xref: /openbmc/linux/arch/x86/kernel/cpu/resctrl/monitor.c (revision afba8b0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Resource Director Technology(RDT)
4  * - Monitoring code
5  *
6  * Copyright (C) 2017 Intel Corporation
7  *
8  * Author:
9  *    Vikas Shivappa <vikas.shivappa@intel.com>
10  *
11  * This replaces the cqm.c based on perf but we reuse a lot of
12  * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13  *
14  * More information about RDT be found in the Intel (R) x86 Architecture
15  * Software Developer Manual June 2016, volume 3, section 17.17.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <asm/cpu_device_id.h>
21 #include "internal.h"
22 
23 struct rmid_entry {
24 	u32				rmid;
25 	int				busy;
26 	struct list_head		list;
27 };
28 
29 /**
30  * @rmid_free_lru    A least recently used list of free RMIDs
31  *     These RMIDs are guaranteed to have an occupancy less than the
32  *     threshold occupancy
33  */
34 static LIST_HEAD(rmid_free_lru);
35 
36 /**
37  * @rmid_limbo_count     count of currently unused but (potentially)
38  *     dirty RMIDs.
39  *     This counts RMIDs that no one is currently using but that
40  *     may have a occupancy value > intel_cqm_threshold. User can change
41  *     the threshold occupancy value.
42  */
43 static unsigned int rmid_limbo_count;
44 
45 /**
46  * @rmid_entry - The entry in the limbo and free lists.
47  */
48 static struct rmid_entry	*rmid_ptrs;
49 
50 /*
51  * Global boolean for rdt_monitor which is true if any
52  * resource monitoring is enabled.
53  */
54 bool rdt_mon_capable;
55 
56 /*
57  * Global to indicate which monitoring events are enabled.
58  */
59 unsigned int rdt_mon_features;
60 
61 /*
62  * This is the threshold cache occupancy at which we will consider an
63  * RMID available for re-allocation.
64  */
65 unsigned int resctrl_cqm_threshold;
66 
67 static inline struct rmid_entry *__rmid_entry(u32 rmid)
68 {
69 	struct rmid_entry *entry;
70 
71 	entry = &rmid_ptrs[rmid];
72 	WARN_ON(entry->rmid != rmid);
73 
74 	return entry;
75 }
76 
77 static u64 __rmid_read(u32 rmid, u32 eventid)
78 {
79 	u64 val;
80 
81 	/*
82 	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
83 	 * with a valid event code for supported resource type and the bits
84 	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
85 	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
86 	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
87 	 * are error bits.
88 	 */
89 	wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
90 	rdmsrl(MSR_IA32_QM_CTR, val);
91 
92 	return val;
93 }
94 
95 static bool rmid_dirty(struct rmid_entry *entry)
96 {
97 	u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
98 
99 	return val >= resctrl_cqm_threshold;
100 }
101 
102 /*
103  * Check the RMIDs that are marked as busy for this domain. If the
104  * reported LLC occupancy is below the threshold clear the busy bit and
105  * decrement the count. If the busy count gets to zero on an RMID, we
106  * free the RMID
107  */
108 void __check_limbo(struct rdt_domain *d, bool force_free)
109 {
110 	struct rmid_entry *entry;
111 	struct rdt_resource *r;
112 	u32 crmid = 1, nrmid;
113 
114 	r = &rdt_resources_all[RDT_RESOURCE_L3];
115 
116 	/*
117 	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
118 	 * are marked as busy for occupancy < threshold. If the occupancy
119 	 * is less than the threshold decrement the busy counter of the
120 	 * RMID and move it to the free list when the counter reaches 0.
121 	 */
122 	for (;;) {
123 		nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
124 		if (nrmid >= r->num_rmid)
125 			break;
126 
127 		entry = __rmid_entry(nrmid);
128 		if (force_free || !rmid_dirty(entry)) {
129 			clear_bit(entry->rmid, d->rmid_busy_llc);
130 			if (!--entry->busy) {
131 				rmid_limbo_count--;
132 				list_add_tail(&entry->list, &rmid_free_lru);
133 			}
134 		}
135 		crmid = nrmid + 1;
136 	}
137 }
138 
139 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
140 {
141 	return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
142 }
143 
144 /*
145  * As of now the RMIDs allocation is global.
