1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Resource Director Technology (RDT) 4 * 5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT) 6 * 7 * Copyright (C) 2018 Intel Corporation 8 * 9 * Author: Reinette Chatre <reinette.chatre@intel.com> 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/cacheinfo.h> 15 #include <linux/cpu.h> 16 #include <linux/cpumask.h> 17 #include <linux/debugfs.h> 18 #include <linux/kthread.h> 19 #include <linux/mman.h> 20 #include <linux/perf_event.h> 21 #include <linux/pm_qos.h> 22 #include <linux/slab.h> 23 #include <linux/uaccess.h> 24 25 #include <asm/cacheflush.h> 26 #include <asm/intel-family.h> 27 #include <asm/resctrl.h> 28 #include <asm/perf_event.h> 29 30 #include "../../events/perf_event.h" /* For X86_CONFIG() */ 31 #include "internal.h" 32 33 #define CREATE_TRACE_POINTS 34 #include "pseudo_lock_event.h" 35 36 /* 37 * The bits needed to disable hardware prefetching varies based on the 38 * platform. During initialization we will discover which bits to use. 39 */ 40 static u64 prefetch_disable_bits; 41 42 /* 43 * Major number assigned to and shared by all devices exposing 44 * pseudo-locked regions. 45 */ 46 static unsigned int pseudo_lock_major; 47 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0); 48 static struct class *pseudo_lock_class; 49 50 /** 51 * get_prefetch_disable_bits - prefetch disable bits of supported platforms 52 * 53 * Capture the list of platforms that have been validated to support 54 * pseudo-locking. This includes testing to ensure pseudo-locked regions 55 * with low cache miss rates can be created under variety of load conditions 56 * as well as that these pseudo-locked regions can maintain their low cache 57 * miss rates under variety of load conditions for significant lengths of time. 58 * 59 * After a platform has been validated to support pseudo-locking its 60 * hardware prefetch disable bits are included here as they are documented 61 * in the SDM. 62 * 63 * When adding a platform here also add support for its cache events to 64 * measure_cycles_perf_fn() 65 * 66 * Return: 67 * If platform is supported, the bits to disable hardware prefetchers, 0 68 * if platform is not supported. 69 */ 70 static u64 get_prefetch_disable_bits(void) 71 { 72 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL || 73 boot_cpu_data.x86 != 6) 74 return 0; 75 76 switch (boot_cpu_data.x86_model) { 77 case INTEL_FAM6_BROADWELL_X: 78 /* 79 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register 80 * as: 81 * 0 L2 Hardware Prefetcher Disable (R/W) 82 * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W) 83 * 2 DCU Hardware Prefetcher Disable (R/W) 84 * 3 DCU IP Prefetcher Disable (R/W) 85 * 63:4 Reserved 86 */ 87 return 0xF; 88 case INTEL_FAM6_ATOM_GOLDMONT: 89 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 90 /* 91 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register 92 * as: 93 * 0 L2 Hardware Prefetcher Disable (R/W) 94 * 1 Reserved 95 * 2 DCU Hardware Prefetcher Disable (R/W) 96 * 63:3 Reserved 97 */ 98 return 0x5; 99 } 100 101 return 0; 102 } 103 104 /** 105 * pseudo_lock_minor_get - Obtain available minor number 106 * @minor: Pointer to where new minor number will be stored 107 * 108 * A bitmask is used to track available minor numbers. Here the next free 109 * minor number is marked as unavailable and returned. 110 * 111 * Return: 0 on success, <0 on failure. 112 */ 113 static int pseudo_lock_minor_get(unsigned int *minor) 114 { 115 unsigned long first_bit; 116 117 first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS); 118 119 if (first_bit == MINORBITS) 120 return -ENOSPC; 121 122 __clear_bit(first_bit, &pseudo_lock_minor_avail); 123 *minor = first_bit; 124 125 return 0; 126 } 127 128 /** 129 * pseudo_lock_minor_release - Return minor number to available 130 * @minor: The minor number made available 131 */ 132 static void pseudo_lock_minor_release(unsigned int minor) 133 { 134 __set_bit(minor, &pseudo_lock_minor_avail); 135 } 136 137 /** 138 * region_find_by_minor - Locate a pseudo-lock region by inode minor number 139 * @minor: The minor number of the device representing pseudo-locked region 140 * 141 * When the character device is accessed we need to determine which 142 * pseudo-locked region it belongs to. This is done by matching the minor 143 * number of the device to the pseudo-locked region it belongs. 144 * 145 * Minor numbers are assigned at the time a pseudo-locked region is associated 146 * with a cache instance. 147 * 148 * Return: On success return pointer to resource group owning the pseudo-locked 149 * region, NULL on failure. 150 */ 151 static struct rdtgroup *region_find_by_minor(unsigned int minor) 152 { 153 struct rdtgroup *rdtgrp, *rdtgrp_match = NULL; 154 155 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 156 if (rdtgrp->plr && rdtgrp->plr->minor == minor) { 157 rdtgrp_match = rdtgrp; 158 break; 159 } 160 } 161 return rdtgrp_match; 162 } 163 164 /** 165 * pseudo_lock_pm_req - A power management QoS request list entry 166 * @list: Entry within the @pm_reqs list for a pseudo-locked region 167 * @req: PM QoS request 168 */ 169 struct pseudo_lock_pm_req { 170 struct list_head list; 171 struct dev_pm_qos_request req; 172 }; 173 174 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr) 175 { 176 struct pseudo_lock_pm_req *pm_req, *next; 177 178 list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) { 179 dev_pm_qos_remove_request(&pm_req->req); 180 list_del(&pm_req->list); 181 kfree(pm_req); 182 } 183 } 184 185 /** 186 * pseudo_lock_cstates_constrain - Restrict cores from entering C6 187 * 188 * To prevent the cache from being affected by power management entering 189 * C6 has to be avoided. This is accomplished by requesting a latency 190 * requirement lower than lowest C6 exit latency of all supported 191 * platforms as found in the cpuidle state tables in the intel_idle driver. 192 * At this time it is possible to do so with a single latency requirement 193 * for all supported platforms. 