1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resource Director Technology(RDT) 4 * - Monitoring code 5 * 6 * Copyright (C) 2017 Intel Corporation 7 * 8 * Author: 9 * Vikas Shivappa <vikas.shivappa@intel.com> 10 * 11 * This replaces the cqm.c based on perf but we reuse a lot of 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming. 13 * 14 * More information about RDT be found in the Intel (R) x86 Architecture 15 * Software Developer Manual June 2016, volume 3, section 17.17. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <asm/cpu_device_id.h> 21 #include "internal.h" 22 23 struct rmid_entry { 24 u32 rmid; 25 int busy; 26 struct list_head list; 27 }; 28 29 /** 30 * @rmid_free_lru A least recently used list of free RMIDs 31 * These RMIDs are guaranteed to have an occupancy less than the 32 * threshold occupancy 33 */ 34 static LIST_HEAD(rmid_free_lru); 35 36 /** 37 * @rmid_limbo_count count of currently unused but (potentially) 38 * dirty RMIDs. 39 * This counts RMIDs that no one is currently using but that 40 * may have a occupancy value > intel_cqm_threshold. User can change 41 * the threshold occupancy value. 42 */ 43 static unsigned int rmid_limbo_count; 44 45 /** 46 * @rmid_entry - The entry in the limbo and free lists. 47 */ 48 static struct rmid_entry *rmid_ptrs; 49 50 /* 51 * Global boolean for rdt_monitor which is true if any 52 * resource monitoring is enabled. 53 */ 54 bool rdt_mon_capable; 55 56 /* 57 * Global to indicate which monitoring events are enabled. 58 */ 59 unsigned int rdt_mon_features; 60 61 /* 62 * This is the threshold cache occupancy at which we will consider an 63 * RMID available for re-allocation. 64 */ 65 unsigned int resctrl_cqm_threshold; 66 67 static inline struct rmid_entry *__rmid_entry(u32 rmid) 68 { 69 struct rmid_entry *entry; 70 71 entry = &rmid_ptrs[rmid]; 72 WARN_ON(entry->rmid != rmid); 73 74 return entry; 75 } 76 77 static u64 __rmid_read(u32 rmid, u32 eventid) 78 { 79 u64 val; 80 81 /* 82 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured 83 * with a valid event code for supported resource type and the bits 84 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID, 85 * IA32_QM_CTR.data (bits 61:0) reports the monitored data. 86 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) 87 * are error bits. 88 */ 89 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); 90 rdmsrl(MSR_IA32_QM_CTR, val); 91 92 return val; 93 } 94 95 static bool rmid_dirty(struct rmid_entry *entry) 96 { 97 u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); 98 99 return val >= resctrl_cqm_threshold; 100 } 101 102 /* 103 * Check the RMIDs that are marked as busy for this domain. If the 104 * reported LLC occupancy is below the threshold clear the busy bit and 105 * decrement the count. If the busy count gets to zero on an RMID, we 106 * free the RMID 107 */ 108 void __check_limbo(struct rdt_domain *d, bool force_free) 109 { 110 struct rmid_entry *entry; 111 struct rdt_resource *r; 112 u32 crmid = 1, nrmid; 113 114 r = &rdt_resources_all[RDT_RESOURCE_L3]; 115 116 /* 117 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that 118 * are marked as busy for occupancy < threshold. If the occupancy 119 * is less than the threshold decrement the busy counter of the 120 * RMID and move it to the free list when the counter reaches 0. 121 */ 122 for (;;) { 123 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid); 124 if (nrmid >= r->num_rmid) 125 break; 126 127 entry = __rmid_entry(nrmid); 128 if (force_free || !rmid_dirty(entry)) { 129 clear_bit(entry->rmid, d->rmid_busy_llc); 130 if (!