1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Resource Director Technology (RDT)
4  *
5  * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6  *
7  * Copyright (C) 2018 Intel Corporation
8  *
9  * Author: Reinette Chatre <reinette.chatre@intel.com>
10  */
11 
12 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
13 
14 #include <linux/cacheinfo.h>
15 #include <linux/cpu.h>
16 #include <linux/cpumask.h>
17 #include <linux/debugfs.h>
18 #include <linux/kthread.h>
19 #include <linux/mman.h>
20 #include <linux/perf_event.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/uaccess.h>
24 
25 #include <asm/cacheflush.h>
26 #include <asm/intel-family.h>
27 #include <asm/resctrl_sched.h>
28 #include <asm/perf_event.h>
29 
30 #include "../../events/perf_event.h" /* For X86_CONFIG() */
31 #include "internal.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include "pseudo_lock_event.h"
35 
36 /*
37  * MSR_MISC_FEATURE_CONTROL register enables the modification of hardware
38  * prefetcher state. Details about this register can be found in the MSR
39  * tables for specific platforms found in Intel's SDM.
40  */
41 #define MSR_MISC_FEATURE_CONTROL	0x000001a4
42 
43 /*
44  * The bits needed to disable hardware prefetching varies based on the
45  * platform. During initialization we will discover which bits to use.
46  */
47 static u64 prefetch_disable_bits;
48 
49 /*
50  * Major number assigned to and shared by all devices exposing
51  * pseudo-locked regions.
52  */
53 static unsigned int pseudo_lock_major;
54 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
55 static struct class *pseudo_lock_class;
56 
57 /**
58  * get_prefetch_disable_bits - prefetch disable bits of supported platforms
59  *
60  * Capture the list of platforms that have been validated to support
61  * pseudo-locking. This includes testing to ensure pseudo-locked regions
62  * with low cache miss rates can be created under variety of load conditions
63  * as well as that these pseudo-locked regions can maintain their low cache
64  * miss rates under variety of load conditions for significant lengths of time.
65  *
66  * After a platform has been validated to support pseudo-locking its
67  * hardware prefetch disable bits are included here as they are documented
68  * in the SDM.
69  *
70  * When adding a platform here also add support for its cache events to
71  * measure_cycles_perf_fn()
72  *
73  * Return:
74  * If platform is supported, the bits to disable hardware prefetchers, 0
75  * if platform is not supported.
76  */
77 static u64 get_prefetch_disable_bits(void)
78 {
79 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
80 	    boot_cpu_data.x86 != 6)
81 		return 0;
82 
83 	switch (boot_cpu_data.x86_model) {
84 	case INTEL_FAM6_BROADWELL_X:
85 		/*
86 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
87 		 * as:
88 		 * 0    L2 Hardware Prefetcher Disable (R/W)
89 		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
90 		 * 2    DCU Hardware Prefetcher Disable (R/W)
91 		 * 3    DCU IP Prefetcher Disable (R/W)
92 		 * 63:4 Reserved
93 		 */
94 		return 0xF;
95 	case INTEL_FAM6_ATOM_GOLDMONT:
96 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
97 		/*
98 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
99 		 * as:
100 		 * 0     L2 Hardware Prefetcher Disable (R/W)
101 		 * 1     Reserved
102 		 * 2     DCU Hardware Prefetcher Disable (R/W)
103 		 * 63:3  Reserved
104 		 */
105 		return 0x5;
106 	}
107 
108 	return 0;
109 }
110 
111 /**
112  * pseudo_lock_minor_get - Obtain available minor number
113  * @minor: Pointer to where new minor number will be stored
114  *
115  * A bitmask is used to track available minor numbers. Here the next free
116  * minor number is marked as unavailable and returned.
117  *
118  * Return: 0 on success, <0 on failure.
119  */
120 static int pseudo_lock_minor_get(unsigned int *minor)
121 {
122 	unsigned long first_bit;
123 
124 	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
125 
126 	if (first_bit == MINORBITS)
127 		return -ENOSPC;
128 
129 	__clear_bit(first_bit, &pseudo_lock_minor_avail);
130 	*minor = first_bit;
131 
132 	return 0;
133 }
134 
135 /**
136  * pseudo_lock_minor_release - Return minor number to available
137  * @minor: The minor number made available
138  */
139 static void pseudo_lock_minor_release(unsigned int minor)
140 {
141 	__set_bit(minor, &pseudo_lock_minor_avail);
142 }
143 
144 /**
145  * region_find_by_minor - Locate a pseudo-lock region by inode minor number
146  * @minor: The minor number of the device representing pseudo-locked region
147  *
148  * When the character device is accessed we need to determine which
149  * pseudo-locked region it belongs to. This is done by matching the minor
150  * number of the device to the pseudo-locked region it belongs.
151  *
152  * Minor numbers are assigned at the time a pseudo-locked region is associated
153  * with a cache instance.
154  *
155  * Return: On success return pointer to resource group owning the pseudo-locked
156  *         region, NULL on failure.
157  */
158 static struct rdtgroup *region_find_by_minor(unsigned int minor)
159 {
160 	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
161 
162 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
163 		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
164 			rdtgrp_match = rdtgrp;
165 			break;
166 		}
167 	}
168 	return rdtgrp_match;
169 }
170 
171 /**
172  * pseudo_lock_pm_req - A power management QoS request list entry
173  * @list:	Entry within the @pm_reqs list for a pseudo-locked region
174  * @req:	PM QoS request
175  */
176 struct pseudo_lock_pm_req {
177 	struct list_head list;
178 	struct dev_pm_qos_request req;
179 };
180 
181 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
182 {
183 	struct pseudo_lock_pm_req *pm_req, *next;
184 
185 	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
186 		dev_pm_qos_remove_request(&pm_req->req);
187 		list_del(&pm_req->list);
188 		kfree(pm_req);
189 	}
190 }
191 
192 /**
193  * pseudo_lock_cstates_constrain - Restrict cores from entering C6
194  *
195  * To prevent the cache from being affected by power management entering
196  * C6 has to be avoided. This is accomplished by requesting a latency
197  * requirement lower than lowest C6 exit latency of all supported
198  * platforms as found in the cpuidle state tables in the intel_idle driver.
199  * At this time it is possible to do so with a single latency requirement
200  * for all supported platforms.
201  *
202  * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
203  * the ACPI latencies need to be considered while keeping in mind that C2
204  * may be set to map to deeper sleep states. In this case the latency
205  * requirement needs to prevent entering C2 also.
