1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Resource Director Technology (RDT)
4  *
5  * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6  *
7  * Copyright (C) 2018 Intel Corporation
8  *
9  * Author: Reinette Chatre <reinette.chatre@intel.com>
10  */
11 
12 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
13 
14 #include <linux/cacheinfo.h>
15 #include <linux/cpu.h>
16 #include <linux/cpumask.h>
17 #include <linux/debugfs.h>
18 #include <linux/kthread.h>
19 #include <linux/mman.h>
20 #include <linux/perf_event.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/uaccess.h>
24 
25 #include <asm/cacheflush.h>
26 #include <asm/intel-family.h>
27 #include <asm/resctrl.h>
28 #include <asm/perf_event.h>
29 
30 #include "../../events/perf_event.h" /* For X86_CONFIG() */
31 #include "internal.h"
32 
33 #define CREATE_TRACE_POINTS
34 #include "pseudo_lock_event.h"
35 
36 /*
37  * The bits needed to disable hardware prefetching varies based on the
38  * platform. During initialization we will discover which bits to use.
39  */
40 static u64 prefetch_disable_bits;
41 
42 /*
43  * Major number assigned to and shared by all devices exposing
44  * pseudo-locked regions.
45  */
46 static unsigned int pseudo_lock_major;
47 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
48 static struct class *pseudo_lock_class;
49 
50 /**
51  * get_prefetch_disable_bits - prefetch disable bits of supported platforms
52  *
53  * Capture the list of platforms that have been validated to support
54  * pseudo-locking. This includes testing to ensure pseudo-locked regions
55  * with low cache miss rates can be created under variety of load conditions
56  * as well as that these pseudo-locked regions can maintain their low cache
57  * miss rates under variety of load conditions for significant lengths of time.
58  *
59  * After a platform has been validated to support pseudo-locking its
60  * hardware prefetch disable bits are included here as they are documented
61  * in the SDM.
62  *
63  * When adding a platform here also add support for its cache events to
64  * measure_cycles_perf_fn()
65  *
66  * Return:
67  * If platform is supported, the bits to disable hardware prefetchers, 0
68  * if platform is not supported.
69  */
70 static u64 get_prefetch_disable_bits(void)
71 {
72 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
73 	    boot_cpu_data.x86 != 6)
74 		return 0;
75 
76 	switch (boot_cpu_data.x86_model) {
77 	case INTEL_FAM6_BROADWELL_X:
78 		/*
79 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
80 		 * as:
81 		 * 0    L2 Hardware Prefetcher Disable (R/W)
82 		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
83 		 * 2    DCU Hardware Prefetcher Disable (R/W)
84 		 * 3    DCU IP Prefetcher Disable (R/W)
85 		 * 63:4 Reserved
86 		 */
87 		return 0xF;
88 	case INTEL_FAM6_ATOM_GOLDMONT:
89 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
90 		/*
91 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
92 		 * as:
93 		 * 0     L2 Hardware Prefetcher Disable (R/W)
94 		 * 1     Reserved
95 		 * 2     DCU Hardware Prefetcher Disable (R/W)
96 		 * 63:3  Reserved
97 		 */
98 		return 0x5;
99 	}
100 
101 	return 0;
102 }
103 
104 /**
105  * pseudo_lock_minor_get - Obtain available minor number
106  * @minor: Pointer to where new minor number will be stored
107  *
108  * A bitmask is used to track available minor numbers. Here the next free
109  * minor number is marked as unavailable and returned.
110  *
111  * Return: 0 on success, <0 on failure.
112  */
113 static int pseudo_lock_minor_get(unsigned int *minor)
114 {
115 	unsigned long first_bit;
116 
117 	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
118 
119 	if (first_bit == MINORBITS)
120 		return -ENOSPC;
121 
122 	__clear_bit(first_bit, &pseudo_lock_minor_avail);
123 	*minor = first_bit;
124 
125 	return 0;
126 }
127 
128 /**
129  * pseudo_lock_minor_release - Return minor number to available
130  * @minor: The minor number made available
131  */
132 static void pseudo_lock_minor_release(unsigned int minor)
133 {
134 	__set_bit(minor, &pseudo_lock_minor_avail);
135 }
136 
137 /**
138  * region_find_by_minor - Locate a pseudo-lock region by inode minor number
139  * @minor: The minor number of the device representing pseudo-locked region
140  *
141  * When the character device is accessed we need to determine which
142  * pseudo-locked region it belongs to. This is done by matching the minor
143  * number of the device to the pseudo-locked region it belongs.
144  *
145  * Minor numbers are assigned at the time a pseudo-locked region is associated
146  * with a cache instance.
147  *
148  * Return: On success return pointer to resource group owning the pseudo-locked
149  *         region, NULL on failure.
150  */
151 static struct rdtgroup *region_find_by_minor(unsigned int minor)
152 {
153 	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
154 
155 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
156 		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
157 			rdtgrp_match = rdtgrp;
158 			break;
159 		}
160 	}
161 	return rdtgrp_match;
162 }
163 
164 /**
165  * pseudo_lock_pm_req - A power management QoS request list entry
166  * @list:	Entry within the @pm_reqs list for a pseudo-locked region
167  * @req:	PM QoS request
168  */
169 struct pseudo_lock_pm_req {
170 	struct list_head list;
171 	struct dev_pm_qos_request req;
172 };
173 
174 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
175 {
176 	struct pseudo_lock_pm_req *pm_req, *next;
177 
178 	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
179 		dev_pm_qos_remove_request(&pm_req->req);
180 		list_del(&pm_req->list);
181 		kfree(pm_req);
182 	}
183 }
184 
185 /**
186  * pseudo_lock_cstates_constrain - Restrict cores from entering C6
187  *
188  * To prevent the cache from being affected by power management entering
189  * C6 has to be avoided. This is accomplished by requesting a latency
190  * requirement lower than lowest C6 exit latency of all supported
191  * platforms as found in the cpuidle state tables in the intel_idle driver.
192  * At this time it is possible to do so with a single latency requirement
193  * for all supported platforms.
194  *
195  * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
196  * the ACPI latencies need to be considered while keeping in mind that C2
197  * may be set to map to deeper sleep states. In this case the latency
198  * requirement needs to prevent entering C2 also.
