgrp->flags & RDT_DELETED) 2341 return NULL; 2342 2343 return rdtgrp; 2344 } 2345 2346 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2347 { 2348 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2349 2350 if (!rdtgrp) 2351 return; 2352 2353 mutex_unlock(&rdtgroup_mutex); 2354 rdtgroup_kn_put(rdtgrp, kn); 2355 } 2356 2357 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2358 struct rdtgroup *prgrp, 2359 struct kernfs_node **mon_data_kn); 2360 2361 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2362 { 2363 int ret = 0; 2364 2365 if (ctx->enable_cdpl2) 2366 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true); 2367 2368 if (!ret && ctx->enable_cdpl3) 2369 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true); 2370 2371 if (!ret && ctx->enable_mba_mbps) 2372 ret = set_mba_sc(true); 2373 2374 return ret; 2375 } 2376 2377 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type) 2378 { 2379 struct resctrl_schema *s; 2380 const char *suffix = ""; 2381 int ret, cl; 2382 2383 s = kzalloc(sizeof(*s), GFP_KERNEL); 2384 if (!s) 2385 return -ENOMEM; 2386 2387 s->res = r; 2388 s->num_closid = resctrl_arch_get_num_closid(r); 2389 if (resctrl_arch_get_cdp_enabled(r->rid)) 2390 s->num_closid /= 2; 2391 2392 s->conf_type = type; 2393 switch (type) { 2394 case CDP_CODE: 2395 suffix = "CODE"; 2396 break; 2397 case CDP_DATA: 2398 suffix = "DATA"; 2399 break; 2400 case CDP_NONE: 2401 suffix = ""; 2402 break; 2403 } 2404 2405 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix); 2406 if (ret >= sizeof(s->name)) { 2407 kfree(s); 2408 return -EINVAL; 2409 } 2410 2411 cl = strlen(s->name); 2412 2413 /* 2414 * If CDP is supported by this resource, but not enabled, 2415 * include the suffix. This ensures the tabular format of the 2416 * schemata file does not change between mounts of the filesystem. 2417 */ 2418 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid)) 2419 cl += 4; 2420 2421 if (cl > max_name_width) 2422 max_name_width = cl; 2423 2424 INIT_LIST_HEAD(&s->list); 2425 list_add(&s->list, &resctrl_schema_all); 2426 2427 return 0; 2428 } 2429 2430 static int schemata_list_create(void) 2431 { 2432 struct rdt_resource *r; 2433 int ret = 0; 2434 2435 for_each_alloc_capable_rdt_resource(r) { 2436 if (resctrl_arch_get_cdp_enabled(r->rid)) { 2437 ret = schemata_list_add(r, CDP_CODE); 2438 if (ret) 2439 break; 2440 2441 ret = schemata_list_add(r, CDP_DATA); 2442 } else { 2443 ret = schemata_list_add(r, CDP_NONE); 2444 } 2445 2446 if (ret) 2447 break; 2448 } 2449 2450 return ret; 2451 } 2452 2453 static void schemata_list_destroy(void) 2454 { 2455 struct resctrl_schema *s, *tmp; 2456 2457 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) { 2458 list_del(&s->list); 2459 kfree(s); 2460 } 2461 } 2462 2463 static int rdt_get_tree(struct fs_context *fc) 2464 { 2465 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2466 struct rdt_domain *dom; 2467 struct rdt_resource *r; 2468 int ret; 2469 2470 cpus_read_lock(); 2471 mutex_lock(&rdtgroup_mutex); 2472 /* 2473 * resctrl file system can only be mounted once. 2474 */ 2475 if (static_branch_unlikely(&rdt_enable_key)) { 2476 ret = -EBUSY; 2477 goto out; 2478 } 2479 2480 ret = rdt_enable_ctx(ctx); 2481 if (ret < 0) 2482 goto out_cdp; 2483 2484 ret = schemata_list_create(); 2485 if (ret) { 2486 schemata_list_destroy(); 2487 goto out_mba; 2488 } 2489 2490 closid_init(); 2491 2492 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2493 if (ret < 0) 2494 goto out_schemata_free; 2495 2496 if (rdt_mon_capable) { 2497 ret = mongroup_create_dir(rdtgroup_default.kn, 2498 &rdtgroup_default, "mon_groups", 2499 &kn_mongrp); 2500 if (ret < 0) 2501 goto out_info; 2502 2503 ret = mkdir_mondata_all(rdtgroup_default.kn, 2504 &rdtgroup_default, &kn_mondata); 2505 if (ret < 0) 2506 goto out_mongrp; 2507 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2508 } 2509 2510 ret = rdt_pseudo_lock_init(); 2511 if (ret) 2512 goto out_mondata; 2513 2514 ret = kernfs_get_tree(fc); 2515 if (ret < 0) 2516 goto out_psl; 2517 2518 if (rdt_alloc_capable) 2519 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 2520 if (rdt_mon_capable) 2521 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 2522 2523 if (rdt_alloc_capable || rdt_mon_capable) 2524 static_branch_enable_cpuslocked(&rdt_enable_key); 2525 2526 if (is_mbm_enabled()) { 2527 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 2528 list_for_each_entry(dom, &r->domains, list) 2529 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2530 } 2531 2532 goto out; 2533 2534 out_psl: 2535 rdt_pseudo_lock_release(); 2536 out_mondata: 2537 if (rdt_mon_capable) 2538 kernfs_remove(kn_mondata); 2539 out_mongrp: 2540 if (rdt_mon_capable) 2541 kernfs_remove(kn_mongrp); 2542 out_info: 2543 kernfs_remove(kn_info); 2544 out_schemata_free: 2545 schemata_list_destroy(); 2546 out_mba: 2547 if (ctx->enable_mba_mbps) 2548 set_mba_sc(false); 2549 out_cdp: 2550 cdp_disable_all(); 2551 out: 2552 rdt_last_cmd_clear(); 2553 mutex_unlock(&rdtgroup_mutex); 2554 cpus_read_unlock(); 2555 return ret; 2556 } 2557 2558 enum rdt_param { 2559 Opt_cdp, 2560 Opt_cdpl2, 2561 Opt_mba_mbps, 2562 nr__rdt_params 2563 }; 2564 2565 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2566 fsparam_flag("cdp", Opt_cdp), 2567 fsparam_flag("cdpl2", Opt_cdpl2), 2568 fsparam_flag("mba_MBps", Opt_mba_mbps), 