206  */
207 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
208 {
209 	struct pseudo_lock_pm_req *pm_req;
210 	int cpu;
211 	int ret;
212 
213 	for_each_cpu(cpu, &plr->d->cpu_mask) {
214 		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
215 		if (!pm_req) {
216 			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
217 			ret = -ENOMEM;
218 			goto out_err;
219 		}
220 		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
221 					     &pm_req->req,
222 					     DEV_PM_QOS_RESUME_LATENCY,
223 					     30);
224 		if (ret < 0) {
225 			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
226 					    cpu);
227 			kfree(pm_req);
228 			ret = -1;
229 			goto out_err;
230 		}
231 		list_add(&pm_req->list, &plr->pm_reqs);
232 	}
233 
234 	return 0;
235 
236 out_err:
237 	pseudo_lock_cstates_relax(plr);
238 	return ret;
239 }
240 
241 /**
242  * pseudo_lock_region_clear - Reset pseudo-lock region data
243  * @plr: pseudo-lock region
244  *
245  * All content of the pseudo-locked region is reset - any memory allocated
246  * freed.
247  *
248  * Return: void
249  */
250 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
251 {
252 	plr->size = 0;
253 	plr->line_size = 0;
254 	kfree(plr->kmem);
255 	plr->kmem = NULL;
256 	plr->r = NULL;
257 	if (plr->d)
258 		plr->d->plr = NULL;
259 	plr->d = NULL;
260 	plr->cbm = 0;
261 	plr->debugfs_dir = NULL;
262 }
263 
264 /**
265  * pseudo_lock_region_init - Initialize pseudo-lock region information
266  * @plr: pseudo-lock region
267  *
268  * Called after user provided a schemata to be pseudo-locked. From the
269  * schemata the &struct pseudo_lock_region is on entry already initialized
270  * with the resource, domain, and capacity bitmask. Here the information
271  * required for pseudo-locking is deduced from this data and &struct
272  * pseudo_lock_region initialized further. This information includes:
273  * - size in bytes of the region to be pseudo-locked
274  * - cache line size to know the stride with which data needs to be accessed
275  *   to be pseudo-locked
276  * - a cpu associated with the cache instance on which the pseudo-locking
277  *   flow can be executed
278  *
279  * Return: 0 on success, <0 on failure. Descriptive error will be written
280  * to last_cmd_status buffer.
281  */
282 static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
283 {
284 	struct cpu_cacheinfo *ci;
285 	int ret;
286 	int i;
287 
288 	/* Pick the first cpu we find that is associated with the cache. */
289 	plr->cpu = cpumask_first(&plr->d->cpu_mask);
290 
291 	if (!cpu_online(plr->cpu)) {
292 		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
293 				    plr->cpu);
294 		ret = -ENODEV;
295 		goto out_region;
296 	}
297 
298 	ci = get_cpu_cacheinfo(plr->cpu);
299 
300 	plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
301 
302 	for (i = 0; i < ci->num_leaves; i++) {
303 		if (ci->info_list[i].level == plr->r->cache_level) {
304 			plr->line_size = ci->info_list[i].coherency_line_size;
305 			return 0;
306 		}
307 	}
308 
309 	ret = -1;
310 	rdt_last_cmd_puts("Unable to determine cache line size\n");
311 out_region:
312 	pseudo_lock_region_clear(plr);
313 	return ret;
314 }
315 
316 /**
317  * pseudo_lock_init - Initialize a pseudo-lock region
318  * @rdtgrp: resource group to which new pseudo-locked region will belong
319  *
320  * A pseudo-locked region is associated with a resource group. When this
321  * association is created the pseudo-locked region is initialized. The
322  * details of the pseudo-locked region are not known at this time so only
323  * allocation is done and association established.
324  *
325  * Return: 0 on success, <0 on failure
326  */
327 static int pseudo_lock_init(struct rdtgroup *rdtgrp)
328 {
329 	struct pseudo_lock_region *plr;
330 
331 	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
332 	if (!plr)
333 		return -ENOMEM;
334 
335 	init_waitqueue_head(&plr->lock_thread_wq);
336 	INIT_LIST_HEAD(&plr->pm_reqs);
337 	rdtgrp->plr = plr;
338 	return 0;
339 }
340 
341 /**
342  * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
343  * @plr: pseudo-lock region
344  *
345  * Initialize the details required to set up the pseudo-locked region and
346  * allocate the contiguous memory that will be pseudo-locked to the cache.
347  *
348  * Return: 0 on success, <0 on failure.  Descriptive error will be written
349  * to last_cmd_status buffer.
350  */
351 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
352 {
353 	int ret;
354 
355 	ret = pseudo_lock_region_init(plr);
356 	if (ret < 0)
357 		return ret;
358 
359 	/*
360 	 * We do not yet support contiguous regions larger than
361 	 * KMALLOC_MAX_SIZE.
362 	 */
363 	if (plr->size > KMALLOC_MAX_SIZE) {
364 		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
365 		ret = -E2BIG;
366 		goto out_region;
367 	}
368 
369 	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
370 	if (!plr->kmem) {
371 		rdt_last_cmd_puts("Unable to allocate memory\n");
372 		ret = -ENOMEM;
373 		goto out_region;
374 	}
375 
376 	ret = 0;
377 	goto out;
378 out_region:
379 	pseudo_lock_region_clear(plr);
380 out:
381 	return ret;
382 }
383 
384 /**
385  * pseudo_lock_free - Free a pseudo-locked region
386  * @rdtgrp: resource group to which pseudo-locked region belonged
387  *
388  * The pseudo-locked region's resources have already been released, or not
389  * yet created at this point. Now it can be freed and disassociated from the
390  * resource group.
391  *
392  * Return: void
393  */
394 static void pseudo_lock_free(struct rdtgroup *rdtgrp)
395 {
396 	pseudo_lock_region_clear(rdtgrp->plr);
397 	kfree(rdtgrp->plr);
398 	rdtgrp->plr = NULL;
399 }
400 
401 /**
402  * pseudo_lock_fn - Load kernel memory into cache
403  * @_rdtgrp: resource group to which pseudo-lock region belongs
404  *
405  * This is the core pseudo-locking flow.
406  *
407  * First we ensure that the kernel memory cannot be found in the cache.
408  * Then, while taking care that there will be as little interference as
409  * possible, the memory to be loaded is accessed while core is running
410  * with class of service set to the bitmask of the pseudo-locked region.
411  * After this is complete no future CAT allocations will be allowed to
412  * overlap with this bitmask.
413  *
414  * Local register variables are utilized to ensure that the memory region
415  * to be locked is the only memory access made during the critical locking
416  * loop.
