1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resource Director Technology(RDT) 4 * - Monitoring code 5 * 6 * Copyright (C) 2017 Intel Corporation 7 * 8 * Author: 9 * Vikas Shivappa <vikas.shivappa@intel.com> 10 * 11 * This replaces the cqm.c based on perf but we reuse a lot of 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming. 13 * 14 * More information about RDT be found in the Intel (R) x86 Architecture 15 * Software Developer Manual June 2016, volume 3, section 17.17. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <asm/cpu_device_id.h> 21 #include "internal.h" 22 23 struct rmid_entry { 24 u32 rmid; 25 int busy; 26 struct list_head list; 27 }; 28 29 /** 30 * @rmid_free_lru A least recently used list of free RMIDs 31 * These RMIDs are guaranteed to have an occupancy less than the 32 * threshold occupancy 33 */ 34 static LIST_HEAD(rmid_free_lru); 35 36 /** 37 * @rmid_limbo_count count of currently unused but (potentially) 38 * dirty RMIDs. 39 * This counts RMIDs that no one is currently using but that 40 * may have a occupancy value > intel_cqm_threshold. User can change 41 * the threshold occupancy value. 42 */ 43 static unsigned int rmid_limbo_count; 44 45 /** 46 * @rmid_entry - The entry in the limbo and free lists. 47 */ 48 static struct rmid_entry *rmid_ptrs; 49 50 /* 51 * Global boolean for rdt_monitor which is true if any 52 * resource monitoring is enabled. 53 */ 54 bool rdt_mon_capable; 55 56 /* 57 * Global to indicate which monitoring events are enabled. 58 */ 59 unsigned int rdt_mon_features; 60 61 /* 62 * This is the threshold cache occupancy at which we will consider an 63 * RMID available for re-allocation. 64 */ 65 unsigned int resctrl_cqm_threshold; 66 67 static inline struct rmid_entry *__rmid_entry(u32 rmid) 68 { 69 struct rmid_entry *entry; 70 71 entry = &rmid_ptrs[rmid]; 72 WARN_ON(entry->rmid != rmid); 73 74 return entry; 75 } 76 77 static u64 __rmid_read(u32 rmid, u32 eventid) 78 { 79 u64 val; 80 81 /* 82 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured 83 * with a valid event code for supported resource type and the bits 84 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID, 85 * IA32_QM_CTR.data (bits 61:0) reports the monitored data. 86 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) 87 * are error bits. 88 */ 89 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); 90 rdmsrl(MSR_IA32_QM_CTR, val); 91 92 return val; 93 } 94 95 static bool rmid_dirty(struct rmid_entry *entry) 96 { 97 u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); 98 99 return val >= resctrl_cqm_threshold; 100 } 101 102 /* 103 * Check the RMIDs that are marked as busy for this domain. If the 104 * reported LLC occupancy is below the threshold clear the busy bit and 105 * decrement the count. If the busy count gets to zero on an RMID, we 106 * free the RMID 107 */ 108 void __check_limbo(struct rdt_domain *d, bool force_free) 109 { 110 struct rmid_entry *entry; 111 struct rdt_resource *r; 112 u32 crmid = 1, nrmid; 113 114 r = &rdt_resources_all[RDT_RESOURCE_L3]; 115 116 /* 117 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that 118 * are marked as busy for occupancy < threshold. If the occupancy 119 * is less than the threshold decrement the busy counter of the 120 * RMID and move it to the free list when the counter reaches 0. 121 */ 122 for (;;) { 123 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid); 124 if (nrmid >= r->num_rmid) 125 break; 126 127 entry = __rmid_entry(nrmid); 128 if (force_free || !rmid_dirty(entry)) { 129 clear_bit(entry->rmid, d->rmid_busy_llc); 130 if (!