199  */
200 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
201 {
202 	struct pseudo_lock_pm_req *pm_req;
203 	int cpu;
204 	int ret;
205 
206 	for_each_cpu(cpu, &plr->d->cpu_mask) {
207 		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
208 		if (!pm_req) {
209 			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
210 			ret = -ENOMEM;
211 			goto out_err;
212 		}
213 		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
214 					     &pm_req->req,
215 					     DEV_PM_QOS_RESUME_LATENCY,
216 					     30);
217 		if (ret < 0) {
218 			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
219 					    cpu);
220 			kfree(pm_req);
221 			ret = -1;
222 			goto out_err;
223 		}
224 		list_add(&pm_req->list, &plr->pm_reqs);
225 	}
226 
227 	return 0;
228 
229 out_err:
230 	pseudo_lock_cstates_relax(plr);
231 	return ret;
232 }
233 
234 /**
235  * pseudo_lock_region_clear - Reset pseudo-lock region data
236  * @plr: pseudo-lock region
237  *
238  * All content of the pseudo-locked region is reset - any memory allocated
239  * freed.
240  *
241  * Return: void
242  */
243 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
244 {
245 	plr->size = 0;
246 	plr->line_size = 0;
247 	kfree(plr->kmem);
248 	plr->kmem = NULL;
249 	plr->r = NULL;
250 	if (plr->d)
251 		plr->d->plr = NULL;
252 	plr->d = NULL;
253 	plr->cbm = 0;
254 	plr->debugfs_dir = NULL;
255 }
256 
257 /**
258  * pseudo_lock_region_init - Initialize pseudo-lock region information
259  * @plr: pseudo-lock region
260  *
261  * Called after user provided a schemata to be pseudo-locked. From the
262  * schemata the &struct pseudo_lock_region is on entry already initialized
263  * with the resource, domain, and capacity bitmask. Here the information
264  * required for pseudo-locking is deduced from this data and &struct
265  * pseudo_lock_region initialized further. This information includes:
266  * - size in bytes of the region to be pseudo-locked
267  * - cache line size to know the stride with which data needs to be accessed
268  *   to be pseudo-locked
269  * - a cpu associated with the cache instance on which the pseudo-locking
270  *   flow can be executed
271  *
272  * Return: 0 on success, <0 on failure. Descriptive error will be written
273  * to last_cmd_status buffer.
274  */
275 static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
276 {
277 	struct cpu_cacheinfo *ci;
278 	int ret;
279 	int i;
280 
281 	/* Pick the first cpu we find that is associated with the cache. */
282 	plr->cpu = cpumask_first(&plr->d->cpu_mask);
283 
284 	if (!cpu_online(plr->cpu)) {
285 		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
286 				    plr->cpu);
287 		ret = -ENODEV;
288 		goto out_region;
289 	}
290 
291 	ci = get_cpu_cacheinfo(plr->cpu);
292 
293 	plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
294 
295 	for (i = 0; i < ci->num_leaves; i++) {
296 		if (ci->info_list[i].level == plr->r->cache_level) {
297 			plr->line_size = ci->info_list[i].coherency_line_size;
298 			return 0;
299 		}
300 	}
301 
302 	ret = -1;
303 	rdt_last_cmd_puts("Unable to determine cache line size\n");
304 out_region:
305 	pseudo_lock_region_clear(plr);
306 	return ret;
307 }
308 
309 /**
310  * pseudo_lock_init - Initialize a pseudo-lock region
311  * @rdtgrp: resource group to which new pseudo-locked region will belong
312  *
313  * A pseudo-locked region is associated with a resource group. When this
314  * association is created the pseudo-locked region is initialized. The
315  * details of the pseudo-locked region are not known at this time so only
316  * allocation is done and association established.
317  *
318  * Return: 0 on success, <0 on failure
319  */
320 static int pseudo_lock_init(struct rdtgroup *rdtgrp)
321 {
322 	struct pseudo_lock_region *plr;
323 
324 	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
325 	if (!plr)
326 		return -ENOMEM;
327 
328 	init_waitqueue_head(&plr->lock_thread_wq);
329 	INIT_LIST_HEAD(&plr->pm_reqs);
330 	rdtgrp->plr = plr;
331 	return 0;
332 }
333 
334 /**
335  * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
336  * @plr: pseudo-lock region
337  *
338  * Initialize the details required to set up the pseudo-locked region and
339  * allocate the contiguous memory that will be pseudo-locked to the cache.
340  *
341  * Return: 0 on success, <0 on failure.  Descriptive error will be written
342  * to last_cmd_status buffer.
343  */
344 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
345 {
346 	int ret;
347 
348 	ret = pseudo_lock_region_init(plr);
349 	if (ret < 0)
350 		return ret;
351 
352 	/*
353 	 * We do not yet support contiguous regions larger than
354 	 * KMALLOC_MAX_SIZE.
355 	 */
356 	if (plr->size > KMALLOC_MAX_SIZE) {
357 		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
358 		ret = -E2BIG;
359 		goto out_region;
360 	}
361 
362 	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
363 	if (!plr->kmem) {
364 		rdt_last_cmd_puts("Unable to allocate memory\n");
365 		ret = -ENOMEM;
366 		goto out_region;
367 	}
368 
369 	ret = 0;
370 	goto out;
371 out_region:
372 	pseudo_lock_region_clear(plr);
373 out:
374 	return ret;
375 }
376 
377 /**
378  * pseudo_lock_free - Free a pseudo-locked region
379  * @rdtgrp: resource group to which pseudo-locked region belonged
380  *
381  * The pseudo-locked region's resources have already been released, or not
382  * yet created at this point. Now it can be freed and disassociated from the
383  * resource group.
384  *
385  * Return: void
386  */
387 static void pseudo_lock_free(struct rdtgroup *rdtgrp)
388 {
389 	pseudo_lock_region_clear(rdtgrp->plr);
390 	kfree(rdtgrp->plr);
391 	rdtgrp->plr = NULL;
392 }
393 
394 /**
395  * pseudo_lock_fn - Load kernel memory into cache
396  * @_rdtgrp: resource group to which pseudo-lock region belongs
397  *
398  * This is the core pseudo-locking flow.
399  *
400  * First we ensure that the kernel memory cannot be found in the cache.
401  * Then, while taking care that there will be as little interference as
402  * possible, the memory to be loaded is accessed while core is running
403  * with class of service set to the bitmask of the pseudo-locked region.
404  * After this is complete no future CAT allocations will be allowed to
405  * overlap with this bitmask.
406  *
407  * Local register variables are utilized to ensure that the memory region
408  * to be locked is the only memory access made during the critical locking
409  * loop.
410  *
411  * Return: 0. Waiter on waitqueue will be woken on completion.
