1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resource Director Technology(RDT) 4 * - Monitoring code 5 * 6 * Copyright (C) 2017 Intel Corporation 7 * 8 * Author: 9 * Vikas Shivappa <vikas.shivappa@intel.com> 10 * 11 * This replaces the cqm.c based on perf but we reuse a lot of 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming. 13 * 14 * More information about RDT be found in the Intel (R) x86 Architecture 15 * Software Developer Manual June 2016, volume 3, section 17.17. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/sizes.h> 20 #include <linux/slab.h> 21 22 #include <asm/cpu_device_id.h> 23 #include <asm/resctrl.h> 24 25 #include "internal.h" 26 27 struct rmid_entry { 28 u32 rmid; 29 int busy; 30 struct list_head list; 31 }; 32 33 /* 34 * @rmid_free_lru - A least recently used list of free RMIDs 35 * These RMIDs are guaranteed to have an occupancy less than the 36 * threshold occupancy 37 */ 38 static LIST_HEAD(rmid_free_lru); 39 40 /* 41 * @rmid_limbo_count - count of currently unused but (potentially) 42 * dirty RMIDs. 43 * This counts RMIDs that no one is currently using but that 44 * may have a occupancy value > resctrl_rmid_realloc_threshold. User can 45 * change the threshold occupancy value. 46 */ 47 static unsigned int rmid_limbo_count; 48 49 /* 50 * @rmid_entry - The entry in the limbo and free lists. 51 */ 52 static struct rmid_entry *rmid_ptrs; 53 54 /* 55 * Global boolean for rdt_monitor which is true if any 56 * resource monitoring is enabled. 57 */ 58 bool rdt_mon_capable; 59 60 /* 61 * Global to indicate which monitoring events are enabled. 62 */ 63 unsigned int rdt_mon_features; 64 65 /* 66 * This is the threshold cache occupancy in bytes at which we will consider an 67 * RMID available for re-allocation. 68 */ 69 unsigned int resctrl_rmid_realloc_threshold; 70 71 /* 72 * This is the maximum value for the reallocation threshold, in bytes. 73 */ 74 unsigned int resctrl_rmid_realloc_limit; 75 76 #define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5)) 77 78 /* 79 * The correction factor table is documented in Documentation/arch/x86/resctrl.rst. 80 * If rmid > rmid threshold, MBM total and local values should be multiplied 81 * by the correction factor. 82 * 83 * The original table is modified for better code: 84 * 85 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction 86 * for the case. 87 * 2. MBM total and local correction table indexed by core counter which is 88 * equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27. 89 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster 90 * to calculate corrected value by shifting: 91 * corrected_value = (original_value * correction_factor) >> 20 92 */ 93 static const struct mbm_correction_factor_table { 94 u32 rmidthreshold; 95 u64 cf; 96 } mbm_cf_table[] __initconst = { 97 {7, CF(1.000000)}, 98 {15, CF(1.000000)}, 99 {15, CF(0.969650)}, 100 {31, CF(1.000000)}, 101 {31, CF(1.066667)}, 102 {31, CF(0.969650)}, 103 {47, CF(1.142857)}, 104 {63, CF(1.000000)}, 105 {63, CF(1.185115)}, 106 {63, CF(1.066553)}, 107 {79, CF(1.454545)}, 108 {95, CF(1.000000)}, 109 {95, CF(1.230769)}, 110 {95, CF(1.142857)}, 111 {95, CF(1.066667)}, 112 {127, CF(1.000000)}, 113 {127, CF(1.254863)}, 114 {127, CF(1.185255)}, 115 {151, CF(1.000000)}, 116 {127, CF(1.066667)}, 117 {167, CF(1.000000)}, 118 {159, CF(1.454334)}, 119 {183, CF(1.000000)}, 120 {127, CF(0.969744)}, 121 {191, CF(1.280246)}, 122 {191, CF(1.230921)}, 123 {215, CF(1.000000)}, 124 {191, CF(1.143118)}, 125 }; 126 127 static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX; 128 static u64 mbm_cf __read_mostly; 129 130 static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val) 131 { 132 /* Correct MBM value. */ 133 if (rmid > mbm_cf_rmidthreshold) 134 val = (val * mbm_cf) >> 20; 135 136 return val; 137 } 138 139 static inline struct rmid_entry *__rmid_entry(u32 rmid) 140 { 141 struct rmid_entry *entry; 142 143 entry = &rmid_ptrs[rmid]; 