417  *
418  * Return: 0. Waiter on waitqueue will be woken on completion.
419  */
420 static int pseudo_lock_fn(void *_rdtgrp)
421 {
422 	struct rdtgroup *rdtgrp = _rdtgrp;
423 	struct pseudo_lock_region *plr = rdtgrp->plr;
424 	u32 rmid_p, closid_p;
425 	unsigned long i;
426 #ifdef CONFIG_KASAN
427 	/*
428 	 * The registers used for local register variables are also used
429 	 * when KASAN is active. When KASAN is active we use a regular
430 	 * variable to ensure we always use a valid pointer, but the cost
431 	 * is that this variable will enter the cache through evicting the
432 	 * memory we are trying to lock into the cache. Thus expect lower
433 	 * pseudo-locking success rate when KASAN is active.
434 	 */
435 	unsigned int line_size;
436 	unsigned int size;
437 	void *mem_r;
438 #else
439 	register unsigned int line_size asm("esi");
440 	register unsigned int size asm("edi");
441 #ifdef CONFIG_X86_64
442 	register void *mem_r asm("rbx");
443 #else
444 	register void *mem_r asm("ebx");
445 #endif /* CONFIG_X86_64 */
446 #endif /* CONFIG_KASAN */
447 
448 	/*
449 	 * Make sure none of the allocated memory is cached. If it is we
450 	 * will get a cache hit in below loop from outside of pseudo-locked
451 	 * region.
452 	 * wbinvd (as opposed to clflush/clflushopt) is required to
453 	 * increase likelihood that allocated cache portion will be filled
454 	 * with associated memory.
455 	 */
456 	native_wbinvd();
457 
458 	/*
459 	 * Always called with interrupts enabled. By disabling interrupts
460 	 * ensure that we will not be preempted during this critical section.
461 	 */
462 	local_irq_disable();
463 
464 	/*
465 	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
466 	 * clobbering local register variables or affecting cache accesses.
467 	 *
468 	 * Disable the hardware prefetcher so that when the end of the memory
469 	 * being pseudo-locked is reached the hardware will not read beyond
470 	 * the buffer and evict pseudo-locked memory read earlier from the
471 	 * cache.
472 	 */
473 	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
474 	closid_p = this_cpu_read(pqr_state.cur_closid);
475 	rmid_p = this_cpu_read(pqr_state.cur_rmid);
476 	mem_r = plr->kmem;
477 	size = plr->size;
478 	line_size = plr->line_size;
479 	/*
480 	 * Critical section begin: start by writing the closid associated
481 	 * with the capacity bitmask of the cache region being
482 	 * pseudo-locked followed by reading of kernel memory to load it
483 	 * into the cache.
484 	 */
485 	__wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
486 	/*
487 	 * Cache was flushed earlier. Now access kernel memory to read it
488 	 * into cache region associated with just activated plr->closid.
489 	 * Loop over data twice:
490 	 * - In first loop the cache region is shared with the page walker
491 	 *   as it populates the paging structure caches (including TLB).
492 	 * - In the second loop the paging structure caches are used and
493 	 *   cache region is populated with the memory being referenced.
494 	 */
495 	for (i = 0; i < size; i += PAGE_SIZE) {
496 		/*
497 		 * Add a barrier to prevent speculative execution of this
498 		 * loop reading beyond the end of the buffer.
499 		 */
500 		rmb();
501 		asm volatile("mov (%0,%1,1), %%eax\n\t"
502 			:
503 			: "r" (mem_r), "r" (i)
504 			: "%eax", "memory");
505 	}
506 	for (i = 0; i < size; i += line_size) {
507 		/*
508 		 * Add a barrier to prevent speculative execution of this
509 		 * loop reading beyond the end of the buffer.
510 		 */
511 		rmb();
512 		asm volatile("mov (%0,%1,1), %%eax\n\t"
513 			:
514 			: "r" (mem_r), "r" (i)
515 			: "%eax", "memory");
516 	}
517 	/*
518 	 * Critical section end: restore closid with capacity bitmask that
519 	 * does not overlap with pseudo-locked region.
520 	 */
521 	__wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
522 
523 	/* Re-enable the hardware prefetcher(s) */
524 	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
525 	local_irq_enable();
526 
527 	plr->thread_done = 1;
528 	wake_up_interruptible(&plr->lock_thread_wq);
529 	return 0;
530 }
531 
532 /**
533  * rdtgroup_monitor_in_progress - Test if monitoring in progress
534  * @r: resource group being queried
535  *
536  * Return: 1 if monitor groups have been created for this resource
537  * group, 0 otherwise.
538  */
539 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
540 {
541 	return !list_empty(&rdtgrp->mon.crdtgrp_list);
542 }
543 
544 /**
545  * rdtgroup_locksetup_user_restrict - Restrict user access to group
546  * @rdtgrp: resource group needing access restricted
547  *
548  * A resource group used for cache pseudo-locking cannot have cpus or tasks
549  * assigned to it. This is communicated to the user by restricting access
550  * to all the files that can be used to make such changes.
551  *
552  * Permissions restored with rdtgroup_locksetup_user_restore()
553  *
554  * Return: 0 on success, <0 on failure. If a failure occurs during the
555  * restriction of access an attempt will be made to restore permissions but
556  * the state of the mode of these files will be uncertain when a failure
557  * occurs.
558  */
559 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
560 {
561 	int ret;
562 
563 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
564 	if (ret)
565 		return ret;
566 
567 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
568 	if (ret)
569 		goto err_tasks;
570 
571 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
572 	if (ret)
573 		goto err_cpus;
574 
575 	if (rdt_mon_capable) {
576 		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
577 		if (ret)
578 			goto err_cpus_list;
579 	}
580 
581 	ret = 0;
582 	goto out;
583 
584 err_cpus_list:
585 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
586 err_cpus:
587 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
588 err_tasks:
589 	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
590 out:
591 	return ret;
592 }
593 
594 /**
595  * rdtgroup_locksetup_user_restore - Restore user access to group
596  * @rdtgrp: resource group needing access restored
597  *
598  * Restore all file access previously removed using
599  * rdtgroup_locksetup_user_restrict()
600  *
601  * Return: 0 on success, <0 on failure.  If a failure occurs during the
602  * restoration of access an attempt will be made to restrict permissions
603  * again but the state of the mode of these files will be uncertain when
604  * a failure occurs.