--entry->busy) { 131 rmid_limbo_count--; 132 list_add_tail(&entry->list, &rmid_free_lru); 133 } 134 } 135 crmid = nrmid + 1; 136 } 137 } 138 139 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d) 140 { 141 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid; 142 } 143 144 /* 145 * As of now the RMIDs allocation is global. 146 * However we keep track of which packages the RMIDs 147 * are used to optimize the limbo list management. 148 */ 149 int alloc_rmid(void) 150 { 151 struct rmid_entry *entry; 152 153 lockdep_assert_held(&rdtgroup_mutex); 154 155 if (list_empty(&rmid_free_lru)) 156 return rmid_limbo_count ? -EBUSY : -ENOSPC; 157 158 entry = list_first_entry(&rmid_free_lru, 159 struct rmid_entry, list); 160 list_del(&entry->list); 161 162 return entry->rmid; 163 } 164 165 static void add_rmid_to_limbo(struct rmid_entry *entry) 166 { 167 struct rdt_resource *r; 168 struct rdt_domain *d; 169 int cpu; 170 u64 val; 171 172 r = &rdt_resources_all[RDT_RESOURCE_L3]; 173 174 entry->busy = 0; 175 cpu = get_cpu(); 176 list_for_each_entry(d, &r->domains, list) { 177 if (cpumask_test_cpu(cpu, &d->cpu_mask)) { 178 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); 179 if (val <= resctrl_cqm_threshold) 180 continue; 181 } 182 183 /* 184 * For the first limbo RMID in the domain, 185 * setup up the limbo worker. 186 */ 187 if (!has_busy_rmid(r, d)) 188 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL); 189 set_bit(entry->rmid, d->rmid_busy_llc); 190 entry->busy++; 191 } 192 put_cpu(); 193 194 if (entry->busy) 195 rmid_limbo_count++; 196 else 197 list_add_tail(&entry->list, &rmid_free_lru); 198 } 199 200 void free_rmid(u32 rmid) 201 { 202 struct rmid_entry *entry; 203 204 if (!rmid) 205 return; 206 207 lockdep_assert_held(&rdtgroup_mutex); 208 209 entry = __rmid_entry(rmid); 210 211 if (is_llc_occupancy_enabled()) 212 add_rmid_to_limbo(entry); 213 else 214 list_add_tail(&entry->list, &rmid_free_lru); 215 } 216 217 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) 218 { 219 u64 shift = 64 - width, chunks; 220 221 chunks = (cur_msr << shift) - (prev_msr << shift); 222 return chunks >>= shift; 223 } 224 225 static int __mon_event_count(u32 rmid, struct rmid_read *rr) 226 { 227 struct mbm_state *m; 228 u64 chunks, tval; 229 230 tval = __rmid_read(rmid, rr->evtid); 231 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) { 232 rr->val = tval; 233 return -EINVAL; 234 } 235 switch (rr->evtid) { 236 case QOS_L3_OCCUP_EVENT_ID: 237 rr->val += tval; 238 return 0; 239 case QOS_L3_MBM_TOTAL_EVENT_ID: 240 m = &rr->d->mbm_total[rmid]; 241 break; 242 case QOS_L3_MBM_LOCAL_EVENT_ID: 243 m = &rr->d->mbm_local[rmid]; 244 break; 245 default: 246 /* 247 * Code would never reach here because 248 * an invalid event id would fail the __rmid_read. 249 */ 250 return -EINVAL; 251 } 252 253 if (rr->first) { 254 memset(m, 0, sizeof(struct mbm_state)); 255 m->prev_bw_msr = m->prev_msr = tval; 256 return 0; 257 } 258 259 chunks = mbm_overflow_count(m->prev_msr, tval, rr->r->mbm_width); 260 m->chunks += chunks; 261 m->prev_msr = tval; 262 263 rr->val += m->chunks; 264 return 0; 265 } 266 267 /* 268 * Supporting function to calculate the memory bandwidth 269 * and delta bandwidth in MBps. 270 */ 271 static void mbm_bw_count(u32 rmid, struct rmid_read *rr) 272 { 273 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3]; 274 struct mbm_state *m = &rr->d->mbm_local[rmid]; 275 u64 tval, cur_bw, chunks; 276 277 tval = __rmid_read(rmid, rr->evtid); 278 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) 279 return; 280 281 chunks = mbm_overflow_count(m->prev_bw_msr, tval, rr->r->mbm_width); 282 cur_bw = (chunks * r->mon_scale) >> 20; 283 284 if (m->delta_comp) 285 m->delta_bw = abs(cur_bw - m->prev_bw); 286 m->delta_comp = false; 287 m->prev_bw = cur_bw; 288 m->prev_bw_msr = tval; 289 } 290 291 /* 292 * This is called via IPI to read the CQM/MBM counters 293 * on a domain. 