1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resource Director Technology(RDT) 4 * - Monitoring code 5 * 6 * Copyright (C) 2017 Intel Corporation 7 * 8 * Author: 9 * Vikas Shivappa <vikas.shivappa@intel.com> 10 * 11 * This replaces the cqm.c based on perf but we reuse a lot of 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming. 13 * 14 * More information about RDT be found in the Intel (R) x86 Architecture 15 * Software Developer Manual June 2016, volume 3, section 17.17. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <asm/cpu_device_id.h> 21 #include "internal.h" 22 23 struct rmid_entry { 24 u32 rmid; 25 int busy; 26 struct list_head list; 27 }; 28 29 /** 30 * @rmid_free_lru A least recently used list of free RMIDs 31 * These RMIDs are guaranteed to have an occupancy less than the 32 * threshold occupancy 33 */ 34 static LIST_HEAD(rmid_free_lru); 35 36 /** 37 * @rmid_limbo_count count of currently unused but (potentially) 38 * dirty RMIDs. 39 * This counts RMIDs that no one is currently using but that 40 * may have a occupancy value > intel_cqm_threshold. User can change 41 * the threshold occupancy value. 42 */ 43 static unsigned int rmid_limbo_count; 44 45 /** 46 * @rmid_entry - The entry in the limbo and free lists. 47 */ 48 static struct rmid_entry *rmid_ptrs; 49 50 /* 51 * Global boolean for rdt_monitor which is true if any 52 * resource monitoring is enabled. 53 */ 54 bool rdt_mon_capable; 55 56 /* 57 * Global to indicate which monitoring events are enabled. 58 */ 59 unsigned int rdt_mon_features; 60 61 /* 62 * This is the threshold cache occupancy at which we will consider an 63 * RMID available for re-allocation. 64 */ 65 unsigned int resctrl_cqm_threshold; 66 67 #define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5)) 68 69 /* 70 * The correction factor table is documented in Documentation/x86/resctrl.rst. 71 * If rmid > rmid threshold, MBM total and local values should be multiplied 72 * by the correction factor. 73 * 74 * The original table is modified for better code: 75 * 76 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction 77 * for the case. 78 * 2. MBM total and local correction table indexed by core counter which is 79 * equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27. 80 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster 81 * to calculate corrected value by shifting: 82 * corrected_value = (original_value * correction_factor) >> 20 83 */ 84 static const struct mbm_correction_factor_table { 85 u32 rmidthreshold; 86 u64 cf; 87 } mbm_cf_table[] __initdata = { 88 {7, CF(1.000000)}, 89 {15, CF(1.000000)}, 90 {15, CF(0.969650)}, 91 {31, CF(1.000000)}, 92 {31, CF(1.066667)}, 93 {31, CF(0.969650)}, 94 {47, CF(1.142857)}, 95 {63, CF(1.000000)}, 96 {63, CF(1.185115)}, 97 {63, CF(1.066553)}, 98 {79, CF(1.454545)}, 99 {95, CF(1.000000)}, 100 {95, CF(1.230769)}, 101 {95, CF(1.142857)}, 102 {95, CF(1.066667)}, 103 {127, CF(1.000000)}, 104 {127, CF(1.254863)}, 105 {127, CF(1.185255)}, 106 {151, CF(1.000000)}, 107 {127, CF(1.066667)}, 108 {167, CF(1.000000)}, 109 {159, CF(1.454334)}, 110 {183, CF(1.000000)}, 111 {127, CF(0.969744)}, 112 {191, CF(1.280246)}, 113 {191, CF(1.230921)}, 114 {215, CF(1.000000)}, 115 {191, CF(1.143118)}, 116 }; 117 118 static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX; 119 static u64 mbm_cf __read_mostly; 120 121 static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val) 122 { 123 /* Correct MBM value. */ 124 if (rmid > mbm_cf_rmidthreshold) 125 val = (val * mbm_cf) >> 20; 126 127 return val; 128 } 129 130 static inline struct rmid_entry *__rmid_entry(u32 rmid) 131 { 132 struct rmid_entry *entry; 133 134 entry = &rmid_ptrs[rmid]; 135 WARN_ON(entry->rmid != rmid); 136 137 return entry; 138 } 139 140 static u64 __rmid_read(u32 rmid, u32 eventid) 141 { 142 u64 val; 143 144 /* 145 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured 146 * with a valid event code for supported resource type and the bits 147 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID, 148 * IA32_QM_CTR.data (bits 61:0) reports the