1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Resource Director Technology (RDT) 4 * 5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT) 6 * 7 * Copyright (C) 2018 Intel Corporation 8 * 9 * Author: Reinette Chatre <reinette.chatre@intel.com> 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/cacheinfo.h> 15 #include <linux/cpu.h> 16 #include <linux/cpumask.h> 17 #include <linux/debugfs.h> 18 #include <linux/kthread.h> 19 #include <linux/mman.h> 20 #include <linux/perf_event.h> 21 #include <linux/pm_qos.h> 22 #include <linux/slab.h> 23 #include <linux/uaccess.h> 24 25 #include <asm/cacheflush.h> 26 #include <asm/intel-family.h> 27 #include <asm/resctrl.h> 28 #include <asm/perf_event.h> 29 30 #include "../../events/perf_event.h" /* For X86_CONFIG() */ 31 #include "internal.h" 32 33 #define CREATE_TRACE_POINTS 34 #include "pseudo_lock_event.h" 35 36 /* 37 * The bits needed to disable hardware prefetching varies based on the 38 * platform. During initialization we will discover which bits to use. 39 */ 40 static u64 prefetch_disable_bits; 41 42 /* 43 * Major number assigned to and shared by all devices exposing 44 * pseudo-locked regions. 45 */ 46 static unsigned int pseudo_lock_major; 47 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0); 48 49 static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode) 50 { 51 const struct rdtgroup *rdtgrp; 52 53 rdtgrp = dev_get_drvdata(dev); 54 if (mode) 55 *mode = 0600; 56 return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name); 57 } 58 59 static const struct class pseudo_lock_class = { 60 .name = "pseudo_lock", 61 .devnode = pseudo_lock_devnode, 62 }; 63 64 /** 65 * get_prefetch_disable_bits - prefetch disable bits of supported platforms 66 * @void: It takes no parameters. 67 * 68 * Capture the list of platforms that have been validated to support 69 * pseudo-locking. This includes testing to ensure pseudo-locked regions 70 * with low cache miss rates can be created under variety of load conditions 71 * as well as that these pseudo-locked regions can maintain their low cache 72 * miss rates under variety of load conditions for significant lengths of time. 73 * 74 * After a platform has been validated to support pseudo-locking its 75 * hardware prefetch disable bits are included here as they are documented 76 * in the SDM. 77 * 78 * When adding a platform here also add support for its cache events to 79 * measure_cycles_perf_fn() 80 * 81 * Return: 82 * If platform is supported, the bits to disable hardware prefetchers, 0 83 * if platform is not supported. 84 */ 85 static u64 get_prefetch_disable_bits(void) 86 { 87 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL || 88 boot_cpu_data.x86 != 6) 89 return 0; 90 91 switch (boot_cpu_data.x86_model) { 92 case INTEL_FAM6_BROADWELL_X: 93 /* 94 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register 95 * as: 96 * 0 L2 Hardware Prefetcher Disable (R/W) 97 * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W) 98 * 2 DCU Hardware Prefetcher Disable (R/W) 99 * 3 DCU IP Prefetcher Disable (R/W) 100 * 63:4 Reserved 101 */ 102 return 0xF; 103 case INTEL_FAM6_ATOM_GOLDMONT: 104 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 105 /* 106 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register 107 * as: 108 * 0 L2 Hardware Prefetcher Disable (R/W) 109 * 1 Reserved 110 * 2 DCU Hardware Prefetcher Disable (R/W) 111 * 63:3 Reserved 112 */ 113 return 0x5; 114 } 115 116 return 0; 117 } 118 119 /** 120 * pseudo_lock_minor_get - Obtain available minor number 121 * @minor: Pointer to where new minor number will be stored 122 * 123 * A bitmask is used to track available minor numbers. Here the next free 124 * minor number is marked as unavailable and returned. 125 * 126 * Return: 0 on success, <0 on failure. 127 */ 128 static int pseudo_lock_minor_get(unsigned int *minor) 129 { 130 unsigned long first_bit; 131 132 first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS); 133 134 if (first_bit == MINORBITS) 135 return -ENOSPC; 136 137 __clear_bit(first_bit, &pseudo_lock_minor_avail); 138 *minor = first_bit; 139 140 return 0; 141 } 142 143 /** 144 * pseudo_lock_minor_release - Return minor number to available 145 * @minor: The minor number made available 146 */ 147 static void pseudo_lock_minor_release(unsigned int minor) 148 { 149 __set_bit(minor, &pseudo_lock_minor_avail); 150 } 151 152 /** 153 * region_find_by_minor - Locate a pseudo-lock region by inode minor number 154 * @minor: The minor number of the device representing pseudo-locked region 155 * 156 * When the character device is accessed we need to determine which 157 * pseudo-locked region it belongs to. This is done by matching the minor 158 * number of the device to the pseudo-locked region it belongs. 159 * 160 * Minor numbers are assigned at the time a pseudo-locked region is associated 161 * with a cache instance. 162 * 163 * Return: On success return pointer to resource group owning the pseudo-locked 164 * region, NULL on failure. 165 */ 166 static struct rdtgroup *region_find_by_minor(unsigned int minor) 167 { 168 struct rdtgroup *rdtgrp, *rdtgrp_match = NULL; 169 170 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 171 if (rdtgrp->plr && rdtgrp->plr->minor == minor) { 172 rdtgrp_match = rdtgrp; 173 break; 174 } 175 } 176 return rdtgrp_match; 177 } 178 179 /** 180 * struct pseudo_lock_pm_req - A power management QoS request list entry 181 * @list: Entry within the @pm_reqs list for a pseudo-locked region 182 * @req: PM QoS request 183 */ 184 struct pseudo_lock_pm_req { 185 struct list_head list; 186 struct dev_pm_qos_request req; 187 }; 188 189 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr) 190 { 191 struct pseudo_lock_pm_req *pm_req, *next; 192 193 list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) { 194 dev_pm_qos_remove_request(&pm_req->req); 195 list_del(&pm_req->list); 196 kfree(pm_req); 197 } 198 } 199 200 /** 201 * pseudo_lock_cstates_constrain - Restrict cores from entering C6 202 * @plr: Pseudo-locked region 203 * 204 * To prevent the cache from being affected by power management entering 205 * C6 has to be avoided. This is accomplished by requesting a latency 206 * requirement lower than lowest C6 exit latency of all supported 207 * platforms as found in the cpuidle state tables in the intel_idle driver. 