194 * 195 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR, 196 * the ACPI latencies need to be considered while keeping in mind that C2 197 * may be set to map to deeper sleep states. In this case the latency 198 * requirement needs to prevent entering C2 also. 199 */ 200 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr) 201 { 202 struct pseudo_lock_pm_req *pm_req; 203 int cpu; 204 int ret; 205 206 for_each_cpu(cpu, &plr->d->cpu_mask) { 207 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL); 208 if (!pm_req) { 209 rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n"); 210 ret = -ENOMEM; 211 goto out_err; 212 } 213 ret = dev_pm_qos_add_request(get_cpu_device(cpu), 214 &pm_req->req, 215 DEV_PM_QOS_RESUME_LATENCY, 216 30); 217 if (ret < 0) { 218 rdt_last_cmd_printf("Failed to add latency req CPU%d\n", 219 cpu); 220 kfree(pm_req); 221 ret = -1; 222 goto out_err; 223 } 224 list_add(&pm_req->list, &plr->pm_reqs); 225 } 226 227 return 0; 228 229 out_err: 230 pseudo_lock_cstates_relax(plr); 231 return ret; 232 } 233 234 /** 235 * pseudo_lock_region_clear - Reset pseudo-lock region data 236 * @plr: pseudo-lock region 237 * 238 * All content of the pseudo-locked region is reset - any memory allocated 239 * freed. 240 * 241 * Return: void 242 */ 243 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr) 244 { 245 plr->size = 0; 246 plr->line_size = 0; 247 kfree(plr->kmem); 248 plr->kmem = NULL; 249 plr->r = NULL; 250 if (plr->d) 251 plr->d->plr = NULL; 252 plr->d = NULL; 253 plr->cbm = 0; 254 plr->debugfs_dir = NULL; 255 } 256 257 /** 258 * pseudo_lock_region_init - Initialize pseudo-lock region information 259 * @plr: pseudo-lock region 260 * 261 * Called after user provided a schemata to be pseudo-locked. From the 262 * schemata the &struct pseudo_lock_region is on entry already initialized 263 * with the resource, domain, and capacity bitmask. Here the information 264 * required for pseudo-locking is deduced from this data and &struct 265 * pseudo_lock_region initialized further. This information includes: 266 * - size in bytes of the region to be pseudo-locked 267 * - cache line size to know the stride with which data needs to be accessed 268 * to be pseudo-locked 269 * - a cpu associated with the cache instance on which the pseudo-locking 270 * flow can be executed 271 * 272 * Return: 0 on success, <0 on failure. Descriptive error will be written 273 * to last_cmd_status buffer. 274 */ 275 static int pseudo_lock_region_init(struct pseudo_lock_region *plr) 276 { 277 struct cpu_cacheinfo *ci; 278 int ret; 279 int i; 280 281 /* Pick the first cpu we find that is associated with the cache. */ 282 plr->cpu = cpumask_first(&plr->d->cpu_mask); 283 284 if (!cpu_online(plr->cpu)) { 285 rdt_last_cmd_printf("CPU %u associated with cache not online\n", 286 plr->cpu); 287 ret = -ENODEV; 288 goto out_region; 289 } 290 291 ci = get_cpu_cacheinfo(plr->cpu); 292 293 plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm); 294 295 for (i = 0; i < ci->num_leaves; i++) { 296 if (ci->info_list[i].level == plr->r->cache_level) { 297 plr->line_size = ci->info_list[i].coherency_line_size; 298 return 0; 299 } 300 } 301 302 ret = -1; 303 rdt_last_cmd_puts("Unable to determine cache line size\n"); 304 out_region: 305 pseudo_lock_region_clear(plr); 306 return ret; 307 } 308 309 /** 310 * pseudo_lock_init - Initialize a pseudo-lock region 311 * @rdtgrp: resource group to which new pseudo-locked region will belong 312 * 313 * A pseudo-locked region is associated with a resource group. When this 314 * association is created the pseudo-locked region is initialized. The 315 * details of the pseudo-locked region are not known at this time so only 316 * allocation is done and association established. 317 * 318 * Return: 0 on success, <0 on failure 319 */ 320 static int pseudo_lock_init(struct rdtgroup *rdtgrp) 321 { 322 struct pseudo_lock_region *plr; 323 324 plr = kzalloc(sizeof(*plr), GFP_KERNEL); 325 if (!plr) 326 return -ENOMEM; 327 328 init_waitqueue_head(&plr->lock_thread_wq); 329 INIT_LIST_HEAD(&plr->pm_reqs); 330 rdtgrp->plr = plr; 331 return 0; 332 } 333 334 /** 335 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked 336 * @plr: pseudo-lock region 337 * 338 * Initialize the details required to set up the pseudo-locked region and 339 * allocate the contiguous memory that will be pseudo-locked to the cache. 340 * 341 * Return: 0 on success, <0 on failure. Descriptive error will be written 342 * to last_cmd_status buffer. 343 */ 344 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr) 345 { 346 int ret; 347 348 ret = pseudo_lock_region_init(plr); 349 if (ret < 0) 350 return ret; 351 352 /* 353 * We do not yet support contiguous regions larger than 354 * KMALLOC_MAX_SIZE. 355 */ 356 if (plr->size > KMALLOC_MAX_SIZE) { 357 rdt_last_cmd_puts("Requested region exceeds maximum size\n"); 358 ret = -E2BIG; 359 goto out_region; 360 } 361 362 plr->kmem = kzalloc(plr->size, GFP_KERNEL); 363 if (!plr->kmem) { 364 rdt_last_cmd_puts("Unable to allocate memory\n"); 365 ret = -ENOMEM; 366 goto out_region; 367 } 368 369 ret = 0; 370 goto out; 371 out_region: 372 pseudo_lock_region_clear(plr); 373 out: 374 return ret; 375 } 376 377 /** 378 * pseudo_lock_free - Free a pseudo-locked region 379 * @rdtgrp: resource group to which pseudo-locked region belonged 380 * 381 * The pseudo-locked region's resources have already been released, or not 382 * yet created at this point. Now it can be freed and disassociated from the 383 * resource group. 384 * 385 * Return: void 386 */ 387 static void pseudo_lock_free(struct rdtgroup *rdtgrp) 388 { 389 pseudo_lock_region_clear(rdtgrp->plr); 390 kfree(rdtgrp->plr); 391 rdtgrp->plr = NULL; 392 } 393 394 /** 395 * pseudo_lock_fn - Load kernel memory into cache 396 * @_rdtgrp: resource group to which pseudo-lock region belongs 397 * 398 * This is the core pseudo-locking flow. 399 * 400 * First we ensure that the kernel memory cannot be found in the cache. 401 * Then, while taking care that there will be as little interference as 402 * possible, the memory to be loaded is accessed while core is running 403 * with class of service set to the bitmask of the pseudo-locked region. 