2569 {} 2570 }; 2571 2572 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2573 { 2574 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2575 struct fs_parse_result result; 2576 int opt; 2577 2578 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2579 if (opt < 0) 2580 return opt; 2581 2582 switch (opt) { 2583 case Opt_cdp: 2584 ctx->enable_cdpl3 = true; 2585 return 0; 2586 case Opt_cdpl2: 2587 ctx->enable_cdpl2 = true; 2588 return 0; 2589 case Opt_mba_mbps: 2590 if (!supports_mba_mbps()) 2591 return -EINVAL; 2592 ctx->enable_mba_mbps = true; 2593 return 0; 2594 } 2595 2596 return -EINVAL; 2597 } 2598 2599 static void rdt_fs_context_free(struct fs_context *fc) 2600 { 2601 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2602 2603 kernfs_free_fs_context(fc); 2604 kfree(ctx); 2605 } 2606 2607 static const struct fs_context_operations rdt_fs_context_ops = { 2608 .free = rdt_fs_context_free, 2609 .parse_param = rdt_parse_param, 2610 .get_tree = rdt_get_tree, 2611 }; 2612 2613 static int rdt_init_fs_context(struct fs_context *fc) 2614 { 2615 struct rdt_fs_context *ctx; 2616 2617 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2618 if (!ctx) 2619 return -ENOMEM; 2620 2621 ctx->kfc.root = rdt_root; 2622 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2623 fc->fs_private = &ctx->kfc; 2624 fc->ops = &rdt_fs_context_ops; 2625 put_user_ns(fc->user_ns); 2626 fc->user_ns = get_user_ns(&init_user_ns); 2627 fc->global = true; 2628 return 0; 2629 } 2630 2631 static int reset_all_ctrls(struct rdt_resource *r) 2632 { 2633 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2634 struct rdt_hw_domain *hw_dom; 2635 struct msr_param msr_param; 2636 cpumask_var_t cpu_mask; 2637 struct rdt_domain *d; 2638 int i; 2639 2640 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2641 return -ENOMEM; 2642 2643 msr_param.res = r; 2644 msr_param.low = 0; 2645 msr_param.high = hw_res->num_closid; 2646 2647 /* 2648 * Disable resource control for this resource by setting all 2649 * CBMs in all domains to the maximum mask value. Pick one CPU 2650 * from each domain to update the MSRs below. 2651 */ 2652 list_for_each_entry(d, &r->domains, list) { 2653 hw_dom = resctrl_to_arch_dom(d); 2654 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2655 2656 for (i = 0; i < hw_res->num_closid; i++) 2657 hw_dom->ctrl_val[i] = r->default_ctrl; 2658 } 2659 2660 /* Update CBM on all the CPUs in cpu_mask */ 2661 on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2662 2663 free_cpumask_var(cpu_mask); 2664 2665 return 0; 2666 } 2667 2668 /* 2669 * Move tasks from one to the other group. If @from is NULL, then all tasks 2670 * in the systems are moved unconditionally (used for teardown). 2671 * 2672 * If @mask is not NULL the cpus on which moved tasks are running are set 2673 * in that mask so the update smp function call is restricted to affected 2674 * cpus. 2675 */ 2676 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2677 struct cpumask *mask) 2678 { 2679 struct task_struct *p, *t; 2680 2681 read_lock(&tasklist_lock); 2682 for_each_process_thread(p, t) { 2683 if (!from || is_closid_match(t, from) || 2684 is_rmid_match(t, from)) { 2685 WRITE_ONCE(t->closid, to->closid); 2686 WRITE_ONCE(t->rmid, to->mon.rmid); 2687 2688 /* 2689 * Order the closid/rmid stores above before the loads 2690 * in task_curr(). This pairs with the full barrier 2691 * between the rq->curr update and resctrl_sched_in() 2692 * during context switch. 2693 */ 2694 smp_mb(); 2695 2696 /* 2697 * If the task is on a CPU, set the CPU in the mask. 2698 * The detection is inaccurate as tasks might move or 2699 * schedule before the smp function call takes place. 2700 * In such a case the function call is pointless, but 2701 * there is no other side effect. 2702 */ 2703 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t)) 2704 cpumask_set_cpu(task_cpu(t), mask); 2705 } 2706 } 2707 read_unlock(&tasklist_lock); 2708 } 2709 2710 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2711 { 2712 struct rdtgroup *sentry, *stmp; 2713 struct list_head *head; 2714 2715 head = &rdtgrp->mon.crdtgrp_list; 2716 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2717 free_rmid(sentry->mon.rmid); 2718 list_del(&sentry->mon.crdtgrp_list); 2719 2720 if (atomic_read(&sentry->waitcount) != 0) 2721 sentry->flags = RDT_DELETED; 2722 else 2723 rdtgroup_remove(sentry); 2724 } 2725 } 2726 2727 /* 2728 * Forcibly remove all of subdirectories under root. 2729 */ 2730 static void rmdir_all_sub(void) 2731 { 2732 struct rdtgroup *rdtgrp, *tmp; 2733 2734 /* Move all tasks to the default resource group */ 2735 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2736 2737 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2738 /* Free any child rmids */ 2739 free_all_child_rdtgrp(rdtgrp); 2740 2741 /* Remove each rdtgroup other than root */ 2742 if (rdtgrp == &rdtgroup_default) 2743 continue; 2744 2745 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2746 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2747 rdtgroup_pseudo_lock_remove(rdtgrp); 2748 2749 /* 2750 * Give any CPUs back to the default group. We cannot copy 2751 * cpu_online_mask because a CPU might have executed the 2752 * offline callback already, but is still marked online. 