208 * At this time it is possible to do so with a single latency requirement 209 * for all supported platforms. 210 * 211 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR, 212 * the ACPI latencies need to be considered while keeping in mind that C2 213 * may be set to map to deeper sleep states. In this case the latency 214 * requirement needs to prevent entering C2 also. 215 * 216 * Return: 0 on success, <0 on failure 217 */ 218 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr) 219 { 220 struct pseudo_lock_pm_req *pm_req; 221 int cpu; 222 int ret; 223 224 for_each_cpu(cpu, &plr->d->cpu_mask) { 225 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL); 226 if (!pm_req) { 227 rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n"); 228 ret = -ENOMEM; 229 goto out_err; 230 } 231 ret = dev_pm_qos_add_request(get_cpu_device(cpu), 232 &pm_req->req, 233 DEV_PM_QOS_RESUME_LATENCY, 234 30); 235 if (ret < 0) { 236 rdt_last_cmd_printf("Failed to add latency req CPU%d\n", 237 cpu); 238 kfree(pm_req); 239 ret = -1; 240 goto out_err; 241 } 242 list_add(&pm_req->list, &plr->pm_reqs); 243 } 244 245 return 0; 246 247 out_err: 248 pseudo_lock_cstates_relax(plr); 249 return ret; 250 } 251 252 /** 253 * pseudo_lock_region_clear - Reset pseudo-lock region data 254 * @plr: pseudo-lock region 255 * 256 * All content of the pseudo-locked region is reset - any memory allocated 257 * freed. 258 * 259 * Return: void 260 */ 261 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr) 262 { 263 plr->size = 0; 264 plr->line_size = 0; 265 kfree(plr->kmem); 266 plr->kmem = NULL; 267 plr->s = NULL; 268 if (plr->d) 269 plr->d->plr = NULL; 270 plr->d = NULL; 271 plr->cbm = 0; 272 plr->debugfs_dir = NULL; 273 } 274 275 /** 276 * pseudo_lock_region_init - Initialize pseudo-lock region information 277 * @plr: pseudo-lock region 278 * 279 * Called after user provided a schemata to be pseudo-locked. From the 280 * schemata the &struct pseudo_lock_region is on entry already initialized 281 * with the resource, domain, and capacity bitmask. Here the information 282 * required for pseudo-locking is deduced from this data and &struct 283 * pseudo_lock_region initialized further. This information includes: 284 * - size in bytes of the region to be pseudo-locked 285 * - cache line size to know the stride with which data needs to be accessed 286 * to be pseudo-locked 287 * - a cpu associated with the cache instance on which the pseudo-locking 288 * flow can be executed 289 * 290 * Return: 0 on success, <0 on failure. Descriptive error will be written 291 * to last_cmd_status buffer. 292 */ 293 static int pseudo_lock_region_init(struct pseudo_lock_region *plr) 294 { 295 struct cpu_cacheinfo *ci; 296 int ret; 297 int i; 298 299 /* Pick the first cpu we find that is associated with the cache. */ 300 plr->cpu = cpumask_first(&plr->d->cpu_mask); 301 302 if (!cpu_online(plr->cpu)) { 303 rdt_last_cmd_printf("CPU %u associated with cache not online\n", 304 plr->cpu); 305 ret = -ENODEV; 306 goto out_region; 307 } 308 309 ci = get_cpu_cacheinfo(plr->cpu); 310 311 plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm); 312 313 for (i = 0; i < ci->num_leaves; i++) { 314 if (ci->info_list[i].level == plr->s->res->cache_level) { 315 plr->line_size = ci->info_list[i].coherency_line_size; 316 return 0; 317 } 318 } 319 320 ret = -1; 321 rdt_last_cmd_puts("Unable to determine cache line size\n"); 322 out_region: 323 pseudo_lock_region_clear(plr); 324 return ret; 325 } 326 327 /** 328 * pseudo_lock_init - Initialize a pseudo-lock region 329 * @rdtgrp: resource group to which new pseudo-locked region will belong 330 * 331 * A pseudo-locked region is associated with a resource group. When this 332 * association is created the pseudo-locked region is initialized. The 333 * details of the pseudo-locked region are not known at this time so only 334 * allocation is done and association established. 335 * 336 * Return: 0 on success, <0 on failure 337 */ 338 static int pseudo_lock_init(struct rdtgroup *rdtgrp) 339 { 340 struct pseudo_lock_region *plr; 341 342 plr = kzalloc(sizeof(*plr), GFP_KERNEL); 343 if (!plr) 344 return -ENOMEM; 345 346 init_waitqueue_head(&plr->lock_thread_wq); 347 INIT_LIST_HEAD(&plr->pm_reqs); 348 rdtgrp->plr = plr; 349 return 0; 350 } 351 352 /** 353 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked 354 * @plr: pseudo-lock region 355 * 356 * Initialize the details required to set up the pseudo-locked region and 357 * allocate the contiguous memory that will be pseudo-locked to the cache. 358 * 359 * Return: 0 on success, <0 on failure. Descriptive error will be written 360 * to last_cmd_status buffer. 361 */ 362 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr) 363 { 364 int ret; 365 366 ret = pseudo_lock_region_init(plr); 367 if (ret < 0) 368 return ret; 369 370 /* 371 * We do not yet support contiguous regions larger than 372 * KMALLOC_MAX_SIZE. 373 */ 374 if (plr->size > KMALLOC_MAX_SIZE) { 375 rdt_last_cmd_puts("Requested region exceeds maximum size\n"); 376 ret = -E2BIG; 377 goto out_region; 378 } 379 380 plr->kmem = kzalloc(plr->size, GFP_KERNEL); 381 if (!plr->kmem) { 382 rdt_last_cmd_puts("Unable to allocate memory\n"); 383 ret = -ENOMEM; 384 goto out_region; 385 } 386 387 ret = 0; 388 goto out; 389 out_region: 390 pseudo_lock_region_clear(plr); 391 out: 392 return ret; 393 } 394 395 /** 396 * pseudo_lock_free - Free a pseudo-locked region 397 * @rdtgrp: resource group to which pseudo-locked region belonged 398 * 399 * The pseudo-locked region's resources have already been released, or not 400 * yet created at this point. Now it can be freed and disassociated from the 401 * resource group. 