1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resource Director Technology(RDT) 4 * - Monitoring code 5 * 6 * Copyright (C) 2017 Intel Corporation 7 * 8 * Author: 9 * Vikas Shivappa <vikas.shivappa@intel.com> 10 * 11 * This replaces the cqm.c based on perf but we reuse a lot of 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming. 13 * 14 * More information about RDT be found in the Intel (R) x86 Architecture 15 * Software Developer Manual June 2016, volume 3, section 17.17. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <asm/cpu_device_id.h> 21 #include "internal.h" 22 23 struct rmid_entry { 24 u32 rmid; 25 int busy; 26 struct list_head list; 27 }; 28 29 /** 30 * @rmid_free_lru A least recently used list of free RMIDs 31 * These RMIDs are guaranteed to have an occupancy less than the 32 * threshold occupancy 33 */ 34 static LIST_HEAD(rmid_free_lru); 35 36 /** 37 * @rmid_limbo_count count of currently unused but (potentially) 38 * dirty RMIDs. 39 * This counts RMIDs that no one is currently using but that 40 * may have a occupancy value > intel_cqm_threshold. User can change 41 * the threshold occupancy value. 42 */ 43 static unsigned int rmid_limbo_count; 44 45 /** 46 * @rmid_entry - The entry in the limbo and free lists. 47 */ 48 static struct rmid_entry *rmid_ptrs; 49 50 /* 51 * Global boolean for rdt_monitor which is true if any 52 * resource monitoring is enabled. 53 */ 54 bool rdt_mon_capable; 55 56 /* 57 * Global to indicate which monitoring events are enabled. 58 */ 59 unsigned int rdt_mon_features; 60 61 /* 62 * This is the threshold cache occupancy at which we will consider an 63 * RMID available for re-allocation. 64 */ 65 unsigned int resctrl_cqm_threshold; 66 67 #define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5)) 68 69 /* 70 * The correction factor table is documented in Documentation/x86/resctrl.rst. 71 * If rmid > rmid threshold, MBM total and local values should be multiplied 72 * by the correction factor. 73 * 74 * The original table is modified for better code: 75 * 76 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction 77 * for the case. 78 * 2. MBM total and local correction table indexed by core counter which is 79 * equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27. 80 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster 81 * to calculate corrected value by shifting: 82 * corrected_value = (original_value * correction_factor) >> 20 83 */ 84 static const struct mbm_correction_factor_table { 85 u32 rmidthreshold; 86 u64 cf; 87 } mbm_cf_table[] __initconst = { 88 {7, CF(1.000000)}, 89 {15, CF(1.000000)}, 90 {15, CF(0.969650)}, 91 {31, CF(1.000000)}, 92 {31, CF(1.066667)}, 93 {31, CF(0.969650)}, 94 {47, CF(1.142857)}, 95 {63, CF(1.000000)}, 96 {63, CF(1.185115)}, 97 {63, CF(1.066553)}, 98 {79, CF(1.454545)}, 99 {95, CF(1.000000)}, 100 {95, CF(1.230769)}, 101 {95, CF(1.142857)}, 102 {95, CF(1.066667)}, 103 {127, CF(1.000000)}, 104 {127, CF(1.254863)}, 105 {127, CF(1.185255)}, 106 {151, CF(1.000000)}, 107 {127, CF(1.066667)}, 108 {167, CF(1.000000)}, 109 {159, CF(1.454334)}, 110 {183, CF(1.000000)}, 111 {127, CF(0.969744)}, 112 {191, CF(1.280246)}, 113 {191, CF(1.230921)}, 114 {215, CF(1.000000)}, 115 {191, CF(1.143118)}, 116 }; 117 118 static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX; 119 static u64 mbm_cf __read_mostly; 120 121 static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val) 122 { 123 /* Correct MBM value. */ 124 if (rmid > mbm_cf_rmidthreshold) 125 val = (val * mbm_cf) >> 20; 126 127 return val; 128 } 129 130 static inline struct rmid_entry *__rmid_entry(u32 rmid) 131 { 132 struct rmid_entry *entry; 133 134 entry = &rmid_ptrs[rmid]; 135 WARN_ON(entry->rmid != rmid); 136 137 return entry; 138 } 139 140 static u64 __rmid_read(u32 rmid, u32 eventid) 141 { 142 u64 val; 143 144 /* 145 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured 146 * with a valid event code for supported resource type and the bits 147 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID, 148 * IA32_QM_CTR.data (bits 61:0) reports the monitored data. 149 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) 150 * are error bits. 151 */ 152 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); 