412  */
413 static int pseudo_lock_fn(void *_rdtgrp)
414 {
415 	struct rdtgroup *rdtgrp = _rdtgrp;
416 	struct pseudo_lock_region *plr = rdtgrp->plr;
417 	u32 rmid_p, closid_p;
418 	unsigned long i;
419 #ifdef CONFIG_KASAN
420 	/*
421 	 * The registers used for local register variables are also used
422 	 * when KASAN is active. When KASAN is active we use a regular
423 	 * variable to ensure we always use a valid pointer, but the cost
424 	 * is that this variable will enter the cache through evicting the
425 	 * memory we are trying to lock into the cache. Thus expect lower
426 	 * pseudo-locking success rate when KASAN is active.
427 	 */
428 	unsigned int line_size;
429 	unsigned int size;
430 	void *mem_r;
431 #else
432 	register unsigned int line_size asm("esi");
433 	register unsigned int size asm("edi");
434 	register void *mem_r asm(_ASM_BX);
435 #endif /* CONFIG_KASAN */
436 
437 	/*
438 	 * Make sure none of the allocated memory is cached. If it is we
439 	 * will get a cache hit in below loop from outside of pseudo-locked
440 	 * region.
441 	 * wbinvd (as opposed to clflush/clflushopt) is required to
442 	 * increase likelihood that allocated cache portion will be filled
443 	 * with associated memory.
444 	 */
445 	native_wbinvd();
446 
447 	/*
448 	 * Always called with interrupts enabled. By disabling interrupts
449 	 * ensure that we will not be preempted during this critical section.
450 	 */
451 	local_irq_disable();
452 
453 	/*
454 	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
455 	 * clobbering local register variables or affecting cache accesses.
456 	 *
457 	 * Disable the hardware prefetcher so that when the end of the memory
458 	 * being pseudo-locked is reached the hardware will not read beyond
459 	 * the buffer and evict pseudo-locked memory read earlier from the
460 	 * cache.
461 	 */
462 	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
463 	closid_p = this_cpu_read(pqr_state.cur_closid);
464 	rmid_p = this_cpu_read(pqr_state.cur_rmid);
465 	mem_r = plr->kmem;
466 	size = plr->size;
467 	line_size = plr->line_size;
468 	/*
469 	 * Critical section begin: start by writing the closid associated
470 	 * with the capacity bitmask of the cache region being
471 	 * pseudo-locked followed by reading of kernel memory to load it
472 	 * into the cache.
473 	 */
474 	__wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
475 	/*
476 	 * Cache was flushed earlier. Now access kernel memory to read it
477 	 * into cache region associated with just activated plr->closid.
478 	 * Loop over data twice:
479 	 * - In first loop the cache region is shared with the page walker
480 	 *   as it populates the paging structure caches (including TLB).
481 	 * - In the second loop the paging structure caches are used and
482 	 *   cache region is populated with the memory being referenced.
483 	 */
484 	for (i = 0; i < size; i += PAGE_SIZE) {
485 		/*
486 		 * Add a barrier to prevent speculative execution of this
487 		 * loop reading beyond the end of the buffer.
488 		 */
489 		rmb();
490 		asm volatile("mov (%0,%1,1), %%eax\n\t"
491 			:
492 			: "r" (mem_r), "r" (i)
493 			: "%eax", "memory");
494 	}
495 	for (i = 0; i < size; i += line_size) {
496 		/*
497 		 * Add a barrier to prevent speculative execution of this
498 		 * loop reading beyond the end of the buffer.
499 		 */
500 		rmb();
501 		asm volatile("mov (%0,%1,1), %%eax\n\t"
502 			:
503 			: "r" (mem_r), "r" (i)
504 			: "%eax", "memory");
505 	}
506 	/*
507 	 * Critical section end: restore closid with capacity bitmask that
508 	 * does not overlap with pseudo-locked region.
509 	 */
510 	__wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
511 
512 	/* Re-enable the hardware prefetcher(s) */
513 	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
514 	local_irq_enable();
515 
516 	plr->thread_done = 1;
517 	wake_up_interruptible(&plr->lock_thread_wq);
518 	return 0;
519 }
520 
521 /**
522  * rdtgroup_monitor_in_progress - Test if monitoring in progress
523  * @r: resource group being queried
524  *
525  * Return: 1 if monitor groups have been created for this resource
526  * group, 0 otherwise.
527  */
528 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
529 {
530 	return !list_empty(&rdtgrp->mon.crdtgrp_list);
531 }
532 
533 /**
534  * rdtgroup_locksetup_user_restrict - Restrict user access to group
535  * @rdtgrp: resource group needing access restricted
536  *
537  * A resource group used for cache pseudo-locking cannot have cpus or tasks
538  * assigned to it. This is communicated to the user by restricting access
539  * to all the files that can be used to make such changes.
540  *
541  * Permissions restored with rdtgroup_locksetup_user_restore()
542  *
543  * Return: 0 on success, <0 on failure. If a failure occurs during the
544  * restriction of access an attempt will be made to restore permissions but
545  * the state of the mode of these files will be uncertain when a failure
546  * occurs.
547  */
548 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
549 {
550 	int ret;
551 
552 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
553 	if (ret)
554 		return ret;
555 
556 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
557 	if (ret)
558 		goto err_tasks;
559 
560 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
561 	if (ret)
562 		goto err_cpus;
563 
564 	if (rdt_mon_capable) {
565 		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
566 		if (ret)
567 			goto err_cpus_list;
568 	}
569 
570 	ret = 0;
571 	goto out;
572 
573 err_cpus_list:
574 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
575 err_cpus:
576 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
577 err_tasks:
578 	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
579 out:
580 	return ret;
581 }
582 
583 /**
584  * rdtgroup_locksetup_user_restore - Restore user access to group
585  * @rdtgrp: resource group needing access restored
586  *
587  * Restore all file access previously removed using
588  * rdtgroup_locksetup_user_restrict()
589  *
590  * Return: 0 on success, <0 on failure.  If a failure occurs during the
591  * restoration of access an attempt will be made to restrict permissions
592  * again but the state of the mode of these files will be uncertain when
593  * a failure occurs.