605  */
606 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
607 {
608 	int ret;
609 
610 	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
611 	if (ret)
612 		return ret;
613 
614 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
615 	if (ret)
616 		goto err_tasks;
617 
618 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
619 	if (ret)
620 		goto err_cpus;
621 
622 	if (rdt_mon_capable) {
623 		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
624 		if (ret)
625 			goto err_cpus_list;
626 	}
627 
628 	ret = 0;
629 	goto out;
630 
631 err_cpus_list:
632 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
633 err_cpus:
634 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
635 err_tasks:
636 	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
637 out:
638 	return ret;
639 }
640 
641 /**
642  * rdtgroup_locksetup_enter - Resource group enters locksetup mode
643  * @rdtgrp: resource group requested to enter locksetup mode
644  *
645  * A resource group enters locksetup mode to reflect that it would be used
646  * to represent a pseudo-locked region and is in the process of being set
647  * up to do so. A resource group used for a pseudo-locked region would
648  * lose the closid associated with it so we cannot allow it to have any
649  * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
650  * future. Monitoring of a pseudo-locked region is not allowed either.
651  *
652  * The above and more restrictions on a pseudo-locked region are checked
653  * for and enforced before the resource group enters the locksetup mode.
654  *
655  * Returns: 0 if the resource group successfully entered locksetup mode, <0
656  * on failure. On failure the last_cmd_status buffer is updated with text to
657  * communicate details of failure to the user.
658  */
659 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
660 {
661 	int ret;
662 
663 	/*
664 	 * The default resource group can neither be removed nor lose the
665 	 * default closid associated with it.
666 	 */
667 	if (rdtgrp == &rdtgroup_default) {
668 		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
669 		return -EINVAL;
670 	}
671 
672 	/*
673 	 * Cache Pseudo-locking not supported when CDP is enabled.
674 	 *
675 	 * Some things to consider if you would like to enable this
676 	 * support (using L3 CDP as example):
677 	 * - When CDP is enabled two separate resources are exposed,
678 	 *   L3DATA and L3CODE, but they are actually on the same cache.
679 	 *   The implication for pseudo-locking is that if a
680 	 *   pseudo-locked region is created on a domain of one
681 	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
682 	 *   be created on that same domain of the other resource
683 	 *   (eg. L3DATA). This is because the creation of a
684 	 *   pseudo-locked region involves a call to wbinvd that will
685 	 *   affect all cache allocations on particular domain.
686 	 * - Considering the previous, it may be possible to only
687 	 *   expose one of the CDP resources to pseudo-locking and
688 	 *   hide the other. For example, we could consider to only
689 	 *   expose L3DATA and since the L3 cache is unified it is
690 	 *   still possible to place instructions there are execute it.
691 	 * - If only one region is exposed to pseudo-locking we should
692 	 *   still keep in mind that availability of a portion of cache
693 	 *   for pseudo-locking should take into account both resources.
694 	 *   Similarly, if a pseudo-locked region is created in one
695 	 *   resource, the portion of cache used by it should be made
696 	 *   unavailable to all future allocations from both resources.
697 	 */
698 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
699 	    rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
700 		rdt_last_cmd_puts("CDP enabled\n");
701 		return -EINVAL;
702 	}
703 
704 	/*
705 	 * Not knowing the bits to disable prefetching implies that this
706 	 * platform does not support Cache Pseudo-Locking.
707 	 */
708 	prefetch_disable_bits = get_prefetch_disable_bits();
709 	if (prefetch_disable_bits == 0) {
710 		rdt_last_cmd_puts("Pseudo-locking not supported\n");
711 		return -EINVAL;
712 	}
713 
714 	if (rdtgroup_monitor_in_progress(rdtgrp)) {
715 		rdt_last_cmd_puts("Monitoring in progress\n");
716 		return -EINVAL;
717 	}
718 
719 	if (rdtgroup_tasks_assigned(rdtgrp)) {
720 		rdt_last_cmd_puts("Tasks assigned to resource group\n");
721 		return -EINVAL;
722 	}
723 
724 	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
725 		rdt_last_cmd_puts("CPUs assigned to resource group\n");
726 		return -EINVAL;
727 	}
728 
729 	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
730 		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
731 		return -EIO;
732 	}
733 
734 	ret = pseudo_lock_init(rdtgrp);
735 	if (ret) {
736 		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
737 		goto out_release;
738 	}
739 
740 	/*
741 	 * If this system is capable of monitoring a rmid would have been
742 	 * allocated when the control group was created. This is not needed
743 	 * anymore when this group would be used for pseudo-locking. This
744 	 * is safe to call on platforms not capable of monitoring.
745 	 */
746 	free_rmid(rdtgrp->mon.rmid);
747 
748 	ret = 0;
749 	goto out;
750 
751 out_release:
752 	rdtgroup_locksetup_user_restore(rdtgrp);
753 out:
754 	return ret;
755 }
756 
757 /**
758  * rdtgroup_locksetup_exit - resource group exist locksetup mode
759  * @rdtgrp: resource group
760  *
761  * When a resource group exits locksetup mode the earlier restrictions are
762  * lifted.
763  *
764  * Return: 0 on success, <0 on failure
765  */
766 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
767 {
768 	int ret;
769 
770 	if (rdt_mon_capable) {
771 		ret = alloc_rmid();
772 		if (ret < 0) {
773 			rdt_last_cmd_puts("Out of RMIDs\n");
774 			return ret;
775 		}
776 		rdtgrp->mon.rmid = ret;
777 	}
778 
779 	ret = rdtgroup_locksetup_user_restore(rdtgrp);
780 	if (ret) {
781 		free_rmid(rdtgrp->mon.rmid);
782 		return ret;
783 	}
784 
785 	pseudo_lock_free(rdtgrp);
786 	return 0;
787 }
788 
789 /**
790  * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
791  * @d: RDT domain
792  * @cbm: CBM to test
793  *
794  * @d represents a cache instance and @cbm a capacity bitmask that is
795  * considered for it. Determine if @cbm overlaps with any existing
796  * pseudo-locked region on @d.
797  *
798  * @cbm is unsigned long, even if only 32 bits are used, to make the
799  * bitmap functions work correctly.
800  *
801  * Return: true if @cbm overlaps with pseudo-locked region on @d, false
802  * otherwise.
803  */
804 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
805 {
806 	unsigned int cbm_len;
807 	unsigned long cbm_b;
808 
809 	if (d->plr) {
810 		cbm_len = d->plr->r->cache.cbm_len;
811 		cbm_b = d->plr->cbm;
812 		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
813 			return true;
814 	}
815 	return false;
816 }
817 
818 /**
819  * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
820  * @d: RDT domain under test
821  *
822  * The setup of a pseudo-locked region affects all cache instances within
823  * the hierarchy of the region. It is thus essential to know if any
824  * pseudo-locked regions exist within a cache hierarchy to prevent any
825  * attempts to create new pseudo-locked regions in the same hierarchy.