153 rdmsrl(MSR_IA32_QM_CTR, val); 154 155 return val; 156 } 157 158 static bool rmid_dirty(struct rmid_entry *entry) 159 { 160 u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); 161 162 return val >= resctrl_cqm_threshold; 163 } 164 165 /* 166 * Check the RMIDs that are marked as busy for this domain. If the 167 * reported LLC occupancy is below the threshold clear the busy bit and 168 * decrement the count. If the busy count gets to zero on an RMID, we 169 * free the RMID 170 */ 171 void __check_limbo(struct rdt_domain *d, bool force_free) 172 { 173 struct rmid_entry *entry; 174 struct rdt_resource *r; 175 u32 crmid = 1, nrmid; 176 177 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 178 179 /* 180 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that 181 * are marked as busy for occupancy < threshold. If the occupancy 182 * is less than the threshold decrement the busy counter of the 183 * RMID and move it to the free list when the counter reaches 0. 184 */ 185 for (;;) { 186 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid); 187 if (nrmid >= r->num_rmid) 188 break; 189 190 entry = __rmid_entry(nrmid); 191 if (force_free || !rmid_dirty(entry)) { 192 clear_bit(entry->rmid, d->rmid_busy_llc); 193 if (!--entry->busy) { 194 rmid_limbo_count--; 195 list_add_tail(&entry->list, &rmid_free_lru); 196 } 197 } 198 crmid = nrmid + 1; 199 } 200 } 201 202 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d) 203 { 204 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid; 205 } 206 207 /* 208 * As of now the RMIDs allocation is global. 209 * However we keep track of which packages the RMIDs 210 * are used to optimize the limbo list management. 211 */ 212 int alloc_rmid(void) 213 { 214 struct rmid_entry *entry; 215 216 lockdep_assert_held(&rdtgroup_mutex); 217 218 if (list_empty(&rmid_free_lru)) 219 return rmid_limbo_count ? -EBUSY : -ENOSPC; 220 221 entry = list_first_entry(&rmid_free_lru, 222 struct rmid_entry, list); 223 list_del(&entry->list); 224 225 return entry->rmid; 226 } 227 228 static void add_rmid_to_limbo(struct rmid_entry *entry) 229 { 230 struct rdt_resource *r; 231 struct rdt_domain *d; 232 int cpu; 233 u64 val; 234 235 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 236 237 entry->busy = 0; 238 cpu = get_cpu(); 239 list_for_each_entry(d, &r->domains, list) { 240 if (cpumask_test_cpu(cpu, &d->cpu_mask)) { 241 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); 242 if (val <= resctrl_cqm_threshold) 243 continue; 244 } 245 246 /* 247 * For the first limbo RMID in the domain, 248 * setup up the limbo worker. 249 */ 250 if (!has_busy_rmid(r, d)) 251 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL); 252 set_bit(entry->rmid, d->rmid_busy_llc); 253 entry->busy++; 254 } 255 put_cpu(); 256 257 if (entry->busy) 258 rmid_limbo_count++; 259 else 260 list_add_tail(&entry->list, &rmid_free_lru); 261 } 262 263 void free_rmid(u32 rmid) 264 { 265 struct rmid_entry *entry; 266 267 if (!rmid) 268 return; 269 270 lockdep_assert_held(&rdtgroup_mutex); 271 272 entry = __rmid_entry(rmid); 273 274 if (is_llc_occupancy_enabled()) 275 add_rmid_to_limbo(entry); 276 else 277 list_add_tail(&entry->list, &rmid_free_lru); 278 } 279 280 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) 281 { 282 u64 shift = 64 - width, chunks; 283 284 chunks = (cur_msr << shift) - (prev_msr << shift); 285 return chunks >>= shift; 286 } 287 288 static u64 __mon_event_count(u32 rmid, struct rmid_read *rr) 289 { 290 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(rr->r); 291 struct mbm_state *m; 292 u64 chunks, tval; 293 294 tval = __rmid_read(rmid, rr->evtid); 295 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) { 296 return tval; 297 } 298 switch (rr->evtid) { 299 case QOS_L3_OCCUP_EVENT_ID: 300 rr->val += tval; 301 return 0; 302 case QOS_L3_MBM_TOTAL_EVENT_ID: 303 m = &rr->d->mbm_total[rmid]; 304 break; 305 case QOS_L3_MBM_LOCAL_EVENT_ID: 306 m = &rr->d->mbm_local[rmid]; 307 break; 308 default: 309 /* 310 * Code would never reach here because an invalid 311 * event id would fail the __rmid_read. 312 */ 313 return RMID_VAL_ERROR; 314 } 315 316 if (rr->first) { 317 memset(m, 0, sizeof(struct mbm_state)); 318 m->prev_bw_msr = m->prev_msr = tval; 319 return 0; 320 } 321 322 chunks = mbm_overflow_count(m->prev_msr, tval, hw_res->mbm_width); 323 m->chunks += chunks; 324 m->prev_msr = tval; 325 326 rr->val += get_corrected_mbm_count(rmid, m->chunks); 327 328 return 0; 329 } 330 331 /* 332 * Supporting function to calculate the memory bandwidth 333 * and delta bandwidth in MBps. 334 */ 335 static void mbm_bw_count(u32 rmid, struct rmid_read *rr) 336 { 337 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(rr->r); 338 struct mbm_state *m = &rr->d->mbm_local[rmid]; 339 u64 tval, cur_bw, chunks; 340 341 tval = __rmid_read(rmid, rr->evtid); 342 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) 343 return; 344 345 chunks = mbm_overflow_count(m->prev_bw_msr, tval, hw_res->mbm_width); 346 cur_bw = (get_corrected_mbm_count(rmid, chunks) * hw_res->mon_scale) >> 20; 347 348 if (m->delta_comp) 349 m->delta_bw = abs(cur_bw - m->prev_bw); 350 m->delta_comp = false; 351 m->prev_bw = cur_bw; 352 m->prev_bw_msr = tval; 353 } 354 355 /* 356 * This is called via IPI to read the CQM/MBM counters 357 * on a domain. 358 */ 359 void mon_event_count(void *info) 360 { 361 struct rdtgroup *rdtgrp, *entry; 362 struct rmid_read *rr = info; 363 struct list_head *head; 364 u64 ret_val; 365 366 rdtgrp = rr->rgrp; 367 368 ret_val = __mon_event_count(rdtgrp->mon.rmid, rr); 369 370 /* 371 * For Ctrl groups read data from child monitor groups and 372 * add them together. Count events which are read successfully. 373 * Discard the rmid_read's reporting errors. 374 */ 375 head = &rdtgrp->mon.crdtgrp_list; 376 377 if (rdtgrp->type == RDTCTRL_GROUP) { 378 list_for_each_entry(entry, head, mon.crdtgrp_list) { 379 if (__mon_event_count(entry->mon.rmid, rr) == 0) 380 ret_val = 0; 381 } 382 } 383 384 /* Report error if none of rmid_reads are successful */ 385 if (ret_val) 386 rr->val = ret_val; 387 } 388 389 /* 390 * Feedback loop for MBA software controller (mba_sc) 391 * 392 * mba_sc is a feedback loop where we periodically read MBM counters and 393 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so 394 * that: 395 * 396 * current bandwidth(cur_bw) < user specified bandwidth(user_bw) 397 * 398 * This uses the MBM counters to measure the bandwidth and MBA throttle 399 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the 400 * fact that resctrl rdtgroups have both monitoring and control. 401 * 402 * The frequency of the checks is 1s and we just tag along the MBM overflow 403 * timer. Having 1s interval makes the calculation of bandwidth simpler. 404 * 405 * Although MBA's goal is to restrict the bandwidth to a maximum, there may 406 * be a need to increase the bandwidth to avoid unnecessarily restricting 407 * the L2 <-> L3 traffic. 408 * 409 * Since MBA controls the L2 external bandwidth where as MBM measures the 410 * L3 external bandwidth the following sequence could lead to such a 411 * situation. 412 * 413 * Consider an rdtgroup which had high L3 <-> memory traffic in initial 414 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but 415 * after some time rdtgroup has mostly L2 <-> L3 traffic. 416 * 417 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its 418 * throttle MSRs already have low percentage values. To avoid 419 * unnecessarily restricting such rdtgroups, we also increase the bandwidth. 420 */ 421 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) 422 { 423 u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val; 424 struct mbm_state *pmbm_data, *cmbm_data; 425 struct rdt_hw_resource *hw_r_mba; 426 struct rdt_hw_domain *hw_dom_mba; 427 u32 cur_bw, delta_bw, user_bw; 428 struct rdt_resource *r_mba; 429 struct rdt_domain *dom_mba; 430 struct list_head *head; 431 struct rdtgroup *entry; 432 433 if (!is_mbm_local_enabled()) 434 return; 435 436 hw_r_mba = &rdt_resources_all[RDT_RESOURCE_MBA]; 437 r_mba = &hw_r_mba->r_resctrl; 438 closid = rgrp->closid; 439 rmid = rgrp->mon.rmid; 440 pmbm_data = &dom_mbm->mbm_local[rmid]; 441 442 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); 443 if (!dom_mba) { 444 pr_warn_once("Failure to get domain for MBA update\n"); 445 return; 446 } 447 hw_dom_mba = resctrl_to_arch_dom(dom_mba); 448 449 cur_bw = pmbm_data->prev_bw; 450 user_bw = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); 451 delta_bw = pmbm_data->delta_bw; 452 /* 453 * resctrl_arch_get_config() chooses the mbps/ctrl value to return 454 * based on is_mba_sc(). For now, reach into the hw_dom. 455 */ 456 cur_msr_val = hw_dom_mba->ctrl_val[closid]; 457 458 /* 459 * For Ctrl groups read data from child monitor groups. 