1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resource Director Technology(RDT) 4 * - Monitoring code 5 * 6 * Copyright (C) 2017 Intel Corporation 7 * 8 * Author: 9 * Vikas Shivappa <vikas.shivappa@intel.com> 10 * 11 * This replaces the cqm.c based on perf but we reuse a lot of 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming. 13 * 14 * More information about RDT be found in the Intel (R) x86 Architecture 15 * Software Developer Manual June 2016, volume 3, section 17.17. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/sizes.h> 20 #include <linux/slab.h> 21 22 #include <asm/cpu_device_id.h> 23 #include <asm/resctrl.h> 24 25 #include "internal.h" 26 27 struct rmid_entry { 28 u32 rmid; 29 int busy; 30 struct list_head list; 31 }; 32 33 /** 34 * @rmid_free_lru A least recently used list of free RMIDs 35 * These RMIDs are guaranteed to have an occupancy less than the 36 * threshold occupancy 37 */ 38 static LIST_HEAD(rmid_free_lru); 39 40 /** 41 * @rmid_limbo_count count of currently unused but (potentially) 42 * dirty RMIDs. 43 * This counts RMIDs that no one is currently using but that 44 * may have a occupancy value > resctrl_rmid_realloc_threshold. User can 45 * change the threshold occupancy value. 46 */ 47 static unsigned int rmid_limbo_count; 48 49 /** 50 * @rmid_entry - The entry in the limbo and free lists. 51 */ 52 static struct rmid_entry *rmid_ptrs; 53 54 /* 55 * Global boolean for rdt_monitor which is true if any 56 * resource monitoring is enabled. 57 */ 58 bool rdt_mon_capable; 59 60 /* 61 * Global to indicate which monitoring events are enabled. 62 */ 63 unsigned int rdt_mon_features; 64 65 /* 66 * This is the threshold cache occupancy in bytes at which we will consider an 67 * RMID available for re-allocation. 68 */ 69 unsigned int resctrl_rmid_realloc_threshold; 70 71 /* 72 * This is the maximum value for the reallocation threshold, in bytes. 73 */ 74 unsigned int resctrl_rmid_realloc_limit; 75 76 #define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5)) 77 78 /* 79 * The correction factor table is documented in Documentation/x86/resctrl.rst. 80 * If rmid > rmid threshold, MBM total and local values should be multiplied 81 * by the correction factor. 82 * 83 * The original table is modified for better code: 84 * 85 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction 86 * for the case. 87 * 2. MBM total and local correction table indexed by core counter which is 88 * equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27. 89 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster 90 * to calculate corrected value by shifting: 91 * corrected_value = (original_value * correction_factor) >> 20 92 */ 93 static const struct mbm_correction_factor_table { 94 u32 rmidthreshold; 95 u64 cf; 96 } mbm_cf_table[] __initconst = { 97 {7, CF(1.000000)}, 98 {15, CF(1.000000)}, 99 {15, CF(0.969650)}, 100 {31, CF(1.000000)}, 101 {31, CF(1.066667)}, 102 {31, CF(0.969650)}, 103 {47, CF(1.142857)}, 104 {63, CF(1.000000)}, 105 {63, CF(1.185115)}, 106 {63, CF(1.066553)}, 107 {79, CF(1.454545)}, 108 {95, CF(1.000000)}, 109 {95, CF(1.230769)}, 110 {95, CF(1.142857)}, 111 {95, CF(1.066667)}, 112 {127, CF(1.000000)}, 113 {127, CF(1.254863)}, 114 {127, CF(1.185255)}, 115 {151, CF(1.000000)}, 116 {127, CF(1.066667)}, 117 {167, CF(1.000000)}, 118 {159, CF(1.454334)}, 119 {183, CF(1.000000)}, 120 {127, CF(0.969744)}, 121 {191, CF(1.280246)}, 122 {191, CF(1.230921)}, 123 {215, CF(1.000000)}, 124 {191, CF(1.143118)}, 125 }; 126 127 static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX; 128 static u64 mbm_cf __read_mostly; 129 130 static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val) 131 { 132 /* Correct MBM value. */ 133 if (rmid > mbm_cf_rmidthreshold) 134 val = (val * mbm_cf) >> 20; 135 136 return val; 137 } 138 139 static inline struct rmid_entry *__rmid_entry(u32 rmid) 140 { 141 struct rmid_entry *entry; 142 143 entry = &rmid_ptrs[rmid]; 144 WARN_ON(entry->rmid != rmid); 145 146 return entry; 147 } 148 149 static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val) 150 { 151 u64 msr_val; 152 153 /* 154 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured 155 * with a valid event