2753 */ 2754 cpumask_or(&rdtgroup_default.cpu_mask, 2755 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2756 2757 free_rmid(rdtgrp->mon.rmid); 2758 2759 kernfs_remove(rdtgrp->kn); 2760 list_del(&rdtgrp->rdtgroup_list); 2761 2762 if (atomic_read(&rdtgrp->waitcount) != 0) 2763 rdtgrp->flags = RDT_DELETED; 2764 else 2765 rdtgroup_remove(rdtgrp); 2766 } 2767 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2768 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2769 2770 kernfs_remove(kn_info); 2771 kernfs_remove(kn_mongrp); 2772 kernfs_remove(kn_mondata); 2773 } 2774 2775 static void rdt_kill_sb(struct super_block *sb) 2776 { 2777 struct rdt_resource *r; 2778 2779 cpus_read_lock(); 2780 mutex_lock(&rdtgroup_mutex); 2781 2782 set_mba_sc(false); 2783 2784 /*Put everything back to default values. */ 2785 for_each_alloc_capable_rdt_resource(r) 2786 reset_all_ctrls(r); 2787 cdp_disable_all(); 2788 rmdir_all_sub(); 2789 rdt_pseudo_lock_release(); 2790 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2791 schemata_list_destroy(); 2792 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2793 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2794 static_branch_disable_cpuslocked(&rdt_enable_key); 2795 kernfs_kill_sb(sb); 2796 mutex_unlock(&rdtgroup_mutex); 2797 cpus_read_unlock(); 2798 } 2799 2800 static struct file_system_type rdt_fs_type = { 2801 .name = "resctrl", 2802 .init_fs_context = rdt_init_fs_context, 2803 .parameters = rdt_fs_parameters, 2804 .kill_sb = rdt_kill_sb, 2805 }; 2806 2807 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2808 void *priv) 2809 { 2810 struct kernfs_node *kn; 2811 int ret = 0; 2812 2813 kn = __kernfs_create_file(parent_kn, name, 0444, 2814 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2815 &kf_mondata_ops, priv, NULL, NULL); 2816 if (IS_ERR(kn)) 2817 return PTR_ERR(kn); 2818 2819 ret = rdtgroup_kn_set_ugid(kn); 2820 if (ret) { 2821 kernfs_remove(kn); 2822 return ret; 2823 } 2824 2825 return ret; 2826 } 2827 2828 /* 2829 * Remove all subdirectories of mon_data of ctrl_mon groups 2830 * and monitor groups with given domain id. 2831 */ 2832 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2833 unsigned int dom_id) 2834 { 2835 struct rdtgroup *prgrp, *crgrp; 2836 char name[32]; 2837 2838 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2839 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2840 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2841 2842 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2843 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2844 } 2845 } 2846 2847 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2848 struct rdt_domain *d, 2849 struct rdt_resource *r, struct rdtgroup *prgrp) 2850 { 2851 union mon_data_bits priv; 2852 struct kernfs_node *kn; 2853 struct mon_evt *mevt; 2854 struct rmid_read rr; 2855 char name[32]; 2856 int ret; 2857 2858 sprintf(name, "mon_%s_%02d", r->name, d->id); 2859 /* create the directory */ 2860 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2861 if (IS_ERR(kn)) 2862 return PTR_ERR(kn); 2863 2864 ret = rdtgroup_kn_set_ugid(kn); 2865 if (ret) 2866 goto out_destroy; 2867 2868 if (WARN_ON(list_empty(&r->evt_list))) { 2869 ret = -EPERM; 2870 goto out_destroy; 2871 } 2872 2873 priv.u.rid = r->rid; 2874 priv.u.domid = d->id; 2875 list_for_each_entry(mevt, &r->evt_list, list) { 2876 priv.u.evtid = mevt->evtid; 2877 ret = mon_addfile(kn, mevt->name, priv.priv); 2878 if (ret) 2879 goto out_destroy; 2880 2881 if (is_mbm_event(mevt->evtid)) 2882 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true); 2883 } 2884 kernfs_activate(kn); 2885 return 0; 2886 2887 out_destroy: 2888 kernfs_remove(kn); 2889 return ret; 2890 } 2891 2892 /* 2893 * Add all subdirectories of mon_data for "ctrl_mon" groups 2894 * and "monitor" groups with given domain id. 2895 */ 2896 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2897 struct rdt_domain *d) 2898 { 2899 struct kernfs_node *parent_kn; 2900 struct rdtgroup *prgrp, *crgrp; 2901 struct list_head *head; 2902 2903 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2904 parent_kn = prgrp->mon.mon_data_kn; 2905 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2906 2907 head = &prgrp->mon.crdtgrp_list; 2908 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2909 parent_kn = crgrp->mon.mon_data_kn; 2910 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2911 } 2912 } 2913 } 2914 2915 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2916 struct rdt_resource *r, 2917 struct rdtgroup *prgrp) 2918 { 2919 struct rdt_domain *dom; 2920 int ret; 2921 2922 list_for_each_entry(dom, &r->domains, list) { 2923 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2924 if (ret) 2925 return ret; 2926 } 2927 2928 return 0; 2929 } 2930 2931 /* 2932 * This creates a directory mon_data which contains the monitored data. 2933 * 2934 * mon_data has one directory for each domain which are named 2935 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2936 * with L3 domain looks as below: 2937 * ./mon_data: 2938 * mon_L3_00 2939 * mon_L3_01 2940 * mon_L3_02 2941 * ... 2942 * 2943 * Each domain directory has one file per event: 2944 * ./mon_L3_00/: 2945 * llc_occupancy 2946 * 2947 */ 2948 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2949 struct rdtgroup *prgrp, 2950 struct kernfs_node **dest_kn) 2951 { 2952 struct rdt_resource *r; 2953 struct kernfs_node *kn; 2954 int ret; 2955 2956 /* 2957 * Create the mon_data directory first. 