404 * After this is complete no future CAT allocations will be allowed to 405 * overlap with this bitmask. 406 * 407 * Local register variables are utilized to ensure that the memory region 408 * to be locked is the only memory access made during the critical locking 409 * loop. 410 * 411 * Return: 0. Waiter on waitqueue will be woken on completion. 412 */ 413 static int pseudo_lock_fn(void *_rdtgrp) 414 { 415 struct rdtgroup *rdtgrp = _rdtgrp; 416 struct pseudo_lock_region *plr = rdtgrp->plr; 417 u32 rmid_p, closid_p; 418 unsigned long i; 419 #ifdef CONFIG_KASAN 420 /* 421 * The registers used for local register variables are also used 422 * when KASAN is active. When KASAN is active we use a regular 423 * variable to ensure we always use a valid pointer, but the cost 424 * is that this variable will enter the cache through evicting the 425 * memory we are trying to lock into the cache. Thus expect lower 426 * pseudo-locking success rate when KASAN is active. 427 */ 428 unsigned int line_size; 429 unsigned int size; 430 void *mem_r; 431 #else 432 register unsigned int line_size asm("esi"); 433 register unsigned int size asm("edi"); 434 register void *mem_r asm(_ASM_BX); 435 #endif /* CONFIG_KASAN */ 436 437 /* 438 * Make sure none of the allocated memory is cached. If it is we 439 * will get a cache hit in below loop from outside of pseudo-locked 440 * region. 441 * wbinvd (as opposed to clflush/clflushopt) is required to 442 * increase likelihood that allocated cache portion will be filled 443 * with associated memory. 444 */ 445 native_wbinvd(); 446 447 /* 448 * Always called with interrupts enabled. By disabling interrupts 449 * ensure that we will not be preempted during this critical section. 450 */ 451 local_irq_disable(); 452 453 /* 454 * Call wrmsr and rdmsr as directly as possible to avoid tracing 455 * clobbering local register variables or affecting cache accesses. 456 * 457 * Disable the hardware prefetcher so that when the end of the memory 458 * being pseudo-locked is reached the hardware will not read beyond 459 * the buffer and evict pseudo-locked memory read earlier from the 460 * cache. 461 */ 462 __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 463 closid_p = this_cpu_read(pqr_state.cur_closid); 464 rmid_p = this_cpu_read(pqr_state.cur_rmid); 465 mem_r = plr->kmem; 466 size = plr->size; 467 line_size = plr->line_size; 468 /* 469 * Critical section begin: start by writing the closid associated 470 * with the capacity bitmask of the cache region being 471 * pseudo-locked followed by reading of kernel memory to load it 472 * into the cache. 473 */ 474 __wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid); 475 /* 476 * Cache was flushed earlier. Now access kernel memory to read it 477 * into cache region associated with just activated plr->closid. 478 * Loop over data twice: 479 * - In first loop the cache region is shared with the page walker 480 * as it populates the paging structure caches (including TLB). 481 * - In the second loop the paging structure caches are used and 482 * cache region is populated with the memory being referenced. 483 */ 484 for (i = 0; i < size; i += PAGE_SIZE) { 485 /* 486 * Add a barrier to prevent speculative execution of this 487 * loop reading beyond the end of the buffer. 488 */ 489 rmb(); 490 asm volatile("mov (%0,%1,1), %%eax\n\t" 491 : 492 : "r" (mem_r), "r" (i) 493 : "%eax", "memory"); 494 } 495 for (i = 0; i < size; i += line_size) { 496 /* 497 * Add a barrier to prevent speculative execution of this 498 * loop reading beyond the end of the buffer. 499 */ 500 rmb(); 501 asm volatile("mov (%0,%1,1), %%eax\n\t" 502 : 503 : "r" (mem_r), "r" (i) 504 : "%eax", "memory"); 505 } 506 /* 507 * Critical section end: restore closid with capacity bitmask that 508 * does not overlap with pseudo-locked region. 509 */ 510 __wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p); 511 512 /* Re-enable the hardware prefetcher(s) */ 513 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0); 514 local_irq_enable(); 515 516 plr->thread_done = 1; 517 wake_up_interruptible(&plr->lock_thread_wq); 518 return 0; 519 } 520 521 /** 522 * rdtgroup_monitor_in_progress - Test if monitoring in progress 523 * @r: resource group being queried 524 * 525 * Return: 1 if monitor groups have been created for this resource 526 * group, 0 otherwise. 527 */ 528 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp) 529 { 530 return !list_empty(&rdtgrp->mon.crdtgrp_list); 531 } 532 533 /** 534 * rdtgroup_locksetup_user_restrict - Restrict user access to group 535 * @rdtgrp: resource group needing access restricted 536 * 537 * A resource group used for cache pseudo-locking cannot have cpus or tasks 538 * assigned to it. This is communicated to the user by restricting access 539 * to all the files that can be used to make such changes. 540 * 541 * Permissions restored with rdtgroup_locksetup_user_restore() 542 * 543 * Return: 0 on success, <0 on failure. If a failure occurs during the 544 * restriction of access an attempt will be made to restore permissions but 545 * the state of the mode of these files will be uncertain when a failure 546 * occurs. 547 */ 548 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp) 549 { 550 int ret; 551 552 ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); 553 if (ret) 554 return ret; 555 556 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); 557 if (ret) 558 goto err_tasks; 559 560 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); 561 if (ret) 562 goto err_cpus; 563 564 if (rdt_mon_capable) { 565 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups"); 566 if (ret) 567 goto err_cpus_list; 568 } 569 570 ret = 0; 571 goto out; 572 573 err_cpus_list: 574 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); 575 err_cpus: 576 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); 577 err_tasks: 578 rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); 579 out: 580 return ret; 581 } 582 583 /** 584 * rdtgroup_locksetup_user_restore - Restore user access to group 585 * @rdtgrp: resource group needing access restored 586 * 587 * Restore all file access previously removed using 588 * rdtgroup_locksetup_user_restrict() 589 * 590 * Return: 0 on success, <0 on failure. If a failure occurs during the 591 * restoration of access an attempt will be made to restrict permissions 592 * again but the state of the mode of these files will be uncertain when 593 * a failure occurs. 