146  * However we keep track of which packages the RMIDs
147  * are used to optimize the limbo list management.
148  */
149 int alloc_rmid(void)
150 {
151 	struct rmid_entry *entry;
152 
153 	lockdep_assert_held(&rdtgroup_mutex);
154 
155 	if (list_empty(&rmid_free_lru))
156 		return rmid_limbo_count ? -EBUSY : -ENOSPC;
157 
158 	entry = list_first_entry(&rmid_free_lru,
159 				 struct rmid_entry, list);
160 	list_del(&entry->list);
161 
162 	return entry->rmid;
163 }
164 
165 static void add_rmid_to_limbo(struct rmid_entry *entry)
166 {
167 	struct rdt_resource *r;
168 	struct rdt_domain *d;
169 	int cpu;
170 	u64 val;
171 
172 	r = &rdt_resources_all[RDT_RESOURCE_L3];
173 
174 	entry->busy = 0;
175 	cpu = get_cpu();
176 	list_for_each_entry(d, &r->domains, list) {
177 		if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
178 			val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
179 			if (val <= resctrl_cqm_threshold)
180 				continue;
181 		}
182 
183 		/*
184 		 * For the first limbo RMID in the domain,
185 		 * setup up the limbo worker.
186 		 */
187 		if (!has_busy_rmid(r, d))
188 			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
189 		set_bit(entry->rmid, d->rmid_busy_llc);
190 		entry->busy++;
191 	}
192 	put_cpu();
193 
194 	if (entry->busy)
195 		rmid_limbo_count++;
196 	else
197 		list_add_tail(&entry->list, &rmid_free_lru);
198 }
199 
200 void free_rmid(u32 rmid)
201 {
202 	struct rmid_entry *entry;
203 
204 	if (!rmid)
205 		return;
206 
207 	lockdep_assert_held(&rdtgroup_mutex);
208 
209 	entry = __rmid_entry(rmid);
210 
211 	if (is_llc_occupancy_enabled())
212 		add_rmid_to_limbo(entry);
213 	else
214 		list_add_tail(&entry->list, &rmid_free_lru);
215 }
216 
217 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
218 {
219 	u64 shift = 64 - width, chunks;
220 
221 	chunks = (cur_msr << shift) - (prev_msr << shift);
222 	return chunks >>= shift;
223 }
224 
225 static int __mon_event_count(u32 rmid, struct rmid_read *rr)
226 {
227 	struct mbm_state *m;
228 	u64 chunks, tval;
229 
230 	tval = __rmid_read(rmid, rr->evtid);
231 	if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
232 		rr->val = tval;
233 		return -EINVAL;
234 	}
235 	switch (rr->evtid) {
236 	case QOS_L3_OCCUP_EVENT_ID:
237 		rr->val += tval;
238 		return 0;
239 	case QOS_L3_MBM_TOTAL_EVENT_ID:
240 		m = &rr->d->mbm_total[rmid];
241 		break;
242 	case QOS_L3_MBM_LOCAL_EVENT_ID:
243 		m = &rr->d->mbm_local[rmid];
244 		break;
245 	default:
246 		/*
247 		 * Code would never reach here because
248 		 * an invalid event id would fail the __rmid_read.
249 		 */
250 		return -EINVAL;
251 	}
252 
253 	if (rr->first) {
254 		memset(m, 0, sizeof(struct mbm_state));
255 		m->prev_bw_msr = m->prev_msr = tval;
256 		return 0;
257 	}
258 
259 	chunks = mbm_overflow_count(m->prev_msr, tval, rr->r->mbm_width);
260 	m->chunks += chunks;
261 	m->prev_msr = tval;
262 
263 	rr->val += m->chunks;
264 	return 0;
265 }
266 
267 /*
268  * Supporting function to calculate the memory bandwidth
269  * and delta bandwidth in MBps.
