1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Resource Director Technology (RDT) 4 * 5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT) 6 * 7 * Copyright (C) 2018 Intel Corporation 8 * 9 * Author: Reinette Chatre <reinette.chatre@intel.com> 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/cacheinfo.h> 15 #include <linux/cpu.h> 16 #include <linux/cpumask.h> 17 #include <linux/debugfs.h> 18 #include <linux/kthread.h> 19 #include <linux/mman.h> 20 #include <linux/perf_event.h> 21 #include <linux/pm_qos.h> 22 #include <linux/slab.h> 23 #include <linux/uaccess.h> 24 25 #include <asm/cacheflush.h> 26 #include <asm/intel-family.h> 27 #include <asm/resctrl.h> 28 #include <asm/perf_event.h> 29 30 #include "../../events/perf_event.h" /* For X86_CONFIG() */ 31 #include "internal.h" 32 33 #define CREATE_TRACE_POINTS 34 #include "pseudo_lock_event.h" 35 36 /* 37 * The bits needed to disable hardware prefetching varies based on the 38 * platform. During initialization we will discover which bits to use. 39 */ 40 static u64 prefetch_disable_bits; 41 42 /* 43 * Major number assigned to and shared by all devices exposing 44 * pseudo-locked regions. 45 */ 46 static unsigned int pseudo_lock_major; 47 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0); 48 static struct class *pseudo_lock_class; 49 50 /** 51 * get_prefetch_disable_bits - prefetch disable bits of supported platforms 52 * @void: It takes no parameters. 53 * 54 * Capture the list of platforms that have been validated to support 55 * pseudo-locking. This includes testing to ensure pseudo-locked regions 56 * with low cache miss rates can be created under variety of load conditions 57 * as well as that these pseudo-locked regions can maintain their low cache 58 * miss rates under variety of load conditions for significant lengths of time. 59 * 60 * After a platform has been validated to support pseudo-locking its 61 * hardware prefetch disable bits are included here as they are documented 62 * in the SDM. 63 * 64 * When adding a platform here also add support for its cache events to 65 * measure_cycles_perf_fn() 66 * 67 * Return: 68 * If platform is supported, the bits to disable hardware prefetchers, 0 69 * if platform is not supported. 70 */ 71 static u64 get_prefetch_disable_bits(void) 72 { 73 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL || 74 boot_cpu_data.x86 != 6) 75 return 0; 76 77 switch (boot_cpu_data.x86_model) { 78 case INTEL_FAM6_BROADWELL_X: 79 /* 80 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register 81 * as: 82 * 0 L2 Hardware Prefetcher Disable (R/W) 83 * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W) 84 * 2 DCU Hardware Prefetcher Disable (R/W) 85 * 3 DCU IP Prefetcher Disable (R/W) 86 * 63:4 Reserved 87 */ 88 return 0xF; 89 case INTEL_FAM6_ATOM_GOLDMONT: 90 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 91 /* 92 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register 93 * as: 94 * 0 L2 Hardware Prefetcher Disable (R/W) 95 * 1 Reserved 96 * 2 DCU Hardware Prefetcher Disable (R/W) 97 * 63:3 Reserved 98 */ 99 return 0x5; 100 } 101 102 return 0; 103 } 104 105 /** 106 * pseudo_lock_minor_get - Obtain available minor number 107 * @minor: Pointer to where new minor number will be stored 108 * 109 * A bitmask is used to track available minor numbers. Here the next free 110 * minor number is marked as unavailable and returned. 111 * 112 * Return: 0 on success, <0 on failure. 113 */ 114 static int pseudo_lock_minor_get(unsigned int *minor) 115 { 116 unsigned long first_bit; 117 118 first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS); 119 120 if (first_bit == MINORBITS) 121 return -ENOSPC; 122 123 __clear_bit(first_bit, &pseudo_lock_minor_avail); 124 *minor = first_bit; 125 126 return 0; 127 } 128 129 /** 130 * pseudo_lock_minor_release - Return minor number to available 131 * @minor: The minor number made available 132 */ 133 static void pseudo_lock_minor_release(unsigned int minor) 134 { 135 __set_bit(minor, &pseudo_lock_minor_avail); 136 } 137 138 /** 139 * region_find_by_minor - Locate a pseudo-lock region by inode minor number 140 * @minor: The minor number of the device representing pseudo-locked region 141 * 142 * When the character device is accessed we need to determine which 143 * pseudo-locked region it belongs to. This is done by matching the minor 144 * number of the device to the pseudo-locked region it belongs. 145 * 146 * Minor numbers are assigned at the time a pseudo-locked region is associated 147 * with a cache instance. 148 * 149 * Return: On success return pointer to resource group owning the pseudo-locked 150 * region, NULL on failure. 151 */ 152 static struct rdtgroup *region_find_by_minor(unsigned int minor) 153 { 154 struct rdtgroup *rdtgrp, *rdtgrp_match = NULL; 155 156 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 157 if (rdtgrp->plr && rdtgrp->plr->minor == minor) { 158 rdtgrp_match = rdtgrp; 159 break; 160 } 161 } 162 return rdtgrp_match; 163 } 164 165 /** 166 * struct pseudo_lock_pm_req - A power management QoS request list entry 167 * @list: Entry within the @pm_reqs list for a pseudo-locked region 168 * @req: PM QoS request 169 */ 170 struct pseudo_lock_pm_req { 171 struct list_head list; 172 struct dev_pm_qos_request req; 173 }; 174 175 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr) 176 { 177 struct pseudo_lock_pm_req *pm_req, *next; 178 179 list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) { 180 dev_pm_qos_remove_request(&pm_req->req); 181 list_del(&pm_req->list); 182 kfree(pm_req); 183 } 184 } 185 186 /** 187 * pseudo_lock_cstates_constrain - Restrict cores from entering C6 188 * @plr: Pseudo-locked region 189 * 190 * To prevent the cache from being affected by power management entering 191 * C6 has to be avoided. This is accomplished by requesting a latency 192 * requirement lower than lowest C6 exit latency of all supported 193 * platforms as found in the cpuidle state tables in the intel_idle driver. 194 * At this time it is possible to do so with a single latency requirement 195 * for all supported platforms. 