--entry->busy) { 131 rmid_limbo_count--; 132 list_add_tail(&entry->list, &rmid_free_lru); 133 } 134 } 135 crmid = nrmid + 1; 136 } 137 } 138 139 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d) 140 { 141 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid; 142 } 143 144 /* 145 * As of now the RMIDs allocation is global. 146 * However we keep track of which packages the RMIDs 147 * are used to optimize the limbo list management. 148 */ 149 int alloc_rmid(void) 150 { 151 struct rmid_entry *entry; 152 153 lockdep_assert_held(&rdtgroup_mutex); 154 155 if (list_empty(&rmid_free_lru)) 156 return rmid_limbo_count ? -EBUSY : -ENOSPC; 157 158 entry = list_first_entry(&rmid_free_lru, 159 struct rmid_entry, list); 160 list_del(&entry->list); 161 162 return entry->rmid; 163 } 164 165 static void add_rmid_to_limbo(struct rmid_entry *entry) 166 { 167 struct rdt_resource *r; 168 struct rdt_domain *d; 169 int cpu; 170 u64 val; 171 172 r = &rdt_resources_all[RDT_RESOURCE_L3]; 173 174 entry->busy = 0; 175 cpu = get_cpu(); 176 list_for_each_entry(d, &r->domains, list) { 177 if (cpumask_test_cpu(cpu, &d->cpu_mask)) { 178 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); 179 if (val <= resctrl_cqm_threshold) 180 continue; 181 } 182 183 /* 184 * For the first limbo RMID in the domain, 185 * setup up the limbo worker. 186 */ 187 if (!has_busy_rmid(r, d)) 188 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL); 189 set_bit(entry->rmid, d->rmid_busy_llc); 190 entry->busy++; 191 } 192 put_cpu(); 193 194 if (entry->busy) 195 rmid_limbo_count++; 196 else 197 list_add_tail(&entry->list, &rmid_free_lru); 198 } 199 200 void free_rmid(u32 rmid) 201 { 202 struct rmid_entry *entry; 203 204 if (!rmid) 205 return; 206 207 lockdep_assert_held(&rdtgroup_mutex); 208 209 entry = __rmid_entry(rmid); 210 211 if (is_llc_occupancy_enabled()) 212 add_rmid_to_limbo(entry); 213 else 214 list_add_tail(&entry->list, &rmid_free_lru); 215 } 216 217 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) 218 { 219 u64 shift = 64 - width, chunks; 220 221 chunks = (cur_msr << shift) - (prev_msr << shift); 222 return chunks >>= shift; 223 } 224 225 static int __mon_event_count(u32 rmid, struct rmid_read *rr) 226 { 227 struct mbm_state *m; 228 u64 chunks, tval; 229 230 tval = __rmid_read(rmid, rr->evtid); 231 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) { 232 rr->val = tval; 233 return -EINVAL; 234 } 235 switch (rr->evtid) { 236 case QOS_L3_OCCUP_EVENT_ID: 237 rr->val += tval; 238 return 0; 239 case QOS_L3_MBM_TOTAL_EVENT_ID: 240 m = &rr->d->mbm_total[rmid]; 241 break; 242 case QOS_L3_MBM_LOCAL_EVENT_ID: 243 m = &rr->d->mbm_local[rmid]; 244 break; 245 default: 246 /* 247 * Code would never reach here because 248 * an invalid event id would fail the __rmid_read. 249 */ 250 return -EINVAL; 251 } 252 253 if (rr->first) { 254 memset(m, 0, sizeof(struct mbm_state)); 255 m->prev_bw_msr = m->prev_msr = tval; 256 return 0; 257 } 258 259 chunks = mbm_overflow_count(m->prev_msr, tval, rr->r->mbm_width); 260 m->chunks += chunks; 261 m->prev_msr = tval; 262 263 rr->val += m->chunks; 264 return 0; 265 } 266 267 /* 268 * Supporting function to calculate the memory bandwidth 269 * and delta bandwidth in MBps. 270 */ 271 static void mbm_bw_count(u32 rmid, struct rmid_read *rr) 272 { 273 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3]; 274 struct mbm_state *m = &rr->d->mbm_local[rmid]; 275 u64 tval, cur_bw, chunks; 276 277 tval = __rmid_read(rmid, rr->evtid); 278 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) 279 return; 280 281 chunks = mbm_overflow_count(m->prev_bw_msr, tval, rr->r->mbm_width); 282 m->chunks += chunks; 283 cur_bw = (chunks * r->mon_scale) >> 20; 284 285 if (m->delta_comp) 286 m->delta_bw = abs(cur_bw - m->prev_bw); 287 m->delta_comp = false; 288 m->prev_bw = cur_bw; 289 m->prev_bw_msr = tval; 290 } 291 292 /* 293 * This is called via IPI to read the CQM/MBM counters 294 * on a domain. 