144 WARN_ON(entry->rmid != rmid); 145 146 return entry; 147 } 148 149 static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val) 150 { 151 u64 msr_val; 152 153 /* 154 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured 155 * with a valid event code for supported resource type and the bits 156 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID, 157 * IA32_QM_CTR.data (bits 61:0) reports the monitored data. 158 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) 159 * are error bits. 160 */ 161 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); 162 rdmsrl(MSR_IA32_QM_CTR, msr_val); 163 164 if (msr_val & RMID_VAL_ERROR) 165 return -EIO; 166 if (msr_val & RMID_VAL_UNAVAIL) 167 return -EINVAL; 168 169 *val = msr_val; 170 return 0; 171 } 172 173 static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom, 174 u32 rmid, 175 enum resctrl_event_id eventid) 176 { 177 switch (eventid) { 178 case QOS_L3_OCCUP_EVENT_ID: 179 return NULL; 180 case QOS_L3_MBM_TOTAL_EVENT_ID: 181 return &hw_dom->arch_mbm_total[rmid]; 182 case QOS_L3_MBM_LOCAL_EVENT_ID: 183 return &hw_dom->arch_mbm_local[rmid]; 184 } 185 186 /* Never expect to get here */ 187 WARN_ON_ONCE(1); 188 189 return NULL; 190 } 191 192 void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d, 193 u32 rmid, enum resctrl_event_id eventid) 194 { 195 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); 196 struct arch_mbm_state *am; 197 198 am = get_arch_mbm_state(hw_dom, rmid, eventid); 199 if (am) { 200 memset(am, 0, sizeof(*am)); 201 202 /* Record any initial, non-zero count value. */ 203 __rmid_read(rmid, eventid, &am->prev_msr); 204 } 205 } 206 207 /* 208 * Assumes that hardware counters are also reset and thus that there is 209 * no need to record initial non-zero counts. 210 */ 211 void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_domain *d) 212 { 213 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); 214 215 if (is_mbm_total_enabled()) 216 memset(hw_dom->arch_mbm_total, 0, 217 sizeof(*hw_dom->arch_mbm_total) * r->num_rmid); 218 219 if (is_mbm_local_enabled()) 220 memset(hw_dom->arch_mbm_local, 0, 221 sizeof(*hw_dom->arch_mbm_local) * r->num_rmid); 222 } 223 224 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) 225 { 226 u64 shift = 64 - width, chunks; 227 228 chunks = (cur_msr << shift) - (prev_msr << shift); 229 return chunks >> shift; 230 } 231 232 int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d, 233 u32 rmid, enum resctrl_event_id eventid, u64 *val) 234 { 235 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 236 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); 237 struct arch_mbm_state *am; 238 u64 msr_val, chunks; 239 int ret; 240 241 if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask)) 242 return -EINVAL; 243 244 ret = __rmid_read(rmid, eventid, &msr_val); 245 if (ret) 246 return ret; 247 248 am = get_arch_mbm_state(hw_dom, rmid, eventid); 249 if (am) { 250 am->chunks += mbm_overflow_count(am->prev_msr, msr_val, 251 hw_res->mbm_width); 252 chunks = get_corrected_mbm_count(rmid, am->chunks); 253 am->prev_msr = msr_val; 254 } else { 255 chunks = msr_val; 256 } 257 258 *val = chunks * hw_res->mon_scale; 259 260 return 0; 261 } 262 263 /* 264 * Check the RMIDs that are marked as busy for this domain. If the 265 * reported LLC occupancy is below the threshold clear the busy bit and 266 * decrement the count. If the busy count gets to zero on an RMID, we 267 * free the RMID 268 */ 269 void __check_limbo(struct rdt_domain *d, bool force_free) 270 { 271 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 272 struct rmid_entry *entry; 273 u32 crmid = 1, nrmid; 274 bool rmid_dirty; 275 u64 val = 0; 276 277 /* 278 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that 279 * are marked as busy for occupancy < threshold. If the occupancy 280 * is less than the threshold decrement the busy counter of the 281 * RMID and move it to the free list when the counter reaches 0. 