826  *
827  * Return: true if a pseudo-locked region exists in the hierarchy of @d or
828  *         if it is not possible to test due to memory allocation issue,
829  *         false otherwise.
830  */
831 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
832 {
833 	cpumask_var_t cpu_with_psl;
834 	struct rdt_resource *r;
835 	struct rdt_domain *d_i;
836 	bool ret = false;
837 
838 	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
839 		return true;
840 
841 	/*
842 	 * First determine which cpus have pseudo-locked regions
843 	 * associated with them.
844 	 */
845 	for_each_alloc_enabled_rdt_resource(r) {
846 		list_for_each_entry(d_i, &r->domains, list) {
847 			if (d_i->plr)
848 				cpumask_or(cpu_with_psl, cpu_with_psl,
849 					   &d_i->cpu_mask);
850 		}
851 	}
852 
853 	/*
854 	 * Next test if new pseudo-locked region would intersect with
855 	 * existing region.
856 	 */
857 	if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
858 		ret = true;
859 
860 	free_cpumask_var(cpu_with_psl);
861 	return ret;
862 }
863 
864 /**
865  * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
866  * @_plr: pseudo-lock region to measure
867  *
868  * There is no deterministic way to test if a memory region is cached. One
869  * way is to measure how long it takes to read the memory, the speed of
870  * access is a good way to learn how close to the cpu the data was. Even
871  * more, if the prefetcher is disabled and the memory is read at a stride
872  * of half the cache line, then a cache miss will be easy to spot since the
873  * read of the first half would be significantly slower than the read of
874  * the second half.
875  *
876  * Return: 0. Waiter on waitqueue will be woken on completion.
877  */
878 static int measure_cycles_lat_fn(void *_plr)
879 {
880 	struct pseudo_lock_region *plr = _plr;
881 	unsigned long i;
882 	u64 start, end;
883 	void *mem_r;
884 
885 	local_irq_disable();
886 	/*
887 	 * Disable hardware prefetchers.
888 	 */
889 	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
890 	mem_r = READ_ONCE(plr->kmem);
891 	/*
892 	 * Dummy execute of the time measurement to load the needed
893 	 * instructions into the L1 instruction cache.
894 	 */
895 	start = rdtsc_ordered();
896 	for (i = 0; i < plr->size; i += 32) {
897 		start = rdtsc_ordered();
898 		asm volatile("mov (%0,%1,1), %%eax\n\t"
899 			     :
900 			     : "r" (mem_r), "r" (i)
901 			     : "%eax", "memory");
902 		end = rdtsc_ordered();
903 		trace_pseudo_lock_mem_latency((u32)(end - start));
904 	}
905 	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
906 	local_irq_enable();
907 	plr->thread_done = 1;
908 	wake_up_interruptible(&plr->lock_thread_wq);
909 	return 0;
910 }
911 
912 /*
913  * Create a perf_event_attr for the hit and miss perf events that will
914  * be used during the performance measurement. A perf_event maintains
915  * a pointer to its perf_event_attr so a unique attribute structure is
916  * created for each perf_event.
917  *
918  * The actual configuration of the event is set right before use in order
919  * to use the X86_CONFIG macro.
920  */
921 static struct perf_event_attr perf_miss_attr = {
922 	.type		= PERF_TYPE_RAW,
923 	.size		= sizeof(struct perf_event_attr),
924 	.pinned		= 1,
925 	.disabled	= 0,
926 	.exclude_user	= 1,
927 };
928 
929 static struct perf_event_attr perf_hit_attr = {
930 	.type		= PERF_TYPE_RAW,
931 	.size		= sizeof(struct perf_event_attr),
932 	.pinned		= 1,
933 	.disabled	= 0,
934 	.exclude_user	= 1,
935 };
936 
937 struct residency_counts {
938 	u64 miss_before, hits_before;
939 	u64 miss_after,  hits_after;
940 };
941 
942 static int measure_residency_fn(struct perf_event_attr *miss_attr,
943 				struct perf_event_attr *hit_attr,
944 				struct pseudo_lock_region *plr,
945 				struct residency_counts *counts)
946 {
947 	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
948 	struct perf_event *miss_event, *hit_event;
949 	int hit_pmcnum, miss_pmcnum;
950 	unsigned int line_size;
951 	unsigned int size;
952 	unsigned long i;
953 	void *mem_r;
954 	u64 tmp;
955 
956 	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
957 						      NULL, NULL, NULL);
958 	if (IS_ERR(miss_event))
959 		goto out;
960 
961 	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
962 						     NULL, NULL, NULL);
963 	if (IS_ERR(hit_event))
964 		goto out_miss;
965 
966 	local_irq_disable();
967 	/*
968 	 * Check any possible error state of events used by performing
969 	 * one local read.
970 	 */
971 	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
972 		local_irq_enable();
973 		goto out_hit;
974 	}
975 	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
976 		local_irq_enable();
977 		goto out_hit;
978 	}
979 
980 	/*
981 	 * Disable hardware prefetchers.
982 	 */
983 	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
984 
985 	/* Initialize rest of local variables */
986 	/*
987 	 * Performance event has been validated right before this with
988 	 * interrupts disabled - it is thus safe to read the counter index.
989 	 */
990 	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
991 	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
992 	line_size = READ_ONCE(plr->line_size);
993 	mem_r = READ_ONCE(plr->kmem);
994 	size = READ_ONCE(plr->size);
995 
996 	/*
997 	 * Read counter variables twice - first to load the instructions
998 	 * used in L1 cache, second to capture accurate value that does not
999 	 * include cache misses incurred because of instruction loads.
1000 	 */
1001 	rdpmcl(hit_pmcnum, hits_before);
1002 	rdpmcl(miss_pmcnum, miss_before);
1003 	/*
1004 	 * From SDM: Performing back-to-back fast reads are not guaranteed
1005 	 * to be monotonic.
1006 	 * Use LFENCE to ensure all previous instructions are retired
1007 	 * before proceeding.
1008 	 */
1009 	rmb();
1010 	rdpmcl(hit_pmcnum, hits_before);
1011 	rdpmcl(miss_pmcnum, miss_before);
1012 	/*
1013 	 * Use LFENCE to ensure all previous instructions are retired
1014 	 * before proceeding.