594 */ 595 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp) 596 { 597 int ret; 598 599 ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); 600 if (ret) 601 return ret; 602 603 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); 604 if (ret) 605 goto err_tasks; 606 607 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); 608 if (ret) 609 goto err_cpus; 610 611 if (rdt_mon_capable) { 612 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777); 613 if (ret) 614 goto err_cpus_list; 615 } 616 617 ret = 0; 618 goto out; 619 620 err_cpus_list: 621 rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); 622 err_cpus: 623 rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); 624 err_tasks: 625 rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); 626 out: 627 return ret; 628 } 629 630 /** 631 * rdtgroup_locksetup_enter - Resource group enters locksetup mode 632 * @rdtgrp: resource group requested to enter locksetup mode 633 * 634 * A resource group enters locksetup mode to reflect that it would be used 635 * to represent a pseudo-locked region and is in the process of being set 636 * up to do so. A resource group used for a pseudo-locked region would 637 * lose the closid associated with it so we cannot allow it to have any 638 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the 639 * future. Monitoring of a pseudo-locked region is not allowed either. 640 * 641 * The above and more restrictions on a pseudo-locked region are checked 642 * for and enforced before the resource group enters the locksetup mode. 643 * 644 * Returns: 0 if the resource group successfully entered locksetup mode, <0 645 * on failure. On failure the last_cmd_status buffer is updated with text to 646 * communicate details of failure to the user. 647 */ 648 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp) 649 { 650 int ret; 651 652 /* 653 * The default resource group can neither be removed nor lose the 654 * default closid associated with it. 655 */ 656 if (rdtgrp == &rdtgroup_default) { 657 rdt_last_cmd_puts("Cannot pseudo-lock default group\n"); 658 return -EINVAL; 659 } 660 661 /* 662 * Cache Pseudo-locking not supported when CDP is enabled. 663 * 664 * Some things to consider if you would like to enable this 665 * support (using L3 CDP as example): 666 * - When CDP is enabled two separate resources are exposed, 667 * L3DATA and L3CODE, but they are actually on the same cache. 668 * The implication for pseudo-locking is that if a 669 * pseudo-locked region is created on a domain of one 670 * resource (eg. L3CODE), then a pseudo-locked region cannot 671 * be created on that same domain of the other resource 672 * (eg. L3DATA). This is because the creation of a 673 * pseudo-locked region involves a call to wbinvd that will 674 * affect all cache allocations on particular domain. 675 * - Considering the previous, it may be possible to only 676 * expose one of the CDP resources to pseudo-locking and 677 * hide the other. For example, we could consider to only 678 * expose L3DATA and since the L3 cache is unified it is 679 * still possible to place instructions there are execute it. 680 * - If only one region is exposed to pseudo-locking we should 681 * still keep in mind that availability of a portion of cache 682 * for pseudo-locking should take into account both resources. 683 * Similarly, if a pseudo-locked region is created in one 684 * resource, the portion of cache used by it should be made 685 * unavailable to all future allocations from both resources. 686 */ 687 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled || 688 rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) { 689 rdt_last_cmd_puts("CDP enabled\n"); 690 return -EINVAL; 691 } 692 693 /* 694 * Not knowing the bits to disable prefetching implies that this 695 * platform does not support Cache Pseudo-Locking. 696 */ 697 prefetch_disable_bits = get_prefetch_disable_bits(); 698 if (prefetch_disable_bits == 0) { 699 rdt_last_cmd_puts("Pseudo-locking not supported\n"); 700 return -EINVAL; 701 } 702 703 if (rdtgroup_monitor_in_progress(rdtgrp)) { 704 rdt_last_cmd_puts("Monitoring in progress\n"); 705 return -EINVAL; 706 } 707 708 if (rdtgroup_tasks_assigned(rdtgrp)) { 709 rdt_last_cmd_puts("Tasks assigned to resource group\n"); 710 return -EINVAL; 711 } 712 713 if (!cpumask_empty(&rdtgrp->cpu_mask)) { 714 rdt_last_cmd_puts("CPUs assigned to resource group\n"); 715 return -EINVAL; 716 } 717 718 if (rdtgroup_locksetup_user_restrict(rdtgrp)) { 719 rdt_last_cmd_puts("Unable to modify resctrl permissions\n"); 720 return -EIO; 721 } 722 723 ret = pseudo_lock_init(rdtgrp); 724 if (ret) { 725 rdt_last_cmd_puts("Unable to init pseudo-lock region\n"); 726 goto out_release; 727 } 728 729 /* 730 * If this system is capable of monitoring a rmid would have been 731 * allocated when the control group was created. This is not needed 732 * anymore when this group would be used for pseudo-locking. This 733 * is safe to call on platforms not capable of monitoring. 734 */ 735 free_rmid(rdtgrp->mon.rmid); 736 737 ret = 0; 738 goto out; 739 740 out_release: 741 rdtgroup_locksetup_user_restore(rdtgrp); 742 out: 743 return ret; 744 } 745 746 /** 747 * rdtgroup_locksetup_exit - resource group exist locksetup mode 748 * @rdtgrp: resource group 749 * 750 * When a resource group exits locksetup mode the earlier restrictions are 751 * lifted. 