402 * 403 * Return: void 404 */ 405 static void pseudo_lock_free(struct rdtgroup *rdtgrp) 406 { 407 pseudo_lock_region_clear(rdtgrp->plr); 408 kfree(rdtgrp->plr); 409 rdtgrp->plr = NULL; 410 } 411 412 /** 413 * pseudo_lock_fn - Load kernel memory into cache 414 * @_rdtgrp: resource group to which pseudo-lock region belongs 415 * 416 * This is the core pseudo-locking flow. 417 * 418 * First we ensure that the kernel memory cannot be found in the cache. 419 * Then, while taking care that there will be as little interference as 420 * possible, the memory to be loaded is accessed while core is running 421 * with class of service set to the bitmask of the pseudo-locked region. 422 * After this is complete no future CAT allocations will be allowed to 423 * overlap with this bitmask. 424 * 425 * Local register variables are utilized to ensure that the memory region 426 * to be locked is the only memory access made during the critical locking 427 * loop. 428 * 429 * Return: 0. Waiter on waitqueue will be woken on completion. 430 */ 431 static int pseudo_lock_fn(void *_rdtgrp) 432 { 433 struct rdtgroup *rdtgrp = _rdtgrp; 434 struct pseudo_lock_region *plr = rdtgrp->plr; 435 u32 rmid_p, closid_p; 436 unsigned long i; 437 u64 saved_msr; 438 #ifdef CONFIG_KASAN 439 /* 440 * The registers used for local register variables are also used 441 * when KASAN is active. When KASAN is active we use a regular 442 * variable to ensure we always use a valid pointer, but the cost 443 * is that this variable will enter the cache through evicting the 444 * memory we are trying to lock into the cache. Thus expect lower 445 * pseudo-locking success rate when KASAN is active. 446 */ 447 unsigned int line_size; 448 unsigned int size; 449 void *mem_r; 450 #else 451 register unsigned int line_size asm("esi"); 452 register unsigned int size asm("edi"); 453 register void *mem_r asm(_ASM_BX); 454 #endif /* CONFIG_KASAN */ 455 456 /* 457 * Make sure none of the allocated memory is cached. If it is we 458 * will get a cache hit in below loop from outside of pseudo-locked 459 * region. 460 * wbinvd (as opposed to clflush/clflushopt) is required to 461 * increase likelihood that allocated cache portion will be filled 462 * with associated memory. 463 */ 464 native_wbinvd(); 465 466 /* 467 * Always called with interrupts enabled. By disabling interrupts 468 * ensure that we will not be preempted during this critical section. 469 */ 470 local_irq_disable(); 471 472 /* 473 * Call wrmsr and rdmsr as directly as possible to avoid tracing 474 * clobbering local register variables or affecting cache accesses. 475 * 476 * Disable the hardware prefetcher so that when the end of the memory 477 * being pseudo-locked is reached the hardware will not read beyond 478 * the buffer and evict pseudo-locked memory read earlier from the 479 * cache. 480 */ 481 saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL); 482 __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 483 closid_p = this_cpu_read(pqr_state.cur_closid); 484 rmid_p = this_cpu_read(pqr_state.cur_rmid); 485 mem_r = plr->kmem; 486 size = plr->size; 487 line_size = plr->line_size; 488 /* 489 * Critical section begin: start by writing the closid associated 490 * with the capacity bitmask of the cache region being 491 * pseudo-locked followed by reading of kernel memory to load it 492 * into the cache. 493 */ 494 __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid); 495 /* 496 * Cache was flushed earlier. Now access kernel memory to read it 497 * into cache region associated with just activated plr->closid. 498 * Loop over data twice: 499 * - In first loop the cache region is shared with the page walker 500 * as it populates the paging structure caches (including TLB). 501 * - In the second loop the paging structure caches are used and 502 * cache region is populated with the memory being referenced. 503 */ 504 for (i = 0; i < size; i += PAGE_SIZE) { 505 /* 506 * Add a barrier to prevent speculative execution of this 507 * loop reading beyond the end of the buffer. 508 */ 509 rmb(); 510 asm volatile("mov (%0,%1,1), %%eax\n\t" 511 : 512 : "r" (mem_r), "r" (i) 513 : "%eax", "memory"); 514 } 515 for (i = 0; i < size; i += line_size) { 516 /* 517 * Add a barrier to prevent speculative execution of this 518 * loop reading beyond the end of the buffer. 519 */ 520 rmb(); 521 asm volatile("mov (%0,%1,1), %%eax\n\t" 522 : 523 : "r" (mem_r), "r" (i) 524 : "%eax", "memory"); 525 } 526 /* 527 * Critical section end: restore closid with capacity bitmask that 528 * does not overlap with pseudo-locked region. 529 */ 530 __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p); 531 532 /* Re-enable the hardware prefetcher(s) */ 533 wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr); 534 local_irq_enable(); 535 536 plr->thread_done = 1; 537 wake_up_interruptible(&plr->lock_thread_wq); 538 return 0; 539 } 540 541 /** 542 * rdtgroup_monitor_in_progress - Test if monitoring in progress 543 * @rdtgrp: resource group being queried 544 * 545 * Return: 1 if monitor groups have been created for this resource 546 * group, 0 otherwise. 547 */ 548 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp) 549 { 550 return !list_empty(&rdtgrp->mon.crdtgrp_list); 551 } 552 553 /** 554 * rdtgroup_locksetup_user_restrict - Restrict user access to group 555 * @rdtgrp: resource group needing access restricted 556 * 557 * A resource group used for cache pseudo-locking cannot have cpus or tasks 558 * assigned to it. This is communicated to the user by restricting access 559 * to all the files that can be used to make such changes. 560 * 561 * Permissions restored with rdtgroup_locksetup_user_restore() 562 * 563 * Return: 0 on success, <0 on failure. If a failure occurs during the 564 * restriction of access an attempt will be made to restore permissions but 565 * the state of the mode of these files will be uncertain when a failure 566 * occurs. 