196 * 197 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR, 198 * the ACPI latencies need to be considered while keeping in mind that C2 199 * may be set to map to deeper sleep states. In this case the latency 200 * requirement needs to prevent entering C2 also. 201 * 202 * Return: 0 on success, <0 on failure 203 */ 204 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr) 205 { 206 struct pseudo_lock_pm_req *pm_req; 207 int cpu; 208 int ret; 209 210 for_each_cpu(cpu, &plr->d->cpu_mask) { 211 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL); 212 if (!pm_req) { 213 rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n"); 214 ret = -ENOMEM; 215 goto out_err; 216 } 217 ret = dev_pm_qos_add_request(get_cpu_device(cpu), 218 &pm_req->req, 219 DEV_PM_QOS_RESUME_LATENCY, 220 30); 221 if (ret < 0) { 222 rdt_last_cmd_printf("Failed to add latency req CPU%d\n", 223 cpu); 224 kfree(pm_req); 225 ret = -1; 226 goto out_err; 227 } 228 list_add(&pm_req->list, &plr->pm_reqs); 229 } 230 231 return 0; 232 233 out_err: 234 pseudo_lock_cstates_relax(plr); 235 return ret; 236 } 237 238 /** 239 * pseudo_lock_region_clear - Reset pseudo-lock region data 240 * @plr: pseudo-lock region 241 * 242 * All content of the pseudo-locked region is reset - any memory allocated 243 * freed. 244 * 245 * Return: void 246 */ 247 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr) 248 { 249 plr->size = 0; 250 plr->line_size = 0; 251 kfree(plr->kmem); 252 plr->kmem = NULL; 253 plr->s = NULL; 254 if (plr->d) 255 plr->d->plr = NULL; 256 plr->d = NULL; 257 plr->cbm = 0; 258 plr->debugfs_dir = NULL; 259 } 260 261 /** 262 * pseudo_lock_region_init - Initialize pseudo-lock region information 263 * @plr: pseudo-lock region 264 * 265 * Called after user provided a schemata to be pseudo-locked. From the 266 * schemata the &struct pseudo_lock_region is on entry already initialized 267 * with the resource, domain, and capacity bitmask. Here the information 268 * required for pseudo-locking is deduced from this data and &struct 269 * pseudo_lock_region initialized further. This information includes: 270 * - size in bytes of the region to be pseudo-locked 271 * - cache line size to know the stride with which data needs to be accessed 272 * to be pseudo-locked 273 * - a cpu associated with the cache instance on which the pseudo-locking 274 * flow can be executed 275 * 276 * Return: 0 on success, <0 on failure. Descriptive error will be written 277 * to last_cmd_status buffer. 278 */ 279 static int pseudo_lock_region_init(struct pseudo_lock_region *plr) 280 { 281 struct cpu_cacheinfo *ci; 282 int ret; 283 int i; 284 285 /* Pick the first cpu we find that is associated with the cache. */ 286 plr->cpu = cpumask_first(&plr->d->cpu_mask); 287 288 if (!cpu_online(plr->cpu)) { 289 rdt_last_cmd_printf("CPU %u associated with cache not online\n", 290 plr->cpu); 291 ret = -ENODEV; 292 goto out_region; 293 } 294 295 ci = get_cpu_cacheinfo(plr->cpu); 296 297 plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm); 298 299 for (i = 0; i < ci->num_leaves; i++) { 300 if (ci->info_list[i].level == plr->s->res->cache_level) { 301 plr->line_size = ci->info_list[i].coherency_line_size; 302 return 0; 303 } 304 } 305 306 ret = -1; 307 rdt_last_cmd_puts("Unable to determine cache line size\n"); 308 out_region: 309 pseudo_lock_region_clear(plr); 310 return ret; 311 } 312 313 /** 314 * pseudo_lock_init - Initialize a pseudo-lock region 315 * @rdtgrp: resource group to which new pseudo-locked region will belong 316 * 317 * A pseudo-locked region is associated with a resource group. When this 318 * association is created the pseudo-locked region is initialized. The 319 * details of the pseudo-locked region are not known at this time so only 320 * allocation is done and association established. 321 * 322 * Return: 0 on success, <0 on failure 323 */ 324 static int pseudo_lock_init(struct rdtgroup *rdtgrp) 325 { 326 struct pseudo_lock_region *plr; 327 328 plr = kzalloc(sizeof(*plr), GFP_KERNEL); 329 if (!plr) 330 return -ENOMEM; 331 332 init_waitqueue_head(&plr->lock_thread_wq); 333 INIT_LIST_HEAD(&plr->pm_reqs); 334 rdtgrp->plr = plr; 335 return 0; 336 } 337 338 /** 339 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked 340 * @plr: pseudo-lock region 341 * 342 * Initialize the details required to set up the pseudo-locked region and 343 * allocate the contiguous memory that will be pseudo-locked to the cache. 344 * 345 * Return: 0 on success, <0 on failure. Descriptive error will be written 346 * to last_cmd_status buffer. 347 */ 348 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr) 349 { 350 int ret; 351 352 ret = pseudo_lock_region_init(plr); 353 if (ret < 0) 354 return ret; 355 356 /* 357 * We do not yet support contiguous regions larger than 358 * KMALLOC_MAX_SIZE. 359 */ 360 if (plr->size > KMALLOC_MAX_SIZE) { 361 rdt_last_cmd_puts("Requested region exceeds maximum size\n"); 362 ret = -E2BIG; 363 goto out_region; 364 } 365 366 plr->kmem = kzalloc(plr->size, GFP_KERNEL); 367 if (!plr->kmem) { 368 rdt_last_cmd_puts("Unable to allocate memory\n"); 369 ret = -ENOMEM; 370 goto out_region; 371 } 372 373 ret = 0; 374 goto out; 375 out_region: 376 pseudo_lock_region_clear(plr); 377 out: 378 return ret; 379 } 380 381 /** 382 * pseudo_lock_free - Free a pseudo-locked region 383 * @rdtgrp: resource group to which pseudo-locked region belonged 384 * 385 * The pseudo-locked region's resources have already been released, or not 386 * yet created at this point. Now it can be freed and disassociated from the 387 * resource group. 388 * 389 * Return: void 390 */ 391 static void pseudo_lock_free(struct rdtgroup *rdtgrp) 392 { 393 pseudo_lock_region_clear(rdtgrp->plr); 394 kfree(rdtgrp->plr); 395 rdtgrp->plr = NULL; 396 } 397 398 /** 399 * pseudo_lock_fn - Load kernel memory into cache 400 * @_rdtgrp: resource group to which pseudo-lock region belongs 401 * 402 * This is the core pseudo-locking flow. 403 * 404 * First we ensure that the kernel memory cannot be found in the cache. 405 * Then, while taking care that there will be as little interference as 406 * possible, the memory to be loaded is accessed while core is running 407 * with class of service set to the bitmask of the pseudo-locked region. 