xref: /openbmc/linux/arch/x86/kernel/cpu/resctrl/monitor.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Resource Director Technology(RDT)
4  * - Monitoring code
5  *
6  * Copyright (C) 2017 Intel Corporation
7  *
8  * Author:
9  *    Vikas Shivappa <vikas.shivappa@intel.com>
10  *
11  * This replaces the cqm.c based on perf but we reuse a lot of
12  * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13  *
14  * More information about RDT be found in the Intel (R) x86 Architecture
15  * Software Developer Manual June 2016, volume 3, section 17.17.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/sizes.h>
20 #include <linux/slab.h>
21 
22 #include <asm/cpu_device_id.h>
23 #include <asm/resctrl.h>
24 
25 #include "internal.h"
26 
27 struct rmid_entry {
28 	u32				rmid;
29 	int				busy;
30 	struct list_head		list;
31 };
32 
33 /**
34  * @rmid_free_lru    A least recently used list of free RMIDs
35  *     These RMIDs are guaranteed to have an occupancy less than the
36  *     threshold occupancy
37  */
38 static LIST_HEAD(rmid_free_lru);
39 
40 /**
41  * @rmid_limbo_count     count of currently unused but (potentially)
42  *     dirty RMIDs.
43  *     This counts RMIDs that no one is currently using but that
44  *     may have a occupancy value > resctrl_rmid_realloc_threshold. User can
45  *     change the threshold occupancy value.
46  */
47 static unsigned int rmid_limbo_count;
48 
49 /**
50  * @rmid_entry - The entry in the limbo and free lists.
51  */
52 static struct rmid_entry	*rmid_ptrs;
53 
54 /*
55  * Global boolean for rdt_monitor which is true if any
56  * resource monitoring is enabled.
57  */
58 bool rdt_mon_capable;
59 
60 /*
61  * Global to indicate which monitoring events are enabled.
62  */
63 unsigned int rdt_mon_features;
64 
65 /*
66  * This is the threshold cache occupancy in bytes at which we will consider an
67  * RMID available for re-allocation.
68  */
69 unsigned int resctrl_rmid_realloc_threshold;
70 
71 /*
72  * This is the maximum value for the reallocation threshold, in bytes.
73  */
74 unsigned int resctrl_rmid_realloc_limit;
75 
76 #define CF(cf)	((unsigned long)(1048576 * (cf) + 0.5))
77 
78 /*
79  * The correction factor table is documented in Documentation/x86/resctrl.rst.
80  * If rmid > rmid threshold, MBM total and local values should be multiplied
81  * by the correction factor.
82  *
83  * The original table is modified for better code:
84  *
85  * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
86  *    for the case.
87  * 2. MBM total and local correction table indexed by core counter which is
88  *    equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
89  * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
90  *    to calculate corrected value by shifting:
91  *    corrected_value = (original_value * correction_factor) >> 20
92  */
93 static const struct mbm_correction_factor_table {
94 	u32 rmidthreshold;
95 	u64 cf;
96 } mbm_cf_table[] __initconst = {
97 	{7,	CF(1.000000)},
98 	{15,	CF(1.000000)},
99 	{15,	CF(0.969650)},
100 	{31,	CF(1.000000)},
101 	{31,	CF(1.066667)},
102 	{31,	CF(0.969650)},
103 	{47,	CF(1.142857)},
104 	{63,	CF(1.000000)},
105 	{63,	CF(1.185115)},
106 	{63,	CF(1.066553)},
107 	{79,	CF(1.454545)},
108 	{95,	CF(1.000000)},
109 	{95,	CF(1.230769)},
110 	{95,	CF(1.142857)},
111 	{95,	CF(1.066667)},
112 	{127,	CF(1.000000)},
113 	{127,	CF(1.254863)},
114 	{127,	CF(1.185255)},
115 	{151,	CF(1.000000)},
116 	{127,	CF(1.066667)},
117 	{167,	CF(1.000000)},
118 	{159,	CF(1.454334)},
119 	{183,	CF(1.000000)},
120 	{127,	CF(0.969744)},
121 	{191,	CF(1.280246)},
122 	{191,	CF(1.230921)},
123 	{215,	CF(1.000000)},
124 	{191,	CF(1.143118)},
125 };
126 
127 static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
128 static u64 mbm_cf __read_mostly;
129 
130 static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
131 {
132 	/* Correct MBM value. */
133 	if (rmid > mbm_cf_rmidthreshold)
134 		val = (val * mbm_cf) >> 20;
135 
136 	return val;
137 }
138 
139 static inline struct rmid_entry *__rmid_entry(u32 rmid)
140 {
141 	struct rmid_entry *entry;