567 */ 568 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp) 569 { 570 int ret; 571 572 ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); 573 if (ret) 574 return ret; 575 576 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); 577 if (ret) 578 goto err_tasks; 579 580 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); 581 if (ret) 582 goto err_cpus; 583 584 if (rdt_mon_capable) { 585 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups"); 586 if (ret) 587 goto err_cpus_list; 588 } 589 590 ret = 0; 591 goto out; 592 593 err_cpus_list: 594 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); 595 err_cpus: 596 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); 597 err_tasks: 598 rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); 599 out: 600 return ret; 601 } 602 603 /** 604 * rdtgroup_locksetup_user_restore - Restore user access to group 605 * @rdtgrp: resource group needing access restored 606 * 607 * Restore all file access previously removed using 608 * rdtgroup_locksetup_user_restrict() 609 * 610 * Return: 0 on success, <0 on failure. If a failure occurs during the 611 * restoration of access an attempt will be made to restrict permissions 612 * again but the state of the mode of these files will be uncertain when 613 * a failure occurs. 614 */ 615 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp) 616 { 617 int ret; 618 619 ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777); 620 if (ret) 621 return ret; 622 623 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777); 624 if (ret) 625 goto err_tasks; 626 627 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777); 628 if (ret) 629 goto err_cpus; 630 631 if (rdt_mon_capable) { 632 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777); 633 if (ret) 634 goto err_cpus_list; 635 } 636 637 ret = 0; 638 goto out; 639 640 err_cpus_list: 641 rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list"); 642 err_cpus: 643 rdtgroup_kn_mode_restrict(rdtgrp, "cpus"); 644 err_tasks: 645 rdtgroup_kn_mode_restrict(rdtgrp, "tasks"); 646 out: 647 return ret; 648 } 649 650 /** 651 * rdtgroup_locksetup_enter - Resource group enters locksetup mode 652 * @rdtgrp: resource group requested to enter locksetup mode 653 * 654 * A resource group enters locksetup mode to reflect that it would be used 655 * to represent a pseudo-locked region and is in the process of being set 656 * up to do so. A resource group used for a pseudo-locked region would 657 * lose the closid associated with it so we cannot allow it to have any 658 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the 659 * future. Monitoring of a pseudo-locked region is not allowed either. 660 * 661 * The above and more restrictions on a pseudo-locked region are checked 662 * for and enforced before the resource group enters the locksetup mode. 663 * 664 * Returns: 0 if the resource group successfully entered locksetup mode, <0 665 * on failure. On failure the last_cmd_status buffer is updated with text to 666 * communicate details of failure to the user. 667 */ 668 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp) 669 { 670 int ret; 671 672 /* 673 * The default resource group can neither be removed nor lose the 674 * default closid associated with it. 675 */ 676 if (rdtgrp == &rdtgroup_default) { 677 rdt_last_cmd_puts("Cannot pseudo-lock default group\n"); 678 return -EINVAL; 679 } 680 681 /* 682 * Cache Pseudo-locking not supported when CDP is enabled. 683 * 684 * Some things to consider if you would like to enable this 685 * support (using L3 CDP as example): 686 * - When CDP is enabled two separate resources are exposed, 687 * L3DATA and L3CODE, but they are actually on the same cache. 688 * The implication for pseudo-locking is that if a 689 * pseudo-locked region is created on a domain of one 690 * resource (eg. L3CODE), then a pseudo-locked region cannot 691 * be created on that same domain of the other resource 692 * (eg. L3DATA). This is because the creation of a 693 * pseudo-locked region involves a call to wbinvd that will 694 * affect all cache allocations on particular domain. 695 * - Considering the previous, it may be possible to only 696 * expose one of the CDP resources to pseudo-locking and 697 * hide the other. For example, we could consider to only 698 * expose L3DATA and since the L3 cache is unified it is 699 * still possible to place instructions there are execute it. 700 * - If only one region is exposed to pseudo-locking we should 701 * still keep in mind that availability of a portion of cache 702 * for pseudo-locking should take into account both resources. 703 * Similarly, if a pseudo-locked region is created in one 704 * resource, the portion of cache used by it should be made 705 * unavailable to all future allocations from both resources. 706 */ 707 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) || 708 resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) { 709 rdt_last_cmd_puts("CDP enabled\n"); 710 return -EINVAL; 711 } 712 713 /* 714 * Not knowing the bits to disable prefetching implies that this 715 * platform does not support Cache Pseudo-Locking. 716 */ 717 prefetch_disable_bits = get_prefetch_disable_bits(); 718 if (prefetch_disable_bits == 0) { 719 rdt_last_cmd_puts("Pseudo-locking not supported\n"); 720 return -EINVAL; 721 } 722 723 if (rdtgroup_monitor_in_progress(rdtgrp)) { 724 rdt_last_cmd_puts("Monitoring in progress\n"); 725 return -EINVAL; 726 } 727 728 if (rdtgroup_tasks_assigned(rdtgrp)) { 729 rdt_last_cmd_puts("Tasks assigned to resource group\n"); 730 return -EINVAL; 731 } 732 733 if (!cpumask_empty(&rdtgrp->cpu_mask)) { 734 rdt_last_cmd_puts("CPUs assigned to resource group\n"); 735 return -EINVAL; 736 } 737 738 if (rdtgroup_locksetup_user_restrict(rdtgrp)) { 739 rdt_last_cmd_puts("Unable to modify resctrl permissions\n"); 740 return -EIO; 741 } 742 743 ret = pseudo_lock_init(rdtgrp); 744 if (ret) { 745 rdt_last_cmd_puts("Unable to init pseudo-lock region\n"); 746 goto out_release; 747 } 748 749 /* 750 * If this system is capable of monitoring a rmid would have been 751 * allocated when the control group was created. This is not needed 752 * anymore when this group would be used for pseudo-locking. This 753 * is safe to call on platforms not capable of monitoring. 754 */ 755 free_rmid(rdtgrp->mon.rmid); 756 757 ret = 0; 758 goto out; 759 760 out_release: 761 rdtgroup_locksetup_user_restore(rdtgrp); 762 out: 763 return ret; 764 } 765 766 /** 767 * rdtgroup_locksetup_exit - resource group exist locksetup mode 768 * @rdtgrp: resource group 769 * 770 * When a resource group exits locksetup mode the earlier restrictions are 771 * lifted. 