282 */ 283 for (;;) { 284 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid); 285 if (nrmid >= r->num_rmid) 286 break; 287 288 entry = __rmid_entry(nrmid); 289 290 if (resctrl_arch_rmid_read(r, d, entry->rmid, 291 QOS_L3_OCCUP_EVENT_ID, &val)) { 292 rmid_dirty = true; 293 } else { 294 rmid_dirty = (val >= resctrl_rmid_realloc_threshold); 295 } 296 297 if (force_free || !rmid_dirty) { 298 clear_bit(entry->rmid, d->rmid_busy_llc); 299 if (!--entry->busy) { 300 rmid_limbo_count--; 301 list_add_tail(&entry->list, &rmid_free_lru); 302 } 303 } 304 crmid = nrmid + 1; 305 } 306 } 307 308 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d) 309 { 310 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid; 311 } 312 313 /* 314 * As of now the RMIDs allocation is global. 315 * However we keep track of which packages the RMIDs 316 * are used to optimize the limbo list management. 317 */ 318 int alloc_rmid(void) 319 { 320 struct rmid_entry *entry; 321 322 lockdep_assert_held(&rdtgroup_mutex); 323 324 if (list_empty(&rmid_free_lru)) 325 return rmid_limbo_count ? -EBUSY : -ENOSPC; 326 327 entry = list_first_entry(&rmid_free_lru, 328 struct rmid_entry, list); 329 list_del(&entry->list); 330 331 return entry->rmid; 332 } 333 334 static void add_rmid_to_limbo(struct rmid_entry *entry) 335 { 336 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 337 struct rdt_domain *d; 338 int cpu, err; 339 u64 val = 0; 340 341 entry->busy = 0; 342 cpu = get_cpu(); 343 list_for_each_entry(d, &r->domains, list) { 344 if (cpumask_test_cpu(cpu, &d->cpu_mask)) { 345 err = resctrl_arch_rmid_read(r, d, entry->rmid, 346 QOS_L3_OCCUP_EVENT_ID, 347 &val); 348 if (err || val <= resctrl_rmid_realloc_threshold) 349 continue; 350 } 351 352 /* 353 * For the first limbo RMID in the domain, 354 * setup up the limbo worker. 355 */ 356 if (!has_busy_rmid(r, d)) 357 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL); 358 set_bit(entry->rmid, d->rmid_busy_llc); 359 entry->busy++; 360 } 361 put_cpu(); 362 363 if (entry->busy) 364 rmid_limbo_count++; 365 else 366 list_add_tail(&entry->list, &rmid_free_lru); 367 } 368 369 void free_rmid(u32 rmid) 370 { 371 struct rmid_entry *entry; 372 373 if (!rmid) 374 return; 375 376 lockdep_assert_held(&rdtgroup_mutex); 377 378 entry = __rmid_entry(rmid); 379 380 if (is_llc_occupancy_enabled()) 381 add_rmid_to_limbo(entry); 382 else 383 list_add_tail(&entry->list, &rmid_free_lru); 384 } 385 386 static struct mbm_state *get_mbm_state(struct rdt_domain *d, u32 rmid, 387 enum resctrl_event_id evtid) 388 { 389 switch (evtid) { 390 case QOS_L3_MBM_TOTAL_EVENT_ID: 391 return &d->mbm_total[rmid]; 392 case QOS_L3_MBM_LOCAL_EVENT_ID: 393 return &d->mbm_local[rmid]; 394 default: 395 return NULL; 396 } 397 } 398 399 static int __mon_event_count(u32 rmid, struct rmid_read *rr) 400 { 401 struct mbm_state *m; 402 u64 tval = 0; 403 404 if (rr->first) { 405 resctrl_arch_reset_rmid(rr->r, rr->d, rmid, rr->evtid); 406 m = get_mbm_state(rr->d, rmid, rr->evtid); 407 if (m) 408 memset(m, 0, sizeof(struct mbm_state)); 409 return 0; 410 } 411 412 rr->err = resctrl_arch_rmid_read(rr->r, rr->d, rmid, rr->evtid, &tval); 413 if (rr->err) 414 return rr->err; 415 416 rr->val += tval; 417 418 return 0; 419 } 420 421 /* 422 * mbm_bw_count() - Update bw count from values previously read by 423 * __mon_event_count(). 424 * @rmid: The rmid used to identify the cached mbm_state. 425 * @rr: The struct rmid_read populated by __mon_event_count(). 426 * 427 * Supporting function to calculate the memory bandwidth 428 * and delta bandwidth in MBps. The chunks value previously read by 429 * __mon_event_count() is compared with the chunks value from the previous 430 * invocation. This must be called once per second to maintain values in MBps. 431 */ 432 static void mbm_bw_count(u32 rmid, struct rmid_read *rr) 433 { 434 struct mbm_state *m = &rr->d->mbm_local[rmid]; 435 u64 cur_bw, bytes, cur_bytes; 436 437 cur_bytes = rr->val; 438 bytes = cur_bytes - m->prev_bw_bytes; 439 m->prev_bw_bytes = cur_bytes; 440 441 cur_bw = bytes / SZ_1M; 442 443 m->prev_bw = cur_bw; 444 } 445 446 /* 447 * This is called via IPI to read the CQM/MBM counters 448 * on a domain. 