408 * After this is complete no future CAT allocations will be allowed to 409 * overlap with this bitmask. 410 * 411 * Local register variables are utilized to ensure that the memory region 412 * to be locked is the only memory access made during the critical locking 413 * loop. 414 * 415 * Return: 0. Waiter on waitqueue will be woken on completion. 416 */ 417 static int pseudo_lock_fn(void *_rdtgrp) 418 { 419 struct rdtgroup *rdtgrp = _rdtgrp; 420 struct pseudo_lock_region *plr = rdtgrp->plr; 421 u32 rmid_p, closid_p; 422 unsigned long i; 423 u64 saved_msr; 424 #ifdef CONFIG_KASAN 425 /* 426 * The registers used for local register variables are also used 427 * when KASAN is active. When KASAN is active we use a regular 428 * variable to ensure we always use a valid pointer, but the cost 429 * is that this variable will enter the cache through evicting the 430 * memory we are trying to lock into the cache. Thus expect lower 431 * pseudo-locking success rate when KASAN is active. 432 */ 433 unsigned int line_size; 434 unsigned int size; 435 void *mem_r; 436 #else 437 register unsigned int line_size asm("esi"); 438 register unsigned int size asm("edi"); 439 register void *mem_r asm(_ASM_BX); 440 #endif /* CONFIG_KASAN */ 441 442 /* 443 * Make sure none of the allocated memory is cached. If it is we 444 * will get a cache hit in below loop from outside of pseudo-locked 445 * region. 446 * wbinvd (as opposed to clflush/clflushopt) is required to 447 * increase likelihood that allocated cache portion will be filled 448 * with associated memory. 449 */ 450 native_wbinvd(); 451 452 /* 453 * Always called with interrupts enabled. By disabling interrupts 454 * ensure that we will not be preempted during this critical section. 455 */ 456 local_irq_disable(); 457 458 /* 459 * Call wrmsr and rdmsr as directly as possible to avoid tracing 460 * clobbering local register variables or affecting cache accesses. 461 * 462 * Disable the hardware prefetcher so that when the end of the memory 463 * being pseudo-locked is reached the hardware will not read beyond 464 * the buffer and evict pseudo-locked memory read earlier from the 465 * cache. 466 */ 467 saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL); 468 __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 469 closid_p = this_cpu_read(pqr_state.cur_closid); 470 rmid_p = this_cpu_read(pqr_state.cur_rmid); 471 mem_r = plr->kmem; 472 size = plr->size; 473 line_size = plr->line_size; 474 /* 475 * Critical section begin: start by writing the closid associated 476 * with the capacity bitmask of the cache region being 477 * pseudo-locked followed by reading of kernel memory to load it 478 * into the cache. 479 */ 480 __wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid); 481 /* 482 * Cache was flushed earlier. Now access kernel memory to read it 483 * into cache region associated with just activated plr->closid. 484 * Loop over data twice: 485 * - In first loop the cache region is shared with the page walker 486 * as it populates the paging structure caches (including TLB). 487 * - In the second loop the paging structure caches are used and 488 * cache region is populated with the memory being referenced. 489 */ 490 for (i = 0; i < size; i += PAGE_SIZE) { 491 /* 492 * Add a barrier to prevent speculative execution of this 493 * loop reading beyond the end of the buffer. 494 */ 495 rmb(); 496 asm volatile("mov (%0,%1,1), %%eax\n\t" 497 : 498 : "r" (mem_r), "r" (i) 499 : "%eax", "memory"); 500 } 501 for (i = 0; i < size; i += line_size) { 502 /* 503 * Add a barrier to prevent speculative execution of this 504 * loop reading beyond the end of the buffer. 505 */ 506 rmb(); 507 asm volatile("mov (%0,%1,1), %%eax\n\t" 508 : 509 : "r" (mem_r), "r" (i) 510 : "%eax", "memory"); 511 } 512 /* 513 * Critical section end: restore closid with capacity bitmask that 514 * does not overlap with pseudo-locked region. 515 */ 516 __wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p); 517 518 /* Re-enable the hardware prefetcher(s) */ 519 wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr); 520 local_irq_enable(); 521 522 plr->thread_done = 1; 523 wake_up_interruptible(&plr->lock_thread_wq); 524 return 0; 525 } 526 527 /** 528 * rdtgroup_monitor_in_progress - Test if monitoring in progress 529 * @rdtgrp: resource group being queried 530 * 531 * Return: 1 if monitor groups have been created for this resource 532 * group, 0 otherwise. 533 */ 534 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp) 535 { 536 return !list_empty(&rdtgrp->mon.crdtgrp_list); 537 } 538 539 /** 540 * rdtgroup_locksetup_user_restrict - Restrict user access to group 541 * @rdtgrp: resource group needing access restricted 542 * 543 * A resource group used for cache pseudo-locking cannot have cpus or tasks 544 * assigned to it. This is communicated to the user by restricting access 545 * to all the files that can be used to make such changes. 546 * 547 * Permissions restored with rdtgroup_locksetup_user_restore() 548 * 549 * Return: 0 on success, <0 on failure. If a failure occurs during the 550 * restriction of access an attempt will be made to restore permissions but 551 * the state of the mode of these files will be uncertain when a failure 552 * occurs. 553 */ 554 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp) 555 { 556 int ret; 557 558 ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); 559 if (ret) 560 return ret; 561 562 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); 563 if (ret) 564 goto err_tasks; 565 566 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); 567 if (ret) 568 goto err_cpus; 569 570 if (rdt_mon_capable) { 571 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups"); 572 if (ret) 573 goto err_cpus_list; 574 } 575 576 ret = 0; 577 goto out; 578 579 err_cpus_list: 580 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); 581 err_cpus: 582 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); 583 err_tasks: 584 rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); 585 out: 586 return ret; 587 } 588 589 /** 590 * rdtgroup_locksetup_user_restore - Restore user access to group 591 * @rdtgrp: resource group needing access restored 592 * 593 * Restore all file access previously removed using 594 * rdtgroup_locksetup_user_restrict() 595 * 596 * Return: 0 on success, <0 on failure. If a failure occurs during the 597 * restoration of access an attempt will be made to restrict permissions 598 * again but the state of the mode of these files will be uncertain when 599 * a failure occurs. 