142 
143 	entry = &rmid_ptrs[rmid];
144 	WARN_ON(entry->rmid != rmid);
145 
146 	return entry;
147 }
148 
149 static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom,
150 						 u32 rmid,
151 						 enum resctrl_event_id eventid)
152 {
153 	switch (eventid) {
154 	case QOS_L3_OCCUP_EVENT_ID:
155 		return NULL;
156 	case QOS_L3_MBM_TOTAL_EVENT_ID:
157 		return &hw_dom->arch_mbm_total[rmid];
158 	case QOS_L3_MBM_LOCAL_EVENT_ID:
159 		return &hw_dom->arch_mbm_local[rmid];
160 	}
161 
162 	/* Never expect to get here */
163 	WARN_ON_ONCE(1);
164 
165 	return NULL;
166 }
167 
168 void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d,
169 			     u32 rmid, enum resctrl_event_id eventid)
170 {
171 	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
172 	struct arch_mbm_state *am;
173 
174 	am = get_arch_mbm_state(hw_dom, rmid, eventid);
175 	if (am)
176 		memset(am, 0, sizeof(*am));
177 }
178 
179 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
180 {
181 	u64 shift = 64 - width, chunks;
182 
183 	chunks = (cur_msr << shift) - (prev_msr << shift);
184 	return chunks >> shift;
185 }
186 
187 int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d,
188 			   u32 rmid, enum resctrl_event_id eventid, u64 *val)
189 {
190 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
191 	struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d);
192 	struct arch_mbm_state *am;
193 	u64 msr_val, chunks;
194 
195 	if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask))
196 		return -EINVAL;
197 
198 	/*
199 	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
200 	 * with a valid event code for supported resource type and the bits
201 	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
202 	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
203 	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
204 	 * are error bits.
205 	 */
206 	wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
207 	rdmsrl(MSR_IA32_QM_CTR, msr_val);
208 
209 	if (msr_val & RMID_VAL_ERROR)
210 		return -EIO;
211 	if (msr_val & RMID_VAL_UNAVAIL)
212 		return -EINVAL;
213 
214 	am = get_arch_mbm_state(hw_dom, rmid, eventid);
215 	if (am) {
216 		am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
217 						 hw_res->mbm_width);
218 		chunks = get_corrected_mbm_count(rmid, am->chunks);
219 		am->prev_msr = msr_val;
220 	} else {
221 		chunks = msr_val;
222 	}
223 
224 	*val = chunks * hw_res->mon_scale;
225 
226 	return 0;
227 }
228 
229 /*
230  * Check the RMIDs that are marked as busy for this domain. If the
231  * reported LLC occupancy is below the threshold clear the busy bit and
232  * decrement the count. If the busy count gets to zero on an RMID, we
233  * free the RMID
234  */
235 void __check_limbo(struct rdt_domain *d, bool force_free)
236 {
237 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
238 	struct rmid_entry *entry;
239 	u32 crmid = 1, nrmid;
240 	bool rmid_dirty;
241 	u64 val = 0;
242 
243 	/*
244 	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
245 	 * are marked as busy for occupancy < threshold. If the occupancy
246 	 * is less than the threshold decrement the busy counter of the
247 	 * RMID and move it to the free list when the counter reaches 0.
248 	 */
249 	for (;;) {
250 		nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
251 		if (nrmid >= r->num_rmid)
252 			break;
253 
254 		entry = __rmid_entry(nrmid);
255 
256 		if (resctrl_arch_rmid_read(r, d, entry->rmid,
257 					   QOS_L3_OCCUP_EVENT_ID, &val)) {
258 			rmid_dirty = true;
259 		} else {
260 			rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
261 		}
262 
263 		if (force_free || !rmid_dirty) {
264 			clear_bit(entry->rmid, d->rmid_busy_llc);
265 			if (!--entry->busy) {
266 				rmid_limbo_count--;
267 				list_add_tail(&entry->list, &rmid_free_lru);
268 			}
269 		}
270 		crmid = nrmid + 1;
271 	}
272 }
273 
274 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
275 {
276 	return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
277 }
278 
279 /*
280  * As of now the RMIDs allocation is global.