2958 */ 2959 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 2960 if (ret) 2961 return ret; 2962 2963 if (dest_kn) 2964 *dest_kn = kn; 2965 2966 /* 2967 * Create the subdirectories for each domain. Note that all events 2968 * in a domain like L3 are grouped into a resource whose domain is L3 2969 */ 2970 for_each_mon_capable_rdt_resource(r) { 2971 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2972 if (ret) 2973 goto out_destroy; 2974 } 2975 2976 return 0; 2977 2978 out_destroy: 2979 kernfs_remove(kn); 2980 return ret; 2981 } 2982 2983 /** 2984 * cbm_ensure_valid - Enforce validity on provided CBM 2985 * @_val: Candidate CBM 2986 * @r: RDT resource to which the CBM belongs 2987 * 2988 * The provided CBM represents all cache portions available for use. This 2989 * may be represented by a bitmap that does not consist of contiguous ones 2990 * and thus be an invalid CBM. 2991 * Here the provided CBM is forced to be a valid CBM by only considering 2992 * the first set of contiguous bits as valid and clearing all bits. 2993 * The intention here is to provide a valid default CBM with which a new 2994 * resource group is initialized. The user can follow this with a 2995 * modification to the CBM if the default does not satisfy the 2996 * requirements. 2997 */ 2998 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 2999 { 3000 unsigned int cbm_len = r->cache.cbm_len; 3001 unsigned long first_bit, zero_bit; 3002 unsigned long val = _val; 3003 3004 if (!val) 3005 return 0; 3006 3007 first_bit = find_first_bit(&val, cbm_len); 3008 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 3009 3010 /* Clear any remaining bits to ensure contiguous region */ 3011 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 3012 return (u32)val; 3013 } 3014 3015 /* 3016 * Initialize cache resources per RDT domain 3017 * 3018 * Set the RDT domain up to start off with all usable allocations. That is, 3019 * all shareable and unused bits. All-zero CBM is invalid. 3020 */ 3021 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s, 3022 u32 closid) 3023 { 3024 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 3025 enum resctrl_conf_type t = s->conf_type; 3026 struct resctrl_staged_config *cfg; 3027 struct rdt_resource *r = s->res; 3028 u32 used_b = 0, unused_b = 0; 3029 unsigned long tmp_cbm; 3030 enum rdtgrp_mode mode; 3031 u32 peer_ctl, ctrl_val; 3032 int i; 3033 3034 cfg = &d->staged_config[t]; 3035 cfg->have_new_ctrl = false; 3036 cfg->new_ctrl = r->cache.shareable_bits; 3037 used_b = r->cache.shareable_bits; 3038 for (i = 0; i < closids_supported(); i++) { 3039 if (closid_allocated(i) && i != closid) { 3040 mode = rdtgroup_mode_by_closid(i); 3041 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 3042 /* 3043 * ctrl values for locksetup aren't relevant 3044 * until the schemata is written, and the mode 3045 * becomes RDT_MODE_PSEUDO_LOCKED. 3046 */ 3047 continue; 3048 /* 3049 * If CDP is active include peer domain's 3050 * usage to ensure there is no overlap 3051 * with an exclusive group. 3052 */ 3053 if (resctrl_arch_get_cdp_enabled(r->rid)) 3054 peer_ctl = resctrl_arch_get_config(r, d, i, 3055 peer_type); 3056 else 3057 peer_ctl = 0; 3058 ctrl_val = resctrl_arch_get_config(r, d, i, 3059 s->conf_type); 3060 used_b |= ctrl_val | peer_ctl; 3061 if (mode == RDT_MODE_SHAREABLE) 3062 cfg->new_ctrl |= ctrl_val | peer_ctl; 3063 } 3064 } 3065 if (d->plr && d->plr->cbm > 0) 3066 used_b |= d->plr->cbm; 3067 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 3068 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 3069 cfg->new_ctrl |= unused_b; 3070 /* 3071 * Force the initial CBM to be valid, user can 3072 * modify the CBM based on system availability. 3073 */ 3074 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r); 3075 /* 3076 * Assign the u32 CBM to an unsigned long to ensure that 3077 * bitmap_weight() does not access out-of-bound memory. 3078 */ 3079 tmp_cbm = cfg->new_ctrl; 3080 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 3081 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id); 3082 return -ENOSPC; 3083 } 3084 cfg->have_new_ctrl = true; 3085 3086 return 0; 3087 } 3088 3089 /* 3090 * Initialize cache resources with default values. 3091 * 3092 * A new RDT group is being created on an allocation capable (CAT) 3093 * supporting system. Set this group up to start off with all usable 3094 * allocations. 3095 * 3096 * If there are no more shareable bits available on any domain then 3097 * the entire allocation will fail. 3098 */ 3099 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid) 3100 { 3101 struct rdt_domain *d; 3102 int ret; 3103 3104 list_for_each_entry(d, &s->res->domains, list) { 3105 ret = __init_one_rdt_domain(d, s, closid); 3106 if (ret < 0) 3107 return ret; 3108 } 3109 3110 return 0; 3111 } 3112 3113 /* Initialize MBA resource with default values. */ 3114 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid) 3115 { 3116 struct resctrl_staged_config *cfg; 3117 struct rdt_domain *d; 3118 3119 list_for_each_entry(d, &r->domains, list) { 3120 if (is_mba_sc(r)) { 3121 d->mbps_val[closid] = MBA_MAX_MBPS; 3122 continue; 3123 } 3124 3125 cfg = &d->staged_config[CDP_NONE]; 3126 cfg->new_ctrl = r->default_ctrl; 3127 cfg->have_new_ctrl = true; 3128 } 3129 } 3130 