monitored data. 149 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) 150 * are error bits. 151 */ 152 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); 153 rdmsrl(MSR_IA32_QM_CTR, val); 154 155 return val; 156 } 157 158 static bool rmid_dirty(struct rmid_entry *entry) 159 { 160 u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); 161 162 return val >= resctrl_cqm_threshold; 163 } 164 165 /* 166 * Check the RMIDs that are marked as busy for this domain. If the 167 * reported LLC occupancy is below the threshold clear the busy bit and 168 * decrement the count. If the busy count gets to zero on an RMID, we 169 * free the RMID 170 */ 171 void __check_limbo(struct rdt_domain *d, bool force_free) 172 { 173 struct rmid_entry *entry; 174 struct rdt_resource *r; 175 u32 crmid = 1, nrmid; 176 177 r = &rdt_resources_all[RDT_RESOURCE_L3]; 178 179 /* 180 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that 181 * are marked as busy for occupancy < threshold. If the occupancy 182 * is less than the threshold decrement the busy counter of the 183 * RMID and move it to the free list when the counter reaches 0. 184 */ 185 for (;;) { 186 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid); 187 if (nrmid >= r->num_rmid) 188 break; 189 190 entry = __rmid_entry(nrmid); 191 if (force_free || !rmid_dirty(entry)) { 192 clear_bit(entry->rmid, d->rmid_busy_llc); 193 if (!--entry->busy) { 194 rmid_limbo_count--; 195 list_add_tail(&entry->list, &rmid_free_lru); 196 } 197 } 198 crmid = nrmid + 1; 199 } 200 } 201 202 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d) 203 { 204 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid; 205 } 206 207 /* 208 * As of now the RMIDs allocation is global. 209 * However we keep track of which packages the RMIDs 210 * are used to optimize the limbo list management. 211 */ 212 int alloc_rmid(void) 213 { 214 struct rmid_entry *entry; 215 216 lockdep_assert_held(&rdtgroup_mutex); 217 218 if (list_empty(&rmid_free_lru)) 219 return rmid_limbo_count ? -EBUSY : -ENOSPC; 220 221 entry = list_first_entry(&rmid_free_lru, 222 struct rmid_entry, list); 223 list_del(&entry->list); 224 225 return entry->rmid; 226 } 227 228 static void add_rmid_to_limbo(struct rmid_entry *entry) 229 { 230 struct rdt_resource *r; 231 struct rdt_domain *d; 232 int cpu; 233 u64 val; 234 235 r = &rdt_resources_all[RDT_RESOURCE_L3]; 236 237 entry->busy = 0; 238 cpu = get_cpu(); 239 list_for_each_entry(d, &r->domains, list) { 240 if (cpumask_test_cpu(cpu, &d->cpu_mask)) { 241 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); 242 if (val <= resctrl_cqm_threshold) 243 continue; 244 } 245 246 /* 247 * For the first limbo RMID in the domain, 248 * setup up the limbo worker. 249 */ 250 if (!has_busy_rmid(r, d)) 251 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL); 252 set_bit(entry->rmid, d->rmid_busy_llc); 253 entry->busy++; 254 } 255 put_cpu(); 256 257 if (entry->busy) 258 rmid_limbo_count++; 259 else 260 list_add_tail(&entry->list, &rmid_free_lru); 261 } 262 263 void free_rmid(u32 rmid) 264 { 265 struct rmid_entry *entry; 266 267 if (!rmid) 268 return; 269 270 lockdep_assert_held(&rdtgroup_mutex); 271 272 entry = __rmid_entry(rmid); 273 274 if (is_llc_occupancy_enabled()) 275 add_rmid_to_limbo(entry); 276 else 277 list_add_tail(&entry->list, &rmid_free_lru); 278 } 279 280 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) 281 { 282 u64 shift = 64 - width, chunks; 283 284 chunks = (cur_msr << shift) - (prev_msr << shift); 285 return chunks >>= shift; 286 } 287 288 static int __mon_event_count(u32 rmid, struct rmid_read *rr) 289 { 290 struct mbm_state *m; 291 u64 chunks, tval; 292 293 tval = __rmid_read(rmid, rr->evtid); 294 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) { 295 rr->val = tval; 296 return -EINVAL; 297 } 298 switch (rr->evtid) { 299 case QOS_L3_OCCUP_EVENT_ID: 300 rr->val += tval; 301 return 0; 302 case QOS_L3_MBM_TOTAL_EVENT_ID: 303 m = &rr->d->mbm_total[rmid]; 304 break; 305 case QOS_L3_MBM_LOCAL_EVENT_ID: 306 m = &rr->d->mbm_local[rmid]; 307 break; 308 default: 309 /* 310 * Code would never reach here because 311 * an invalid event id would fail the __rmid_read. 312 */ 313 return -EINVAL; 314 } 315 316 if (rr->first) { 317 memset(m, 0, sizeof(struct mbm_state)); 318 m->prev_bw_msr = m->prev_msr = tval; 319 return 0; 320 } 321 322 chunks = mbm_overflow_count(m->prev_msr, tval, rr->r->mbm_width); 323 m->chunks += chunks; 324 m->prev_msr = tval; 325 326 rr->val += get_corrected_mbm_count(rmid, m->chunks); 327 328 return 0; 329 } 330 331 /* 332 * Supporting function to calculate the memory bandwidth 333 * and delta bandwidth in MBps. 334 */ 335 static void mbm_bw_count(u32 rmid, struct rmid_read *rr) 336 { 337 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3]; 338 struct mbm_state *m = &rr->d->mbm_local[rmid]; 339 u64 tval, cur_bw, chunks; 340 341 tval = __rmid_read(rmid, rr->evtid); 342 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) 343 return; 344 345 chunks = mbm_overflow_count(m->prev_bw_msr, tval, rr->r->mbm_width); 346 cur_bw = (get_corrected_mbm_count(rmid, chunks) * r->mon_scale) >> 20; 347 348 if (m->delta_comp) 349 m->delta_bw = abs(cur_bw - m->prev_bw); 350 m->delta_comp = false; 351 m->prev_bw = cur_bw; 352 m->prev_bw_msr = tval; 353 } 354 355 /* 356 * This is called via IPI to read the CQM/MBM counters 357 * on a domain. 358 */ 359 void mon_event_count(void *info) 360 { 361 struct rdtgroup *rdtgrp, *entry; 362 struct rmid_read *rr = info; 363 struct list_head *head; 364 365 rdtgrp = rr->rgrp; 366 367 if (__mon_event_count(rdtgrp->mon.rmid, rr)) 368 return; 369 370 /* 371 * For Ctrl groups read data from child monitor groups. 372 */ 373 head = &rdtgrp->mon.crdtgrp_list; 374 375 if (rdtgrp->type == RDTCTRL_GROUP) { 376 list_for_each_entry(entry, head, mon.crdtgrp_list) { 377 if (__mon_event_count(entry->mon.rmid, rr)) 378 return; 379 } 380 } 381 } 382 383 /* 384 * Feedback loop for MBA software controller (mba_sc) 385 * 386 * mba_sc is a feedback loop where we periodically read MBM counters and 387 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so 388 * that: 389 * 390 * current bandwidth(cur_bw) < user specified bandwidth(user_bw) 391 * 392 * This uses the MBM counters to measure the bandwidth and MBA throttle 393 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the 394 * fact that resctrl rdtgroups have both monitoring and control. 395 * 396 * The frequency of the checks is 1s and we just tag along the MBM overflow 397 * timer. Having 1s interval makes the calculation of bandwidth simpler. 398 * 399 * Although MBA's goal is to restrict the bandwidth to a maximum, there may 400 * be a need to increase the bandwidth to avoid unnecessarily restricting 401 * the L2 <-> L3 traffic. 402 * 403 * Since MBA controls the L2 external bandwidth where as MBM measures the 404 * L3 external bandwidth the following sequence could lead to such a 405 * situation. 406 * 407 * Consider an rdtgroup which had high L3 <-> memory traffic in initial 408 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but 409 * after some time rdtgroup has mostly L2 <-> L3 traffic. 410 * 411 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its 412 * throttle MSRs already have low percentage values. To avoid 413 * unnecessarily restricting such rdtgroups, we also increase the bandwidth. 414 */ 415 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) 416 { 417 u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val; 418 struct mbm_state *pmbm_data, *cmbm_data; 419 u32 cur_bw, delta_bw, user_bw; 420 struct rdt_resource *r_mba; 421 struct rdt_domain *dom_mba; 422 struct list_head *head; 423 struct rdtgroup *entry; 424 425 if (!is_mbm_local_enabled()) 426 return; 427 428 r_mba = &rdt_resources_all[RDT_RESOURCE_MBA]; 429 closid = rgrp->closid; 430 rmid = rgrp->mon.rmid; 431 pmbm_data = &dom_mbm->mbm_local[rmid]; 432 433 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); 434 if (!dom_mba) { 435 pr_warn_once("Failure to get domain for MBA update\n"); 436 return; 437 } 438 439 cur_bw = pmbm_data->prev_bw; 440 user_bw = dom_mba->mbps_val[closid]; 441 delta_bw = pmbm_data->delta_bw; 442 cur_msr_val = dom_mba->ctrl_val[closid]; 443 444 /* 445 * For Ctrl groups read data from child monitor groups. 