600 */ 601 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp) 602 { 603 int ret; 604 605 ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); 606 if (ret) 607 return ret; 608 609 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); 610 if (ret) 611 goto err_tasks; 612 613 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); 614 if (ret) 615 goto err_cpus; 616 617 if (rdt_mon_capable) { 618 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777); 619 if (ret) 620 goto err_cpus_list; 621 } 622 623 ret = 0; 624 goto out; 625 626 err_cpus_list: 627 rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); 628 err_cpus: 629 rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); 630 err_tasks: 631 rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); 632 out: 633 return ret; 634 } 635 636 /** 637 * rdtgroup_locksetup_enter - Resource group enters locksetup mode 638 * @rdtgrp: resource group requested to enter locksetup mode 639 * 640 * A resource group enters locksetup mode to reflect that it would be used 641 * to represent a pseudo-locked region and is in the process of being set 642 * up to do so. A resource group used for a pseudo-locked region would 643 * lose the closid associated with it so we cannot allow it to have any 644 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the 645 * future. Monitoring of a pseudo-locked region is not allowed either. 646 * 647 * The above and more restrictions on a pseudo-locked region are checked 648 * for and enforced before the resource group enters the locksetup mode. 649 * 650 * Returns: 0 if the resource group successfully entered locksetup mode, <0 651 * on failure. On failure the last_cmd_status buffer is updated with text to 652 * communicate details of failure to the user. 653 */ 654 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp) 655 { 656 int ret; 657 658 /* 659 * The default resource group can neither be removed nor lose the 660 * default closid associated with it. 661 */ 662 if (rdtgrp == &rdtgroup_default) { 663 rdt_last_cmd_puts("Cannot pseudo-lock default group\n"); 664 return -EINVAL; 665 } 666 667 /* 668 * Cache Pseudo-locking not supported when CDP is enabled. 669 * 670 * Some things to consider if you would like to enable this 671 * support (using L3 CDP as example): 672 * - When CDP is enabled two separate resources are exposed, 673 * L3DATA and L3CODE, but they are actually on the same cache. 674 * The implication for pseudo-locking is that if a 675 * pseudo-locked region is created on a domain of one 676 * resource (eg. L3CODE), then a pseudo-locked region cannot 677 * be created on that same domain of the other resource 678 * (eg. L3DATA). This is because the creation of a 679 * pseudo-locked region involves a call to wbinvd that will 680 * affect all cache allocations on particular domain. 681 * - Considering the previous, it may be possible to only 682 * expose one of the CDP resources to pseudo-locking and 683 * hide the other. For example, we could consider to only 684 * expose L3DATA and since the L3 cache is unified it is 685 * still possible to place instructions there are execute it. 686 * - If only one region is exposed to pseudo-locking we should 687 * still keep in mind that availability of a portion of cache 688 * for pseudo-locking should take into account both resources. 689 * Similarly, if a pseudo-locked region is created in one 690 * resource, the portion of cache used by it should be made 691 * unavailable to all future allocations from both resources. 692 */ 693 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) || 694 resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) { 695 rdt_last_cmd_puts("CDP enabled\n"); 696 return -EINVAL; 697 } 698 699 /* 700 * Not knowing the bits to disable prefetching implies that this 701 * platform does not support Cache Pseudo-Locking. 702 */ 703 prefetch_disable_bits = get_prefetch_disable_bits(); 704 if (prefetch_disable_bits == 0) { 705 rdt_last_cmd_puts("Pseudo-locking not supported\n"); 706 return -EINVAL; 707 } 708 709 if (rdtgroup_monitor_in_progress(rdtgrp)) { 710 rdt_last_cmd_puts("Monitoring in progress\n"); 711 return -EINVAL; 712 } 713 714 if (rdtgroup_tasks_assigned(rdtgrp)) { 715 rdt_last_cmd_puts("Tasks assigned to resource group\n"); 716 return -EINVAL; 717 } 718 719 if (!cpumask_empty(&rdtgrp->cpu_mask)) { 720 rdt_last_cmd_puts("CPUs assigned to resource group\n"); 721 return -EINVAL; 722 } 723 724 if (rdtgroup_locksetup_user_restrict(rdtgrp)) { 725 rdt_last_cmd_puts("Unable to modify resctrl permissions\n"); 726 return -EIO; 727 } 728 729 ret = pseudo_lock_init(rdtgrp); 730 if (ret) { 731 rdt_last_cmd_puts("Unable to init pseudo-lock region\n"); 732 goto out_release; 733 } 734 735 /* 736 * If this system is capable of monitoring a rmid would have been 737 * allocated when the control group was created. This is not needed 738 * anymore when this group would be used for pseudo-locking. This 739 * is safe to call on platforms not capable of monitoring. 740 */ 741 free_rmid(rdtgrp->mon.rmid); 742 743 ret = 0; 744 goto out; 745 746 out_release: 747 rdtgroup_locksetup_user_restore(rdtgrp); 748 out: 749 return ret; 750 } 751 752 /** 753 * rdtgroup_locksetup_exit - resource group exist locksetup mode 754 * @rdtgrp: resource group 755 * 756 * When a resource group exits locksetup mode the earlier restrictions are 757 * lifted. 