3131 /* Initialize the RDT group's allocations. */ 3132 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 3133 { 3134 struct resctrl_schema *s; 3135 struct rdt_resource *r; 3136 int ret = 0; 3137 3138 rdt_staged_configs_clear(); 3139 3140 list_for_each_entry(s, &resctrl_schema_all, list) { 3141 r = s->res; 3142 if (r->rid == RDT_RESOURCE_MBA || 3143 r->rid == RDT_RESOURCE_SMBA) { 3144 rdtgroup_init_mba(r, rdtgrp->closid); 3145 if (is_mba_sc(r)) 3146 continue; 3147 } else { 3148 ret = rdtgroup_init_cat(s, rdtgrp->closid); 3149 if (ret < 0) 3150 goto out; 3151 } 3152 3153 ret = resctrl_arch_update_domains(r, rdtgrp->closid); 3154 if (ret < 0) { 3155 rdt_last_cmd_puts("Failed to initialize allocations\n"); 3156 goto out; 3157 } 3158 3159 } 3160 3161 rdtgrp->mode = RDT_MODE_SHAREABLE; 3162 3163 out: 3164 rdt_staged_configs_clear(); 3165 return ret; 3166 } 3167 3168 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 3169 const char *name, umode_t mode, 3170 enum rdt_group_type rtype, struct rdtgroup **r) 3171 { 3172 struct rdtgroup *prdtgrp, *rdtgrp; 3173 struct kernfs_node *kn; 3174 uint files = 0; 3175 int ret; 3176 3177 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 3178 if (!prdtgrp) { 3179 ret = -ENODEV; 3180 goto out_unlock; 3181 } 3182 3183 if (rtype == RDTMON_GROUP && 3184 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3185 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 3186 ret = -EINVAL; 3187 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 3188 goto out_unlock; 3189 } 3190 3191 /* allocate the rdtgroup. */ 3192 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 3193 if (!rdtgrp) { 3194 ret = -ENOSPC; 3195 rdt_last_cmd_puts("Kernel out of memory\n"); 3196 goto out_unlock; 3197 } 3198 *r = rdtgrp; 3199 rdtgrp->mon.parent = prdtgrp; 3200 rdtgrp->type = rtype; 3201 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 3202 3203 /* kernfs creates the directory for rdtgrp */ 3204 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 3205 if (IS_ERR(kn)) { 3206 ret = PTR_ERR(kn); 3207 rdt_last_cmd_puts("kernfs create error\n"); 3208 goto out_free_rgrp; 3209 } 3210 rdtgrp->kn = kn; 3211 3212 /* 3213 * kernfs_remove() will drop the reference count on "kn" which 3214 * will free it. But we still need it to stick around for the 3215 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 3216 * which will be dropped by kernfs_put() in rdtgroup_remove(). 3217 */ 3218 kernfs_get(kn); 3219 3220 ret = rdtgroup_kn_set_ugid(kn); 3221 if (ret) { 3222 rdt_last_cmd_puts("kernfs perm error\n"); 3223 goto out_destroy; 3224 } 3225 3226 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 3227 ret = rdtgroup_add_files(kn, files); 3228 if (ret) { 3229 rdt_last_cmd_puts("kernfs fill error\n"); 3230 goto out_destroy; 3231 } 3232 3233 if (rdt_mon_capable) { 3234 ret = alloc_rmid(); 3235 if (ret < 0) { 3236 rdt_last_cmd_puts("Out of RMIDs\n"); 3237 goto out_destroy; 3238 } 3239 rdtgrp->mon.rmid = ret; 3240 3241 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 3242 if (ret) { 3243 rdt_last_cmd_puts("kernfs subdir error\n"); 3244 goto out_idfree; 3245 } 3246 } 3247 kernfs_activate(kn); 3248 3249 /* 3250 * The caller unlocks the parent_kn upon success. 3251 */ 3252 return 0; 3253 3254 out_idfree: 3255 free_rmid(rdtgrp->mon.rmid); 3256 out_destroy: 3257 kernfs_put(rdtgrp->kn); 3258 kernfs_remove(rdtgrp->kn); 3259 out_free_rgrp: 3260 kfree(rdtgrp); 3261 out_unlock: 3262 rdtgroup_kn_unlock(parent_kn); 3263 return ret; 3264 } 3265 3266 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 3267 { 3268 kernfs_remove(rgrp->kn); 3269 free_rmid(rgrp->mon.rmid); 3270 rdtgroup_remove(rgrp); 3271 } 3272 3273 /* 3274 * Create a monitor group under "mon_groups" directory of a control 3275 * and monitor group(ctrl_mon). This is a resource group 3276 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 3277 */ 3278 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 3279 const char *name, umode_t mode) 3280 { 3281 struct rdtgroup *rdtgrp, *prgrp; 3282 int ret; 3283 3284 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 3285 if (ret) 3286 return ret; 3287 3288 prgrp = rdtgrp->mon.parent; 3289 rdtgrp->closid = prgrp->closid; 3290 3291 /* 3292 * Add the rdtgrp to the list of rdtgrps the parent 3293 * ctrl_mon group has to track. 3294 */ 3295 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 3296 3297 rdtgroup_kn_unlock(parent_kn); 3298 return ret; 3299 } 3300 3301 /* 3302 * These are rdtgroups created under the root directory. Can be used 3303 * to allocate and monitor resources. 3304 */ 3305 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 3306 const char *name, umode_t mode) 3307 { 3308 struct rdtgroup *rdtgrp; 3309 struct kernfs_node *kn; 3310 u32 closid; 3311 int ret; 3312 3313 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 3314 if (ret) 3315 return ret; 3316 3317 kn = rdtgrp->kn; 3318 ret = closid_alloc(); 3319 if (ret < 0) { 3320 rdt_last_cmd_puts("Out of CLOSIDs\n"); 3321 goto out_common_fail; 3322 } 3323 closid = ret; 3324 ret = 0; 3325 3326 rdtgrp->closid = closid; 3327 ret = rdtgroup_init_alloc(rdtgrp); 3328 if (ret < 0) 3329 goto out_id_free; 3330 3331 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 3332 3333 if (rdt_mon_capable) { 3334 /* 3335 * Create an empty mon_groups directory to hold the subset 3336 * of tasks and cpus to monitor. 