446 */ 447 head = &rgrp->mon.crdtgrp_list; 448 list_for_each_entry(entry, head, mon.crdtgrp_list) { 449 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 450 cur_bw += cmbm_data->prev_bw; 451 delta_bw += cmbm_data->delta_bw; 452 } 453 454 /* 455 * Scale up/down the bandwidth linearly for the ctrl group. The 456 * bandwidth step is the bandwidth granularity specified by the 457 * hardware. 458 * 459 * The delta_bw is used when increasing the bandwidth so that we 460 * dont alternately increase and decrease the control values 461 * continuously. 462 * 463 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if 464 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep 465 * switching between 90 and 110 continuously if we only check 466 * cur_bw < user_bw. 467 */ 468 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { 469 new_msr_val = cur_msr_val - r_mba->membw.bw_gran; 470 } else if (cur_msr_val < MAX_MBA_BW && 471 (user_bw > (cur_bw + delta_bw))) { 472 new_msr_val = cur_msr_val + r_mba->membw.bw_gran; 473 } else { 474 return; 475 } 476 477 cur_msr = r_mba->msr_base + closid; 478 wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba)); 479 dom_mba->ctrl_val[closid] = new_msr_val; 480 481 /* 482 * Delta values are updated dynamically package wise for each 483 * rdtgrp every time the throttle MSR changes value. 484 * 485 * This is because (1)the increase in bandwidth is not perfectly 486 * linear and only "approximately" linear even when the hardware 487 * says it is linear.(2)Also since MBA is a core specific 488 * mechanism, the delta values vary based on number of cores used 489 * by the rdtgrp. 490 */ 491 pmbm_data->delta_comp = true; 492 list_for_each_entry(entry, head, mon.crdtgrp_list) { 493 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 494 cmbm_data->delta_comp = true; 495 } 496 } 497 498 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid) 499 { 500 struct rmid_read rr; 501 502 rr.first = false; 503 rr.r = r; 504 rr.d = d; 505 506 /* 507 * This is protected from concurrent reads from user 508 * as both the user and we hold the global mutex. 509 */ 510 if (is_mbm_total_enabled()) { 511 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; 512 __mon_event_count(rmid, &rr); 513 } 514 if (is_mbm_local_enabled()) { 515 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; 516 __mon_event_count(rmid, &rr); 517 518 /* 519 * Call the MBA software controller only for the 520 * control groups and when user has enabled 521 * the software controller explicitly. 522 */ 523 if (is_mba_sc(NULL)) 524 mbm_bw_count(rmid, &rr); 525 } 526 } 527 528 /* 529 * Handler to scan the limbo list and move the RMIDs 530 * to free list whose occupancy < threshold_occupancy. 531 */ 532 void cqm_handle_limbo(struct work_struct *work) 533 { 534 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); 535 int cpu = smp_processor_id(); 536 struct rdt_resource *r; 537 struct rdt_domain *d; 538 539 mutex_lock(&rdtgroup_mutex); 540 541 r = &rdt_resources_all[RDT_RESOURCE_L3]; 542 d = container_of(work, struct rdt_domain, cqm_limbo.work); 543 544 __check_limbo(d, false); 545 546 if (has_busy_rmid(r, d)) 547 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay); 548 549 mutex_unlock(&rdtgroup_mutex); 550 } 551 552 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms) 553 { 554 unsigned long delay = msecs_to_jiffies(delay_ms); 555 int cpu; 556 557 cpu = cpumask_any(&dom->cpu_mask); 558 dom->cqm_work_cpu = cpu; 559 560 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); 561 } 562 563 void mbm_handle_overflow(struct work_struct *work) 564 { 565 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); 566 struct rdtgroup *prgrp, *crgrp; 567 int cpu = smp_processor_id(); 568 struct list_head *head; 569 struct rdt_resource *r; 570 struct rdt_domain *d; 571 572 mutex_lock(&rdtgroup_mutex); 573 574 if (!static_branch_likely(&rdt_mon_enable_key)) 575 goto out_unlock; 576 577 r = &rdt_resources_all[RDT_RESOURCE_L3]; 578 d = container_of(work, struct rdt_domain, mbm_over.work); 579 580 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 581 mbm_update(r, d, prgrp->mon.rmid); 582 583 head = &prgrp->mon.crdtgrp_list; 584 list_for_each_entry(crgrp, head, mon.crdtgrp_list) 585 mbm_update(r, d, crgrp->mon.rmid); 586 587 if (is_mba_sc(NULL)) 588 update_mba_bw(prgrp, d); 589 } 590 591 schedule_delayed_work_on(cpu, &d->mbm_over, delay); 592 593 out_unlock: 594 mutex_unlock(&rdtgroup_mutex); 595 } 596 597 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms) 598 { 599 unsigned long delay = msecs_to_jiffies(delay_ms); 600 int cpu; 601 602 if (!static_branch_likely(&rdt_mon_enable_key)) 603 return; 604 cpu = cpumask_any(&dom->cpu_mask); 605 dom->mbm_work_cpu = cpu; 606 schedule_delayed_work_on(cpu, &dom->mbm_over, delay); 607 } 608 609 static int dom_data_init(struct rdt_resource *r) 610 { 611 struct rmid_entry *entry = NULL; 612 int i, nr_rmids; 613 614 nr_rmids = r->num_rmid; 615 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL); 616 if (!rmid_ptrs) 617 return -ENOMEM; 618 619 for (i = 0; i < nr_rmids; i++) { 620 entry = &rmid_ptrs[i]; 621 INIT_LIST_HEAD(&entry->list); 622 623 entry->rmid = i; 624 list_add_tail(&entry->list, &rmid_free_lru); 625 } 626 627 /* 628 * RMID 0 is special and is always allocated. It's used for all 629 * tasks that are not monitored. 630 */ 631 entry = __rmid_entry(0); 632 list_del(&entry->list); 633 634 return 0; 635 } 636 637 static struct mon_evt llc_occupancy_event = { 638 .name = "llc_occupancy", 639 .evtid = QOS_L3_OCCUP_EVENT_ID, 640 }; 641 642 static struct mon_evt mbm_total_event = { 643 .name = "mbm_total_bytes", 644 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, 645 }; 646 647 static struct mon_evt mbm_local_event = { 648 .name = "mbm_local_bytes", 649 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, 650 }; 651 652 /* 653 * Initialize the event list for the resource. 654 * 655 * Note that MBM events are also part of RDT_RESOURCE_L3 resource 656 * because as per the SDM the total and local memory bandwidth 657 * are enumerated as part of L3 monitoring. 658 */ 659 static void l3_mon_evt_init(struct rdt_resource *r) 660 { 661 INIT_LIST_HEAD(&r->evt_list); 662 663 if (is_llc_occupancy_enabled()) 664 list_add_tail(&llc_occupancy_event.list, &r->evt_list); 665 if (is_mbm_total_enabled()) 666 list_add_tail(&mbm_total_event.list, &r->evt_list); 667 if (is_mbm_local_enabled()) 668 list_add_tail(&mbm_local_event.list, &r->evt_list); 669 } 670 671 int rdt_get_mon_l3_config(struct rdt_resource *r) 672 { 673 unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset; 674 unsigned int cl_size = boot_cpu_data.x86_cache_size; 675 int ret; 676 677 r->mon_scale = boot_cpu_data.x86_cache_occ_scale; 678 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; 679 r->mbm_width = MBM_CNTR_WIDTH_BASE; 680 681 if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX) 682 r->mbm_width += mbm_offset; 683 else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX) 684 pr_warn("Ignoring impossible MBM counter offset\n"); 685 686 /* 687 * A reasonable upper limit on the max threshold is the number 688 * of lines tagged per RMID if all RMIDs have the same number of 689 * lines tagged in the LLC. 690 * 691 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. 692 */ 693 resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid; 694 695 /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */ 696 resctrl_cqm_threshold /= r->mon_scale; 697 698 ret = dom_data_init(r); 699 if (ret) 700 return ret; 701 702 l3_mon_evt_init(r); 703 704 r->mon_capable = true; 705 r->mon_enabled = true; 706 707 return 0; 708 } 709 710 void __init intel_rdt_mbm_apply_quirk(void) 711 { 712 int cf_index; 713 714 cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1; 715 if (cf_index >= ARRAY_SIZE(mbm_cf_table)) { 716 pr_info("No MBM correction factor available\n"); 717 return; 718 } 719 720 mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold; 721 mbm_cf = mbm_cf_table[cf_index].cf; 722 } 723