449 */ 450 void mon_event_count(void *info) 451 { 452 struct rdtgroup *rdtgrp, *entry; 453 struct rmid_read *rr = info; 454 struct list_head *head; 455 int ret; 456 457 rdtgrp = rr->rgrp; 458 459 ret = __mon_event_count(rdtgrp->mon.rmid, rr); 460 461 /* 462 * For Ctrl groups read data from child monitor groups and 463 * add them together. Count events which are read successfully. 464 * Discard the rmid_read's reporting errors. 465 */ 466 head = &rdtgrp->mon.crdtgrp_list; 467 468 if (rdtgrp->type == RDTCTRL_GROUP) { 469 list_for_each_entry(entry, head, mon.crdtgrp_list) { 470 if (__mon_event_count(entry->mon.rmid, rr) == 0) 471 ret = 0; 472 } 473 } 474 475 /* 476 * __mon_event_count() calls for newly created monitor groups may 477 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic. 478 * Discard error if any of the monitor event reads succeeded. 479 */ 480 if (ret == 0) 481 rr->err = 0; 482 } 483 484 /* 485 * Feedback loop for MBA software controller (mba_sc) 486 * 487 * mba_sc is a feedback loop where we periodically read MBM counters and 488 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so 489 * that: 490 * 491 * current bandwidth(cur_bw) < user specified bandwidth(user_bw) 492 * 493 * This uses the MBM counters to measure the bandwidth and MBA throttle 494 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the 495 * fact that resctrl rdtgroups have both monitoring and control. 496 * 497 * The frequency of the checks is 1s and we just tag along the MBM overflow 498 * timer. Having 1s interval makes the calculation of bandwidth simpler. 499 * 500 * Although MBA's goal is to restrict the bandwidth to a maximum, there may 501 * be a need to increase the bandwidth to avoid unnecessarily restricting 502 * the L2 <-> L3 traffic. 503 * 504 * Since MBA controls the L2 external bandwidth where as MBM measures the 505 * L3 external bandwidth the following sequence could lead to such a 506 * situation. 507 * 508 * Consider an rdtgroup which had high L3 <-> memory traffic in initial 509 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but 510 * after some time rdtgroup has mostly L2 <-> L3 traffic. 511 * 512 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its 513 * throttle MSRs already have low percentage values. To avoid 514 * unnecessarily restricting such rdtgroups, we also increase the bandwidth. 515 */ 516 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) 517 { 518 u32 closid, rmid, cur_msr_val, new_msr_val; 519 struct mbm_state *pmbm_data, *cmbm_data; 520 struct rdt_resource *r_mba; 521 struct rdt_domain *dom_mba; 522 struct list_head *head; 523 struct rdtgroup *entry; 524 u32 cur_bw, user_bw; 525 526 if (!is_mbm_local_enabled()) 527 return; 528 529 r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 530 531 closid = rgrp->closid; 532 rmid = rgrp->mon.rmid; 533 pmbm_data = &dom_mbm->mbm_local[rmid]; 534 535 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); 536 if (!dom_mba) { 537 pr_warn_once("Failure to get domain for MBA update\n"); 538 return; 539 } 540 541 cur_bw = pmbm_data->prev_bw; 542 user_bw = dom_mba->mbps_val[closid]; 543 544 /* MBA resource doesn't support CDP */ 545 cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); 546 547 /* 548 * For Ctrl groups read data from child monitor groups. 549 */ 550 head = &rgrp->mon.crdtgrp_list; 551 list_for_each_entry(entry, head, mon.crdtgrp_list) { 552 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 553 cur_bw += cmbm_data->prev_bw; 554 } 555 556 /* 557 * Scale up/down the bandwidth linearly for the ctrl group. The 558 * bandwidth step is the bandwidth granularity specified by the 559 * hardware. 