3337 */ 3338 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 3339 if (ret) { 3340 rdt_last_cmd_puts("kernfs subdir error\n"); 3341 goto out_del_list; 3342 } 3343 } 3344 3345 goto out_unlock; 3346 3347 out_del_list: 3348 list_del(&rdtgrp->rdtgroup_list); 3349 out_id_free: 3350 closid_free(closid); 3351 out_common_fail: 3352 mkdir_rdt_prepare_clean(rdtgrp); 3353 out_unlock: 3354 rdtgroup_kn_unlock(parent_kn); 3355 return ret; 3356 } 3357 3358 /* 3359 * We allow creating mon groups only with in a directory called "mon_groups" 3360 * which is present in every ctrl_mon group. Check if this is a valid 3361 * "mon_groups" directory. 3362 * 3363 * 1. The directory should be named "mon_groups". 3364 * 2. The mon group itself should "not" be named "mon_groups". 3365 * This makes sure "mon_groups" directory always has a ctrl_mon group 3366 * as parent. 3367 */ 3368 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 3369 { 3370 return (!strcmp(kn->name, "mon_groups") && 3371 strcmp(name, "mon_groups")); 3372 } 3373 3374 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3375 umode_t mode) 3376 { 3377 /* Do not accept '\n' to avoid unparsable situation. */ 3378 if (strchr(name, '\n')) 3379 return -EINVAL; 3380 3381 /* 3382 * If the parent directory is the root directory and RDT 3383 * allocation is supported, add a control and monitoring 3384 * subdirectory 3385 */ 3386 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 3387 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3388 3389 /* 3390 * If RDT monitoring is supported and the parent directory is a valid 3391 * "mon_groups" directory, add a monitoring subdirectory. 3392 */ 3393 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 3394 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3395 3396 return -EPERM; 3397 } 3398 3399 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3400 { 3401 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3402 int cpu; 3403 3404 /* Give any tasks back to the parent group */ 3405 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3406 3407 /* Update per cpu rmid of the moved CPUs first */ 3408 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3409 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 3410 /* 3411 * Update the MSR on moved CPUs and CPUs which have moved 3412 * task running on them. 3413 */ 3414 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3415 update_closid_rmid(tmpmask, NULL); 3416 3417 rdtgrp->flags = RDT_DELETED; 3418 free_rmid(rdtgrp->mon.rmid); 3419 3420 /* 3421 * Remove the rdtgrp from the parent ctrl_mon group's list 3422 */ 3423 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3424 list_del(&rdtgrp->mon.crdtgrp_list); 3425 3426 kernfs_remove(rdtgrp->kn); 3427 3428 return 0; 3429 } 3430 3431 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3432 { 3433 rdtgrp->flags = RDT_DELETED; 3434 list_del(&rdtgrp->rdtgroup_list); 3435 3436 kernfs_remove(rdtgrp->kn); 3437 return 0; 3438 } 3439 3440 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3441 { 3442 int cpu; 3443 3444 /* Give any tasks back to the default group */ 3445 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3446 3447 /* Give any CPUs back to the default group */ 3448 cpumask_or(&rdtgroup_default.cpu_mask, 3449 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3450 3451 /* Update per cpu closid and rmid of the moved CPUs first */ 3452 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3453 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3454 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3455 } 3456 3457 /* 3458 * Update the MSR on moved CPUs and CPUs which have moved 3459 * task running on them. 3460 */ 3461 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3462 update_closid_rmid(tmpmask, NULL); 3463 3464 closid_free(rdtgrp->closid); 3465 free_rmid(rdtgrp->mon.rmid); 3466 3467 rdtgroup_ctrl_remove(rdtgrp); 3468 3469 /* 3470 * Free all the child monitor group rmids. 3471 */ 3472 free_all_child_rdtgrp(rdtgrp); 3473 3474 return 0; 3475 } 3476 3477 static int rdtgroup_rmdir(struct kernfs_node *kn) 3478 { 3479 struct kernfs_node *parent_kn = kn->parent; 3480 struct rdtgroup *rdtgrp; 3481 cpumask_var_t tmpmask; 3482 int ret = 0; 3483 3484 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3485 return -ENOMEM; 3486 3487 rdtgrp = rdtgroup_kn_lock_live(kn); 3488 if (!rdtgrp) { 3489 ret = -EPERM; 3490 goto out; 3491 } 3492 3493 /* 3494 * If the rdtgroup is a ctrl_mon group and parent directory 3495 * is the root directory, remove the ctrl_mon group. 3496 * 3497 * If the rdtgroup is a mon group and parent directory 3498 * is a valid "mon_groups" directory, remove the mon group. 3499 */ 3500 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3501 rdtgrp != &rdtgroup_default) { 3502 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3503 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3504 ret = rdtgroup_ctrl_remove(rdtgrp); 3505 } else { 3506 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 3507 } 3508 } else if (rdtgrp->type == RDTMON_GROUP && 3509 is_mon_groups(parent_kn, kn->name)) { 3510 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 3511 } else { 3512 ret = -EPERM; 3513 } 3514 3515 out: 3516 rdtgroup_kn_unlock(kn); 3517 free_cpumask_var(tmpmask); 3518 return ret; 3519 } 3520 3521 /** 3522 * mongrp_reparent() - replace parent CTRL_MON group of a MON group 3523 * @rdtgrp: the MON group whose parent should be replaced 3524 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp 3525 * @cpus: cpumask provided by the caller for use during this call 3526 * 3527 * Replaces the parent CTRL_MON group for a MON group, resulting in all member 3528 * tasks' CLOSID immediately changing to that of the new parent group. 