594  */
595 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
596 {
597 	int ret;
598 
599 	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
600 	if (ret)
601 		return ret;
602 
603 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
604 	if (ret)
605 		goto err_tasks;
606 
607 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
608 	if (ret)
609 		goto err_cpus;
610 
611 	if (rdt_mon_capable) {
612 		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
613 		if (ret)
614 			goto err_cpus_list;
615 	}
616 
617 	ret = 0;
618 	goto out;
619 
620 err_cpus_list:
621 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
622 err_cpus:
623 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
624 err_tasks:
625 	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
626 out:
627 	return ret;
628 }
629 
630 /**
631  * rdtgroup_locksetup_enter - Resource group enters locksetup mode
632  * @rdtgrp: resource group requested to enter locksetup mode
633  *
634  * A resource group enters locksetup mode to reflect that it would be used
635  * to represent a pseudo-locked region and is in the process of being set
636  * up to do so. A resource group used for a pseudo-locked region would
637  * lose the closid associated with it so we cannot allow it to have any
638  * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
639  * future. Monitoring of a pseudo-locked region is not allowed either.
640  *
641  * The above and more restrictions on a pseudo-locked region are checked
642  * for and enforced before the resource group enters the locksetup mode.
643  *
644  * Returns: 0 if the resource group successfully entered locksetup mode, <0
645  * on failure. On failure the last_cmd_status buffer is updated with text to
646  * communicate details of failure to the user.
647  */
648 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
649 {
650 	int ret;
651 
652 	/*
653 	 * The default resource group can neither be removed nor lose the
654 	 * default closid associated with it.
655 	 */
656 	if (rdtgrp == &rdtgroup_default) {
657 		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
658 		return -EINVAL;
659 	}
660 
661 	/*
662 	 * Cache Pseudo-locking not supported when CDP is enabled.
663 	 *
664 	 * Some things to consider if you would like to enable this
665 	 * support (using L3 CDP as example):
666 	 * - When CDP is enabled two separate resources are exposed,
667 	 *   L3DATA and L3CODE, but they are actually on the same cache.
668 	 *   The implication for pseudo-locking is that if a
669 	 *   pseudo-locked region is created on a domain of one
670 	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
671 	 *   be created on that same domain of the other resource
672 	 *   (eg. L3DATA). This is because the creation of a
673 	 *   pseudo-locked region involves a call to wbinvd that will
674 	 *   affect all cache allocations on particular domain.
675 	 * - Considering the previous, it may be possible to only
676 	 *   expose one of the CDP resources to pseudo-locking and
677 	 *   hide the other. For example, we could consider to only
678 	 *   expose L3DATA and since the L3 cache is unified it is
679 	 *   still possible to place instructions there are execute it.
680 	 * - If only one region is exposed to pseudo-locking we should
681 	 *   still keep in mind that availability of a portion of cache
682 	 *   for pseudo-locking should take into account both resources.
683 	 *   Similarly, if a pseudo-locked region is created in one
684 	 *   resource, the portion of cache used by it should be made
685 	 *   unavailable to all future allocations from both resources.
686 	 */
687 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
688 	    rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
689 		rdt_last_cmd_puts("CDP enabled\n");
690 		return -EINVAL;
691 	}
692 
693 	/*
694 	 * Not knowing the bits to disable prefetching implies that this
695 	 * platform does not support Cache Pseudo-Locking.
696 	 */
697 	prefetch_disable_bits = get_prefetch_disable_bits();
698 	if (prefetch_disable_bits == 0) {
699 		rdt_last_cmd_puts("Pseudo-locking not supported\n");
700 		return -EINVAL;
701 	}
702 
703 	if (rdtgroup_monitor_in_progress(rdtgrp)) {
704 		rdt_last_cmd_puts("Monitoring in progress\n");
705 		return -EINVAL;
706 	}
707 
708 	if (rdtgroup_tasks_assigned(rdtgrp)) {
709 		rdt_last_cmd_puts("Tasks assigned to resource group\n");
710 		return -EINVAL;
711 	}
712 
713 	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
714 		rdt_last_cmd_puts("CPUs assigned to resource group\n");
715 		return -EINVAL;
716 	}
717 
718 	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
719 		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
720 		return -EIO;
721 	}
722 
723 	ret = pseudo_lock_init(rdtgrp);
724 	if (ret) {
725 		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
726 		goto out_release;
727 	}
728 
729 	/*
730 	 * If this system is capable of monitoring a rmid would have been
731 	 * allocated when the control group was created. This is not needed
732 	 * anymore when this group would be used for pseudo-locking. This
733 	 * is safe to call on platforms not capable of monitoring.
734 	 */
735 	free_rmid(rdtgrp->mon.rmid);
736 
737 	ret = 0;
738 	goto out;
739 
740 out_release:
741 	rdtgroup_locksetup_user_restore(rdtgrp);
742 out:
743 	return ret;
744 }
745 
746 /**
747  * rdtgroup_locksetup_exit - resource group exist locksetup mode
748  * @rdtgrp: resource group
749  *
750  * When a resource group exits locksetup mode the earlier restrictions are
751  * lifted.
752  *
753  * Return: 0 on success, <0 on failure
754  */
755 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
756 {
757 	int ret;
758 
759 	if (rdt_mon_capable) {
760 		ret = alloc_rmid();
761 		if (ret < 0) {
762 			rdt_last_cmd_puts("Out of RMIDs\n");
763 			return ret;
764 		}
765 		rdtgrp->mon.rmid = ret;
766 	}
767 
768 	ret = rdtgroup_locksetup_user_restore(rdtgrp);
769 	if (ret) {
770 		free_rmid(rdtgrp->mon.rmid);
771 		return ret;
772 	}
773 
774 	pseudo_lock_free(rdtgrp);
775 	return 0;
776 }
777 
778 /**
779  * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
780  * @d: RDT domain
781  * @cbm: CBM to test
782  *
783  * @d represents a cache instance and @cbm a capacity bitmask that is
784  * considered for it. Determine if @cbm overlaps with any existing
785  * pseudo-locked region on @d.
786  *
787  * @cbm is unsigned long, even if only 32 bits are used, to make the
788  * bitmap functions work correctly.
789  *
790  * Return: true if @cbm overlaps with pseudo-locked region on @d, false
791  * otherwise.
792  */
793 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
794 {
795 	unsigned int cbm_len;
796 	unsigned long cbm_b;
797 
798 	if (d->plr) {
799 		cbm_len = d->plr->r->cache.cbm_len;
800 		cbm_b = d->plr->cbm;
801 		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
802 			return true;
803 	}
804 	return false;
805 }
806 
807 /**
808  * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
809  * @d: RDT domain under test
810  *
811  * The setup of a pseudo-locked region affects all cache instances within
812  * the hierarchy of the region. It is thus essential to know if any
813  * pseudo-locked regions exist within a cache hierarchy to prevent any
814  * attempts to create new pseudo-locked regions in the same hierarchy.