295 */ 296 void mon_event_count(void *info) 297 { 298 struct rdtgroup *rdtgrp, *entry; 299 struct rmid_read *rr = info; 300 struct list_head *head; 301 302 rdtgrp = rr->rgrp; 303 304 if (__mon_event_count(rdtgrp->mon.rmid, rr)) 305 return; 306 307 /* 308 * For Ctrl groups read data from child monitor groups. 309 */ 310 head = &rdtgrp->mon.crdtgrp_list; 311 312 if (rdtgrp->type == RDTCTRL_GROUP) { 313 list_for_each_entry(entry, head, mon.crdtgrp_list) { 314 if (__mon_event_count(entry->mon.rmid, rr)) 315 return; 316 } 317 } 318 } 319 320 /* 321 * Feedback loop for MBA software controller (mba_sc) 322 * 323 * mba_sc is a feedback loop where we periodically read MBM counters and 324 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so 325 * that: 326 * 327 * current bandwdith(cur_bw) < user specified bandwidth(user_bw) 328 * 329 * This uses the MBM counters to measure the bandwidth and MBA throttle 330 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the 331 * fact that resctrl rdtgroups have both monitoring and control. 332 * 333 * The frequency of the checks is 1s and we just tag along the MBM overflow 334 * timer. Having 1s interval makes the calculation of bandwidth simpler. 335 * 336 * Although MBA's goal is to restrict the bandwidth to a maximum, there may 337 * be a need to increase the bandwidth to avoid uncecessarily restricting 338 * the L2 <-> L3 traffic. 339 * 340 * Since MBA controls the L2 external bandwidth where as MBM measures the 341 * L3 external bandwidth the following sequence could lead to such a 342 * situation. 343 * 344 * Consider an rdtgroup which had high L3 <-> memory traffic in initial 345 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but 346 * after some time rdtgroup has mostly L2 <-> L3 traffic. 347 * 348 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its 349 * throttle MSRs already have low percentage values. To avoid 350 * unnecessarily restricting such rdtgroups, we also increase the bandwidth. 351 */ 352 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) 353 { 354 u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val; 355 struct mbm_state *pmbm_data, *cmbm_data; 356 u32 cur_bw, delta_bw, user_bw; 357 struct rdt_resource *r_mba; 358 struct rdt_domain *dom_mba; 359 struct list_head *head; 360 struct rdtgroup *entry; 361 362 if (!is_mbm_local_enabled()) 363 return; 364 365 r_mba = &rdt_resources_all[RDT_RESOURCE_MBA]; 366 closid = rgrp->closid; 367 rmid = rgrp->mon.rmid; 368 pmbm_data = &dom_mbm->mbm_local[rmid]; 369 370 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); 371 if (!dom_mba) { 372 pr_warn_once("Failure to get domain for MBA update\n"); 373 return; 374 } 375 376 cur_bw = pmbm_data->prev_bw; 377 user_bw = dom_mba->mbps_val[closid]; 378 delta_bw = pmbm_data->delta_bw; 379 cur_msr_val = dom_mba->ctrl_val[closid]; 380 381 /* 382 * For Ctrl groups read data from child monitor groups. 383 */ 384 head = &rgrp->mon.crdtgrp_list; 385 list_for_each_entry(entry, head, mon.crdtgrp_list) { 386 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 387 cur_bw += cmbm_data->prev_bw; 388 delta_bw += cmbm_data->delta_bw; 389 } 390 391 /* 392 * Scale up/down the bandwidth linearly for the ctrl group. The 393 * bandwidth step is the bandwidth granularity specified by the 394 * hardware. 