3529 * Monitoring data for the group is unaffected by this operation. 3530 */ 3531 static void mongrp_reparent(struct rdtgroup *rdtgrp, 3532 struct rdtgroup *new_prdtgrp, 3533 cpumask_var_t cpus) 3534 { 3535 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3536 3537 WARN_ON(rdtgrp->type != RDTMON_GROUP); 3538 WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP); 3539 3540 /* Nothing to do when simply renaming a MON group. */ 3541 if (prdtgrp == new_prdtgrp) 3542 return; 3543 3544 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3545 list_move_tail(&rdtgrp->mon.crdtgrp_list, 3546 &new_prdtgrp->mon.crdtgrp_list); 3547 3548 rdtgrp->mon.parent = new_prdtgrp; 3549 rdtgrp->closid = new_prdtgrp->closid; 3550 3551 /* Propagate updated closid to all tasks in this group. */ 3552 rdt_move_group_tasks(rdtgrp, rdtgrp, cpus); 3553 3554 update_closid_rmid(cpus, NULL); 3555 } 3556 3557 static int rdtgroup_rename(struct kernfs_node *kn, 3558 struct kernfs_node *new_parent, const char *new_name) 3559 { 3560 struct rdtgroup *new_prdtgrp; 3561 struct rdtgroup *rdtgrp; 3562 cpumask_var_t tmpmask; 3563 int ret; 3564 3565 rdtgrp = kernfs_to_rdtgroup(kn); 3566 new_prdtgrp = kernfs_to_rdtgroup(new_parent); 3567 if (!rdtgrp || !new_prdtgrp) 3568 return -ENOENT; 3569 3570 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */ 3571 rdtgroup_kn_get(rdtgrp, kn); 3572 rdtgroup_kn_get(new_prdtgrp, new_parent); 3573 3574 mutex_lock(&rdtgroup_mutex); 3575 3576 rdt_last_cmd_clear(); 3577 3578 /* 3579 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if 3580 * either kernfs_node is a file. 3581 */ 3582 if (kernfs_type(kn) != KERNFS_DIR || 3583 kernfs_type(new_parent) != KERNFS_DIR) { 3584 rdt_last_cmd_puts("Source and destination must be directories"); 3585 ret = -EPERM; 3586 goto out; 3587 } 3588 3589 if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) { 3590 ret = -ENOENT; 3591 goto out; 3592 } 3593 3594 if (rdtgrp->type != RDTMON_GROUP || !kn->parent || 3595 !is_mon_groups(kn->parent, kn->name)) { 3596 rdt_last_cmd_puts("Source must be a MON group\n"); 3597 ret = -EPERM; 3598 goto out; 3599 } 3600 3601 if (!is_mon_groups(new_parent, new_name)) { 3602 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n"); 3603 ret = -EPERM; 3604 goto out; 3605 } 3606 3607 /* 3608 * If the MON group is monitoring CPUs, the CPUs must be assigned to the 3609 * current parent CTRL_MON group and therefore cannot be assigned to 3610 * the new parent, making the move illegal. 3611 */ 3612 if (!cpumask_empty(&rdtgrp->cpu_mask) && 3613 rdtgrp->mon.parent != new_prdtgrp) { 3614 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n"); 3615 ret = -EPERM; 3616 goto out; 3617 } 3618 3619 /* 3620 * Allocate the cpumask for use in mongrp_reparent() to avoid the 3621 * possibility of failing to allocate it after kernfs_rename() has 3622 * succeeded. 3623 */ 3624 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) { 3625 ret = -ENOMEM; 3626 goto out; 3627 } 3628 3629 /* 3630 * Perform all input validation and allocations needed to ensure 3631 * mongrp_reparent() will succeed before calling kernfs_rename(), 3632 * otherwise it would be necessary to revert this call if 3633 * mongrp_reparent() failed. 3634 */ 3635 ret = kernfs_rename(kn, new_parent, new_name); 3636 if (!ret) 3637 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask); 3638 3639 free_cpumask_var(tmpmask); 3640 3641 out: 3642 mutex_unlock(&rdtgroup_mutex); 3643 rdtgroup_kn_put(rdtgrp, kn); 3644 rdtgroup_kn_put(new_prdtgrp, new_parent); 3645 return ret; 3646 } 3647 3648 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3649 { 3650 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 3651 seq_puts(seq, ",cdp"); 3652 3653 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 3654 seq_puts(seq, ",cdpl2"); 3655 3656 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl)) 3657 seq_puts(seq, ",mba_MBps"); 3658 3659 return 0; 3660 } 3661 3662 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3663 .mkdir = rdtgroup_mkdir, 3664 .rmdir = rdtgroup_rmdir, 3665 .rename = rdtgroup_rename, 3666 .show_options = rdtgroup_show_options, 3667 }; 3668 3669 static int __init rdtgroup_setup_root(void) 3670 { 3671 int ret; 3672 3673 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3674 KERNFS_ROOT_CREATE_DEACTIVATED | 3675 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3676 &rdtgroup_default); 3677 if (IS_ERR(rdt_root)) 3678 return PTR_ERR(rdt_root); 3679 3680 mutex_lock(&rdtgroup_mutex); 3681 3682 rdtgroup_default.closid = 0; 3683 rdtgroup_default.mon.rmid = 0; 3684 rdtgroup_default.type = RDTCTRL_GROUP; 3685 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3686 3687 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3688 3689 ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE); 3690 if (ret) { 3691 kernfs_destroy_root(rdt_root); 3692 goto out; 3693 } 3694 3695 rdtgroup_default.kn = kernfs_root_to_node(rdt_root); 3696 kernfs_activate(rdtgroup_default.kn); 3697 3698 out: 3699 mutex_unlock(&rdtgroup_mutex); 3700 3701 return ret; 3702 } 3703 3704 static void domain_destroy_mon_state(struct rdt_domain *d) 3705 { 3706 bitmap_free(d->rmid_busy_llc); 3707 kfree(d->mbm_total); 3708 kfree(d->mbm_local); 3709 } 3710 3711 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d) 3712 { 3713 lockdep_assert_held(&rdtgroup_mutex); 3714 3715 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 3716 mba_sc_domain_destroy(r, d); 3717 3718 if (!r->mon_capable) 3719 return; 3720 3721 /* 3722 * If resctrl is mounted, remove all the 3723 * per domain monitor data directories. 