815  *
816  * Return: true if a pseudo-locked region exists in the hierarchy of @d or
817  *         if it is not possible to test due to memory allocation issue,
818  *         false otherwise.
819  */
820 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
821 {
822 	cpumask_var_t cpu_with_psl;
823 	struct rdt_resource *r;
824 	struct rdt_domain *d_i;
825 	bool ret = false;
826 
827 	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
828 		return true;
829 
830 	/*
831 	 * First determine which cpus have pseudo-locked regions
832 	 * associated with them.
833 	 */
834 	for_each_alloc_enabled_rdt_resource(r) {
835 		list_for_each_entry(d_i, &r->domains, list) {
836 			if (d_i->plr)
837 				cpumask_or(cpu_with_psl, cpu_with_psl,
838 					   &d_i->cpu_mask);
839 		}
840 	}
841 
842 	/*
843 	 * Next test if new pseudo-locked region would intersect with
844 	 * existing region.
845 	 */
846 	if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
847 		ret = true;
848 
849 	free_cpumask_var(cpu_with_psl);
850 	return ret;
851 }
852 
853 /**
854  * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
855  * @_plr: pseudo-lock region to measure
856  *
857  * There is no deterministic way to test if a memory region is cached. One
858  * way is to measure how long it takes to read the memory, the speed of
859  * access is a good way to learn how close to the cpu the data was. Even
860  * more, if the prefetcher is disabled and the memory is read at a stride
861  * of half the cache line, then a cache miss will be easy to spot since the
862  * read of the first half would be significantly slower than the read of
863  * the second half.
864  *
865  * Return: 0. Waiter on waitqueue will be woken on completion.
866  */
867 static int measure_cycles_lat_fn(void *_plr)
868 {
869 	struct pseudo_lock_region *plr = _plr;
870 	unsigned long i;
871 	u64 start, end;
872 	void *mem_r;
873 
874 	local_irq_disable();
875 	/*
876 	 * Disable hardware prefetchers.
877 	 */
878 	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
879 	mem_r = READ_ONCE(plr->kmem);
880 	/*
881 	 * Dummy execute of the time measurement to load the needed
882 	 * instructions into the L1 instruction cache.
883 	 */
884 	start = rdtsc_ordered();
885 	for (i = 0; i < plr->size; i += 32) {
886 		start = rdtsc_ordered();
887 		asm volatile("mov (%0,%1,1), %%eax\n\t"
888 			     :
889 			     : "r" (mem_r), "r" (i)
890 			     : "%eax", "memory");
891 		end = rdtsc_ordered();
892 		trace_pseudo_lock_mem_latency((u32)(end - start));
893 	}
894 	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
895 	local_irq_enable();
896 	plr->thread_done = 1;
897 	wake_up_interruptible(&plr->lock_thread_wq);
898 	return 0;
899 }
900 
901 /*
902  * Create a perf_event_attr for the hit and miss perf events that will
903  * be used during the performance measurement. A perf_event maintains
904  * a pointer to its perf_event_attr so a unique attribute structure is
905  * created for each perf_event.
906  *
907  * The actual configuration of the event is set right before use in order
908  * to use the X86_CONFIG macro.
909  */
910 static struct perf_event_attr perf_miss_attr = {
911 	.type		= PERF_TYPE_RAW,
912 	.size		= sizeof(struct perf_event_attr),
913 	.pinned		= 1,
914 	.disabled	= 0,
915 	.exclude_user	= 1,
916 };
917 
918 static struct perf_event_attr perf_hit_attr = {
919 	.type		= PERF_TYPE_RAW,
920 	.size		= sizeof(struct perf_event_attr),
921 	.pinned		= 1,
922 	.disabled	= 0,
923 	.exclude_user	= 1,
924 };
925 
926 struct residency_counts {
927 	u64 miss_before, hits_before;
928 	u64 miss_after,  hits_after;
929 };
930 
931 static int measure_residency_fn(struct perf_event_attr *miss_attr,
932 				struct perf_event_attr *hit_attr,
933 				struct pseudo_lock_region *plr,
934 				struct residency_counts *counts)
935 {
936 	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
937 	struct perf_event *miss_event, *hit_event;
938 	int hit_pmcnum, miss_pmcnum;
939 	unsigned int line_size;
940 	unsigned int size;
941 	unsigned long i;
942 	void *mem_r;
943 	u64 tmp;
944 
945 	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
946 						      NULL, NULL, NULL);
947 	if (IS_ERR(miss_event))
948 		goto out;
949 
950 	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
951 						     NULL, NULL, NULL);
952 	if (IS_ERR(hit_event))
953 		goto out_miss;
954 
955 	local_irq_disable();
956 	/*
957 	 * Check any possible error state of events used by performing
958 	 * one local read.
959 	 */
960 	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
961 		local_irq_enable();
962 		goto out_hit;
963 	}
964 	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
965 		local_irq_enable();
966 		goto out_hit;
967 	}
968 
969 	/*
970 	 * Disable hardware prefetchers.
971 	 */
972 	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
973 
974 	/* Initialize rest of local variables */
975 	/*
976 	 * Performance event has been validated right before this with
977 	 * interrupts disabled - it is thus safe to read the counter index.
978 	 */
979 	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
980 	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
981 	line_size = READ_ONCE(plr->line_size);
982 	mem_r = READ_ONCE(plr->kmem);
983 	size = READ_ONCE(plr->size);
984 
985 	/*
986 	 * Read counter variables twice - first to load the instructions
987 	 * used in L1 cache, second to capture accurate value that does not
988 	 * include cache misses incurred because of instruction loads.
989 	 */
990 	rdpmcl(hit_pmcnum, hits_before);
991 	rdpmcl(miss_pmcnum, miss_before);
992 	/*
993 	 * From SDM: Performing back-to-back fast reads are not guaranteed
994 	 * to be monotonic.
995 	 * Use LFENCE to ensure all previous instructions are retired
996 	 * before proceeding.
997 	 */
998 	rmb();
999 	rdpmcl(hit_pmcnum, hits_before);
1000 	rdpmcl(miss_pmcnum, miss_before);
1001 	/*
1002 	 * Use LFENCE to ensure all previous instructions are retired
1003 	 * before proceeding.
1004 	 */
1005 	rmb();
1006 	for (i = 0; i < size; i += line_size) {
1007 		/*
1008 		 * Add a barrier to prevent speculative execution of this
1009 		 * loop reading beyond the end of the buffer.