772 * 773 * Return: 0 on success, <0 on failure 774 */ 775 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp) 776 { 777 int ret; 778 779 if (rdt_mon_capable) { 780 ret = alloc_rmid(); 781 if (ret < 0) { 782 rdt_last_cmd_puts("Out of RMIDs\n"); 783 return ret; 784 } 785 rdtgrp->mon.rmid = ret; 786 } 787 788 ret = rdtgroup_locksetup_user_restore(rdtgrp); 789 if (ret) { 790 free_rmid(rdtgrp->mon.rmid); 791 return ret; 792 } 793 794 pseudo_lock_free(rdtgrp); 795 return 0; 796 } 797 798 /** 799 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked 800 * @d: RDT domain 801 * @cbm: CBM to test 802 * 803 * @d represents a cache instance and @cbm a capacity bitmask that is 804 * considered for it. Determine if @cbm overlaps with any existing 805 * pseudo-locked region on @d. 806 * 807 * @cbm is unsigned long, even if only 32 bits are used, to make the 808 * bitmap functions work correctly. 809 * 810 * Return: true if @cbm overlaps with pseudo-locked region on @d, false 811 * otherwise. 812 */ 813 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm) 814 { 815 unsigned int cbm_len; 816 unsigned long cbm_b; 817 818 if (d->plr) { 819 cbm_len = d->plr->s->res->cache.cbm_len; 820 cbm_b = d->plr->cbm; 821 if (bitmap_intersects(&cbm, &cbm_b, cbm_len)) 822 return true; 823 } 824 return false; 825 } 826 827 /** 828 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy 829 * @d: RDT domain under test 830 * 831 * The setup of a pseudo-locked region affects all cache instances within 832 * the hierarchy of the region. It is thus essential to know if any 833 * pseudo-locked regions exist within a cache hierarchy to prevent any 834 * attempts to create new pseudo-locked regions in the same hierarchy. 835 * 836 * Return: true if a pseudo-locked region exists in the hierarchy of @d or 837 * if it is not possible to test due to memory allocation issue, 838 * false otherwise. 839 */ 840 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d) 841 { 842 cpumask_var_t cpu_with_psl; 843 struct rdt_resource *r; 844 struct rdt_domain *d_i; 845 bool ret = false; 846 847 if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL)) 848 return true; 849 850 /* 851 * First determine which cpus have pseudo-locked regions 852 * associated with them. 853 */ 854 for_each_alloc_capable_rdt_resource(r) { 855 list_for_each_entry(d_i, &r->domains, list) { 856 if (d_i->plr) 857 cpumask_or(cpu_with_psl, cpu_with_psl, 858 &d_i->cpu_mask); 859 } 860 } 861 862 /* 863 * Next test if new pseudo-locked region would intersect with 864 * existing region. 865 */ 866 if (cpumask_intersects(&d->cpu_mask, cpu_with_psl)) 867 ret = true; 868 869 free_cpumask_var(cpu_with_psl); 870 return ret; 871 } 872 873 /** 874 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory 875 * @_plr: pseudo-lock region to measure 876 * 877 * There is no deterministic way to test if a memory region is cached. One 878 * way is to measure how long it takes to read the memory, the speed of 879 * access is a good way to learn how close to the cpu the data was. Even 880 * more, if the prefetcher is disabled and the memory is read at a stride 881 * of half the cache line, then a cache miss will be easy to spot since the 882 * read of the first half would be significantly slower than the read of 883 * the second half. 884 * 885 * Return: 0. Waiter on waitqueue will be woken on completion. 886 */ 887 static int measure_cycles_lat_fn(void *_plr) 888 { 889 struct pseudo_lock_region *plr = _plr; 890 u32 saved_low, saved_high; 891 unsigned long i; 892 u64 start, end; 893 void *mem_r; 894 895 local_irq_disable(); 896 /* 897 * Disable hardware prefetchers. 898 */ 899 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 900 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 901 mem_r = READ_ONCE(plr->kmem); 902 /* 903 * Dummy execute of the time measurement to load the needed 904 * instructions into the L1 instruction cache. 905 */ 906 start = rdtsc_ordered(); 907 for (i = 0; i < plr->size; i += 32) { 908 start = rdtsc_ordered(); 909 asm volatile("mov (%0,%1,1), %%eax\n\t" 910 : 911 : "r" (mem_r), "r" (i) 912 : "%eax", "memory"); 913 end = rdtsc_ordered(); 914 trace_pseudo_lock_mem_latency((u32)(end - start)); 915 } 916 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 917 local_irq_enable(); 918 plr->thread_done = 1; 919 wake_up_interruptible(&plr->lock_thread_wq); 920 return 0; 921 } 922 923 /* 924 * Create a perf_event_attr for the hit and miss perf events that will 925 * be used during the performance measurement. A perf_event maintains 926 * a pointer to its perf_event_attr so a unique attribute structure is 927 * created for each perf_event. 928 * 929 * The actual configuration of the event is set right before use in order 930 * to use the X86_CONFIG macro. 931 */ 932 static struct perf_event_attr perf_miss_attr = { 933 .type = PERF_TYPE_RAW, 934 .size = sizeof(struct perf_event_attr), 935 .pinned = 1, 936 .disabled = 0, 937 .exclude_user = 1, 938 }; 939 940 static struct perf_event_attr perf_hit_attr = { 941 .type = PERF_TYPE_RAW, 942 .size = sizeof(struct perf_event_attr), 943 .pinned = 1, 944 .disabled = 0, 945 .exclude_user = 1, 946 }; 947 948 struct residency_counts { 949 u64 miss_before, hits_before; 950 u64 miss_after, hits_after; 951 }; 952 953 static int measure_residency_fn(struct perf_event_attr *miss_attr, 954 struct perf_event_attr *hit_attr, 955 struct pseudo_lock_region *plr, 956 struct residency_counts *counts) 957 { 958 u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0; 959 struct perf_event *miss_event, *hit_event; 960 int hit_pmcnum, miss_pmcnum; 961 u32 saved_low, saved_high; 962 unsigned int line_size; 963 unsigned int size; 964 unsigned long i; 965 void *mem_r; 966 u64 tmp; 967 968 miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu, 969 NULL, NULL, NULL); 970 if (IS_ERR(miss_event)) 971 goto out; 972 973 hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu, 974 NULL, NULL, NULL); 975 if (IS_ERR(hit_event)) 976 goto out_miss; 977 978 local_irq_disable(); 979 /* 980 * Check any possible error state of events used by performing 981 * one local read. 982 */ 983 if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) { 984 local_irq_enable(); 985 goto out_hit; 986 } 987 if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) { 988 local_irq_enable(); 989 goto out_hit; 990 } 991 992 /* 993 * Disable hardware prefetchers. 