3724 */ 3725 if (static_branch_unlikely(&rdt_mon_enable_key)) 3726 rmdir_mondata_subdir_allrdtgrp(r, d->id); 3727 3728 if (is_mbm_enabled()) 3729 cancel_delayed_work(&d->mbm_over); 3730 if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) { 3731 /* 3732 * When a package is going down, forcefully 3733 * decrement rmid->ebusy. There is no way to know 3734 * that the L3 was flushed and hence may lead to 3735 * incorrect counts in rare scenarios, but leaving 3736 * the RMID as busy creates RMID leaks if the 3737 * package never comes back. 3738 */ 3739 __check_limbo(d, true); 3740 cancel_delayed_work(&d->cqm_limbo); 3741 } 3742 3743 domain_destroy_mon_state(d); 3744 } 3745 3746 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d) 3747 { 3748 size_t tsize; 3749 3750 if (is_llc_occupancy_enabled()) { 3751 d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL); 3752 if (!d->rmid_busy_llc) 3753 return -ENOMEM; 3754 } 3755 if (is_mbm_total_enabled()) { 3756 tsize = sizeof(*d->mbm_total); 3757 d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL); 3758 if (!d->mbm_total) { 3759 bitmap_free(d->rmid_busy_llc); 3760 return -ENOMEM; 3761 } 3762 } 3763 if (is_mbm_local_enabled()) { 3764 tsize = sizeof(*d->mbm_local); 3765 d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL); 3766 if (!d->mbm_local) { 3767 bitmap_free(d->rmid_busy_llc); 3768 kfree(d->mbm_total); 3769 return -ENOMEM; 3770 } 3771 } 3772 3773 return 0; 3774 } 3775 3776 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d) 3777 { 3778 int err; 3779 3780 lockdep_assert_held(&rdtgroup_mutex); 3781 3782 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 3783 /* RDT_RESOURCE_MBA is never mon_capable */ 3784 return mba_sc_domain_allocate(r, d); 3785 3786 if (!r->mon_capable) 3787 return 0; 3788 3789 err = domain_setup_mon_state(r, d); 3790 if (err) 3791 return err; 3792 3793 if (is_mbm_enabled()) { 3794 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); 3795 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL); 3796 } 3797 3798 if (is_llc_occupancy_enabled()) 3799 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); 3800 3801 /* If resctrl is mounted, add per domain monitor data directories. */ 3802 if (static_branch_unlikely(&rdt_mon_enable_key)) 3803 mkdir_mondata_subdir_allrdtgrp(r, d); 3804 3805 return 0; 3806 } 3807 3808 /* 3809 * rdtgroup_init - rdtgroup initialization 3810 * 3811 * Setup resctrl file system including set up root, create mount point, 3812 * register rdtgroup filesystem, and initialize files under root directory. 3813 * 3814 * Return: 0 on success or -errno 3815 */ 3816 int __init rdtgroup_init(void) 3817 { 3818 int ret = 0; 3819 3820 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3821 sizeof(last_cmd_status_buf)); 3822 3823 ret = rdtgroup_setup_root(); 3824 if (ret) 3825 return ret; 3826 3827 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3828 if (ret) 3829 goto cleanup_root; 3830 3831 ret = register_filesystem(&rdt_fs_type); 3832 if (ret) 3833 goto cleanup_mountpoint; 3834 3835 /* 3836 * Adding the resctrl debugfs directory here may not be ideal since 3837 * it would let the resctrl debugfs directory appear on the debugfs 3838 * filesystem before the resctrl filesystem is mounted. 3839 * It may also be ok since that would enable debugging of RDT before 3840 * resctrl is mounted. 3841 * The reason why the debugfs directory is created here and not in 3842 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 3843 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3844 * (the lockdep class of inode->i_rwsem). Other filesystem 3845 * interactions (eg. SyS_getdents) have the lock ordering: 3846 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 3847 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 3848 * is taken, thus creating dependency: 3849 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 3850 * issues considering the other two lock dependencies. 3851 * By creating the debugfs directory here we avoid a dependency 3852 * that may cause deadlock (even though file operations cannot 3853 * occur until the filesystem is mounted, but I do not know how to 3854 * tell lockdep that). 3855 */ 3856 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3857 3858 return 0; 3859 3860 cleanup_mountpoint: 3861 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3862 cleanup_root: 3863 kernfs_destroy_root(rdt_root); 3864 3865 return ret; 3866 } 3867 3868 void __exit rdtgroup_exit(void) 3869 { 3870 debugfs_remove_recursive(debugfs_resctrl); 3871 unregister_filesystem(&rdt_fs_type); 3872 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3873 kernfs_destroy_root(rdt_root); 3874 } 3875