1010 		 */
1011 		rmb();
1012 		asm volatile("mov (%0,%1,1), %%eax\n\t"
1013 			     :
1014 			     : "r" (mem_r), "r" (i)
1015 			     : "%eax", "memory");
1016 	}
1017 	/*
1018 	 * Use LFENCE to ensure all previous instructions are retired
1019 	 * before proceeding.
1020 	 */
1021 	rmb();
1022 	rdpmcl(hit_pmcnum, hits_after);
1023 	rdpmcl(miss_pmcnum, miss_after);
1024 	/*
1025 	 * Use LFENCE to ensure all previous instructions are retired
1026 	 * before proceeding.
1027 	 */
1028 	rmb();
1029 	/* Re-enable hardware prefetchers */
1030 	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
1031 	local_irq_enable();
1032 out_hit:
1033 	perf_event_release_kernel(hit_event);
1034 out_miss:
1035 	perf_event_release_kernel(miss_event);
1036 out:
1037 	/*
1038 	 * All counts will be zero on failure.
1039 	 */
1040 	counts->miss_before = miss_before;
1041 	counts->hits_before = hits_before;
1042 	counts->miss_after  = miss_after;
1043 	counts->hits_after  = hits_after;
1044 	return 0;
1045 }
1046 
1047 static int measure_l2_residency(void *_plr)
1048 {
1049 	struct pseudo_lock_region *plr = _plr;
1050 	struct residency_counts counts = {0};
1051 
1052 	/*
1053 	 * Non-architectural event for the Goldmont Microarchitecture
1054 	 * from Intel x86 Architecture Software Developer Manual (SDM):
1055 	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1056 	 * Umask values:
1057 	 *     L2_HIT   02H
1058 	 *     L2_MISS  10H
1059 	 */
1060 	switch (boot_cpu_data.x86_model) {
1061 	case INTEL_FAM6_ATOM_GOLDMONT:
1062 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1063 		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1064 						   .umask = 0x10);
1065 		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1066 						  .umask = 0x2);
1067 		break;
1068 	default:
1069 		goto out;
1070 	}
1071 
1072 	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1073 	/*
1074 	 * If a failure prevented the measurements from succeeding
1075 	 * tracepoints will still be written and all counts will be zero.
1076 	 */
1077 	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1078 			     counts.miss_after - counts.miss_before);
1079 out:
1080 	plr->thread_done = 1;
1081 	wake_up_interruptible(&plr->lock_thread_wq);
1082 	return 0;
1083 }
1084 
1085 static int measure_l3_residency(void *_plr)
1086 {
1087 	struct pseudo_lock_region *plr = _plr;
1088 	struct residency_counts counts = {0};
1089 
1090 	/*
1091 	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1092 	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1093 	 * this platform the following events are used instead:
1094 	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1095 	 *       REFERENCE 4FH
1096 	 *       MISS      41H
1097 	 */
1098 
1099 	switch (boot_cpu_data.x86_model) {
1100 	case INTEL_FAM6_BROADWELL_X:
1101 		/* On BDW the hit event counts references, not hits */
1102 		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1103 						  .umask = 0x4f);
1104 		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1105 						   .umask = 0x41);
1106 		break;
1107 	default:
1108 		goto out;
1109 	}
1110 
1111 	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1112 	/*
1113 	 * If a failure prevented the measurements from succeeding
1114 	 * tracepoints will still be written and all counts will be zero.
1115 	 */
1116 
1117 	counts.miss_after -= counts.miss_before;
1118 	if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1119 		/*
1120 		 * On BDW references and misses are counted, need to adjust.
1121 		 * Sometimes the "hits" counter is a bit more than the
1122 		 * references, for example, x references but x + 1 hits.
1123 		 * To not report invalid hit values in this case we treat
1124 		 * that as misses equal to references.
1125 		 */
1126 		/* First compute the number of cache references measured */
1127 		counts.hits_after -= counts.hits_before;
1128 		/* Next convert references to cache hits */
1129 		counts.hits_after -= min(counts.miss_after, counts.hits_after);
1130 	} else {
1131 		counts.hits_after -= counts.hits_before;
1132 	}
1133 
1134 	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1135 out:
1136 	plr->thread_done = 1;
1137 	wake_up_interruptible(&plr->lock_thread_wq);
1138 	return 0;
1139 }
1140 
1141 /**
1142  * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1143  *
1144  * The measurement of latency to access a pseudo-locked region should be
1145  * done from a cpu that is associated with that pseudo-locked region.
1146  * Determine which cpu is associated with this region and start a thread on
1147  * that cpu to perform the measurement, wait for that thread to complete.