460 */ 461 head = &rgrp->mon.crdtgrp_list; 462 list_for_each_entry(entry, head, mon.crdtgrp_list) { 463 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 464 cur_bw += cmbm_data->prev_bw; 465 delta_bw += cmbm_data->delta_bw; 466 } 467 468 /* 469 * Scale up/down the bandwidth linearly for the ctrl group. The 470 * bandwidth step is the bandwidth granularity specified by the 471 * hardware. 472 * 473 * The delta_bw is used when increasing the bandwidth so that we 474 * dont alternately increase and decrease the control values 475 * continuously. 476 * 477 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if 478 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep 479 * switching between 90 and 110 continuously if we only check 480 * cur_bw < user_bw. 481 */ 482 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { 483 new_msr_val = cur_msr_val - r_mba->membw.bw_gran; 484 } else if (cur_msr_val < MAX_MBA_BW && 485 (user_bw > (cur_bw + delta_bw))) { 486 new_msr_val = cur_msr_val + r_mba->membw.bw_gran; 487 } else { 488 return; 489 } 490 491 cur_msr = hw_r_mba->msr_base + closid; 492 wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba)); 493 hw_dom_mba->ctrl_val[closid] = new_msr_val; 494 495 /* 496 * Delta values are updated dynamically package wise for each 497 * rdtgrp every time the throttle MSR changes value. 498 * 499 * This is because (1)the increase in bandwidth is not perfectly 500 * linear and only "approximately" linear even when the hardware 501 * says it is linear.(2)Also since MBA is a core specific 502 * mechanism, the delta values vary based on number of cores used 503 * by the rdtgrp. 504 */ 505 pmbm_data->delta_comp = true; 506 list_for_each_entry(entry, head, mon.crdtgrp_list) { 507 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 508 cmbm_data->delta_comp = true; 509 } 510 } 511 512 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid) 513 { 514 struct rmid_read rr; 515 516 rr.first = false; 517 rr.r = r; 518 rr.d = d; 519 520 /* 521 * This is protected from concurrent reads from user 522 * as both the user and we hold the global mutex. 523 */ 524 if (is_mbm_total_enabled()) { 525 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; 526 __mon_event_count(rmid, &rr); 527 } 528 if (is_mbm_local_enabled()) { 529 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; 530 __mon_event_count(rmid, &rr); 531 532 /* 533 * Call the MBA software controller only for the 534 * control groups and when user has enabled 535 * the software controller explicitly. 536 */ 537 if (is_mba_sc(NULL)) 538 mbm_bw_count(rmid, &rr); 539 } 540 } 541 542 /* 543 * Handler to scan the limbo list and move the RMIDs 544 * to free list whose occupancy < threshold_occupancy. 545 */ 546 void cqm_handle_limbo(struct work_struct *work) 547 { 548 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); 549 int cpu = smp_processor_id(); 550 struct rdt_resource *r; 551 struct rdt_domain *d; 552 553 mutex_lock(&rdtgroup_mutex); 554 555 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 556 d = container_of(work, struct rdt_domain, cqm_limbo.work); 557 558 __check_limbo(d, false); 559 560 if (has_busy_rmid(r, d)) 561 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay); 562 563 mutex_unlock(&rdtgroup_mutex); 564 } 565 566 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms) 567 { 568 unsigned long delay = msecs_to_jiffies(delay_ms); 569 int cpu; 570 571 cpu = cpumask_any(&dom->cpu_mask); 572 dom->cqm_work_cpu = cpu; 573 574 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); 575 } 576 577 void mbm_handle_overflow(struct work_struct *work) 578 { 579 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); 580 struct rdtgroup *prgrp, *crgrp; 581 int cpu = smp_processor_id(); 582 struct list_head *head; 583 struct rdt_resource *r; 584 struct rdt_domain *d; 585 586 mutex_lock(&rdtgroup_mutex); 587 588 if (!static_branch_likely(&rdt_mon_enable_key)) 