752 * 753 * Return: 0 on success, <0 on failure 754 */ 755 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp) 756 { 757 int ret; 758 759 if (rdt_mon_capable) { 760 ret = alloc_rmid(); 761 if (ret < 0) { 762 rdt_last_cmd_puts("Out of RMIDs\n"); 763 return ret; 764 } 765 rdtgrp->mon.rmid = ret; 766 } 767 768 ret = rdtgroup_locksetup_user_restore(rdtgrp); 769 if (ret) { 770 free_rmid(rdtgrp->mon.rmid); 771 return ret; 772 } 773 774 pseudo_lock_free(rdtgrp); 775 return 0; 776 } 777 778 /** 779 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked 780 * @d: RDT domain 781 * @cbm: CBM to test 782 * 783 * @d represents a cache instance and @cbm a capacity bitmask that is 784 * considered for it. Determine if @cbm overlaps with any existing 785 * pseudo-locked region on @d. 786 * 787 * @cbm is unsigned long, even if only 32 bits are used, to make the 788 * bitmap functions work correctly. 789 * 790 * Return: true if @cbm overlaps with pseudo-locked region on @d, false 791 * otherwise. 792 */ 793 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm) 794 { 795 unsigned int cbm_len; 796 unsigned long cbm_b; 797 798 if (d->plr) { 799 cbm_len = d->plr->r->cache.cbm_len; 800 cbm_b = d->plr->cbm; 801 if (bitmap_intersects(&cbm, &cbm_b, cbm_len)) 802 return true; 803 } 804 return false; 805 } 806 807 /** 808 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy 809 * @d: RDT domain under test 810 * 811 * The setup of a pseudo-locked region affects all cache instances within 812 * the hierarchy of the region. It is thus essential to know if any 813 * pseudo-locked regions exist within a cache hierarchy to prevent any 814 * attempts to create new pseudo-locked regions in the same hierarchy. 815 * 816 * Return: true if a pseudo-locked region exists in the hierarchy of @d or 817 * if it is not possible to test due to memory allocation issue, 818 * false otherwise. 819 */ 820 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d) 821 { 822 cpumask_var_t cpu_with_psl; 823 struct rdt_resource *r; 824 struct rdt_domain *d_i; 825 bool ret = false; 826 827 if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL)) 828 return true; 829 830 /* 831 * First determine which cpus have pseudo-locked regions 832 * associated with them. 833 */ 834 for_each_alloc_enabled_rdt_resource(r) { 835 list_for_each_entry(d_i, &r->domains, list) { 836 if (d_i->plr) 837 cpumask_or(cpu_with_psl, cpu_with_psl, 838 &d_i->cpu_mask); 839 } 840 } 841 842 /* 843 * Next test if new pseudo-locked region would intersect with 844 * existing region. 845 */ 846 if (cpumask_intersects(&d->cpu_mask, cpu_with_psl)) 847 ret = true; 848 849 free_cpumask_var(cpu_with_psl); 850 return ret; 851 } 852 853 /** 854 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory 855 * @_plr: pseudo-lock region to measure 856 * 857 * There is no deterministic way to test if a memory region is cached. One 858 * way is to measure how long it takes to read the memory, the speed of 859 * access is a good way to learn how close to the cpu the data was. Even 860 * more, if the prefetcher is disabled and the memory is read at a stride 861 * of half the cache line, then a cache miss will be easy to spot since the 862 * read of the first half would be significantly slower than the read of 863 * the second half. 864 * 865 * Return: 0. Waiter on waitqueue will be woken on completion. 866 */ 867 static int measure_cycles_lat_fn(void *_plr) 868 { 869 struct pseudo_lock_region *plr = _plr; 870 unsigned long i; 871 u64 start, end; 872 void *mem_r; 873 874 local_irq_disable(); 875 /* 876 * Disable hardware prefetchers. 877 */ 878 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 879 mem_r = READ_ONCE(plr->kmem); 880 /* 881 * Dummy execute of the time measurement to load the needed 882 * instructions into the L1 instruction cache. 883 */ 884 start = rdtsc_ordered(); 885 for (i = 0; i < plr->size; i += 32) { 886 start = rdtsc_ordered(); 887 asm volatile("mov (%0,%1,1), %%eax\n\t" 888 : 889 : "r" (mem_r), "r" (i) 890 : "%eax", "memory"); 891 end = rdtsc_ordered(); 892 trace_pseudo_lock_mem_latency((u32)(end - start)); 893 } 894 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0); 895 local_irq_enable(); 896 plr->thread_done = 1; 897 wake_up_interruptible(&plr->lock_thread_wq); 898 return 0; 899 } 900 901 /* 902 * Create a perf_event_attr for the hit and miss perf events that will 903 * be used during the performance measurement. A perf_event maintains 904 * a pointer to its perf_event_attr so a unique attribute structure is 905 * created for each perf_event. 906 * 907 * The actual configuration of the event is set right before use in order 908 * to use the X86_CONFIG macro. 909 */ 910 static struct perf_event_attr perf_miss_attr = { 911 .type = PERF_TYPE_RAW, 912 .size = sizeof(struct perf_event_attr), 913 .pinned = 1, 914 .disabled = 0, 915 .exclude_user = 1, 916 }; 917 918 static struct perf_event_attr perf_hit_attr = { 919 .type = PERF_TYPE_RAW, 920 .size = sizeof(struct perf_event_attr), 921 .pinned = 1, 922 .disabled = 0, 923 .exclude_user = 1, 924 }; 925 926 struct residency_counts { 927 u64 miss_before, hits_before; 928 u64 miss_after, hits_after; 929 }; 930 931 static int measure_residency_fn(struct perf_event_attr *miss_attr, 932 struct perf_event_attr *hit_attr, 933 struct pseudo_lock_region *plr, 934 struct residency_counts *counts) 935 { 936 u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0; 937 struct perf_event *miss_event, *hit_event; 938 int hit_pmcnum, miss_pmcnum; 939 unsigned int line_size; 940 unsigned int size; 941 unsigned long i; 942 void *mem_r; 943 u64 tmp; 944 945 miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu, 946 NULL, NULL, NULL); 947 if (IS_ERR(miss_event)) 948 goto out; 949 950 hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu, 951 NULL, NULL, NULL); 952 if (IS_ERR(hit_event)) 953 goto out_miss; 954 955 local_irq_disable(); 956 /* 957 * Check any possible error state of events used by performing 958 * one local read. 959 */ 960 if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) { 961 local_irq_enable(); 962 goto out_hit; 963 } 964 if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) { 965 local_irq_enable(); 966 goto out_hit; 967 } 968 969 /* 970 * Disable hardware prefetchers. 