1148  *
1149  * Return: 0 on success, <0 on failure
1150  */
1151 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1152 {
1153 	struct pseudo_lock_region *plr = rdtgrp->plr;
1154 	struct task_struct *thread;
1155 	unsigned int cpu;
1156 	int ret = -1;
1157 
1158 	cpus_read_lock();
1159 	mutex_lock(&rdtgroup_mutex);
1160 
1161 	if (rdtgrp->flags & RDT_DELETED) {
1162 		ret = -ENODEV;
1163 		goto out;
1164 	}
1165 
1166 	if (!plr->d) {
1167 		ret = -ENODEV;
1168 		goto out;
1169 	}
1170 
1171 	plr->thread_done = 0;
1172 	cpu = cpumask_first(&plr->d->cpu_mask);
1173 	if (!cpu_online(cpu)) {
1174 		ret = -ENODEV;
1175 		goto out;
1176 	}
1177 
1178 	plr->cpu = cpu;
1179 
1180 	if (sel == 1)
1181 		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1182 						cpu_to_node(cpu),
1183 						"pseudo_lock_measure/%u",
1184 						cpu);
1185 	else if (sel == 2)
1186 		thread = kthread_create_on_node(measure_l2_residency, plr,
1187 						cpu_to_node(cpu),
1188 						"pseudo_lock_measure/%u",
1189 						cpu);
1190 	else if (sel == 3)
1191 		thread = kthread_create_on_node(measure_l3_residency, plr,
1192 						cpu_to_node(cpu),
1193 						"pseudo_lock_measure/%u",
1194 						cpu);
1195 	else
1196 		goto out;
1197 
1198 	if (IS_ERR(thread)) {
1199 		ret = PTR_ERR(thread);
1200 		goto out;
1201 	}
1202 	kthread_bind(thread, cpu);
1203 	wake_up_process(thread);
1204 
1205 	ret = wait_event_interruptible(plr->lock_thread_wq,
1206 				       plr->thread_done == 1);
1207 	if (ret < 0)
1208 		goto out;
1209 
1210 	ret = 0;
1211 
1212 out:
1213 	mutex_unlock(&rdtgroup_mutex);
1214 	cpus_read_unlock();
1215 	return ret;
1216 }
1217 
1218 static ssize_t pseudo_lock_measure_trigger(struct file *file,
1219 					   const char __user *user_buf,
1220 					   size_t count, loff_t *ppos)
1221 {
1222 	struct rdtgroup *rdtgrp = file->private_data;
1223 	size_t buf_size;
1224 	char buf[32];
1225 	int ret;
1226 	int sel;
1227 
1228 	buf_size = min(count, (sizeof(buf) - 1));
1229 	if (copy_from_user(buf, user_buf, buf_size))
1230 		return -EFAULT;
1231 
1232 	buf[buf_size] = '\0';
1233 	ret = kstrtoint(buf, 10, &sel);
1234 	if (ret == 0) {
1235 		if (sel != 1 && sel != 2 && sel != 3)
1236 			return -EINVAL;
1237 		ret = debugfs_file_get(file->f_path.dentry);
1238 		if (ret)
1239 			return ret;
1240 		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1241 		if (ret == 0)
1242 			ret = count;
1243 		debugfs_file_put(file->f_path.dentry);
1244 	}
1245 
1246 	return ret;
1247 }
1248 
1249 static const struct file_operations pseudo_measure_fops = {
1250 	.write = pseudo_lock_measure_trigger,
1251 	.open = simple_open,
1252 	.llseek = default_llseek,
1253 };
1254 
1255 /**
1256  * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1257  * @rdtgrp: resource group to which pseudo-lock region belongs
1258  *
1259  * Called when a resource group in the pseudo-locksetup mode receives a
1260  * valid schemata that should be pseudo-locked. Since the resource group is
1261  * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1262  * allocated and initialized with the essential information. If a failure
1263  * occurs the resource group remains in the pseudo-locksetup mode with the
1264  * &struct pseudo_lock_region associated with it, but cleared from all
1265  * information and ready for the user to re-attempt pseudo-locking by
1266  * writing the schemata again.
1267  *
1268  * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1269  * on failure. Descriptive error will be written to last_cmd_status buffer.
1270  */
1271 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1272 {
1273 	struct pseudo_lock_region *plr = rdtgrp->plr;
1274 	struct task_struct *thread;
1275 	unsigned int new_minor;
1276 	struct device *dev;
1277 	int ret;
1278 
1279 	ret = pseudo_lock_region_alloc(plr);
1280 	if (ret < 0)
1281 		return ret;
1282 
1283 	ret = pseudo_lock_cstates_constrain(plr);
1284 	if (ret < 0) {
1285 		ret = -EINVAL;
1286 		goto out_region;
1287 	}
1288 
1289 	plr->thread_done = 0;
1290 
1291 	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1292 					cpu_to_node(plr->cpu),
1293 					"pseudo_lock/%u", plr->cpu);
1294 	if (IS_ERR(thread)) {
1295 		ret = PTR_ERR(thread);
1296 		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1297 		goto out_cstates;
1298 	}
1299 
1300 	kthread_bind(thread, plr->cpu);
1301 	wake_up_process(thread);
1302 
1303 	ret = wait_event_interruptible(plr->lock_thread_wq,
1304 				       plr->thread_done == 1);
1305 	if (ret < 0) {
1306 		/*
1307 		 * If the thread does not get on the CPU for whatever
1308 		 * reason and the process which sets up the region is
1309 		 * interrupted then this will leave the thread in runnable
1310 		 * state and once it gets on the CPU it will dereference
1311 		 * the cleared, but not freed, plr struct resulting in an
1312 		 * empty pseudo-locking loop.
1313 		 */
1314 		rdt_last_cmd_puts("Locking thread interrupted\n");
1315 		goto out_cstates;
1316 	}
1317 
1318 	ret = pseudo_lock_minor_get(&new_minor);
1319 	if (ret < 0) {
1320 		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1321 		goto out_cstates;
1322 	}
1323 
1324 	/*
1325 	 * Unlock access but do not release the reference. The
1326 	 * pseudo-locked region will still be here on return.
1327 	 *
1328 	 * The mutex has to be released temporarily to avoid a potential
1329 	 * deadlock with the mm->mmap_lock which is obtained in the
1330 	 * device_create() and debugfs_create_dir() callpath below as well as
1331 	 * before the mmap() callback is called.
1332 	 */
1333 	mutex_unlock(&rdtgroup_mutex);
1334 
1335 	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1336 		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1337 						      debugfs_resctrl);
1338 		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1339 			debugfs_create_file("pseudo_lock_measure", 0200,
1340 					    plr->debugfs_dir, rdtgrp,
1341 					    &pseudo_measure_fops);
1342 	}
1343 
1344 	dev = device_create(pseudo_lock_class, NULL,
1345 			    MKDEV(pseudo_lock_major, new_minor),
1346 			    rdtgrp, "%s", rdtgrp->kn->name);
1347 
1348 	mutex_lock(&rdtgroup_mutex);
1349 
1350 	if (IS_ERR(dev)) {
1351 		ret = PTR_ERR(dev);
1352 		rdt_last_cmd_printf("Failed to create character device: %d\n",
1353 				    ret);
1354 		goto out_debugfs;
1355 	}
1356 
1357 	/* We released the mutex - check if group was removed while we did so */
1358 	if (rdtgrp->flags & RDT_DELETED) {
1359 		ret = -ENODEV;
1360 		goto out_device;
1361 	}
1362 
1363 	plr->minor = new_minor;
1364 
1365 	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1366 	closid_free(rdtgrp->closid);
1367 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1368 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1369 
1370 	ret = 0;
1371 	goto out;
1372 
1373 out_device:
1374 	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1375 out_debugfs:
1376 	debugfs_remove_recursive(plr->debugfs_dir);
1377 	pseudo_lock_minor_release(new_minor);
1378 out_cstates:
1379 	pseudo_lock_cstates_relax(plr);
1380 out_region:
1381 	pseudo_lock_region_clear(plr);
1382 out:
1383 	return ret;
1384 }
1385 
1386 /**
1387  * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1388  * @rdtgrp: resource group to which the pseudo-locked region belongs
1389  *
1390  * The removal of a pseudo-locked region can be initiated when the resource
1391  * group is removed from user space via a "rmdir" from userspace or the
1392  * unmount of the resctrl filesystem. On removal the resource group does
1393  * not go back to pseudo-locksetup mode before it is removed, instead it is
1394  * removed directly. There is thus asymmetry with the creation where the
1395  * &struct pseudo_lock_region is removed here while it was not created in
1396  * rdtgroup_pseudo_lock_create().