758 * 759 * Return: 0 on success, <0 on failure 760 */ 761 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp) 762 { 763 int ret; 764 765 if (rdt_mon_capable) { 766 ret = alloc_rmid(); 767 if (ret < 0) { 768 rdt_last_cmd_puts("Out of RMIDs\n"); 769 return ret; 770 } 771 rdtgrp->mon.rmid = ret; 772 } 773 774 ret = rdtgroup_locksetup_user_restore(rdtgrp); 775 if (ret) { 776 free_rmid(rdtgrp->mon.rmid); 777 return ret; 778 } 779 780 pseudo_lock_free(rdtgrp); 781 return 0; 782 } 783 784 /** 785 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked 786 * @d: RDT domain 787 * @cbm: CBM to test 788 * 789 * @d represents a cache instance and @cbm a capacity bitmask that is 790 * considered for it. Determine if @cbm overlaps with any existing 791 * pseudo-locked region on @d. 792 * 793 * @cbm is unsigned long, even if only 32 bits are used, to make the 794 * bitmap functions work correctly. 795 * 796 * Return: true if @cbm overlaps with pseudo-locked region on @d, false 797 * otherwise. 798 */ 799 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm) 800 { 801 unsigned int cbm_len; 802 unsigned long cbm_b; 803 804 if (d->plr) { 805 cbm_len = d->plr->s->res->cache.cbm_len; 806 cbm_b = d->plr->cbm; 807 if (bitmap_intersects(&cbm, &cbm_b, cbm_len)) 808 return true; 809 } 810 return false; 811 } 812 813 /** 814 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy 815 * @d: RDT domain under test 816 * 817 * The setup of a pseudo-locked region affects all cache instances within 818 * the hierarchy of the region. It is thus essential to know if any 819 * pseudo-locked regions exist within a cache hierarchy to prevent any 820 * attempts to create new pseudo-locked regions in the same hierarchy. 821 * 822 * Return: true if a pseudo-locked region exists in the hierarchy of @d or 823 * if it is not possible to test due to memory allocation issue, 824 * false otherwise. 825 */ 826 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d) 827 { 828 cpumask_var_t cpu_with_psl; 829 struct rdt_resource *r; 830 struct rdt_domain *d_i; 831 bool ret = false; 832 833 if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL)) 834 return true; 835 836 /* 837 * First determine which cpus have pseudo-locked regions 838 * associated with them. 839 */ 840 for_each_alloc_capable_rdt_resource(r) { 841 list_for_each_entry(d_i, &r->domains, list) { 842 if (d_i->plr) 843 cpumask_or(cpu_with_psl, cpu_with_psl, 844 &d_i->cpu_mask); 845 } 846 } 847 848 /* 849 * Next test if new pseudo-locked region would intersect with 850 * existing region. 851 */ 852 if (cpumask_intersects(&d->cpu_mask, cpu_with_psl)) 853 ret = true; 854 855 free_cpumask_var(cpu_with_psl); 856 return ret; 857 } 858 859 /** 860 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory 861 * @_plr: pseudo-lock region to measure 862 * 863 * There is no deterministic way to test if a memory region is cached. One 864 * way is to measure how long it takes to read the memory, the speed of 865 * access is a good way to learn how close to the cpu the data was. Even 866 * more, if the prefetcher is disabled and the memory is read at a stride 867 * of half the cache line, then a cache miss will be easy to spot since the 868 * read of the first half would be significantly slower than the read of 869 * the second half. 870 * 871 * Return: 0. Waiter on waitqueue will be woken on completion. 872 */ 873 static int measure_cycles_lat_fn(void *_plr) 874 { 875 struct pseudo_lock_region *plr = _plr; 876 u32 saved_low, saved_high; 877 unsigned long i; 878 u64 start, end; 879 void *mem_r; 880 881 local_irq_disable(); 882 /* 883 * Disable hardware prefetchers. 884 */ 885 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 886 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 887 mem_r = READ_ONCE(plr->kmem); 888 /* 889 * Dummy execute of the time measurement to load the needed 890 * instructions into the L1 instruction cache. 891 */ 892 start = rdtsc_ordered(); 893 for (i = 0; i < plr->size; i += 32) { 894 start = rdtsc_ordered(); 895 asm volatile("mov (%0,%1,1), %%eax\n\t" 896 : 897 : "r" (mem_r), "r" (i) 898 : "%eax", "memory"); 899 end = rdtsc_ordered(); 900 trace_pseudo_lock_mem_latency((u32)(end - start)); 901 } 902 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 903 local_irq_enable(); 904 plr->thread_done = 1; 905 wake_up_interruptible(&plr->lock_thread_wq); 906 return 0; 907 } 908 909 /* 910 * Create a perf_event_attr for the hit and miss perf events that will 911 * be used during the performance measurement. A perf_event maintains 912 * a pointer to its perf_event_attr so a unique attribute structure is 913 * created for each perf_event. 914 * 915 * The actual configuration of the event is set right before use in order 916 * to use the X86_CONFIG macro. 917 */ 918 static struct perf_event_attr perf_miss_attr = { 919 .type = PERF_TYPE_RAW, 920 .size = sizeof(struct perf_event_attr), 921 .pinned = 1, 922 .disabled = 0, 923 .exclude_user = 1, 924 }; 925 926 static struct perf_event_attr perf_hit_attr = { 927 .type = PERF_TYPE_RAW, 928 .size = sizeof(struct perf_event_attr), 929 .pinned = 1, 930 .disabled = 0, 931 .exclude_user = 1, 932 }; 933 934 struct residency_counts { 935 u64 miss_before, hits_before; 936 u64 miss_after, hits_after; 937 }; 938 939 static int measure_residency_fn(struct perf_event_attr *miss_attr, 940 struct perf_event_attr *hit_attr, 941 struct pseudo_lock_region *plr, 942 struct residency_counts *counts) 943 { 944 u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0; 945 struct perf_event *miss_event, *hit_event; 946 int hit_pmcnum, miss_pmcnum; 947 u32 saved_low, saved_high; 948 unsigned int line_size; 949 unsigned int size; 950 unsigned long i; 951 void *mem_r; 952 u64 tmp; 953 954 miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu, 955 NULL, NULL, NULL); 956 if (IS_ERR(miss_event)) 957 goto out; 958 959 hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu, 960 NULL, NULL, NULL); 961 if (IS_ERR(hit_event)) 962 goto out_miss; 963 964 local_irq_disable(); 965 /* 966 * Check any possible error state of events used by performing 967 * one local read. 968 */ 969 if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) { 970 local_irq_enable(); 971 goto out_hit; 972 } 973 if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) { 974 local_irq_enable(); 975 goto out_hit; 976 } 977 978 /* 979 * Disable hardware prefetchers. 