281  * However we keep track of which packages the RMIDs
282  * are used to optimize the limbo list management.
283  */
284 int alloc_rmid(void)
285 {
286 	struct rmid_entry *entry;
287 
288 	lockdep_assert_held(&rdtgroup_mutex);
289 
290 	if (list_empty(&rmid_free_lru))
291 		return rmid_limbo_count ? -EBUSY : -ENOSPC;
292 
293 	entry = list_first_entry(&rmid_free_lru,
294 				 struct rmid_entry, list);
295 	list_del(&entry->list);
296 
297 	return entry->rmid;
298 }
299 
300 static void add_rmid_to_limbo(struct rmid_entry *entry)
301 {
302 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
303 	struct rdt_domain *d;
304 	int cpu, err;
305 	u64 val = 0;
306 
307 	entry->busy = 0;
308 	cpu = get_cpu();
309 	list_for_each_entry(d, &r->domains, list) {
310 		if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
311 			err = resctrl_arch_rmid_read(r, d, entry->rmid,
312 						     QOS_L3_OCCUP_EVENT_ID,
313 						     &val);
314 			if (err || val <= resctrl_rmid_realloc_threshold)
315 				continue;
316 		}
317 
318 		/*
319 		 * For the first limbo RMID in the domain,
320 		 * setup up the limbo worker.
321 		 */
322 		if (!has_busy_rmid(r, d))
323 			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
324 		set_bit(entry->rmid, d->rmid_busy_llc);
325 		entry->busy++;
326 	}
327 	put_cpu();
328 
329 	if (entry->busy)
330 		rmid_limbo_count++;
331 	else
332 		list_add_tail(&entry->list, &rmid_free_lru);
333 }
334 
335 void free_rmid(u32 rmid)
336 {
337 	struct rmid_entry *entry;
338 
339 	if (!rmid)
340 		return;
341 
342 	lockdep_assert_held(&rdtgroup_mutex);
343 
344 	entry = __rmid_entry(rmid);
345 
346 	if (is_llc_occupancy_enabled())
347 		add_rmid_to_limbo(entry);
348 	else
349 		list_add_tail(&entry->list, &rmid_free_lru);
350 }
351 
352 static int __mon_event_count(u32 rmid, struct rmid_read *rr)
353 {
354 	struct mbm_state *m;
355 	u64 tval = 0;
356 
357 	if (rr->first)
358 		resctrl_arch_reset_rmid(rr->r, rr->d, rmid, rr->evtid);
359 
360 	rr->err = resctrl_arch_rmid_read(rr->r, rr->d, rmid, rr->evtid, &tval);
361 	if (rr->err)
362 		return rr->err;
363 
364 	switch (rr->evtid) {
365 	case QOS_L3_OCCUP_EVENT_ID:
366 		rr->val += tval;
367 		return 0;
368 	case QOS_L3_MBM_TOTAL_EVENT_ID:
369 		m = &rr->d->mbm_total[rmid];
370 		break;
371 	case QOS_L3_MBM_LOCAL_EVENT_ID:
372 		m = &rr->d->mbm_local[rmid];
373 		break;
374 	default:
375 		/*
376 		 * Code would never reach here because an invalid
377 		 * event id would fail in resctrl_arch_rmid_read().
378 		 */
379 		return -EINVAL;
380 	}
381 
382 	if (rr->first) {
383 		memset(m, 0, sizeof(struct mbm_state));
384 		return 0;
385 	}
386 
387 	rr->val += tval;
388 
389 	return 0;
390 }
391 
392 /*
393  * mbm_bw_count() - Update bw count from values previously read by
394  *		    __mon_event_count().
395  * @rmid:	The rmid used to identify the cached mbm_state.
396  * @rr:		The struct rmid_read populated by __mon_event_count().
397  *
398  * Supporting function to calculate the memory bandwidth
399  * and delta bandwidth in MBps. The chunks value previously read by
400  * __mon_event_count() is compared with the chunks value from the previous
401  * invocation. This must be called once per second to maintain values in MBps.