1397  *
1398  * Return: void
1399  */
1400 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1401 {
1402 	struct pseudo_lock_region *plr = rdtgrp->plr;
1403 
1404 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1405 		/*
1406 		 * Default group cannot be a pseudo-locked region so we can
1407 		 * free closid here.
1408 		 */
1409 		closid_free(rdtgrp->closid);
1410 		goto free;
1411 	}
1412 
1413 	pseudo_lock_cstates_relax(plr);
1414 	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1415 	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1416 	pseudo_lock_minor_release(plr->minor);
1417 
1418 free:
1419 	pseudo_lock_free(rdtgrp);
1420 }
1421 
1422 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1423 {
1424 	struct rdtgroup *rdtgrp;
1425 
1426 	mutex_lock(&rdtgroup_mutex);
1427 
1428 	rdtgrp = region_find_by_minor(iminor(inode));
1429 	if (!rdtgrp) {
1430 		mutex_unlock(&rdtgroup_mutex);
1431 		return -ENODEV;
1432 	}
1433 
1434 	filp->private_data = rdtgrp;
1435 	atomic_inc(&rdtgrp->waitcount);
1436 	/* Perform a non-seekable open - llseek is not supported */
1437 	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1438 
1439 	mutex_unlock(&rdtgroup_mutex);
1440 
1441 	return 0;
1442 }
1443 
1444 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1445 {
1446 	struct rdtgroup *rdtgrp;
1447 
1448 	mutex_lock(&rdtgroup_mutex);
1449 	rdtgrp = filp->private_data;
1450 	WARN_ON(!rdtgrp);
1451 	if (!rdtgrp) {
1452 		mutex_unlock(&rdtgroup_mutex);
1453 		return -ENODEV;
1454 	}
1455 	filp->private_data = NULL;
1456 	atomic_dec(&rdtgrp->waitcount);
1457 	mutex_unlock(&rdtgroup_mutex);
1458 	return 0;
1459 }
1460 
1461 static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1462 {
1463 	/* Not supported */
1464 	return -EINVAL;
1465 }
1466 
1467 static const struct vm_operations_struct pseudo_mmap_ops = {
1468 	.mremap = pseudo_lock_dev_mremap,
1469 };
1470 
1471 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1472 {
1473 	unsigned long vsize = vma->vm_end - vma->vm_start;
1474 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1475 	struct pseudo_lock_region *plr;
1476 	struct rdtgroup *rdtgrp;
1477 	unsigned long physical;
1478 	unsigned long psize;
1479 
1480 	mutex_lock(&rdtgroup_mutex);
1481 
1482 	rdtgrp = filp->private_data;
1483 	WARN_ON(!rdtgrp);
1484 	if (!rdtgrp) {
1485 		mutex_unlock(&rdtgroup_mutex);
1486 		return -ENODEV;
1487 	}
1488 
1489 	plr = rdtgrp->plr;
1490 
1491 	if (!plr->d) {
1492 		mutex_unlock(&rdtgroup_mutex);
1493 		return -ENODEV;
1494 	}
1495 
1496 	/*
1497 	 * Task is required to run with affinity to the cpus associated
1498 	 * with the pseudo-locked region. If this is not the case the task
1499 	 * may be scheduled elsewhere and invalidate entries in the
1500 	 * pseudo-locked region.
1501 	 */
1502 	if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
1503 		mutex_unlock(&rdtgroup_mutex);
1504 		return -EINVAL;
1505 	}
1506 
1507 	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1508 	psize = plr->size - off;
1509 
1510 	if (off > plr->size) {
1511 		mutex_unlock(&rdtgroup_mutex);
1512 		return -ENOSPC;
1513 	}
1514 
1515 	/*
1516 	 * Ensure changes are carried directly to the memory being mapped,
1517 	 * do not allow copy-on-write mapping.
1518 	 */
1519 	if (!(vma->vm_flags & VM_SHARED)) {
1520 		mutex_unlock(&rdtgroup_mutex);
1521 		return -EINVAL;
1522 	}
1523 
1524 	if (vsize > psize) {
1525 		mutex_unlock(&rdtgroup_mutex);
1526 		return -ENOSPC;
1527 	}
1528 
1529 	memset(plr->kmem + off, 0, vsize);
1530 
1531 	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1532 			    vsize, vma->vm_page_prot)) {
1533 		mutex_unlock(&rdtgroup_mutex);
1534 		return -EAGAIN;
1535 	}
1536 	vma->vm_ops = &pseudo_mmap_ops;
1537 	mutex_unlock(&rdtgroup_mutex);
1538 	return 0;
1539 }
1540 
1541 static const struct file_operations pseudo_lock_dev_fops = {
1542 	.owner =	THIS_MODULE,
1543 	.llseek =	no_llseek,
1544 	.read =		NULL,
1545 	.write =	NULL,
1546 	.open =		pseudo_lock_dev_open,
1547 	.release =	pseudo_lock_dev_release,
1548 	.mmap =		pseudo_lock_dev_mmap,
1549 };
1550 
1551 static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
1552 {
1553 	struct rdtgroup *rdtgrp;
1554 
1555 	rdtgrp = dev_get_drvdata(dev);
1556 	if (mode)
1557 		*mode = 0600;
1558 	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1559 }
1560 
1561 int rdt_pseudo_lock_init(void)
1562 {
1563 	int ret;
1564 
1565 	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1566 	if (ret < 0)
1567 		return ret;
1568 
1569 	pseudo_lock_major = ret;
1570 
1571 	pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1572 	if (IS_ERR(pseudo_lock_class)) {
1573 		ret = PTR_ERR(pseudo_lock_class);
1574 		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1575 		return ret;
1576 	}
1577 
1578 	pseudo_lock_class->devnode = pseudo_lock_devnode;
1579 	return 0;
1580 }
1581 
1582 void rdt_pseudo_lock_release(void)
1583 {
1584 	class_destroy(pseudo_lock_class);
1585 	pseudo_lock_class = NULL;
1586 	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1587 	pseudo_lock_major = 0;
1588 }
1589