994 */ 995 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 996 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0); 997 998 /* Initialize rest of local variables */ 999 /* 1000 * Performance event has been validated right before this with 1001 * interrupts disabled - it is thus safe to read the counter index. 1002 */ 1003 miss_pmcnum = x86_perf_rdpmc_index(miss_event); 1004 hit_pmcnum = x86_perf_rdpmc_index(hit_event); 1005 line_size = READ_ONCE(plr->line_size); 1006 mem_r = READ_ONCE(plr->kmem); 1007 size = READ_ONCE(plr->size); 1008 1009 /* 1010 * Read counter variables twice - first to load the instructions 1011 * used in L1 cache, second to capture accurate value that does not 1012 * include cache misses incurred because of instruction loads. 1013 */ 1014 rdpmcl(hit_pmcnum, hits_before); 1015 rdpmcl(miss_pmcnum, miss_before); 1016 /* 1017 * From SDM: Performing back-to-back fast reads are not guaranteed 1018 * to be monotonic. 1019 * Use LFENCE to ensure all previous instructions are retired 1020 * before proceeding. 1021 */ 1022 rmb(); 1023 rdpmcl(hit_pmcnum, hits_before); 1024 rdpmcl(miss_pmcnum, miss_before); 1025 /* 1026 * Use LFENCE to ensure all previous instructions are retired 1027 * before proceeding. 1028 */ 1029 rmb(); 1030 for (i = 0; i < size; i += line_size) { 1031 /* 1032 * Add a barrier to prevent speculative execution of this 1033 * loop reading beyond the end of the buffer. 1034 */ 1035 rmb(); 1036 asm volatile("mov (%0,%1,1), %%eax\n\t" 1037 : 1038 : "r" (mem_r), "r" (i) 1039 : "%eax", "memory"); 1040 } 1041 /* 1042 * Use LFENCE to ensure all previous instructions are retired 1043 * before proceeding. 1044 */ 1045 rmb(); 1046 rdpmcl(hit_pmcnum, hits_after); 1047 rdpmcl(miss_pmcnum, miss_after); 1048 /* 1049 * Use LFENCE to ensure all previous instructions are retired 1050 * before proceeding. 1051 */ 1052 rmb(); 1053 /* Re-enable hardware prefetchers */ 1054 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high); 1055 local_irq_enable(); 1056 out_hit: 1057 perf_event_release_kernel(hit_event); 1058 out_miss: 1059 perf_event_release_kernel(miss_event); 1060 out: 1061 /* 1062 * All counts will be zero on failure. 1063 */ 1064 counts->miss_before = miss_before; 1065 counts->hits_before = hits_before; 1066 counts->miss_after = miss_after; 1067 counts->hits_after = hits_after; 1068 return 0; 1069 } 1070 1071 static int measure_l2_residency(void *_plr) 1072 { 1073 struct pseudo_lock_region *plr = _plr; 1074 struct residency_counts counts = {0}; 1075 1076 /* 1077 * Non-architectural event for the Goldmont Microarchitecture 1078 * from Intel x86 Architecture Software Developer Manual (SDM): 1079 * MEM_LOAD_UOPS_RETIRED D1H (event number) 1080 * Umask values: 1081 * L2_HIT 02H 1082 * L2_MISS 10H 1083 */ 1084 switch (boot_cpu_data.x86_model) { 1085 case INTEL_FAM6_ATOM_GOLDMONT: 1086 case INTEL_FAM6_ATOM_GOLDMONT_PLUS: 1087 perf_miss_attr.config = X86_CONFIG(.event = 0xd1, 1088 .umask = 0x10); 1089 perf_hit_attr.config = X86_CONFIG(.event = 0xd1, 1090 .umask = 0x2); 1091 break; 1092 default: 1093 goto out; 1094 } 1095 1096 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts); 1097 /* 1098 * If a failure prevented the measurements from succeeding 1099 * tracepoints will still be written and all counts will be zero. 1100 */ 1101 trace_pseudo_lock_l2(counts.hits_after - counts.hits_before, 1102 counts.miss_after - counts.miss_before); 1103 out: 1104 plr->thread_done = 1; 1105 wake_up_interruptible(&plr->lock_thread_wq); 1106 return 0; 1107 } 1108 1109 static int measure_l3_residency(void *_plr) 1110 { 1111 struct pseudo_lock_region *plr = _plr; 1112 struct residency_counts counts = {0}; 1113 1114 /* 1115 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event 1116 * has two "no fix" errata associated with it: BDM35 and BDM100. On 1117 * this platform the following events are used instead: 1118 * LONGEST_LAT_CACHE 2EH (Documented in SDM) 1119 * REFERENCE 4FH 1120 * MISS 41H 1121 */ 1122 1123 switch (boot_cpu_data.x86_model) { 1124 case INTEL_FAM6_BROADWELL_X: 1125 /* On BDW the hit event counts references, not hits */ 1126 perf_hit_attr.config = X86_CONFIG(.event = 0x2e, 1127 .umask = 0x4f); 1128 perf_miss_attr.config = X86_CONFIG(.event = 0x2e, 1129 .umask = 0x41); 1130 break; 1131 default: 1132 goto out; 1133 } 1134 1135 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts); 1136 /* 1137 * If a failure prevented the measurements from succeeding 1138 * tracepoints will still be written and all counts will be zero. 1139 */ 1140 1141 counts.miss_after -= counts.miss_before; 1142 if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) { 1143 /* 1144 * On BDW references and misses are counted, need to adjust. 1145 * Sometimes the "hits" counter is a bit more than the 1146 * references, for example, x references but x + 1 hits. 1147 * To not report invalid hit values in this case we treat 1148 * that as misses equal to references. 1149 */ 1150 /* First compute the number of cache references measured */ 1151 counts.hits_after -= counts.hits_before; 1152 /* Next convert references to cache hits */ 1153 counts.hits_after -= min(counts.miss_after, counts.hits_after); 1154 } else { 1155 counts.hits_after -= counts.hits_before; 1156 } 1157 1158 trace_pseudo_lock_l3(counts.hits_after, counts.miss_after); 1159 out: 1160 plr->thread_done = 1; 1161 wake_up_interruptible(&plr->lock_thread_wq); 1162 return 0; 1163 } 1164 1165 /** 1166 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region 1167 * @rdtgrp: Resource group to which the pseudo-locked region belongs. 1168 * @sel: Selector of which measurement to perform on a pseudo-locked region. 