1015 	 */
1016 	rmb();
1017 	for (i = 0; i < size; i += line_size) {
1018 		/*
1019 		 * Add a barrier to prevent speculative execution of this
1020 		 * loop reading beyond the end of the buffer.
1021 		 */
1022 		rmb();
1023 		asm volatile("mov (%0,%1,1), %%eax\n\t"
1024 			     :
1025 			     : "r" (mem_r), "r" (i)
1026 			     : "%eax", "memory");
1027 	}
1028 	/*
1029 	 * Use LFENCE to ensure all previous instructions are retired
1030 	 * before proceeding.
1031 	 */
1032 	rmb();
1033 	rdpmcl(hit_pmcnum, hits_after);
1034 	rdpmcl(miss_pmcnum, miss_after);
1035 	/*
1036 	 * Use LFENCE to ensure all previous instructions are retired
1037 	 * before proceeding.
1038 	 */
1039 	rmb();
1040 	/* Re-enable hardware prefetchers */
1041 	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
1042 	local_irq_enable();
1043 out_hit:
1044 	perf_event_release_kernel(hit_event);
1045 out_miss:
1046 	perf_event_release_kernel(miss_event);
1047 out:
1048 	/*
1049 	 * All counts will be zero on failure.
1050 	 */
1051 	counts->miss_before = miss_before;
1052 	counts->hits_before = hits_before;
1053 	counts->miss_after  = miss_after;
1054 	counts->hits_after  = hits_after;
1055 	return 0;
1056 }
1057 
1058 static int measure_l2_residency(void *_plr)
1059 {
1060 	struct pseudo_lock_region *plr = _plr;
1061 	struct residency_counts counts = {0};
1062 
1063 	/*
1064 	 * Non-architectural event for the Goldmont Microarchitecture
1065 	 * from Intel x86 Architecture Software Developer Manual (SDM):
1066 	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1067 	 * Umask values:
1068 	 *     L2_HIT   02H
1069 	 *     L2_MISS  10H
1070 	 */
1071 	switch (boot_cpu_data.x86_model) {
1072 	case INTEL_FAM6_ATOM_GOLDMONT:
1073 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1074 		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1075 						   .umask = 0x10);
1076 		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1077 						  .umask = 0x2);
1078 		break;
1079 	default:
1080 		goto out;
1081 	}
1082 
1083 	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1084 	/*
1085 	 * If a failure prevented the measurements from succeeding
1086 	 * tracepoints will still be written and all counts will be zero.
1087 	 */
1088 	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1089 			     counts.miss_after - counts.miss_before);
1090 out:
1091 	plr->thread_done = 1;
1092 	wake_up_interruptible(&plr->lock_thread_wq);
1093 	return 0;
1094 }
1095 
1096 static int measure_l3_residency(void *_plr)
1097 {
1098 	struct pseudo_lock_region *plr = _plr;
1099 	struct residency_counts counts = {0};
1100 
1101 	/*
1102 	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1103 	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1104 	 * this platform the following events are used instead:
1105 	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1106 	 *       REFERENCE 4FH
1107 	 *       MISS      41H
1108 	 */
1109 
1110 	switch (boot_cpu_data.x86_model) {
1111 	case INTEL_FAM6_BROADWELL_X:
1112 		/* On BDW the hit event counts references, not hits */
1113 		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1114 						  .umask = 0x4f);
1115 		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1116 						   .umask = 0x41);
1117 		break;
1118 	default:
1119 		goto out;
1120 	}
1121 
1122 	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1123 	/*
1124 	 * If a failure prevented the measurements from succeeding
1125 	 * tracepoints will still be written and all counts will be zero.
1126 	 */
1127 
1128 	counts.miss_after -= counts.miss_before;
1129 	if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1130 		/*
1131 		 * On BDW references and misses are counted, need to adjust.
1132 		 * Sometimes the "hits" counter is a bit more than the
1133 		 * references, for example, x references but x + 1 hits.
1134 		 * To not report invalid hit values in this case we treat
1135 		 * that as misses equal to references.
1136 		 */
1137 		/* First compute the number of cache references measured */
1138 		counts.hits_after -= counts.hits_before;
1139 		/* Next convert references to cache hits */
1140 		counts.hits_after -= min(counts.miss_after, counts.hits_after);
1141 	} else {
1142 		counts.hits_after -= counts.hits_before;
1143 	}
1144 
1145 	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1146 out:
1147 	plr->thread_done = 1;
1148 	wake_up_interruptible(&plr->lock_thread_wq);
1149 	return 0;
1150 }
1151 
1152 /**
1153  * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1154  *
1155  * The measurement of latency to access a pseudo-locked region should be
1156  * done from a cpu that is associated with that pseudo-locked region.
1157  * Determine which cpu is associated with this region and start a thread on
1158  * that cpu to perform the measurement, wait for that thread to complete.