270  */
271 static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
272 {
273 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
274 	struct mbm_state *m = &rr->d->mbm_local[rmid];
275 	u64 tval, cur_bw, chunks;
276 
277 	tval = __rmid_read(rmid, rr->evtid);
278 	if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
279 		return;
280 
281 	chunks = mbm_overflow_count(m->prev_bw_msr, tval, rr->r->mbm_width);
282 	m->chunks += chunks;
283 	cur_bw = (chunks * r->mon_scale) >> 20;
284 
285 	if (m->delta_comp)
286 		m->delta_bw = abs(cur_bw - m->prev_bw);
287 	m->delta_comp = false;
288 	m->prev_bw = cur_bw;
289 	m->prev_bw_msr = tval;
290 }
291 
292 /*
293  * This is called via IPI to read the CQM/MBM counters
294  * on a domain.
295  */
296 void mon_event_count(void *info)
297 {
298 	struct rdtgroup *rdtgrp, *entry;
299 	struct rmid_read *rr = info;
300 	struct list_head *head;
301 
302 	rdtgrp = rr->rgrp;
303 
304 	if (__mon_event_count(rdtgrp->mon.rmid, rr))
305 		return;
306 
307 	/*
308 	 * For Ctrl groups read data from child monitor groups.
309 	 */
310 	head = &rdtgrp->mon.crdtgrp_list;
311 
312 	if (rdtgrp->type == RDTCTRL_GROUP) {
313 		list_for_each_entry(entry, head, mon.crdtgrp_list) {
314 			if (__mon_event_count(entry->mon.rmid, rr))
315 				return;
316 		}
317 	}
318 }
319 
320 /*
321  * Feedback loop for MBA software controller (mba_sc)
322  *
323  * mba_sc is a feedback loop where we periodically read MBM counters and
324  * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
325  * that:
326  *
327  *   current bandwdith(cur_bw) < user specified bandwidth(user_bw)
328  *
329  * This uses the MBM counters to measure the bandwidth and MBA throttle
330  * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
331  * fact that resctrl rdtgroups have both monitoring and control.
332  *
333  * The frequency of the checks is 1s and we just tag along the MBM overflow
334  * timer. Having 1s interval makes the calculation of bandwidth simpler.
335  *
336  * Although MBA's goal is to restrict the bandwidth to a maximum, there may
337  * be a need to increase the bandwidth to avoid uncecessarily restricting
338  * the L2 <-> L3 traffic.
339  *
340  * Since MBA controls the L2 external bandwidth where as MBM measures the
341  * L3 external bandwidth the following sequence could lead to such a
342  * situation.
343  *
344  * Consider an rdtgroup which had high L3 <-> memory traffic in initial
345  * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
346  * after some time rdtgroup has mostly L2 <-> L3 traffic.
347  *
348  * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
349  * throttle MSRs already have low percentage values.  To avoid
350  * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
351  */
352 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
353 {
354 	u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
355 	struct mbm_state *pmbm_data, *cmbm_data;
356 	u32 cur_bw, delta_bw, user_bw;
357 	struct rdt_resource *r_mba;
358 	struct rdt_domain *dom_mba;
359 	struct list_head *head;
360 	struct rdtgroup *entry;
361 
362 	if (!is_mbm_local_enabled())
363 		return;
364 
365 	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
366 	closid = rgrp->closid;
367 	rmid = rgrp->mon.rmid;
368 	pmbm_data = &dom_mbm->mbm_local[rmid];
369 
370 	dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
371 	if (!dom_mba) {
372 		pr_warn_once("Failure to get domain for MBA update\n");
373 		return;
374 	}
375 
376 	cur_bw = pmbm_data->prev_bw;
377 	user_bw = dom_mba->mbps_val[closid];
378 	delta_bw = pmbm_data->delta_bw;
379 	cur_msr_val = dom_mba->ctrl_val[closid];
380 
381 	/*
382 	 * For Ctrl groups read data from child monitor groups.