980 */ 981 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 982 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 983 984 /* Initialize rest of local variables */ 985 /* 986 * Performance event has been validated right before this with 987 * interrupts disabled - it is thus safe to read the counter index. 988 */ 989 miss_pmcnum = x86_perf_rdpmc_index(miss_event); 990 hit_pmcnum = x86_perf_rdpmc_index(hit_event); 991 line_size = READ_ONCE(plr->line_size); 992 mem_r = READ_ONCE(plr->kmem); 993 size = READ_ONCE(plr->size); 994 995 /* 996 * Read counter variables twice - first to load the instructions 997 * used in L1 cache, second to capture accurate value that does not 998 * include cache misses incurred because of instruction loads. 999 */ 1000 rdpmcl(hit_pmcnum, hits_before); 1001 rdpmcl(miss_pmcnum, miss_before); 1002 /* 1003 * From SDM: Performing back-to-back fast reads are not guaranteed 1004 * to be monotonic. 1005 * Use LFENCE to ensure all previous instructions are retired 1006 * before proceeding. 1007 */ 1008 rmb(); 1009 rdpmcl(hit_pmcnum, hits_before); 1010 rdpmcl(miss_pmcnum, miss_before); 1011 /* 1012 * Use LFENCE to ensure all previous instructions are retired 1013 * before proceeding. 1014 */ 1015 rmb(); 1016 for (i = 0; i < size; i += line_size) { 1017 /* 1018 * Add a barrier to prevent speculative execution of this 1019 * loop reading beyond the end of the buffer. 1020 */ 1021 rmb(); 1022 asm volatile("mov (%0,%1,1), %%eax\n\t" 1023 : 1024 : "r" (mem_r), "r" (i) 1025 : "%eax", "memory"); 1026 } 1027 /* 1028 * Use LFENCE to ensure all previous instructions are retired 1029 * before proceeding. 1030 */ 1031 rmb(); 1032 rdpmcl(hit_pmcnum, hits_after); 1033 rdpmcl(miss_pmcnum, miss_after); 1034 /* 1035 * Use LFENCE to ensure all previous instructions are retired 1036 * before proceeding. 1037 */ 1038 rmb(); 1039 /* Re-enable hardware prefetchers */ 1040 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 1041 local_irq_enable(); 1042 out_hit: 1043 perf_event_release_kernel(hit_event); 1044 out_miss: 1045 perf_event_release_kernel(miss_event); 1046 out: 1047 /* 1048 * All counts will be zero on failure. 1049 */ 1050 counts->miss_before = miss_before; 1051 counts->hits_before = hits_before; 1052 counts->miss_after = miss_after; 1053 counts->hits_after = hits_after; 1054 return 0; 1055 } 1056 1057 static int measure_l2_residency(void *_plr) 1058 { 1059 struct pseudo_lock_region *plr = _plr; 1060 struct residency_counts counts = {0}; 1061 1062 /* 1063 * Non-architectural event for the Goldmont Microarchitecture 1064 * from Intel x86 Architecture Software Developer Manual (SDM): 1065 * MEM_LOAD_UOPS_RETIRED D1H (event number) 1066 * Umask values: 1067 * L2_HIT 02H 1068 * L2_MISS 10H 1069 */ 1070 switch (boot_cpu_data.x86_model) { 1071 case INTEL_FAM6_ATOM_GOLDMONT: 1072 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 1073 perf_miss_attr.config = X86_CONFIG(.event = 0xd1, 1074 .umask = 0x10); 1075 perf_hit_attr.config = X86_CONFIG(.event = 0xd1, 1076 .umask = 0x2); 1077 break; 1078 default: 1079 goto out; 1080 } 1081 1082 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts); 1083 /* 1084 * If a failure prevented the measurements from succeeding 1085 * tracepoints will still be written and all counts will be zero. 1086 */ 1087 trace_pseudo_lock_l2(counts.hits_after - counts.hits_before, 1088 counts.miss_after - counts.miss_before); 1089 out: 1090 plr->thread_done = 1; 1091 wake_up_interruptible(&plr->lock_thread_wq); 1092 return 0; 1093 } 1094 1095 static int measure_l3_residency(void *_plr) 1096 { 1097 struct pseudo_lock_region *plr = _plr; 1098 struct residency_counts counts = {0}; 1099 1100 /* 1101 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event 1102 * has two "no fix" errata associated with it: BDM35 and BDM100. On 1103 * this platform the following events are used instead: 1104 * LONGEST_LAT_CACHE 2EH (Documented in SDM) 1105 * REFERENCE 4FH 1106 * MISS 41H 1107 */ 1108 1109 switch (boot_cpu_data.x86_model) { 1110 case INTEL_FAM6_BROADWELL_X: 1111 /* On BDW the hit event counts references, not hits */ 1112 perf_hit_attr.config = X86_CONFIG(.event = 0x2e, 1113 .umask = 0x4f); 1114 perf_miss_attr.config = X86_CONFIG(.event = 0x2e, 1115 .umask = 0x41); 1116 break; 1117 default: 1118 goto out; 1119 } 1120 1121 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts); 1122 /* 1123 * If a failure prevented the measurements from succeeding 1124 * tracepoints will still be written and all counts will be zero. 1125 */ 1126 1127 counts.miss_after -= counts.miss_before; 1128 if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) { 1129 /* 1130 * On BDW references and misses are counted, need to adjust. 1131 * Sometimes the "hits" counter is a bit more than the 1132 * references, for example, x references but x + 1 hits. 1133 * To not report invalid hit values in this case we treat 1134 * that as misses equal to references. 1135 */ 1136 /* First compute the number of cache references measured */ 1137 counts.hits_after -= counts.hits_before; 1138 /* Next convert references to cache hits */ 1139 counts.hits_after -= min(counts.miss_after, counts.hits_after); 1140 } else { 1141 counts.hits_after -= counts.hits_before; 1142 } 1143 1144 trace_pseudo_lock_l3(counts.hits_after, counts.miss_after); 1145 out: 1146 plr->thread_done = 1; 1147 wake_up_interruptible(&plr->lock_thread_wq); 1148 return 0; 1149 } 1150 1151 /** 1152 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region 1153 * @rdtgrp: Resource group to which the pseudo-locked region belongs. 1154 * @sel: Selector of which measurement to perform on a pseudo-locked region. 1155 * 1156 * The measurement of latency to access a pseudo-locked region should be 1157 * done from a cpu that is associated with that pseudo-locked region. 1158 * Determine which cpu is associated with this region and start a thread on 1159 * that cpu to perform the measurement, wait for that thread to complete. 