1159  *
1160  * Return: 0 on success, <0 on failure
1161  */
1162 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1163 {
1164 	struct pseudo_lock_region *plr = rdtgrp->plr;
1165 	struct task_struct *thread;
1166 	unsigned int cpu;
1167 	int ret = -1;
1168 
1169 	cpus_read_lock();
1170 	mutex_lock(&rdtgroup_mutex);
1171 
1172 	if (rdtgrp->flags & RDT_DELETED) {
1173 		ret = -ENODEV;
1174 		goto out;
1175 	}
1176 
1177 	if (!plr->d) {
1178 		ret = -ENODEV;
1179 		goto out;
1180 	}
1181 
1182 	plr->thread_done = 0;
1183 	cpu = cpumask_first(&plr->d->cpu_mask);
1184 	if (!cpu_online(cpu)) {
1185 		ret = -ENODEV;
1186 		goto out;
1187 	}
1188 
1189 	plr->cpu = cpu;
1190 
1191 	if (sel == 1)
1192 		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1193 						cpu_to_node(cpu),
1194 						"pseudo_lock_measure/%u",
1195 						cpu);
1196 	else if (sel == 2)
1197 		thread = kthread_create_on_node(measure_l2_residency, plr,
1198 						cpu_to_node(cpu),
1199 						"pseudo_lock_measure/%u",
1200 						cpu);
1201 	else if (sel == 3)
1202 		thread = kthread_create_on_node(measure_l3_residency, plr,
1203 						cpu_to_node(cpu),
1204 						"pseudo_lock_measure/%u",
1205 						cpu);
1206 	else
1207 		goto out;
1208 
1209 	if (IS_ERR(thread)) {
1210 		ret = PTR_ERR(thread);
1211 		goto out;
1212 	}
1213 	kthread_bind(thread, cpu);
1214 	wake_up_process(thread);
1215 
1216 	ret = wait_event_interruptible(plr->lock_thread_wq,
1217 				       plr->thread_done == 1);
1218 	if (ret < 0)
1219 		goto out;
1220 
1221 	ret = 0;
1222 
1223 out:
1224 	mutex_unlock(&rdtgroup_mutex);
1225 	cpus_read_unlock();
1226 	return ret;
1227 }
1228 
1229 static ssize_t pseudo_lock_measure_trigger(struct file *file,
1230 					   const char __user *user_buf,
1231 					   size_t count, loff_t *ppos)
1232 {
1233 	struct rdtgroup *rdtgrp = file->private_data;
1234 	size_t buf_size;
1235 	char buf[32];
1236 	int ret;
1237 	int sel;
1238 
1239 	buf_size = min(count, (sizeof(buf) - 1));
1240 	if (copy_from_user(buf, user_buf, buf_size))
1241 		return -EFAULT;
1242 
1243 	buf[buf_size] = '\0';
1244 	ret = kstrtoint(buf, 10, &sel);
1245 	if (ret == 0) {
1246 		if (sel != 1 && sel != 2 && sel != 3)
1247 			return -EINVAL;
1248 		ret = debugfs_file_get(file->f_path.dentry);
1249 		if (ret)
1250 			return ret;
1251 		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1252 		if (ret == 0)
1253 			ret = count;
1254 		debugfs_file_put(file->f_path.dentry);
1255 	}
1256 
1257 	return ret;
1258 }
1259 
1260 static const struct file_operations pseudo_measure_fops = {
1261 	.write = pseudo_lock_measure_trigger,
1262 	.open = simple_open,
1263 	.llseek = default_llseek,
1264 };
1265 
1266 /**
1267  * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1268  * @rdtgrp: resource group to which pseudo-lock region belongs
1269  *
1270  * Called when a resource group in the pseudo-locksetup mode receives a
1271  * valid schemata that should be pseudo-locked. Since the resource group is
1272  * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1273  * allocated and initialized with the essential information. If a failure
1274  * occurs the resource group remains in the pseudo-locksetup mode with the
1275  * &struct pseudo_lock_region associated with it, but cleared from all
1276  * information and ready for the user to re-attempt pseudo-locking by
1277  * writing the schemata again.
1278  *
1279  * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1280  * on failure. Descriptive error will be written to last_cmd_status buffer.
1281  */
1282 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1283 {
1284 	struct pseudo_lock_region *plr = rdtgrp->plr;
1285 	struct task_struct *thread;
1286 	unsigned int new_minor;
1287 	struct device *dev;
1288 	int ret;
1289 
1290 	ret = pseudo_lock_region_alloc(plr);
1291 	if (ret < 0)
1292 		return ret;
1293 
1294 	ret = pseudo_lock_cstates_constrain(plr);
1295 	if (ret < 0) {
1296 		ret = -EINVAL;
1297 		goto out_region;
1298 	}
1299 
1300 	plr->thread_done = 0;
1301 
1302 	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1303 					cpu_to_node(plr->cpu),
1304 					"pseudo_lock/%u", plr->cpu);
1305 	if (IS_ERR(thread)) {
1306 		ret = PTR_ERR(thread);
1307 		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1308 		goto out_cstates;
1309 	}
1310 
1311 	kthread_bind(thread, plr->cpu);
1312 	wake_up_process(thread);
1313 
1314 	ret = wait_event_interruptible(plr->lock_thread_wq,
1315 				       plr->thread_done == 1);
1316 	if (ret < 0) {
1317 		/*
1318 		 * If the thread does not get on the CPU for whatever
1319 		 * reason and the process which sets up the region is
1320 		 * interrupted then this will leave the thread in runnable
1321 		 * state and once it gets on the CPU it will derefence
1322 		 * the cleared, but not freed, plr struct resulting in an
1323 		 * empty pseudo-locking loop.
1324 		 */
1325 		rdt_last_cmd_puts("Locking thread interrupted\n");
1326 		goto out_cstates;
1327 	}
1328 
1329 	ret = pseudo_lock_minor_get(&new_minor);
1330 	if (ret < 0) {
1331 		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1332 		goto out_cstates;
1333 	}
1334 
1335 	/*
1336 	 * Unlock access but do not release the reference. The
1337 	 * pseudo-locked region will still be here on return.
1338 	 *
1339 	 * The mutex has to be released temporarily to avoid a potential
1340 	 * deadlock with the mm->mmap_sem semaphore which is obtained in
1341 	 * the device_create() and debugfs_create_dir() callpath below
1342 	 * as well as before the mmap() callback is called.
1343 	 */
1344 	mutex_unlock(&rdtgroup_mutex);
1345 
1346 	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1347 		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1348 						      debugfs_resctrl);
1349 		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1350 			debugfs_create_file("pseudo_lock_measure", 0200,
1351 					    plr->debugfs_dir, rdtgrp,
1352 					    &pseudo_measure_fops);
1353 	}
1354 
1355 	dev = device_create(pseudo_lock_class, NULL,
1356 			    MKDEV(pseudo_lock_major, new_minor),
1357 			    rdtgrp, "%s", rdtgrp->kn->name);
1358 
1359 	mutex_lock(&rdtgroup_mutex);
1360 
1361 	if (IS_ERR(dev)) {
1362 		ret = PTR_ERR(dev);
1363 		rdt_last_cmd_printf("Failed to create character device: %d\n",
1364 				    ret);
1365 		goto out_debugfs;
1366 	}
1367 
1368 	/* We released the mutex - check if group was removed while we did so */
1369 	if (rdtgrp->flags & RDT_DELETED) {
1370 		ret = -ENODEV;
1371 		goto out_device;
1372 	}
1373 
1374 	plr->minor = new_minor;
1375 
1376 	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1377 	closid_free(rdtgrp->closid);
1378 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1379 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1380 
1381 	ret = 0;
1382 	goto out;
1383 
1384 out_device:
1385 	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1386 out_debugfs:
1387 	debugfs_remove_recursive(plr->debugfs_dir);
1388 	pseudo_lock_minor_release(new_minor);
1389 out_cstates:
1390 	pseudo_lock_cstates_relax(plr);
1391 out_region:
1392 	pseudo_lock_region_clear(plr);
1393 out:
1394 	return ret;
1395 }
1396 
1397 /**
1398  * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1399  * @rdtgrp: resource group to which the pseudo-locked region belongs
1400  *
1401  * The removal of a pseudo-locked region can be initiated when the resource
1402  * group is removed from user space via a "rmdir" from userspace or the
1403  * unmount of the resctrl filesystem. On removal the resource group does
1404  * not go back to pseudo-locksetup mode before it is removed, instead it is
1405  * removed directly. There is thus assymmetry with the creation where the
1406  * &struct pseudo_lock_region is removed here while it was not created in
1407  * rdtgroup_pseudo_lock_create().