971 */ 972 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 973 974 /* Initialize rest of local variables */ 975 /* 976 * Performance event has been validated right before this with 977 * interrupts disabled - it is thus safe to read the counter index. 978 */ 979 miss_pmcnum = x86_perf_rdpmc_index(miss_event); 980 hit_pmcnum = x86_perf_rdpmc_index(hit_event); 981 line_size = READ_ONCE(plr->line_size); 982 mem_r = READ_ONCE(plr->kmem); 983 size = READ_ONCE(plr->size); 984 985 /* 986 * Read counter variables twice - first to load the instructions 987 * used in L1 cache, second to capture accurate value that does not 988 * include cache misses incurred because of instruction loads. 989 */ 990 rdpmcl(hit_pmcnum, hits_before); 991 rdpmcl(miss_pmcnum, miss_before); 992 /* 993 * From SDM: Performing back-to-back fast reads are not guaranteed 994 * to be monotonic. 995 * Use LFENCE to ensure all previous instructions are retired 996 * before proceeding. 997 */ 998 rmb(); 999 rdpmcl(hit_pmcnum, hits_before); 1000 rdpmcl(miss_pmcnum, miss_before); 1001 /* 1002 * Use LFENCE to ensure all previous instructions are retired 1003 * before proceeding. 1004 */ 1005 rmb(); 1006 for (i = 0; i < size; i += line_size) { 1007 /* 1008 * Add a barrier to prevent speculative execution of this 1009 * loop reading beyond the end of the buffer. 1010 */ 1011 rmb(); 1012 asm volatile("mov (%0,%1,1), %%eax\n\t" 1013 : 1014 : "r" (mem_r), "r" (i) 1015 : "%eax", "memory"); 1016 } 1017 /* 1018 * Use LFENCE to ensure all previous instructions are retired 1019 * before proceeding. 1020 */ 1021 rmb(); 1022 rdpmcl(hit_pmcnum, hits_after); 1023 rdpmcl(miss_pmcnum, miss_after); 1024 /* 1025 * Use LFENCE to ensure all previous instructions are retired 1026 * before proceeding. 1027 */ 1028 rmb(); 1029 /* Re-enable hardware prefetchers */ 1030 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0); 1031 local_irq_enable(); 1032 out_hit: 1033 perf_event_release_kernel(hit_event); 1034 out_miss: 1035 perf_event_release_kernel(miss_event); 1036 out: 1037 /* 1038 * All counts will be zero on failure. 1039 */ 1040 counts->miss_before = miss_before; 1041 counts->hits_before = hits_before; 1042 counts->miss_after = miss_after; 1043 counts->hits_after = hits_after; 1044 return 0; 1045 } 1046 1047 static int measure_l2_residency(void *_plr) 1048 { 1049 struct pseudo_lock_region *plr = _plr; 1050 struct residency_counts counts = {0}; 1051 1052 /* 1053 * Non-architectural event for the Goldmont Microarchitecture 1054 * from Intel x86 Architecture Software Developer Manual (SDM): 1055 * MEM_LOAD_UOPS_RETIRED D1H (event number) 1056 * Umask values: 1057 * L2_HIT 02H 1058 * L2_MISS 10H 1059 */ 1060 switch (boot_cpu_data.x86_model) { 1061 case INTEL_FAM6_ATOM_GOLDMONT: 1062 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 1063 perf_miss_attr.config = X86_CONFIG(.event = 0xd1, 1064 .umask = 0x10); 1065 perf_hit_attr.config = X86_CONFIG(.event = 0xd1, 1066 .umask = 0x2); 1067 break; 1068 default: 1069 goto out; 1070 } 1071 1072 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts); 1073 /* 1074 * If a failure prevented the measurements from succeeding 1075 * tracepoints will still be written and all counts will be zero. 1076 */ 1077 trace_pseudo_lock_l2(counts.hits_after - counts.hits_before, 1078 counts.miss_after - counts.miss_before); 1079 out: 1080 plr->thread_done = 1; 1081 wake_up_interruptible(&plr->lock_thread_wq); 1082 return 0; 1083 } 1084 1085 static int measure_l3_residency(void *_plr) 1086 { 1087 struct pseudo_lock_region *plr = _plr; 1088 struct residency_counts counts = {0}; 1089 1090 /* 1091 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event 1092 * has two "no fix" errata associated with it: BDM35 and BDM100. On 1093 * this platform the following events are used instead: 1094 * LONGEST_LAT_CACHE 2EH (Documented in SDM) 1095 * REFERENCE 4FH 1096 * MISS 41H 1097 */ 1098 1099 switch (boot_cpu_data.x86_model) { 1100 case INTEL_FAM6_BROADWELL_X: 1101 /* On BDW the hit event counts references, not hits */ 1102 perf_hit_attr.config = X86_CONFIG(.event = 0x2e, 1103 .umask = 0x4f); 1104 perf_miss_attr.config = X86_CONFIG(.event = 0x2e, 1105 .umask = 0x41); 1106 break; 1107 default: 1108 goto out; 1109 } 1110 1111 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts); 1112 /* 1113 * If a failure prevented the measurements from succeeding 1114 * tracepoints will still be written and all counts will be zero. 1115 */ 1116 1117 counts.miss_after -= counts.miss_before; 1118 if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) { 1119 /* 1120 * On BDW references and misses are counted, need to adjust. 1121 * Sometimes the "hits" counter is a bit more than the 1122 * references, for example, x references but x + 1 hits. 1123 * To not report invalid hit values in this case we treat 1124 * that as misses equal to references. 1125 */ 1126 /* First compute the number of cache references measured */ 1127 counts.hits_after -= counts.hits_before; 1128 /* Next convert references to cache hits */ 1129 counts.hits_after -= min(counts.miss_after, counts.hits_after); 1130 } else { 1131 counts.hits_after -= counts.hits_before; 1132 } 1133 1134 trace_pseudo_lock_l3(counts.hits_after, counts.miss_after); 1135 out: 1136 plr->thread_done = 1; 1137 wake_up_interruptible(&plr->lock_thread_wq); 1138 return 0; 1139 } 1140 1141 /** 1142 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region 1143 * 1144 * The measurement of latency to access a pseudo-locked region should be 1145 * done from a cpu that is associated with that pseudo-locked region. 1146 * Determine which cpu is associated with this region and start a thread on 1147 * that cpu to perform the measurement, wait for that thread to complete. 