402  */
403 static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
404 {
405 	struct mbm_state *m = &rr->d->mbm_local[rmid];
406 	u64 cur_bw, bytes, cur_bytes;
407 
408 	cur_bytes = rr->val;
409 	bytes = cur_bytes - m->prev_bw_bytes;
410 	m->prev_bw_bytes = cur_bytes;
411 
412 	cur_bw = bytes / SZ_1M;
413 
414 	if (m->delta_comp)
415 		m->delta_bw = abs(cur_bw - m->prev_bw);
416 	m->delta_comp = false;
417 	m->prev_bw = cur_bw;
418 }
419 
420 /*
421  * This is called via IPI to read the CQM/MBM counters
422  * on a domain.
423  */
424 void mon_event_count(void *info)
425 {
426 	struct rdtgroup *rdtgrp, *entry;
427 	struct rmid_read *rr = info;
428 	struct list_head *head;
429 	int ret;
430 
431 	rdtgrp = rr->rgrp;
432 
433 	ret = __mon_event_count(rdtgrp->mon.rmid, rr);
434 
435 	/*
436 	 * For Ctrl groups read data from child monitor groups and
437 	 * add them together. Count events which are read successfully.
438 	 * Discard the rmid_read's reporting errors.
439 	 */
440 	head = &rdtgrp->mon.crdtgrp_list;
441 
442 	if (rdtgrp->type == RDTCTRL_GROUP) {
443 		list_for_each_entry(entry, head, mon.crdtgrp_list) {
444 			if (__mon_event_count(entry->mon.rmid, rr) == 0)
445 				ret = 0;
446 		}
447 	}
448 
449 	/*
450 	 * __mon_event_count() calls for newly created monitor groups may
451 	 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
452 	 * Discard error if any of the monitor event reads succeeded.
453 	 */
454 	if (ret == 0)
455 		rr->err = 0;
456 }
457 
458 /*
459  * Feedback loop for MBA software controller (mba_sc)
460  *
461  * mba_sc is a feedback loop where we periodically read MBM counters and
462  * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
463  * that:
464  *
465  *   current bandwidth(cur_bw) < user specified bandwidth(user_bw)
466  *
467  * This uses the MBM counters to measure the bandwidth and MBA throttle
468  * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
469  * fact that resctrl rdtgroups have both monitoring and control.
470  *
471  * The frequency of the checks is 1s and we just tag along the MBM overflow
472  * timer. Having 1s interval makes the calculation of bandwidth simpler.
473  *
474  * Although MBA's goal is to restrict the bandwidth to a maximum, there may
475  * be a need to increase the bandwidth to avoid unnecessarily restricting
476  * the L2 <-> L3 traffic.
477  *
478  * Since MBA controls the L2 external bandwidth where as MBM measures the
479  * L3 external bandwidth the following sequence could lead to such a
480  * situation.
481  *
482  * Consider an rdtgroup which had high L3 <-> memory traffic in initial
483  * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
484  * after some time rdtgroup has mostly L2 <-> L3 traffic.
485  *
486  * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
487  * throttle MSRs already have low percentage values.  To avoid
488  * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
489  */
490 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
491 {
492 	u32 closid, rmid, cur_msr_val, new_msr_val;
493 	struct mbm_state *pmbm_data, *cmbm_data;
494 	u32 cur_bw, delta_bw, user_bw;
495 	struct rdt_resource *r_mba;
496 	struct rdt_domain *dom_mba;
497 	struct list_head *head;
498 	struct rdtgroup *entry;
499 
500 	if (!is_mbm_local_enabled())
501 		return;
502 
503 	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
504 
505 	closid = rgrp->closid;
506 	rmid = rgrp->mon.rmid;
507 	pmbm_data = &dom_mbm->mbm_local[rmid];
508 
509 	dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
510 	if (!dom_mba) {
511 		pr_warn_once("Failure to get domain for MBA update\n");
512 		return;
513 	}
514 
515 	cur_bw = pmbm_data->prev_bw;
516 	user_bw = dom_mba->mbps_val[closid];
517 	delta_bw = pmbm_data->delta_bw;
518 
519 	/* MBA resource doesn't support CDP */
520 	cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
521 
522 	/*
523 	 * For Ctrl groups read data from child monitor groups.