1408  *
1409  * Return: void
1410  */
1411 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1412 {
1413 	struct pseudo_lock_region *plr = rdtgrp->plr;
1414 
1415 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1416 		/*
1417 		 * Default group cannot be a pseudo-locked region so we can
1418 		 * free closid here.
1419 		 */
1420 		closid_free(rdtgrp->closid);
1421 		goto free;
1422 	}
1423 
1424 	pseudo_lock_cstates_relax(plr);
1425 	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1426 	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1427 	pseudo_lock_minor_release(plr->minor);
1428 
1429 free:
1430 	pseudo_lock_free(rdtgrp);
1431 }
1432 
1433 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1434 {
1435 	struct rdtgroup *rdtgrp;
1436 
1437 	mutex_lock(&rdtgroup_mutex);
1438 
1439 	rdtgrp = region_find_by_minor(iminor(inode));
1440 	if (!rdtgrp) {
1441 		mutex_unlock(&rdtgroup_mutex);
1442 		return -ENODEV;
1443 	}
1444 
1445 	filp->private_data = rdtgrp;
1446 	atomic_inc(&rdtgrp->waitcount);
1447 	/* Perform a non-seekable open - llseek is not supported */
1448 	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1449 
1450 	mutex_unlock(&rdtgroup_mutex);
1451 
1452 	return 0;
1453 }
1454 
1455 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1456 {
1457 	struct rdtgroup *rdtgrp;
1458 
1459 	mutex_lock(&rdtgroup_mutex);
1460 	rdtgrp = filp->private_data;
1461 	WARN_ON(!rdtgrp);
1462 	if (!rdtgrp) {
1463 		mutex_unlock(&rdtgroup_mutex);
1464 		return -ENODEV;
1465 	}
1466 	filp->private_data = NULL;
1467 	atomic_dec(&rdtgrp->waitcount);
1468 	mutex_unlock(&rdtgroup_mutex);
1469 	return 0;
1470 }
1471 
1472 static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1473 {
1474 	/* Not supported */
1475 	return -EINVAL;
1476 }
1477 
1478 static const struct vm_operations_struct pseudo_mmap_ops = {
1479 	.mremap = pseudo_lock_dev_mremap,
1480 };
1481 
1482 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1483 {
1484 	unsigned long vsize = vma->vm_end - vma->vm_start;
1485 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1486 	struct pseudo_lock_region *plr;
1487 	struct rdtgroup *rdtgrp;
1488 	unsigned long physical;
1489 	unsigned long psize;
1490 
1491 	mutex_lock(&rdtgroup_mutex);
1492 
1493 	rdtgrp = filp->private_data;
1494 	WARN_ON(!rdtgrp);
1495 	if (!rdtgrp) {
1496 		mutex_unlock(&rdtgroup_mutex);
1497 		return -ENODEV;
1498 	}
1499 
1500 	plr = rdtgrp->plr;
1501 
1502 	if (!plr->d) {
1503 		mutex_unlock(&rdtgroup_mutex);
1504 		return -ENODEV;
1505 	}
1506 
1507 	/*
1508 	 * Task is required to run with affinity to the cpus associated
1509 	 * with the pseudo-locked region. If this is not the case the task
1510 	 * may be scheduled elsewhere and invalidate entries in the
1511 	 * pseudo-locked region.
1512 	 */
1513 	if (!cpumask_subset(&current->cpus_allowed, &plr->d->cpu_mask)) {
1514 		mutex_unlock(&rdtgroup_mutex);
1515 		return -EINVAL;
1516 	}
1517 
1518 	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1519 	psize = plr->size - off;
1520 
1521 	if (off > plr->size) {
1522 		mutex_unlock(&rdtgroup_mutex);
1523 		return -ENOSPC;
1524 	}
1525 
1526 	/*
1527 	 * Ensure changes are carried directly to the memory being mapped,
1528 	 * do not allow copy-on-write mapping.
1529 	 */
1530 	if (!(vma->vm_flags & VM_SHARED)) {
1531 		mutex_unlock(&rdtgroup_mutex);
1532 		return -EINVAL;
1533 	}
1534 
1535 	if (vsize > psize) {
1536 		mutex_unlock(&rdtgroup_mutex);
1537 		return -ENOSPC;
1538 	}
1539 
1540 	memset(plr->kmem + off, 0, vsize);
1541 
1542 	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1543 			    vsize, vma->vm_page_prot)) {
1544 		mutex_unlock(&rdtgroup_mutex);
1545 		return -EAGAIN;
1546 	}
1547 	vma->vm_ops = &pseudo_mmap_ops;
1548 	mutex_unlock(&rdtgroup_mutex);
1549 	return 0;
1550 }
1551 
1552 static const struct file_operations pseudo_lock_dev_fops = {
1553 	.owner =	THIS_MODULE,
1554 	.llseek =	no_llseek,
1555 	.read =		NULL,
1556 	.write =	NULL,
1557 	.open =		pseudo_lock_dev_open,
1558 	.release =	pseudo_lock_dev_release,
1559 	.mmap =		pseudo_lock_dev_mmap,
1560 };
1561 
1562 static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
1563 {
1564 	struct rdtgroup *rdtgrp;
1565 
1566 	rdtgrp = dev_get_drvdata(dev);
1567 	if (mode)
1568 		*mode = 0600;
1569 	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1570 }
1571 
1572 int rdt_pseudo_lock_init(void)
1573 {
1574 	int ret;
1575 
1576 	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1577 	if (ret < 0)
1578 		return ret;
1579 
1580 	pseudo_lock_major = ret;
1581 
1582 	pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1583 	if (IS_ERR(pseudo_lock_class)) {
1584 		ret = PTR_ERR(pseudo_lock_class);
1585 		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1586 		return ret;
1587 	}
1588 
1589 	pseudo_lock_class->devnode = pseudo_lock_devnode;
1590 	return 0;
1591 }
1592 
1593 void rdt_pseudo_lock_release(void)
1594 {
1595 	class_destroy(pseudo_lock_class);
1596 	pseudo_lock_class = NULL;
1597 	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1598 	pseudo_lock_major = 0;
1599 }
1600