560 * Always increase throttling if current bandwidth is above the 561 * target set by user. 562 * But avoid thrashing up and down on every poll by checking 563 * whether a decrease in throttling is likely to push the group 564 * back over target. E.g. if currently throttling to 30% of bandwidth 565 * on a system with 10% granularity steps, check whether moving to 566 * 40% would go past the limit by multiplying current bandwidth by 567 * "(30 + 10) / 30". 568 */ 569 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { 570 new_msr_val = cur_msr_val - r_mba->membw.bw_gran; 571 } else if (cur_msr_val < MAX_MBA_BW && 572 (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) { 573 new_msr_val = cur_msr_val + r_mba->membw.bw_gran; 574 } else { 575 return; 576 } 577 578 resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val); 579 } 580 581 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid) 582 { 583 struct rmid_read rr; 584 585 rr.first = false; 586 rr.r = r; 587 rr.d = d; 588 589 /* 590 * This is protected from concurrent reads from user 591 * as both the user and we hold the global mutex. 592 */ 593 if (is_mbm_total_enabled()) { 594 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; 595 rr.val = 0; 596 __mon_event_count(rmid, &rr); 597 } 598 if (is_mbm_local_enabled()) { 599 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; 600 rr.val = 0; 601 __mon_event_count(rmid, &rr); 602 603 /* 604 * Call the MBA software controller only for the 605 * control groups and when user has enabled 606 * the software controller explicitly. 607 */ 608 if (is_mba_sc(NULL)) 609 mbm_bw_count(rmid, &rr); 610 } 611 } 612 613 /* 614 * Handler to scan the limbo list and move the RMIDs 615 * to free list whose occupancy < threshold_occupancy. 616 */ 617 void cqm_handle_limbo(struct work_struct *work) 618 { 619 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); 620 int cpu = smp_processor_id(); 621 struct rdt_resource *r; 622 struct rdt_domain *d; 623 624 mutex_lock(&rdtgroup_mutex); 625 626 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 627 d = container_of(work, struct rdt_domain, cqm_limbo.work); 628 629 __check_limbo(d, false); 630 631 if (has_busy_rmid(r, d)) 632 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay); 633 634 mutex_unlock(&rdtgroup_mutex); 635 } 636 637 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms) 638 { 639 unsigned long delay = msecs_to_jiffies(delay_ms); 640 int cpu; 641 642 cpu = cpumask_any(&dom->cpu_mask); 643 dom->cqm_work_cpu = cpu; 644 645 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); 646 } 647 648 void mbm_handle_overflow(struct work_struct *work) 649 { 650 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); 651 struct rdtgroup *prgrp, *crgrp; 652 int cpu = smp_processor_id(); 653 struct list_head *head; 654 struct rdt_resource *r; 655 struct rdt_domain *d; 656 657 mutex_lock(&rdtgroup_mutex); 658 659 if (!static_branch_likely(&rdt_mon_enable_key)) 660 goto out_unlock; 661 662 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 663 d = container_of(work, struct rdt_domain, mbm_over.work); 664 665 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 666 mbm_update(r, d, prgrp->mon.rmid); 667 668 head = &prgrp->mon.crdtgrp_list; 669 list_for_each_entry(crgrp, head, mon.crdtgrp_list) 670 mbm_update(r, d, crgrp->mon.rmid); 671 672 if (is_mba_sc(NULL)) 673 update_mba_bw(prgrp, d); 674 } 675 676 schedule_delayed_work_on(cpu, &d->mbm_over, delay); 677 678 out_unlock: 679 mutex_unlock(&rdtgroup_mutex); 680 } 681 682 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms) 683 { 684 unsigned long delay = msecs_to_jiffies(delay_ms); 685 int cpu; 686 687 if (!static_branch_likely(&rdt_mon_enable_key)) 688 return; 689 cpu = cpumask_any(&dom->cpu_mask); 690 dom->mbm_work_cpu = cpu; 691 schedule_delayed_work_on(cpu, &dom->mbm_over, delay); 692 } 693 694 static int dom_data_init(struct rdt_resource *r) 695 { 696 struct rmid_entry *entry = NULL; 697 int i, nr_rmids; 698 699 nr_rmids = r->num_rmid; 700 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL); 701 if (!rmid_ptrs) 702 return -ENOMEM; 703 704 for (i = 0; i < nr_rmids; i++) { 705 entry = &rmid_ptrs[i]; 706 INIT_LIST_HEAD(&entry->list); 707 708 entry->rmid = i; 709 list_add_tail(&entry->list, &rmid_free_lru); 710 } 711 712 /* 713 * RMID 0 is special and is always allocated. It's used for all 714 * tasks that are not monitored. 