383 	 */
384 	head = &rgrp->mon.crdtgrp_list;
385 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
386 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
387 		cur_bw += cmbm_data->prev_bw;
388 		delta_bw += cmbm_data->delta_bw;
389 	}
390 
391 	/*
392 	 * Scale up/down the bandwidth linearly for the ctrl group.  The
393 	 * bandwidth step is the bandwidth granularity specified by the
394 	 * hardware.
395 	 *
396 	 * The delta_bw is used when increasing the bandwidth so that we
397 	 * dont alternately increase and decrease the control values
398 	 * continuously.
399 	 *
400 	 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
401 	 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
402 	 * switching between 90 and 110 continuously if we only check
403 	 * cur_bw < user_bw.
404 	 */
405 	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
406 		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
407 	} else if (cur_msr_val < MAX_MBA_BW &&
408 		   (user_bw > (cur_bw + delta_bw))) {
409 		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
410 	} else {
411 		return;
412 	}
413 
414 	cur_msr = r_mba->msr_base + closid;
415 	wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
416 	dom_mba->ctrl_val[closid] = new_msr_val;
417 
418 	/*
419 	 * Delta values are updated dynamically package wise for each
420 	 * rdtgrp everytime the throttle MSR changes value.
421 	 *
422 	 * This is because (1)the increase in bandwidth is not perfectly
423 	 * linear and only "approximately" linear even when the hardware
424 	 * says it is linear.(2)Also since MBA is a core specific
425 	 * mechanism, the delta values vary based on number of cores used
426 	 * by the rdtgrp.
427 	 */
428 	pmbm_data->delta_comp = true;
429 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
430 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
431 		cmbm_data->delta_comp = true;
432 	}
433 }
434 
435 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid)
436 {
437 	struct rmid_read rr;
438 
439 	rr.first = false;
440 	rr.r = r;
441 	rr.d = d;
442 
443 	/*
444 	 * This is protected from concurrent reads from user
445 	 * as both the user and we hold the global mutex.
446 	 */
447 	if (is_mbm_total_enabled()) {
448 		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
449 		__mon_event_count(rmid, &rr);
450 	}
451 	if (is_mbm_local_enabled()) {
452 		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
453 
454 		/*
455 		 * Call the MBA software controller only for the
456 		 * control groups and when user has enabled
457 		 * the software controller explicitly.
458 		 */
459 		if (!is_mba_sc(NULL))
460 			__mon_event_count(rmid, &rr);
461 		else
462 			mbm_bw_count(rmid, &rr);
463 	}
464 }
465 
466 /*
467  * Handler to scan the limbo list and move the RMIDs
468  * to free list whose occupancy < threshold_occupancy.
469  */
470 void cqm_handle_limbo(struct work_struct *work)
471 {
472 	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
473 	int cpu = smp_processor_id();
474 	struct rdt_resource *r;
475 	struct rdt_domain *d;
476 
477 	mutex_lock(&rdtgroup_mutex);
478 
479 	r = &rdt_resources_all[RDT_RESOURCE_L3];
480 	d = container_of(work, struct rdt_domain, cqm_limbo.work);
481 
482 	__check_limbo(d, false);
483 
484 	if (has_busy_rmid(r, d))
485 		schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
486 
487 	mutex_unlock(&rdtgroup_mutex);
488 }
489 
490 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
491 {
492 	unsigned long delay = msecs_to_jiffies(delay_ms);
493 	int cpu;
494 
495 	cpu = cpumask_any(&dom->cpu_mask);
496 	dom->cqm_work_cpu = cpu;
497 
498 	schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
499 }
500 
501 void mbm_handle_overflow(struct work_struct *work)
502 {
503 	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
504 	struct rdtgroup *prgrp, *crgrp;
505 	int cpu = smp_processor_id();
506 	struct list_head *head;
507 	struct rdt_resource *r;
508 	struct rdt_domain *d;