524 	 */
525 	head = &rgrp->mon.crdtgrp_list;
526 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
527 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
528 		cur_bw += cmbm_data->prev_bw;
529 		delta_bw += cmbm_data->delta_bw;
530 	}
531 
532 	/*
533 	 * Scale up/down the bandwidth linearly for the ctrl group.  The
534 	 * bandwidth step is the bandwidth granularity specified by the
535 	 * hardware.
536 	 *
537 	 * The delta_bw is used when increasing the bandwidth so that we
538 	 * dont alternately increase and decrease the control values
539 	 * continuously.
540 	 *
541 	 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
542 	 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
543 	 * switching between 90 and 110 continuously if we only check
544 	 * cur_bw < user_bw.
545 	 */
546 	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
547 		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
548 	} else if (cur_msr_val < MAX_MBA_BW &&
549 		   (user_bw > (cur_bw + delta_bw))) {
550 		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
551 	} else {
552 		return;
553 	}
554 
555 	resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
556 
557 	/*
558 	 * Delta values are updated dynamically package wise for each
559 	 * rdtgrp every time the throttle MSR changes value.
560 	 *
561 	 * This is because (1)the increase in bandwidth is not perfectly
562 	 * linear and only "approximately" linear even when the hardware
563 	 * says it is linear.(2)Also since MBA is a core specific
564 	 * mechanism, the delta values vary based on number of cores used
565 	 * by the rdtgrp.
566 	 */
567 	pmbm_data->delta_comp = true;
568 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
569 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
570 		cmbm_data->delta_comp = true;
571 	}
572 }
573 
574 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid)
575 {
576 	struct rmid_read rr;
577 
578 	rr.first = false;
579 	rr.r = r;
580 	rr.d = d;
581 
582 	/*
583 	 * This is protected from concurrent reads from user
584 	 * as both the user and we hold the global mutex.
585 	 */
586 	if (is_mbm_total_enabled()) {
587 		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
588 		rr.val = 0;
589 		__mon_event_count(rmid, &rr);
590 	}
591 	if (is_mbm_local_enabled()) {
592 		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
593 		rr.val = 0;
594 		__mon_event_count(rmid, &rr);
595 
596 		/*
597 		 * Call the MBA software controller only for the
598 		 * control groups and when user has enabled
599 		 * the software controller explicitly.
600 		 */
601 		if (is_mba_sc(NULL))
602 			mbm_bw_count(rmid, &rr);
603 	}
604 }
605 
606 /*
607  * Handler to scan the limbo list and move the RMIDs
608  * to free list whose occupancy < threshold_occupancy.
609  */
610 void cqm_handle_limbo(struct work_struct *work)
611 {
612 	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
613 	int cpu = smp_processor_id();
614 	struct rdt_resource *r;
615 	struct rdt_domain *d;
616 
617 	mutex_lock(&rdtgroup_mutex);
618 
619 	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
620 	d = container_of(work, struct rdt_domain, cqm_limbo.work);
621 
622 	__check_limbo(d, false);
623 
624 	if (has_busy_rmid(r, d))
625 		schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
626 
627 	mutex_unlock(&rdtgroup_mutex);
628 }
629 
630 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
631 {
632 	unsigned long delay = msecs_to_jiffies(delay_ms);
633 	int cpu;
634 
635 	cpu = cpumask_any(&dom->cpu_mask);
636 	dom->cqm_work_cpu = cpu;
637 
638 	schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
639 }
640 
641 void mbm_handle_overflow(struct work_struct *work)
642 {
643 	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
644 	struct rdtgroup *prgrp, *crgrp;
645 	int cpu = smp_processor_id();
646 	struct list_head *head;
647 	struct rdt_resource *r;
648 	struct rdt_domain *d;
649 
650 	mutex_lock(&rdtgroup_mutex);
651 
652 	if (!static_branch_likely(&rdt_mon_enable_key))
653 		goto out_unlock;
654 
655 	r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
656 	d = container_of(work, struct rdt_domain, mbm_over.work);
657 
658 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
659 		mbm_update(r, d, prgrp->mon.rmid);
660 