294 */ 295 void mon_event_count(void *info) 296 { 297 struct rdtgroup *rdtgrp, *entry; 298 struct rmid_read *rr = info; 299 struct list_head *head; 300 301 rdtgrp = rr->rgrp; 302 303 if (__mon_event_count(rdtgrp->mon.rmid, rr)) 304 return; 305 306 /* 307 * For Ctrl groups read data from child monitor groups. 308 */ 309 head = &rdtgrp->mon.crdtgrp_list; 310 311 if (rdtgrp->type == RDTCTRL_GROUP) { 312 list_for_each_entry(entry, head, mon.crdtgrp_list) { 313 if (__mon_event_count(entry->mon.rmid, rr)) 314 return; 315 } 316 } 317 } 318 319 /* 320 * Feedback loop for MBA software controller (mba_sc) 321 * 322 * mba_sc is a feedback loop where we periodically read MBM counters and 323 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so 324 * that: 325 * 326 * current bandwdith(cur_bw) < user specified bandwidth(user_bw) 327 * 328 * This uses the MBM counters to measure the bandwidth and MBA throttle 329 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the 330 * fact that resctrl rdtgroups have both monitoring and control. 331 * 332 * The frequency of the checks is 1s and we just tag along the MBM overflow 333 * timer. Having 1s interval makes the calculation of bandwidth simpler. 334 * 335 * Although MBA's goal is to restrict the bandwidth to a maximum, there may 336 * be a need to increase the bandwidth to avoid uncecessarily restricting 337 * the L2 <-> L3 traffic. 338 * 339 * Since MBA controls the L2 external bandwidth where as MBM measures the 340 * L3 external bandwidth the following sequence could lead to such a 341 * situation. 342 * 343 * Consider an rdtgroup which had high L3 <-> memory traffic in initial 344 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but 345 * after some time rdtgroup has mostly L2 <-> L3 traffic. 346 * 347 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its 348 * throttle MSRs already have low percentage values. To avoid 349 * unnecessarily restricting such rdtgroups, we also increase the bandwidth. 350 */ 351 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) 352 { 353 u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val; 354 struct mbm_state *pmbm_data, *cmbm_data; 355 u32 cur_bw, delta_bw, user_bw; 356 struct rdt_resource *r_mba; 357 struct rdt_domain *dom_mba; 358 struct list_head *head; 359 struct rdtgroup *entry; 360 361 if (!is_mbm_local_enabled()) 362 return; 363 364 r_mba = &rdt_resources_all[RDT_RESOURCE_MBA]; 365 closid = rgrp->closid; 366 rmid = rgrp->mon.rmid; 367 pmbm_data = &dom_mbm->mbm_local[rmid]; 368 369 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); 370 if (!dom_mba) { 371 pr_warn_once("Failure to get domain for MBA update\n"); 372 return; 373 } 374 375 cur_bw = pmbm_data->prev_bw; 376 user_bw = dom_mba->mbps_val[closid]; 377 delta_bw = pmbm_data->delta_bw; 378 cur_msr_val = dom_mba->ctrl_val[closid]; 379 380 /* 381 * For Ctrl groups read data from child monitor groups. 382 */ 383 head = &rgrp->mon.crdtgrp_list; 384 list_for_each_entry(entry, head, mon.crdtgrp_list) { 385 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 386 cur_bw += cmbm_data->prev_bw; 387 delta_bw += cmbm_data->delta_bw; 388 } 389 390 /* 391 * Scale up/down the bandwidth linearly for the ctrl group. The 392 * bandwidth step is the bandwidth granularity specified by the 393 * hardware. 