509 
510 	mutex_lock(&rdtgroup_mutex);
511 
512 	if (!static_branch_likely(&rdt_mon_enable_key))
513 		goto out_unlock;
514 
515 	r = &rdt_resources_all[RDT_RESOURCE_L3];
516 	d = container_of(work, struct rdt_domain, mbm_over.work);
517 
518 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
519 		mbm_update(r, d, prgrp->mon.rmid);
520 
521 		head = &prgrp->mon.crdtgrp_list;
522 		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
523 			mbm_update(r, d, crgrp->mon.rmid);
524 
525 		if (is_mba_sc(NULL))
526 			update_mba_bw(prgrp, d);
527 	}
528 
529 	schedule_delayed_work_on(cpu, &d->mbm_over, delay);
530 
531 out_unlock:
532 	mutex_unlock(&rdtgroup_mutex);
533 }
534 
535 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
536 {
537 	unsigned long delay = msecs_to_jiffies(delay_ms);
538 	int cpu;
539 
540 	if (!static_branch_likely(&rdt_mon_enable_key))
541 		return;
542 	cpu = cpumask_any(&dom->cpu_mask);
543 	dom->mbm_work_cpu = cpu;
544 	schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
545 }
546 
547 static int dom_data_init(struct rdt_resource *r)
548 {
549 	struct rmid_entry *entry = NULL;
550 	int i, nr_rmids;
551 
552 	nr_rmids = r->num_rmid;
553 	rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
554 	if (!rmid_ptrs)
555 		return -ENOMEM;
556 
557 	for (i = 0; i < nr_rmids; i++) {
558 		entry = &rmid_ptrs[i];
559 		INIT_LIST_HEAD(&entry->list);
560 
561 		entry->rmid = i;
562 		list_add_tail(&entry->list, &rmid_free_lru);
563 	}
564 
565 	/*
566 	 * RMID 0 is special and is always allocated. It's used for all
567 	 * tasks that are not monitored.
568 	 */
569 	entry = __rmid_entry(0);
570 	list_del(&entry->list);
571 
572 	return 0;
573 }
574 
575 static struct mon_evt llc_occupancy_event = {
576 	.name		= "llc_occupancy",
577 	.evtid		= QOS_L3_OCCUP_EVENT_ID,
578 };
579 
580 static struct mon_evt mbm_total_event = {
581 	.name		= "mbm_total_bytes",
582 	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
583 };
584 
585 static struct mon_evt mbm_local_event = {
586 	.name		= "mbm_local_bytes",
587 	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
588 };
589 
590 /*
591  * Initialize the event list for the resource.
592  *
593  * Note that MBM events are also part of RDT_RESOURCE_L3 resource
594  * because as per the SDM the total and local memory bandwidth
595  * are enumerated as part of L3 monitoring.
596  */
597 static void l3_mon_evt_init(struct rdt_resource *r)
598 {
599 	INIT_LIST_HEAD(&r->evt_list);
600 
601 	if (is_llc_occupancy_enabled())
602 		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
603 	if (is_mbm_total_enabled())
604 		list_add_tail(&mbm_total_event.list, &r->evt_list);
605 	if (is_mbm_local_enabled())
606 		list_add_tail(&mbm_local_event.list, &r->evt_list);
607 }
608 
609 int rdt_get_mon_l3_config(struct rdt_resource *r)
610 {
611 	unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
612 	unsigned int cl_size = boot_cpu_data.x86_cache_size;
613 	int ret;
614 
615 	r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
616 	r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
617 	r->mbm_width = MBM_CNTR_WIDTH_BASE;
618 
619 	if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
620 		r->mbm_width += mbm_offset;
621 	else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
622 		pr_warn("Ignoring impossible MBM counter offset\n");
623 
624 	/*
625 	 * A reasonable upper limit on the max threshold is the number
626 	 * of lines tagged per RMID if all RMIDs have the same number of
627 	 * lines tagged in the LLC.
628 	 *
629 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
630 	 */
631 	resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
632 
633 	/* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
634 	resctrl_cqm_threshold /= r->mon_scale;
635 
636 	ret = dom_data_init(r);
637 	if (ret)
638 		return ret;
639 
640 	l3_mon_evt_init(r);
641 
642 	r->mon_capable = true;
643 	r->mon_enabled = true;
644 
645 	return 0;
646 }
647