1160 * 1161 * Return: 0 on success, <0 on failure 1162 */ 1163 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel) 1164 { 1165 struct pseudo_lock_region *plr = rdtgrp->plr; 1166 struct task_struct *thread; 1167 unsigned int cpu; 1168 int ret = -1; 1169 1170 cpus_read_lock(); 1171 mutex_lock(&rdtgroup_mutex); 1172 1173 if (rdtgrp->flags & RDT_DELETED) { 1174 ret = -ENODEV; 1175 goto out; 1176 } 1177 1178 if (!plr->d) { 1179 ret = -ENODEV; 1180 goto out; 1181 } 1182 1183 plr->thread_done = 0; 1184 cpu = cpumask_first(&plr->d->cpu_mask); 1185 if (!cpu_online(cpu)) { 1186 ret = -ENODEV; 1187 goto out; 1188 } 1189 1190 plr->cpu = cpu; 1191 1192 if (sel == 1) 1193 thread = kthread_create_on_node(measure_cycles_lat_fn, plr, 1194 cpu_to_node(cpu), 1195 "pseudo_lock_measure/%u", 1196 cpu); 1197 else if (sel == 2) 1198 thread = kthread_create_on_node(measure_l2_residency, plr, 1199 cpu_to_node(cpu), 1200 "pseudo_lock_measure/%u", 1201 cpu); 1202 else if (sel == 3) 1203 thread = kthread_create_on_node(measure_l3_residency, plr, 1204 cpu_to_node(cpu), 1205 "pseudo_lock_measure/%u", 1206 cpu); 1207 else 1208 goto out; 1209 1210 if (IS_ERR(thread)) { 1211 ret = PTR_ERR(thread); 1212 goto out; 1213 } 1214 kthread_bind(thread, cpu); 1215 wake_up_process(thread); 1216 1217 ret = wait_event_interruptible(plr->lock_thread_wq, 1218 plr->thread_done == 1); 1219 if (ret < 0) 1220 goto out; 1221 1222 ret = 0; 1223 1224 out: 1225 mutex_unlock(&rdtgroup_mutex); 1226 cpus_read_unlock(); 1227 return ret; 1228 } 1229 1230 static ssize_t pseudo_lock_measure_trigger(struct file *file, 1231 const char __user *user_buf, 1232 size_t count, loff_t *ppos) 1233 { 1234 struct rdtgroup *rdtgrp = file->private_data; 1235 size_t buf_size; 1236 char buf[32]; 1237 int ret; 1238 int sel; 1239 1240 buf_size = min(count, (sizeof(buf) - 1)); 1241 if (copy_from_user(buf, user_buf, buf_size)) 1242 return -EFAULT; 1243 1244 buf[buf_size] = '\0'; 1245 ret = kstrtoint(buf, 10, &sel); 1246 if (ret == 0) { 1247 if (sel != 1 && sel != 2 && sel != 3) 1248 return -EINVAL; 1249 ret = debugfs_file_get(file->f_path.dentry); 1250 if (ret) 1251 return ret; 1252 ret = pseudo_lock_measure_cycles(rdtgrp, sel); 1253 if (ret == 0) 1254 ret = count; 1255 debugfs_file_put(file->f_path.dentry); 1256 } 1257 1258 return ret; 1259 } 1260 1261 static const struct file_operations pseudo_measure_fops = { 1262 .write = pseudo_lock_measure_trigger, 1263 .open = simple_open, 1264 .llseek = default_llseek, 1265 }; 1266 1267 /** 1268 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region 1269 * @rdtgrp: resource group to which pseudo-lock region belongs 1270 * 1271 * Called when a resource group in the pseudo-locksetup mode receives a 1272 * valid schemata that should be pseudo-locked. Since the resource group is 1273 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been 1274 * allocated and initialized with the essential information. If a failure 1275 * occurs the resource group remains in the pseudo-locksetup mode with the 1276 * &struct pseudo_lock_region associated with it, but cleared from all 1277 * information and ready for the user to re-attempt pseudo-locking by 1278 * writing the schemata again. 1279 * 1280 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0 1281 * on failure. Descriptive error will be written to last_cmd_status buffer. 1282 */ 1283 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) 1284 { 1285 struct pseudo_lock_region *plr = rdtgrp->plr; 1286 struct task_struct *thread; 1287 unsigned int new_minor; 1288 struct device *dev; 1289 int ret; 1290 1291 ret = pseudo_lock_region_alloc(plr); 1292 if (ret < 0) 1293 return ret; 1294 1295 ret = pseudo_lock_cstates_constrain(plr); 1296 if (ret < 0) { 1297 ret = -EINVAL; 1298 goto out_region; 1299 } 1300 1301 plr->thread_done = 0; 1302 1303 thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp, 1304 cpu_to_node(plr->cpu), 1305 "pseudo_lock/%u", plr->cpu); 1306 if (IS_ERR(thread)) { 1307 ret = PTR_ERR(thread); 1308 rdt_last_cmd_printf("Locking thread returned error %d\n", ret); 1309 goto out_cstates; 1310 } 1311 1312 kthread_bind(thread, plr->cpu); 1313 wake_up_process(thread); 1314 1315 ret = wait_event_interruptible(plr->lock_thread_wq, 1316 plr->thread_done == 1); 1317 if (ret < 0) { 1318 /* 1319 * If the thread does not get on the CPU for whatever 1320 * reason and the process which sets up the region is 1321 * interrupted then this will leave the thread in runnable 1322 * state and once it gets on the CPU it will dereference 1323 * the cleared, but not freed, plr struct resulting in an 1324 * empty pseudo-locking loop. 1325 */ 1326 rdt_last_cmd_puts("Locking thread interrupted\n"); 1327 goto out_cstates; 1328 } 1329 1330 ret = pseudo_lock_minor_get(&new_minor); 1331 if (ret < 0) { 1332 rdt_last_cmd_puts("Unable to obtain a new minor number\n"); 1333 goto out_cstates; 1334 } 1335 1336 /* 1337 * Unlock access but do not release the reference. The 1338 * pseudo-locked region will still be here on return. 1339 * 1340 * The mutex has to be released temporarily to avoid a potential 1341 * deadlock with the mm->mmap_lock which is obtained in the 1342 * device_create() and debugfs_create_dir() callpath below as well as 1343 * before the mmap() callback is called. 1344 */ 1345 mutex_unlock(&rdtgroup_mutex); 1346 1347 if (!IS_ERR_OR_NULL(debugfs_resctrl)) { 1348 plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name, 1349 debugfs_resctrl); 1350 if (!IS_ERR_OR_NULL(plr->debugfs_dir)) 1351 debugfs_create_file("pseudo_lock_measure", 0200, 1352 plr->debugfs_dir, rdtgrp, 1353 &pseudo_measure_fops); 1354 } 1355 1356 dev = device_create(pseudo_lock_class, NULL, 1357 MKDEV(pseudo_lock_major, new_minor), 1358 rdtgrp, "%s", rdtgrp->kn->name); 1359 1360 mutex_lock(&rdtgroup_mutex); 1361 1362 if (IS_ERR(dev)) { 1363 ret = PTR_ERR(dev); 1364 rdt_last_cmd_printf("Failed to create character device: %d\n", 1365 ret); 1366 goto out_debugfs; 1367 } 1368 1369 /* We released the mutex - check if group was removed while we did so */ 1370 if (rdtgrp->flags & RDT_DELETED) { 1371 ret = -ENODEV; 1372 goto out_device; 1373 } 1374 1375 plr->minor = new_minor; 1376 1377 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED; 1378 