395 * 396 * The delta_bw is used when increasing the bandwidth so that we 397 * dont alternately increase and decrease the control values 398 * continuously. 399 * 400 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if 401 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep 402 * switching between 90 and 110 continuously if we only check 403 * cur_bw < user_bw. 404 */ 405 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { 406 new_msr_val = cur_msr_val - r_mba->membw.bw_gran; 407 } else if (cur_msr_val < MAX_MBA_BW && 408 (user_bw > (cur_bw + delta_bw))) { 409 new_msr_val = cur_msr_val + r_mba->membw.bw_gran; 410 } else { 411 return; 412 } 413 414 cur_msr = r_mba->msr_base + closid; 415 wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba)); 416 dom_mba->ctrl_val[closid] = new_msr_val; 417 418 /* 419 * Delta values are updated dynamically package wise for each 420 * rdtgrp everytime the throttle MSR changes value. 421 * 422 * This is because (1)the increase in bandwidth is not perfectly 423 * linear and only "approximately" linear even when the hardware 424 * says it is linear.(2)Also since MBA is a core specific 425 * mechanism, the delta values vary based on number of cores used 426 * by the rdtgrp. 427 */ 428 pmbm_data->delta_comp = true; 429 list_for_each_entry(entry, head, mon.crdtgrp_list) { 430 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 431 cmbm_data->delta_comp = true; 432 } 433 } 434 435 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid) 436 { 437 struct rmid_read rr; 438 439 rr.first = false; 440 rr.r = r; 441 rr.d = d; 442 443 /* 444 * This is protected from concurrent reads from user 445 * as both the user and we hold the global mutex. 446 */ 447 if (is_mbm_total_enabled()) { 448 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; 449 __mon_event_count(rmid, &rr); 450 } 451 if (is_mbm_local_enabled()) { 452 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; 453 454 /* 455 * Call the MBA software controller only for the 456 * control groups and when user has enabled 457 * the software controller explicitly. 458 */ 459 if (!is_mba_sc(NULL)) 460 __mon_event_count(rmid, &rr); 461 else 462 mbm_bw_count(rmid, &rr); 463 } 464 } 465 466 /* 467 * Handler to scan the limbo list and move the RMIDs 468 * to free list whose occupancy < threshold_occupancy. 469 */ 470 void cqm_handle_limbo(struct work_struct *work) 471 { 472 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); 473 int cpu = smp_processor_id(); 474 struct rdt_resource *r; 475 struct rdt_domain *d; 476 477 mutex_lock(&rdtgroup_mutex); 478 479 r = &rdt_resources_all[RDT_RESOURCE_L3]; 480 d = container_of(work, struct rdt_domain, cqm_limbo.work); 481 482 __check_limbo(d, false); 483 484 if (has_busy_rmid(r, d)) 485 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay); 486 487 mutex_unlock(&rdtgroup_mutex); 488 } 489 490 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms) 491 { 492 unsigned long delay = msecs_to_jiffies(delay_ms); 493 int cpu; 494 495 cpu = cpumask_any(&dom->cpu_mask); 496 dom->cqm_work_cpu = cpu; 497 498 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); 499 } 500 501 void mbm_handle_overflow(struct work_struct *work) 502 { 503 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); 504 struct rdtgroup *prgrp, *crgrp; 505 int cpu = smp_processor_id(); 506 struct list_head *head; 507 struct rdt_resource *r; 508 struct rdt_domain *d; 509 510 mutex_lock(&rdtgroup_mutex); 511 512 if (!static_branch_likely(&rdt_mon_enable_key)) 513 goto out_unlock; 514 515 r = &rdt_resources_all[RDT_RESOURCE_L3]; 516 d = container_of(work, struct rdt_domain, mbm_over.work); 