1148 * 1149 * Return: 0 on success, <0 on failure 1150 */ 1151 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel) 1152 { 1153 struct pseudo_lock_region *plr = rdtgrp->plr; 1154 struct task_struct *thread; 1155 unsigned int cpu; 1156 int ret = -1; 1157 1158 cpus_read_lock(); 1159 mutex_lock(&rdtgroup_mutex); 1160 1161 if (rdtgrp->flags & RDT_DELETED) { 1162 ret = -ENODEV; 1163 goto out; 1164 } 1165 1166 if (!plr->d) { 1167 ret = -ENODEV; 1168 goto out; 1169 } 1170 1171 plr->thread_done = 0; 1172 cpu = cpumask_first(&plr->d->cpu_mask); 1173 if (!cpu_online(cpu)) { 1174 ret = -ENODEV; 1175 goto out; 1176 } 1177 1178 plr->cpu = cpu; 1179 1180 if (sel == 1) 1181 thread = kthread_create_on_node(measure_cycles_lat_fn, plr, 1182 cpu_to_node(cpu), 1183 "pseudo_lock_measure/%u", 1184 cpu); 1185 else if (sel == 2) 1186 thread = kthread_create_on_node(measure_l2_residency, plr, 1187 cpu_to_node(cpu), 1188 "pseudo_lock_measure/%u", 1189 cpu); 1190 else if (sel == 3) 1191 thread = kthread_create_on_node(measure_l3_residency, plr, 1192 cpu_to_node(cpu), 1193 "pseudo_lock_measure/%u", 1194 cpu); 1195 else 1196 goto out; 1197 1198 if (IS_ERR(thread)) { 1199 ret = PTR_ERR(thread); 1200 goto out; 1201 } 1202 kthread_bind(thread, cpu); 1203 wake_up_process(thread); 1204 1205 ret = wait_event_interruptible(plr->lock_thread_wq, 1206 plr->thread_done == 1); 1207 if (ret < 0) 1208 goto out; 1209 1210 ret = 0; 1211 1212 out: 1213 mutex_unlock(&rdtgroup_mutex); 1214 cpus_read_unlock(); 1215 return ret; 1216 } 1217 1218 static ssize_t pseudo_lock_measure_trigger(struct file *file, 1219 const char __user *user_buf, 1220 size_t count, loff_t *ppos) 1221 { 1222 struct rdtgroup *rdtgrp = file->private_data; 1223 size_t buf_size; 1224 char buf[32]; 1225 int ret; 1226 int sel; 1227 1228 buf_size = min(count, (sizeof(buf) - 1)); 1229 if (copy_from_user(buf, user_buf, buf_size)) 1230 return -EFAULT; 1231 1232 buf[buf_size] = '\0'; 1233 ret = kstrtoint(buf, 10, &sel); 1234 if (ret == 0) { 1235 if (sel != 1 && sel != 2 && sel != 3) 1236 return -EINVAL; 1237 ret = debugfs_file_get(file->f_path.dentry); 1238 if (ret) 1239 return ret; 1240 ret = pseudo_lock_measure_cycles(rdtgrp, sel); 1241 if (ret == 0) 1242 ret = count; 1243 debugfs_file_put(file->f_path.dentry); 1244 } 1245 1246 return ret; 1247 } 1248 1249 static const struct file_operations pseudo_measure_fops = { 1250 .write = pseudo_lock_measure_trigger, 1251 .open = simple_open, 1252 .llseek = default_llseek, 1253 }; 1254 1255 /** 1256 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region 1257 * @rdtgrp: resource group to which pseudo-lock region belongs 1258 * 1259 * Called when a resource group in the pseudo-locksetup mode receives a 1260 * valid schemata that should be pseudo-locked. Since the resource group is 1261 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been 1262 * allocated and initialized with the essential information. If a failure 1263 * occurs the resource group remains in the pseudo-locksetup mode with the 1264 * &struct pseudo_lock_region associated with it, but cleared from all 1265 * information and ready for the user to re-attempt pseudo-locking by 1266 * writing the schemata again. 1267 * 1268 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0 1269 * on failure. Descriptive error will be written to last_cmd_status buffer. 1270 */ 1271 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) 1272 { 1273 struct pseudo_lock_region *plr = rdtgrp->plr; 1274 struct task_struct *thread; 1275 unsigned int new_minor; 1276 struct device *dev; 1277 int ret; 1278 1279 ret = pseudo_lock_region_alloc(plr); 1280 if (ret < 0) 1281 return ret; 1282 1283 ret = pseudo_lock_cstates_constrain(plr); 1284 if (ret < 0) { 1285 ret = -EINVAL; 1286 goto out_region; 1287 } 1288 1289 plr->thread_done = 0; 1290 1291 thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp, 1292 cpu_to_node(plr->cpu), 1293 "pseudo_lock/%u", plr->cpu); 1294 if (IS_ERR(thread)) { 1295 ret = PTR_ERR(thread); 1296 rdt_last_cmd_printf("Locking thread returned error %d\n", ret); 1297 goto out_cstates; 1298 } 1299 1300 kthread_bind(thread, plr->cpu); 1301 wake_up_process(thread); 1302 1303 ret = wait_event_interruptible(plr->lock_thread_wq, 1304 plr->thread_done == 1); 1305 if (ret < 0) { 1306 /* 1307 * If the thread does not get on the CPU for whatever 1308 * reason and the process which sets up the region is 1309 * interrupted then this will leave the thread in runnable 1310 * state and once it gets on the CPU it will derefence 1311 * the cleared, but not freed, plr struct resulting in an 1312 * empty pseudo-locking loop. 1313 */ 1314 rdt_last_cmd_puts("Locking thread interrupted\n"); 1315 goto out_cstates; 1316 } 1317 1318 ret = pseudo_lock_minor_get(&new_minor); 1319 if (ret < 0) { 1320 rdt_last_cmd_puts("Unable to obtain a new minor number\n"); 1321 goto out_cstates; 1322 } 1323 1324 /* 1325 * Unlock access but do not release the reference. The 1326 * pseudo-locked region will still be here on return. 1327 * 1328 * The mutex has to be released temporarily to avoid a potential 1329 * deadlock with the mm->mmap_lock which is obtained in the 1330 * device_create() and debugfs_create_dir() callpath below as well as 1331 * before the mmap() callback is called. 1332 */ 1333 mutex_unlock(&rdtgroup_mutex); 1334 1335 if (!IS_ERR_OR_NULL(debugfs_resctrl)) { 1336 plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name, 1337 debugfs_resctrl); 1338 if (!IS_ERR_OR_NULL(plr->debugfs_dir)) 1339 debugfs_create_file("pseudo_lock_measure", 0200, 1340 plr->debugfs_dir, rdtgrp, 1341 &pseudo_measure_fops); 1342 } 1343 1344 dev = device_create(pseudo_lock_class, NULL, 1345 MKDEV(pseudo_lock_major, new_minor), 1346 rdtgrp, "%s", rdtgrp->kn->name); 1347 1348 mutex_lock(&rdtgroup_mutex); 1349 1350 if (IS_ERR(dev)) { 1351 ret = PTR_ERR(dev); 1352 rdt_last_cmd_printf("Failed to create character device: %d\n", 1353 ret); 1354 goto out_debugfs; 1355 } 1356 1357 /* We released the mutex - check if group was removed while we did so */ 1358 if (rdtgrp->flags & RDT_DELETED) { 1359 ret = -ENODEV; 1360 goto out_device; 1361 } 1362 1363 plr->minor = new_minor; 1364 1365 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED; 1366 closid_free(rdtgrp->closid); 1367 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444); 