715 */ 716 entry = __rmid_entry(0); 717 list_del(&entry->list); 718 719 return 0; 720 } 721 722 static struct mon_evt llc_occupancy_event = { 723 .name = "llc_occupancy", 724 .evtid = QOS_L3_OCCUP_EVENT_ID, 725 }; 726 727 static struct mon_evt mbm_total_event = { 728 .name = "mbm_total_bytes", 729 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, 730 }; 731 732 static struct mon_evt mbm_local_event = { 733 .name = "mbm_local_bytes", 734 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, 735 }; 736 737 /* 738 * Initialize the event list for the resource. 739 * 740 * Note that MBM events are also part of RDT_RESOURCE_L3 resource 741 * because as per the SDM the total and local memory bandwidth 742 * are enumerated as part of L3 monitoring. 743 */ 744 static void l3_mon_evt_init(struct rdt_resource *r) 745 { 746 INIT_LIST_HEAD(&r->evt_list); 747 748 if (is_llc_occupancy_enabled()) 749 list_add_tail(&llc_occupancy_event.list, &r->evt_list); 750 if (is_mbm_total_enabled()) 751 list_add_tail(&mbm_total_event.list, &r->evt_list); 752 if (is_mbm_local_enabled()) 753 list_add_tail(&mbm_local_event.list, &r->evt_list); 754 } 755 756 int __init rdt_get_mon_l3_config(struct rdt_resource *r) 757 { 758 unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset; 759 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 760 unsigned int threshold; 761 int ret; 762 763 resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024; 764 hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale; 765 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; 766 hw_res->mbm_width = MBM_CNTR_WIDTH_BASE; 767 768 if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX) 769 hw_res->mbm_width += mbm_offset; 770 else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX) 771 pr_warn("Ignoring impossible MBM counter offset\n"); 772 773 /* 774 * A reasonable upper limit on the max threshold is the number 775 * of lines tagged per RMID if all RMIDs have the same number of 776 * lines tagged in the LLC. 777 * 778 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. 779 */ 780 threshold = resctrl_rmid_realloc_limit / r->num_rmid; 781 782 /* 783 * Because num_rmid may not be a power of two, round the value 784 * to the nearest multiple of hw_res->mon_scale so it matches a 785 * value the hardware will measure. mon_scale may not be a power of 2. 786 */ 787 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold); 788 789 ret = dom_data_init(r); 790 if (ret) 791 return ret; 792 793 if (rdt_cpu_has(X86_FEATURE_BMEC)) { 794 u32 eax, ebx, ecx, edx; 795 796 /* Detect list of bandwidth sources that can be tracked */ 797 cpuid_count(0x80000020, 3, &eax, &ebx, &ecx, &edx); 798 hw_res->mbm_cfg_mask = ecx & MAX_EVT_CONFIG_BITS; 799 800 if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) { 801 mbm_total_event.configurable = true; 802 mbm_config_rftype_init("mbm_total_bytes_config"); 803 } 804 if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) { 805 mbm_local_event.configurable = true; 806 mbm_config_rftype_init("mbm_local_bytes_config"); 807 } 808 } 809 810 l3_mon_evt_init(r); 811 812 r->mon_capable = true; 813 814 return 0; 815 } 816 817 void __init intel_rdt_mbm_apply_quirk(void) 818 { 819 int cf_index; 820 821 cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1; 822 if (cf_index >= ARRAY_SIZE(mbm_cf_table)) { 823 pr_info("No MBM correction factor available\n"); 824 return; 825 } 826 827 mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold; 828 mbm_cf = mbm_cf_table[cf_index].cf; 829 } 830