1169 * 1170 * The measurement of latency to access a pseudo-locked region should be 1171 * done from a cpu that is associated with that pseudo-locked region. 1172 * Determine which cpu is associated with this region and start a thread on 1173 * that cpu to perform the measurement, wait for that thread to complete. 1174 * 1175 * Return: 0 on success, <0 on failure 1176 */ 1177 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel) 1178 { 1179 struct pseudo_lock_region *plr = rdtgrp->plr; 1180 struct task_struct *thread; 1181 unsigned int cpu; 1182 int ret = -1; 1183 1184 cpus_read_lock(); 1185 mutex_lock(&rdtgroup_mutex); 1186 1187 if (rdtgrp->flags & RDT_DELETED) { 1188 ret = -ENODEV; 1189 goto out; 1190 } 1191 1192 if (!plr->d) { 1193 ret = -ENODEV; 1194 goto out; 1195 } 1196 1197 plr->thread_done = 0; 1198 cpu = cpumask_first(&plr->d->cpu_mask); 1199 if (!cpu_online(cpu)) { 1200 ret = -ENODEV; 1201 goto out; 1202 } 1203 1204 plr->cpu = cpu; 1205 1206 if (sel == 1) 1207 thread = kthread_create_on_node(measure_cycles_lat_fn, plr, 1208 cpu_to_node(cpu), 1209 "pseudo_lock_measure/%u", 1210 cpu); 1211 else if (sel == 2) 1212 thread = kthread_create_on_node(measure_l2_residency, plr, 1213 cpu_to_node(cpu), 1214 "pseudo_lock_measure/%u", 1215 cpu); 1216 else if (sel == 3) 1217 thread = kthread_create_on_node(measure_l3_residency, plr, 1218 cpu_to_node(cpu), 1219 "pseudo_lock_measure/%u", 1220 cpu); 1221 else 1222 goto out; 1223 1224 if (IS_ERR(thread)) { 1225 ret = PTR_ERR(thread); 1226 goto out; 1227 } 1228 kthread_bind(thread, cpu); 1229 wake_up_process(thread); 1230 1231 ret = wait_event_interruptible(plr->lock_thread_wq, 1232 plr->thread_done == 1); 1233 if (ret < 0) 1234 goto out; 1235 1236 ret = 0; 1237 1238 out: 1239 mutex_unlock(&rdtgroup_mutex); 1240 cpus_read_unlock(); 1241 return ret; 1242 } 1243 1244 static ssize_t pseudo_lock_measure_trigger(struct file *file, 1245 const char __user *user_buf, 1246 size_t count, loff_t *ppos) 1247 { 1248 struct rdtgroup *rdtgrp = file->private_data; 1249 size_t buf_size; 1250 char buf[32]; 1251 int ret; 1252 int sel; 1253 1254 buf_size = min(count, (sizeof(buf) - 1)); 1255 if (copy_from_user(buf, user_buf, buf_size)) 1256 return -EFAULT; 1257 1258 buf[buf_size] = '\0'; 1259 ret = kstrtoint(buf, 10, &sel); 1260 if (ret == 0) { 1261 if (sel != 1 && sel != 2 && sel != 3) 1262 return -EINVAL; 1263 ret = debugfs_file_get(file->f_path.dentry); 1264 if (ret) 1265 return ret; 1266 ret = pseudo_lock_measure_cycles(rdtgrp, sel); 1267 if (ret == 0) 1268 ret = count; 1269 debugfs_file_put(file->f_path.dentry); 1270 } 1271 1272 return ret; 1273 } 1274 1275 static const struct file_operations pseudo_measure_fops = { 1276 .write = pseudo_lock_measure_trigger, 1277 .open = simple_open, 1278 .llseek = default_llseek, 1279 }; 1280 1281 /** 1282 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region 1283 * @rdtgrp: resource group to which pseudo-lock region belongs 1284 * 1285 * Called when a resource group in the pseudo-locksetup mode receives a 1286 * valid schemata that should be pseudo-locked. Since the resource group is 1287 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been 1288 * allocated and initialized with the essential information. If a failure 1289 * occurs the resource group remains in the pseudo-locksetup mode with the 1290 * &struct pseudo_lock_region associated with it, but cleared from all 1291 * information and ready for the user to re-attempt pseudo-locking by 1292 * writing the schemata again. 1293 * 1294 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0 1295 * on failure. Descriptive error will be written to last_cmd_status buffer. 1296 */ 1297 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) 1298 { 1299 struct pseudo_lock_region *plr = rdtgrp->plr; 1300 struct task_struct *thread; 1301 unsigned int new_minor; 1302 struct device *dev; 1303 int ret; 1304 1305 ret = pseudo_lock_region_alloc(plr); 1306 if (ret < 0) 1307 return ret; 1308 1309 ret = pseudo_lock_cstates_constrain(plr); 1310 if (ret < 0) { 1311 ret = -EINVAL; 1312 goto out_region; 1313 } 1314 1315 plr->thread_done = 0; 1316 1317 thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp, 1318 cpu_to_node(plr->cpu), 1319 "pseudo_lock/%u", plr->cpu); 1320 if (IS_ERR(thread)) { 1321 ret = PTR_ERR(thread); 1322 rdt_last_cmd_printf("Locking thread returned error %d\n", ret); 1323 goto out_cstates; 1324 } 1325 1326 kthread_bind(thread, plr->cpu); 1327 wake_up_process(thread); 1328 1329 ret = wait_event_interruptible(plr->lock_thread_wq, 1330 plr->thread_done == 1); 1331 if (ret < 0) { 1332 /* 1333 * If the thread does not get on the CPU for whatever 1334 * reason and the process which sets up the region is 1335 * interrupted then this will leave the thread in runnable 1336 * state and once it gets on the CPU it will dereference 1337 * the cleared, but not freed, plr struct resulting in an 1338 * empty pseudo-locking loop. 1339 */ 1340 rdt_last_cmd_puts("Locking thread interrupted\n"); 1341 goto out_cstates; 1342 } 1343 1344 ret = pseudo_lock_minor_get(&new_minor); 1345 if (ret < 0) { 1346 rdt_last_cmd_puts("Unable to obtain a new minor number\n"); 1347 goto out_cstates; 1348 } 1349 1350 /* 1351 * Unlock access but do not release the reference. The 1352 * pseudo-locked region will still be here on return. 1353 * 1354 * The mutex has to be released temporarily to avoid a potential 1355 * deadlock with the mm->mmap_lock which is obtained in the 1356 * device_create() and debugfs_create_dir() callpath below as well as 1357 * before the mmap() callback is called. 