394 * 395 * The delta_bw is used when increasing the bandwidth so that we 396 * dont alternately increase and decrease the control values 397 * continuously. 398 * 399 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if 400 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep 401 * switching between 90 and 110 continuously if we only check 402 * cur_bw < user_bw. 403 */ 404 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { 405 new_msr_val = cur_msr_val - r_mba->membw.bw_gran; 406 } else if (cur_msr_val < MAX_MBA_BW && 407 (user_bw > (cur_bw + delta_bw))) { 408 new_msr_val = cur_msr_val + r_mba->membw.bw_gran; 409 } else { 410 return; 411 } 412 413 cur_msr = r_mba->msr_base + closid; 414 wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba)); 415 dom_mba->ctrl_val[closid] = new_msr_val; 416 417 /* 418 * Delta values are updated dynamically package wise for each 419 * rdtgrp everytime the throttle MSR changes value. 420 * 421 * This is because (1)the increase in bandwidth is not perfectly 422 * linear and only "approximately" linear even when the hardware 423 * says it is linear.(2)Also since MBA is a core specific 424 * mechanism, the delta values vary based on number of cores used 425 * by the rdtgrp. 426 */ 427 pmbm_data->delta_comp = true; 428 list_for_each_entry(entry, head, mon.crdtgrp_list) { 429 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 430 cmbm_data->delta_comp = true; 431 } 432 } 433 434 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid) 435 { 436 struct rmid_read rr; 437 438 rr.first = false; 439 rr.r = r; 440 rr.d = d; 441 442 /* 443 * This is protected from concurrent reads from user 444 * as both the user and we hold the global mutex. 445 */ 446 if (is_mbm_total_enabled()) { 447 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; 448 __mon_event_count(rmid, &rr); 449 } 450 if (is_mbm_local_enabled()) { 451 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; 452 __mon_event_count(rmid, &rr); 453 454 /* 455 * Call the MBA software controller only for the 456 * control groups and when user has enabled 457 * the software controller explicitly. 458 */ 459 if (is_mba_sc(NULL)) 460 mbm_bw_count(rmid, &rr); 461 } 462 } 463 464 /* 465 * Handler to scan the limbo list and move the RMIDs 466 * to free list whose occupancy < threshold_occupancy. 467 */ 468 void cqm_handle_limbo(struct work_struct *work) 469 { 470 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); 471 int cpu = smp_processor_id(); 472 struct rdt_resource *r; 473 struct rdt_domain *d; 474 475 mutex_lock(&rdtgroup_mutex); 476 477 r = &rdt_resources_all[RDT_RESOURCE_L3]; 478 d = container_of(work, struct rdt_domain, cqm_limbo.work); 479 480 __check_limbo(d, false); 481 482 if (has_busy_rmid(r, d)) 483 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay); 484 485 mutex_unlock(&rdtgroup_mutex); 486 } 487 488 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms) 489 { 490 unsigned long delay = msecs_to_jiffies(delay_ms); 491 int cpu; 492 493 cpu = cpumask_any(&dom->cpu_mask); 494 dom->cqm_work_cpu = cpu; 495 496 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); 497 } 498 499 void mbm_handle_overflow(struct work_struct *work) 500 { 501 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); 502 struct rdtgroup *prgrp, *crgrp; 503 int cpu = smp_processor_id(); 504 struct list_head *head; 505 struct rdt_resource *r; 506 struct rdt_domain *d; 507 508 mutex_lock(&rdtgroup_mutex); 509 510 if (!static_branch_likely(&rdt_mon_enable_key)) 511 goto out_unlock; 512 513 r = &rdt_resources_all[RDT_RESOURCE_L3]; 514 d = container_of(work, struct rdt_domain, mbm_over.work); 