closid_free(rdtgrp->closid); 1379 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444); 1380 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444); 1381 1382 ret = 0; 1383 goto out; 1384 1385 out_device: 1386 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor)); 1387 out_debugfs: 1388 debugfs_remove_recursive(plr->debugfs_dir); 1389 pseudo_lock_minor_release(new_minor); 1390 out_cstates: 1391 pseudo_lock_cstates_relax(plr); 1392 out_region: 1393 pseudo_lock_region_clear(plr); 1394 out: 1395 return ret; 1396 } 1397 1398 /** 1399 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region 1400 * @rdtgrp: resource group to which the pseudo-locked region belongs 1401 * 1402 * The removal of a pseudo-locked region can be initiated when the resource 1403 * group is removed from user space via a "rmdir" from userspace or the 1404 * unmount of the resctrl filesystem. On removal the resource group does 1405 * not go back to pseudo-locksetup mode before it is removed, instead it is 1406 * removed directly. There is thus asymmetry with the creation where the 1407 * &struct pseudo_lock_region is removed here while it was not created in 1408 * rdtgroup_pseudo_lock_create(). 1409 * 1410 * Return: void 1411 */ 1412 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp) 1413 { 1414 struct pseudo_lock_region *plr = rdtgrp->plr; 1415 1416 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1417 /* 1418 * Default group cannot be a pseudo-locked region so we can 1419 * free closid here. 1420 */ 1421 closid_free(rdtgrp->closid); 1422 goto free; 1423 } 1424 1425 pseudo_lock_cstates_relax(plr); 1426 debugfs_remove_recursive(rdtgrp->plr->debugfs_dir); 1427 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor)); 1428 pseudo_lock_minor_release(plr->minor); 1429 1430 free: 1431 pseudo_lock_free(rdtgrp); 1432 } 1433 1434 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp) 1435 { 1436 struct rdtgroup *rdtgrp; 1437 1438 mutex_lock(&rdtgroup_mutex); 1439 1440 rdtgrp = region_find_by_minor(iminor(inode)); 1441 if (!rdtgrp) { 1442 mutex_unlock(&rdtgroup_mutex); 1443 return -ENODEV; 1444 } 1445 1446 filp->private_data = rdtgrp; 1447 atomic_inc(&rdtgrp->waitcount); 1448 /* Perform a non-seekable open - llseek is not supported */ 1449 filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE); 1450 1451 mutex_unlock(&rdtgroup_mutex); 1452 1453 return 0; 1454 } 1455 1456 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp) 1457 { 1458 struct rdtgroup *rdtgrp; 1459 1460 mutex_lock(&rdtgroup_mutex); 1461 rdtgrp = filp->private_data; 1462 WARN_ON(!rdtgrp); 1463 if (!rdtgrp) { 1464 mutex_unlock(&rdtgroup_mutex); 1465 return -ENODEV; 1466 } 1467 filp->private_data = NULL; 1468 atomic_dec(&rdtgrp->waitcount); 1469 mutex_unlock(&rdtgroup_mutex); 1470 return 0; 1471 } 1472 1473 static int pseudo_lock_dev_mremap(struct vm_area_struct *area) 1474 { 1475 /* Not supported */ 1476 return -EINVAL; 1477 } 1478 1479 static const struct vm_operations_struct pseudo_mmap_ops = { 1480 .mremap = pseudo_lock_dev_mremap, 1481 }; 1482 1483 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma) 1484 { 1485 unsigned long vsize = vma->vm_end - vma->vm_start; 1486 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 1487 struct pseudo_lock_region *plr; 1488 struct rdtgroup *rdtgrp; 1489 unsigned long physical; 1490 unsigned long psize; 1491 1492 mutex_lock(&rdtgroup_mutex); 1493 1494 rdtgrp = filp->private_data; 1495 WARN_ON(!rdtgrp); 1496 if (!rdtgrp) { 1497 mutex_unlock(&rdtgroup_mutex); 1498 return -ENODEV; 1499 } 1500 1501 plr = rdtgrp->plr; 1502 1503 if (!plr->d) { 1504 mutex_unlock(&rdtgroup_mutex); 1505 return -ENODEV; 1506 } 1507 1508 /* 1509 * Task is required to run with affinity to the cpus associated 1510 * with the pseudo-locked region. If this is not the case the task 1511 * may be scheduled elsewhere and invalidate entries in the 1512 * pseudo-locked region. 1513 */ 1514 if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) { 1515 mutex_unlock(&rdtgroup_mutex); 1516 return -EINVAL; 1517 } 1518 1519 physical = __pa(plr->kmem) >> PAGE_SHIFT; 1520 psize = plr->size - off; 1521 1522 if (off > plr->size) { 1523 mutex_unlock(&rdtgroup_mutex); 1524 return -ENOSPC; 1525 } 1526 1527 /* 1528 * Ensure changes are carried directly to the memory being mapped, 1529 * do not allow copy-on-write mapping. 1530 */ 1531 if (!(vma->vm_flags & VM_SHARED)) { 1532 mutex_unlock(&rdtgroup_mutex); 1533 return -EINVAL; 1534 } 1535 1536 if (vsize > psize) { 1537 mutex_unlock(&rdtgroup_mutex); 1538 return -ENOSPC; 1539 } 1540 1541 memset(plr->kmem + off, 0, vsize); 1542 1543 if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff, 1544 vsize, vma->vm_page_prot)) { 1545 mutex_unlock(&rdtgroup_mutex); 1546 return -EAGAIN; 1547 } 1548 vma->vm_ops = &pseudo_mmap_ops; 1549 mutex_unlock(&rdtgroup_mutex); 1550 return 0; 1551 } 1552 1553 static const struct file_operations pseudo_lock_dev_fops = { 1554 .owner = THIS_MODULE, 1555 .llseek = no_llseek, 1556 .read = NULL, 1557 .write = NULL, 1558 .open = pseudo_lock_dev_open, 1559 .release = pseudo_lock_dev_release, 1560 .mmap = pseudo_lock_dev_mmap, 1561 }; 1562 1563 static char *pseudo_lock_devnode(struct device *dev, umode_t *mode) 1564 { 1565 struct rdtgroup *rdtgrp; 1566 1567 rdtgrp = dev_get_drvdata(dev); 1568 if (mode) 1569 *mode = 0600; 1570 return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name); 1571 } 1572 1573 int rdt_pseudo_lock_init(void) 1574 { 1575 int ret; 1576 1577 ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops); 1578 if (ret < 0) 1579 return ret; 1580 1581 pseudo_lock_major = ret; 1582 1583 pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock"); 1584 if (IS_ERR(pseudo_lock_class)) { 1585 ret = PTR_ERR(pseudo_lock_class); 1586 unregister_chrdev(pseudo_lock_major, "pseudo_lock"); 1587 return ret; 1588 } 1589 1590 pseudo_lock_class->devnode = pseudo_lock_devnode; 1591 return 0; 1592 } 1593 1594 void rdt_pseudo_lock_release(void) 1595 { 1596 class_destroy(pseudo_lock_class); 1597 pseudo_lock_class = NULL; 1598 unregister_chrdev(pseudo_lock_major, "pseudo_lock"); 1599 pseudo_lock_major = 0; 1600 } 1601