1358 */ 1359 mutex_unlock(&rdtgroup_mutex); 1360 1361 if (!IS_ERR_OR_NULL(debugfs_resctrl)) { 1362 plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name, 1363 debugfs_resctrl); 1364 if (!IS_ERR_OR_NULL(plr->debugfs_dir)) 1365 debugfs_create_file("pseudo_lock_measure", 0200, 1366 plr->debugfs_dir, rdtgrp, 1367 &pseudo_measure_fops); 1368 } 1369 1370 dev = device_create(&pseudo_lock_class, NULL, 1371 MKDEV(pseudo_lock_major, new_minor), 1372 rdtgrp, "%s", rdtgrp->kn->name); 1373 1374 mutex_lock(&rdtgroup_mutex); 1375 1376 if (IS_ERR(dev)) { 1377 ret = PTR_ERR(dev); 1378 rdt_last_cmd_printf("Failed to create character device: %d\n", 1379 ret); 1380 goto out_debugfs; 1381 } 1382 1383 /* We released the mutex - check if group was removed while we did so */ 1384 if (rdtgrp->flags & RDT_DELETED) { 1385 ret = -ENODEV; 1386 goto out_device; 1387 } 1388 1389 plr->minor = new_minor; 1390 1391 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED; 1392 closid_free(rdtgrp->closid); 1393 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444); 1394 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444); 1395 1396 ret = 0; 1397 goto out; 1398 1399 out_device: 1400 device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor)); 1401 out_debugfs: 1402 debugfs_remove_recursive(plr->debugfs_dir); 1403 pseudo_lock_minor_release(new_minor); 1404 out_cstates: 1405 pseudo_lock_cstates_relax(plr); 1406 out_region: 1407 pseudo_lock_region_clear(plr); 1408 out: 1409 return ret; 1410 } 1411 1412 /** 1413 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region 1414 * @rdtgrp: resource group to which the pseudo-locked region belongs 1415 * 1416 * The removal of a pseudo-locked region can be initiated when the resource 1417 * group is removed from user space via a "rmdir" from userspace or the 1418 * unmount of the resctrl filesystem. On removal the resource group does 1419 * not go back to pseudo-locksetup mode before it is removed, instead it is 1420 * removed directly. There is thus asymmetry with the creation where the 1421 * &struct pseudo_lock_region is removed here while it was not created in 1422 * rdtgroup_pseudo_lock_create(). 1423 * 1424 * Return: void 1425 */ 1426 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp) 1427 { 1428 struct pseudo_lock_region *plr = rdtgrp->plr; 1429 1430 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1431 /* 1432 * Default group cannot be a pseudo-locked region so we can 1433 * free closid here. 1434 */ 1435 closid_free(rdtgrp->closid); 1436 goto free; 1437 } 1438 1439 pseudo_lock_cstates_relax(plr); 1440 debugfs_remove_recursive(rdtgrp->plr->debugfs_dir); 1441 device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor)); 1442 pseudo_lock_minor_release(plr->minor); 1443 1444 free: 1445 pseudo_lock_free(rdtgrp); 1446 } 1447 1448 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp) 1449 { 1450 struct rdtgroup *rdtgrp; 1451 1452 mutex_lock(&rdtgroup_mutex); 1453 1454 rdtgrp = region_find_by_minor(iminor(inode)); 1455 if (!rdtgrp) { 1456 mutex_unlock(&rdtgroup_mutex); 1457 return -ENODEV; 1458 } 1459 1460 filp->private_data = rdtgrp; 1461 atomic_inc(&rdtgrp->waitcount); 1462 /* Perform a non-seekable open - llseek is not supported */ 1463 filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE); 1464 1465 mutex_unlock(&rdtgroup_mutex); 1466 1467 return 0; 1468 } 1469 1470 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp) 1471 { 1472 struct rdtgroup *rdtgrp; 1473 1474 mutex_lock(&rdtgroup_mutex); 1475 rdtgrp = filp->private_data; 1476 WARN_ON(!rdtgrp); 1477 if (!rdtgrp) { 1478 mutex_unlock(&rdtgroup_mutex); 1479 return -ENODEV; 1480 } 1481 filp->private_data = NULL; 1482 atomic_dec(&rdtgrp->waitcount); 1483 mutex_unlock(&rdtgroup_mutex); 1484 return 0; 1485 } 1486 1487 static int pseudo_lock_dev_mremap(struct vm_area_struct *area) 1488 { 1489 /* Not supported */ 1490 return -EINVAL; 1491 } 1492 1493 static const struct vm_operations_struct pseudo_mmap_ops = { 1494 .mremap = pseudo_lock_dev_mremap, 1495 }; 1496 1497 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma) 1498 { 1499 unsigned long vsize = vma->vm_end - vma->vm_start; 1500 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 1501 struct pseudo_lock_region *plr; 1502 struct rdtgroup *rdtgrp; 1503 unsigned long physical; 1504 unsigned long psize; 1505 1506 mutex_lock(&rdtgroup_mutex); 1507 1508 rdtgrp = filp->private_data; 1509 WARN_ON(!rdtgrp); 1510 if (!rdtgrp) { 1511 mutex_unlock(&rdtgroup_mutex); 1512 return -ENODEV; 1513 } 1514 1515 plr = rdtgrp->plr; 1516 1517 if (!plr->d) { 1518 mutex_unlock(&rdtgroup_mutex); 1519 return -ENODEV; 1520 } 1521 1522 /* 1523 * Task is required to run with affinity to the cpus associated 1524 * with the pseudo-locked region. If this is not the case the task 1525 * may be scheduled elsewhere and invalidate entries in the 1526 * pseudo-locked region. 1527 */ 1528 if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) { 1529 mutex_unlock(&rdtgroup_mutex); 1530 return -EINVAL; 1531 } 1532 1533 physical = __pa(plr->kmem) >> PAGE_SHIFT; 1534 psize = plr->size - off; 1535 1536 if (off > plr->size) { 1537 mutex_unlock(&rdtgroup_mutex); 1538 return -ENOSPC; 1539 } 1540 1541 /* 1542 * Ensure changes are carried directly to the memory being mapped, 1543 * do not allow copy-on-write mapping. 1544 */ 1545 if (!(vma->vm_flags & VM_SHARED)) { 1546 mutex_unlock(&rdtgroup_mutex); 1547 return -EINVAL; 1548 } 1549 1550 if (vsize > psize) { 1551 mutex_unlock(&rdtgroup_mutex); 1552 return -ENOSPC; 1553 } 1554 1555 memset(plr->kmem + off, 0, vsize); 1556 1557 if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff, 1558 vsize, vma->vm_page_prot)) { 1559 mutex_unlock(&rdtgroup_mutex); 1560 return -EAGAIN; 1561 } 1562 vma->vm_ops = &pseudo_mmap_ops; 1563 mutex_unlock(&rdtgroup_mutex); 1564 return 0; 1565 } 1566 1567 static const struct file_operations pseudo_lock_dev_fops = { 1568 .owner = THIS_MODULE, 1569 .llseek = no_llseek, 1570 .read = NULL, 1571 .write = NULL, 1572 .open = pseudo_lock_dev_open, 1573 .release = pseudo_lock_dev_release, 1574 .mmap = pseudo_lock_dev_mmap, 1575 }; 1576 1577 int rdt_pseudo_lock_init(void) 1578 { 1579 int ret; 1580 1581 ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops); 1582 if (ret < 0) 1583 return ret; 1584 1585 pseudo_lock_major = ret; 1586 1587 ret = class_register(&pseudo_lock_class); 1588 if (ret) { 1589 unregister_chrdev(pseudo_lock_major, "pseudo_lock"); 1590 return ret; 1591 } 1592 1593 return 0; 1594 } 1595 1596 void rdt_pseudo_lock_release(void) 1597 { 1598 class_unregister(&pseudo_lock_class); 1599 unregister_chrdev(pseudo_lock_major, "pseudo_lock"); 1600 pseudo_lock_major = 0; 1601 } 1602