589 goto out_unlock; 590 591 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 592 d = container_of(work, struct rdt_domain, mbm_over.work); 593 594 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 595 mbm_update(r, d, prgrp->mon.rmid); 596 597 head = &prgrp->mon.crdtgrp_list; 598 list_for_each_entry(crgrp, head, mon.crdtgrp_list) 599 mbm_update(r, d, crgrp->mon.rmid); 600 601 if (is_mba_sc(NULL)) 602 update_mba_bw(prgrp, d); 603 } 604 605 schedule_delayed_work_on(cpu, &d->mbm_over, delay); 606 607 out_unlock: 608 mutex_unlock(&rdtgroup_mutex); 609 } 610 611 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms) 612 { 613 unsigned long delay = msecs_to_jiffies(delay_ms); 614 int cpu; 615 616 if (!static_branch_likely(&rdt_mon_enable_key)) 617 return; 618 cpu = cpumask_any(&dom->cpu_mask); 619 dom->mbm_work_cpu = cpu; 620 schedule_delayed_work_on(cpu, &dom->mbm_over, delay); 621 } 622 623 static int dom_data_init(struct rdt_resource *r) 624 { 625 struct rmid_entry *entry = NULL; 626 int i, nr_rmids; 627 628 nr_rmids = r->num_rmid; 629 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL); 630 if (!rmid_ptrs) 631 return -ENOMEM; 632 633 for (i = 0; i < nr_rmids; i++) { 634 entry = &rmid_ptrs[i]; 635 INIT_LIST_HEAD(&entry->list); 636 637 entry->rmid = i; 638 list_add_tail(&entry->list, &rmid_free_lru); 639 } 640 641 /* 642 * RMID 0 is special and is always allocated. It's used for all 643 * tasks that are not monitored. 644 */ 645 entry = __rmid_entry(0); 646 list_del(&entry->list); 647 648 return 0; 649 } 650 651 static struct mon_evt llc_occupancy_event = { 652 .name = "llc_occupancy", 653 .evtid = QOS_L3_OCCUP_EVENT_ID, 654 }; 655 656 static struct mon_evt mbm_total_event = { 657 .name = "mbm_total_bytes", 658 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, 659 }; 660 661 static struct mon_evt mbm_local_event = { 662 .name = "mbm_local_bytes", 663 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, 664 }; 665 666 /* 667 * Initialize the event list for the resource. 668 * 669 * Note that MBM events are also part of RDT_RESOURCE_L3 resource 670 * because as per the SDM the total and local memory bandwidth 671 * are enumerated as part of L3 monitoring. 672 */ 673 static void l3_mon_evt_init(struct rdt_resource *r) 674 { 675 INIT_LIST_HEAD(&r->evt_list); 676 677 if (is_llc_occupancy_enabled()) 678 list_add_tail(&llc_occupancy_event.list, &r->evt_list); 679 if (is_mbm_total_enabled()) 680 list_add_tail(&mbm_total_event.list, &r->evt_list); 681 if (is_mbm_local_enabled()) 682 list_add_tail(&mbm_local_event.list, &r->evt_list); 683 } 684 685 int rdt_get_mon_l3_config(struct rdt_resource *r) 686 { 687 unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset; 688 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 689 unsigned int cl_size = boot_cpu_data.x86_cache_size; 690 int ret; 691 692 hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale; 693 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; 694 hw_res->mbm_width = MBM_CNTR_WIDTH_BASE; 695 696 if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX) 697 hw_res->mbm_width += mbm_offset; 698 else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX) 699 pr_warn("Ignoring impossible MBM counter offset\n"); 700 701 /* 702 * A reasonable upper limit on the max threshold is the number 703 * of lines tagged per RMID if all RMIDs have the same number of 704 * lines tagged in the LLC. 705 * 706 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. 707 */ 708 resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid; 709 710 /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */ 711 resctrl_cqm_threshold /= hw_res->mon_scale; 712 713 ret = dom_data_init(r); 714 if (ret) 715 return ret; 716 717 l3_mon_evt_init(r); 718 719 r->mon_capable = true; 720 r->mon_enabled = true; 721 722 return 0; 723 } 724 725 void __init intel_rdt_mbm_apply_quirk(void) 726 { 727 int cf_index; 728 729 cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1; 730 if (cf_index >= ARRAY_SIZE(mbm_cf_table)) { 731 pr_info("No MBM correction factor available\n"); 732 return; 733 } 734 735 mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold; 736 mbm_cf = mbm_cf_table[cf_index].cf; 737 } 738