515 516 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 517 mbm_update(r, d, prgrp->mon.rmid); 518 519 head = &prgrp->mon.crdtgrp_list; 520 list_for_each_entry(crgrp, head, mon.crdtgrp_list) 521 mbm_update(r, d, crgrp->mon.rmid); 522 523 if (is_mba_sc(NULL)) 524 update_mba_bw(prgrp, d); 525 } 526 527 schedule_delayed_work_on(cpu, &d->mbm_over, delay); 528 529 out_unlock: 530 mutex_unlock(&rdtgroup_mutex); 531 } 532 533 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms) 534 { 535 unsigned long delay = msecs_to_jiffies(delay_ms); 536 int cpu; 537 538 if (!static_branch_likely(&rdt_mon_enable_key)) 539 return; 540 cpu = cpumask_any(&dom->cpu_mask); 541 dom->mbm_work_cpu = cpu; 542 schedule_delayed_work_on(cpu, &dom->mbm_over, delay); 543 } 544 545 static int dom_data_init(struct rdt_resource *r) 546 { 547 struct rmid_entry *entry = NULL; 548 int i, nr_rmids; 549 550 nr_rmids = r->num_rmid; 551 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL); 552 if (!rmid_ptrs) 553 return -ENOMEM; 554 555 for (i = 0; i < nr_rmids; i++) { 556 entry = &rmid_ptrs[i]; 557 INIT_LIST_HEAD(&entry->list); 558 559 entry->rmid = i; 560 list_add_tail(&entry->list, &rmid_free_lru); 561 } 562 563 /* 564 * RMID 0 is special and is always allocated. It's used for all 565 * tasks that are not monitored. 566 */ 567 entry = __rmid_entry(0); 568 list_del(&entry->list); 569 570 return 0; 571 } 572 573 static struct mon_evt llc_occupancy_event = { 574 .name = "llc_occupancy", 575 .evtid = QOS_L3_OCCUP_EVENT_ID, 576 }; 577 578 static struct mon_evt mbm_total_event = { 579 .name = "mbm_total_bytes", 580 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, 581 }; 582 583 static struct mon_evt mbm_local_event = { 584 .name = "mbm_local_bytes", 585 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, 586 }; 587 588 /* 589 * Initialize the event list for the resource. 590 * 591 * Note that MBM events are also part of RDT_RESOURCE_L3 resource 592 * because as per the SDM the total and local memory bandwidth 593 * are enumerated as part of L3 monitoring. 594 */ 595 static void l3_mon_evt_init(struct rdt_resource *r) 596 { 597 INIT_LIST_HEAD(&r->evt_list); 598 599 if (is_llc_occupancy_enabled()) 600 list_add_tail(&llc_occupancy_event.list, &r->evt_list); 601 if (is_mbm_total_enabled()) 602 list_add_tail(&mbm_total_event.list, &r->evt_list); 603 if (is_mbm_local_enabled()) 604 list_add_tail(&mbm_local_event.list, &r->evt_list); 605 } 606 607 int rdt_get_mon_l3_config(struct rdt_resource *r) 608 { 609 unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset; 610 unsigned int cl_size = boot_cpu_data.x86_cache_size; 611 int ret; 612 613 r->mon_scale = boot_cpu_data.x86_cache_occ_scale; 614 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; 615 r->mbm_width = MBM_CNTR_WIDTH_BASE; 616 617 if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX) 618 r->mbm_width += mbm_offset; 619 else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX) 620 pr_warn("Ignoring impossible MBM counter offset\n"); 621 622 /* 623 * A reasonable upper limit on the max threshold is the number 624 * of lines tagged per RMID if all RMIDs have the same number of 625 * lines tagged in the LLC. 626 * 627 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. 628 */ 629 resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid; 630 631 /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */ 632 resctrl_cqm_threshold /= r->mon_scale; 633 634 ret = dom_data_init(r); 635 if (ret) 636 return ret; 637 638 l3_mon_evt_init(r); 639 640 r->mon_capable = true; 641 r->mon_enabled = true; 642 643 return 0; 644 } 645