517 518 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 519 mbm_update(r, d, prgrp->mon.rmid); 520 521 head = &prgrp->mon.crdtgrp_list; 522 list_for_each_entry(crgrp, head, mon.crdtgrp_list) 523 mbm_update(r, d, crgrp->mon.rmid); 524 525 if (is_mba_sc(NULL)) 526 update_mba_bw(prgrp, d); 527 } 528 529 schedule_delayed_work_on(cpu, &d->mbm_over, delay); 530 531 out_unlock: 532 mutex_unlock(&rdtgroup_mutex); 533 } 534 535 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms) 536 { 537 unsigned long delay = msecs_to_jiffies(delay_ms); 538 int cpu; 539 540 if (!static_branch_likely(&rdt_mon_enable_key)) 541 return; 542 cpu = cpumask_any(&dom->cpu_mask); 543 dom->mbm_work_cpu = cpu; 544 schedule_delayed_work_on(cpu, &dom->mbm_over, delay); 545 } 546 547 static int dom_data_init(struct rdt_resource *r) 548 { 549 struct rmid_entry *entry = NULL; 550 int i, nr_rmids; 551 552 nr_rmids = r->num_rmid; 553 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL); 554 if (!rmid_ptrs) 555 return -ENOMEM; 556 557 for (i = 0; i < nr_rmids; i++) { 558 entry = &rmid_ptrs[i]; 559 INIT_LIST_HEAD(&entry->list); 560 561 entry->rmid = i; 562 list_add_tail(&entry->list, &rmid_free_lru); 563 } 564 565 /* 566 * RMID 0 is special and is always allocated. It's used for all 567 * tasks that are not monitored. 568 */ 569 entry = __rmid_entry(0); 570 list_del(&entry->list); 571 572 return 0; 573 } 574 575 static struct mon_evt llc_occupancy_event = { 576 .name = "llc_occupancy", 577 .evtid = QOS_L3_OCCUP_EVENT_ID, 578 }; 579 580 static struct mon_evt mbm_total_event = { 581 .name = "mbm_total_bytes", 582 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, 583 }; 584 585 static struct mon_evt mbm_local_event = { 586 .name = "mbm_local_bytes", 587 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, 588 }; 589 590 /* 591 * Initialize the event list for the resource. 592 * 593 * Note that MBM events are also part of RDT_RESOURCE_L3 resource 594 * because as per the SDM the total and local memory bandwidth 595 * are enumerated as part of L3 monitoring. 596 */ 597 static void l3_mon_evt_init(struct rdt_resource *r) 598 { 599 INIT_LIST_HEAD(&r->evt_list); 600 601 if (is_llc_occupancy_enabled()) 602 list_add_tail(&llc_occupancy_event.list, &r->evt_list); 603 if (is_mbm_total_enabled()) 604 list_add_tail(&mbm_total_event.list, &r->evt_list); 605 if (is_mbm_local_enabled()) 606 list_add_tail(&mbm_local_event.list, &r->evt_list); 607 } 608 609 int rdt_get_mon_l3_config(struct rdt_resource *r) 610 { 611 unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset; 612 unsigned int cl_size = boot_cpu_data.x86_cache_size; 613 int ret; 614 615 r->mon_scale = boot_cpu_data.x86_cache_occ_scale; 616 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; 617 r->mbm_width = MBM_CNTR_WIDTH_BASE; 618 619 if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX) 620 r->mbm_width += mbm_offset; 621 else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX) 622 pr_warn("Ignoring impossible MBM counter offset\n"); 623 624 /* 625 * A reasonable upper limit on the max threshold is the number 626 * of lines tagged per RMID if all RMIDs have the same number of 627 * lines tagged in the LLC. 628 * 629 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. 630 */ 631 resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid; 632 633 /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */ 634 resctrl_cqm_threshold /= r->mon_scale; 635 636 ret = dom_data_init(r); 637 if (ret) 638 return ret; 639 640 l3_mon_evt_init(r); 641 642 r->mon_capable = true; 643 r->mon_enabled = true; 644 645 return 0; 646 } 647