661 		head = &prgrp->mon.crdtgrp_list;
662 		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
663 			mbm_update(r, d, crgrp->mon.rmid);
664 
665 		if (is_mba_sc(NULL))
666 			update_mba_bw(prgrp, d);
667 	}
668 
669 	schedule_delayed_work_on(cpu, &d->mbm_over, delay);
670 
671 out_unlock:
672 	mutex_unlock(&rdtgroup_mutex);
673 }
674 
675 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
676 {
677 	unsigned long delay = msecs_to_jiffies(delay_ms);
678 	int cpu;
679 
680 	if (!static_branch_likely(&rdt_mon_enable_key))
681 		return;
682 	cpu = cpumask_any(&dom->cpu_mask);
683 	dom->mbm_work_cpu = cpu;
684 	schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
685 }
686 
687 static int dom_data_init(struct rdt_resource *r)
688 {
689 	struct rmid_entry *entry = NULL;
690 	int i, nr_rmids;
691 
692 	nr_rmids = r->num_rmid;
693 	rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
694 	if (!rmid_ptrs)
695 		return -ENOMEM;
696 
697 	for (i = 0; i < nr_rmids; i++) {
698 		entry = &rmid_ptrs[i];
699 		INIT_LIST_HEAD(&entry->list);
700 
701 		entry->rmid = i;
702 		list_add_tail(&entry->list, &rmid_free_lru);
703 	}
704 
705 	/*
706 	 * RMID 0 is special and is always allocated. It's used for all
707 	 * tasks that are not monitored.
708 	 */
709 	entry = __rmid_entry(0);
710 	list_del(&entry->list);
711 
712 	return 0;
713 }
714 
715 static struct mon_evt llc_occupancy_event = {
716 	.name		= "llc_occupancy",
717 	.evtid		= QOS_L3_OCCUP_EVENT_ID,
718 };
719 
720 static struct mon_evt mbm_total_event = {
721 	.name		= "mbm_total_bytes",
722 	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
723 };
724 
725 static struct mon_evt mbm_local_event = {
726 	.name		= "mbm_local_bytes",
727 	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
728 };
729 
730 /*
731  * Initialize the event list for the resource.
732  *
733  * Note that MBM events are also part of RDT_RESOURCE_L3 resource
734  * because as per the SDM the total and local memory bandwidth
735  * are enumerated as part of L3 monitoring.
736  */
737 static void l3_mon_evt_init(struct rdt_resource *r)
738 {
739 	INIT_LIST_HEAD(&r->evt_list);
740 
741 	if (is_llc_occupancy_enabled())
742 		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
743 	if (is_mbm_total_enabled())
744 		list_add_tail(&mbm_total_event.list, &r->evt_list);
745 	if (is_mbm_local_enabled())
746 		list_add_tail(&mbm_local_event.list, &r->evt_list);
747 }
748 
749 int rdt_get_mon_l3_config(struct rdt_resource *r)
750 {
751 	unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
752 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
753 	unsigned int threshold;
754 	int ret;
755 
756 	resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
757 	hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale;
758 	r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
759 	hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
760 
761 	if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
762 		hw_res->mbm_width += mbm_offset;
763 	else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
764 		pr_warn("Ignoring impossible MBM counter offset\n");
765 
766 	/*
767 	 * A reasonable upper limit on the max threshold is the number
768 	 * of lines tagged per RMID if all RMIDs have the same number of
769 	 * lines tagged in the LLC.
770 	 *
771 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
772 	 */
773 	threshold = resctrl_rmid_realloc_limit / r->num_rmid;
774 
775 	/*
776 	 * Because num_rmid may not be a power of two, round the value
777 	 * to the nearest multiple of hw_res->mon_scale so it matches a
778 	 * value the hardware will measure. mon_scale may not be a power of 2.
779 	 */
780 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);
781 
782 	ret = dom_data_init(r);
783 	if (ret)
784 		return ret;
785 
786 	l3_mon_evt_init(r);
787 
788 	r->mon_capable = true;
789 
790 	return 0;
791 }
792 
793 void __init intel_rdt_mbm_apply_quirk(void)
794 {
795 	int cf_index;
796 
797 	cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
798 	if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
799 		pr_info("No MBM correction factor available\n");
800 		return;
801 	}
802 
803 	mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
804 	mbm_cf = mbm_cf_table[cf_index].cf;
805 }
806