1368 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444); 1369 1370 ret = 0; 1371 goto out; 1372 1373 out_device: 1374 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor)); 1375 out_debugfs: 1376 debugfs_remove_recursive(plr->debugfs_dir); 1377 pseudo_lock_minor_release(new_minor); 1378 out_cstates: 1379 pseudo_lock_cstates_relax(plr); 1380 out_region: 1381 pseudo_lock_region_clear(plr); 1382 out: 1383 return ret; 1384 } 1385 1386 /** 1387 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region 1388 * @rdtgrp: resource group to which the pseudo-locked region belongs 1389 * 1390 * The removal of a pseudo-locked region can be initiated when the resource 1391 * group is removed from user space via a "rmdir" from userspace or the 1392 * unmount of the resctrl filesystem. On removal the resource group does 1393 * not go back to pseudo-locksetup mode before it is removed, instead it is 1394 * removed directly. There is thus assymmetry with the creation where the 1395 * &struct pseudo_lock_region is removed here while it was not created in 1396 * rdtgroup_pseudo_lock_create(). 1397 * 1398 * Return: void 1399 */ 1400 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp) 1401 { 1402 struct pseudo_lock_region *plr = rdtgrp->plr; 1403 1404 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1405 /* 1406 * Default group cannot be a pseudo-locked region so we can 1407 * free closid here. 1408 */ 1409 closid_free(rdtgrp->closid); 1410 goto free; 1411 } 1412 1413 pseudo_lock_cstates_relax(plr); 1414 debugfs_remove_recursive(rdtgrp->plr->debugfs_dir); 1415 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor)); 1416 pseudo_lock_minor_release(plr->minor); 1417 1418 free: 1419 pseudo_lock_free(rdtgrp); 1420 } 1421 1422 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp) 1423 { 1424 struct rdtgroup *rdtgrp; 1425 1426 mutex_lock(&rdtgroup_mutex); 1427 1428 rdtgrp = region_find_by_minor(iminor(inode)); 1429 if (!rdtgrp) { 1430 mutex_unlock(&rdtgroup_mutex); 1431 return -ENODEV; 1432 } 1433 1434 filp->private_data = rdtgrp; 1435 atomic_inc(&rdtgrp->waitcount); 1436 /* Perform a non-seekable open - llseek is not supported */ 1437 filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE); 1438 1439 mutex_unlock(&rdtgroup_mutex); 1440 1441 return 0; 1442 } 1443 1444 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp) 1445 { 1446 struct rdtgroup *rdtgrp; 1447 1448 mutex_lock(&rdtgroup_mutex); 1449 rdtgrp = filp->private_data; 1450 WARN_ON(!rdtgrp); 1451 if (!rdtgrp) { 1452 mutex_unlock(&rdtgroup_mutex); 1453 return -ENODEV; 1454 } 1455 filp->private_data = NULL; 1456 atomic_dec(&rdtgrp->waitcount); 1457 mutex_unlock(&rdtgroup_mutex); 1458 return 0; 1459 } 1460 1461 static int pseudo_lock_dev_mremap(struct vm_area_struct *area) 1462 { 1463 /* Not supported */ 1464 return -EINVAL; 1465 } 1466 1467 static const struct vm_operations_struct pseudo_mmap_ops = { 1468 .mremap = pseudo_lock_dev_mremap, 1469 }; 1470 1471 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma) 1472 { 1473 unsigned long vsize = vma->vm_end - vma->vm_start; 1474 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 1475 struct pseudo_lock_region *plr; 1476 struct rdtgroup *rdtgrp; 1477 unsigned long physical; 1478 unsigned long psize; 1479 1480 mutex_lock(&rdtgroup_mutex); 1481 1482 rdtgrp = filp->private_data; 1483 WARN_ON(!rdtgrp); 1484 if (!rdtgrp) { 1485 mutex_unlock(&rdtgroup_mutex); 1486 return -ENODEV; 1487 } 1488 1489 plr = rdtgrp->plr; 1490 1491 if (!plr->d) { 1492 mutex_unlock(&rdtgroup_mutex); 1493 return -ENODEV; 1494 } 1495 1496 /* 1497 * Task is required to run with affinity to the cpus associated 1498 * with the pseudo-locked region. If this is not the case the task 1499 * may be scheduled elsewhere and invalidate entries in the 1500 * pseudo-locked region. 1501 */ 1502 if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) { 1503 mutex_unlock(&rdtgroup_mutex); 1504 return -EINVAL; 1505 } 1506 1507 physical = __pa(plr->kmem) >> PAGE_SHIFT; 1508 psize = plr->size - off; 1509 1510 if (off > plr->size) { 1511 mutex_unlock(&rdtgroup_mutex); 1512 return -ENOSPC; 1513 } 1514 1515 /* 1516 * Ensure changes are carried directly to the memory being mapped, 1517 * do not allow copy-on-write mapping. 1518 */ 1519 if (!(vma->vm_flags & VM_SHARED)) { 1520 mutex_unlock(&rdtgroup_mutex); 1521 return -EINVAL; 1522 } 1523 1524 if (vsize > psize) { 1525 mutex_unlock(&rdtgroup_mutex); 1526 return -ENOSPC; 1527 } 1528 1529 memset(plr->kmem + off, 0, vsize); 1530 1531 if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff, 1532 vsize, vma->vm_page_prot)) { 1533 mutex_unlock(&rdtgroup_mutex); 1534 return -EAGAIN; 1535 } 1536 vma->vm_ops = &pseudo_mmap_ops; 1537 mutex_unlock(&rdtgroup_mutex); 1538 return 0; 1539 } 1540 1541 static const struct file_operations pseudo_lock_dev_fops = { 1542 .owner = THIS_MODULE, 1543 .llseek = no_llseek, 1544 .read = NULL, 1545 .write = NULL, 1546 .open = pseudo_lock_dev_open, 1547 .release = pseudo_lock_dev_release, 1548 .mmap = pseudo_lock_dev_mmap, 1549 }; 1550 1551 static char *pseudo_lock_devnode(struct device *dev, umode_t *mode) 1552 { 1553 struct rdtgroup *rdtgrp; 1554 1555 rdtgrp = dev_get_drvdata(dev); 1556 if (mode) 1557 *mode = 0600; 1558 return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name); 1559 } 1560 1561 int rdt_pseudo_lock_init(void) 1562 { 1563 int ret; 1564 1565 ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops); 1566 if (ret < 0) 1567 return ret; 1568 1569 pseudo_lock_major = ret; 1570 1571 pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock"); 1572 if (IS_ERR(pseudo_lock_class)) { 1573 ret = PTR_ERR(pseudo_lock_class); 1574 unregister_chrdev(pseudo_lock_major, "pseudo_lock"); 1575 return ret; 1576 } 1577 1578 pseudo_lock_class->devnode = pseudo_lock_devnode; 1579 return 0; 1580 } 1581 1582 void rdt_pseudo_lock_release(void) 1583 { 1584 class_destroy(pseudo_lock_class); 1585 pseudo_lock_class = NULL; 1586 unregister_chrdev(pseudo_lock_major, "pseudo_lock"); 1587 pseudo_lock_major = 0; 1588 } 1589