code for supported resource type and the bits 156 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID, 157 * IA32_QM_CTR.data (bits 61:0) reports the monitored data. 158 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) 159 * are error bits. 160 */ 161 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); 162 rdmsrl(MSR_IA32_QM_CTR, msr_val); 163 164 if (msr_val & RMID_VAL_ERROR) 165 return -EIO; 166 if (msr_val & RMID_VAL_UNAVAIL) 167 return -EINVAL; 168 169 *val = msr_val; 170 return 0; 171 } 172 173 static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom, 174 u32 rmid, 175 enum resctrl_event_id eventid) 176 { 177 switch (eventid) { 178 case QOS_L3_OCCUP_EVENT_ID: 179 return NULL; 180 case QOS_L3_MBM_TOTAL_EVENT_ID: 181 return &hw_dom->arch_mbm_total[rmid]; 182 case QOS_L3_MBM_LOCAL_EVENT_ID: 183 return &hw_dom->arch_mbm_local[rmid]; 184 } 185 186 /* Never expect to get here */ 187 WARN_ON_ONCE(1); 188 189 return NULL; 190 } 191 192 void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d, 193 u32 rmid, enum resctrl_event_id eventid) 194 { 195 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); 196 struct arch_mbm_state *am; 197 198 am = get_arch_mbm_state(hw_dom, rmid, eventid); 199 if (am) { 200 memset(am, 0, sizeof(*am)); 201 202 /* Record any initial, non-zero count value. */ 203 __rmid_read(rmid, eventid, &am->prev_msr); 204 } 205 } 206 207 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) 208 { 209 u64 shift = 64 - width, chunks; 210 211 chunks = (cur_msr << shift) - (prev_msr << shift); 212 return chunks >> shift; 213 } 214 215 int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d, 216 u32 rmid, enum resctrl_event_id eventid, u64 *val) 217 { 218 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 219 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); 220 struct arch_mbm_state *am; 221 u64 msr_val, chunks; 222 int ret; 223 224 if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask)) 225 return -EINVAL; 226 227 ret = __rmid_read(rmid, eventid, &msr_val); 228 if (ret) 229 return ret; 230 231 am = get_arch_mbm_state(hw_dom, rmid, eventid); 232 if (am) { 233 am->chunks += mbm_overflow_count(am->prev_msr, msr_val, 234 hw_res->mbm_width); 235 chunks = get_corrected_mbm_count(rmid, am->chunks); 236 am->prev_msr = msr_val; 237 } else { 238 chunks = msr_val; 239 } 240 241 *val = chunks * hw_res->mon_scale; 242 243 return 0; 244 } 245 246 /* 247 * Check the RMIDs that are marked as busy for this domain. If the 248 * reported LLC occupancy is below the threshold clear the busy bit and 249 * decrement the count. If the busy count gets to zero on an RMID, we 250 * free the RMID 251 */ 252 void __check_limbo(struct rdt_domain *d, bool force_free) 253 { 254 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 255 struct rmid_entry *entry; 256 u32 crmid = 1, nrmid; 257 bool rmid_dirty; 258 u64 val = 0; 259 260 /* 261 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that 262 * are marked as busy for occupancy < threshold. If the occupancy 263 * is less than the threshold decrement the busy counter of the 264 * RMID and move it to the free list when the counter reaches 0. 265 */ 266 for (;;) { 267 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid); 268 if (nrmid >= r->num_rmid) 269 break; 270 271 entry = __rmid_entry(nrmid); 272 273 if (resctrl_arch_rmid_read(r, d, entry->rmid, 274 QOS_L3_OCCUP_EVENT_ID, &val)) { 275 rmid_dirty = true; 276 } else { 277 rmid_dirty = (val >= resctrl_rmid_realloc_threshold); 278 } 279 280 if (force_free || !rmid_dirty) { 281 clear_bit(entry->rmid, d->rmid_busy_llc); 282 if (!--entry->busy) { 283 rmid_limbo_count--; 284 list_add_tail(&entry->list, &rmid_free_lru); 285 } 286 } 287 crmid = nrmid + 1; 288 } 289 } 290 291 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d) 292 { 293 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid; 294 } 295 296 /* 297 * As of now the RMIDs allocation is global. 298 * However we keep track of which packages the RMIDs 299 * are used to optimize the limbo list management. 300 */ 301 int alloc_rmid(void) 302 { 303 struct rmid_entry *entry; 304 305 lockdep_assert_held(&rdtgroup_mutex); 306 307 if (list_empty(&rmid_free_lru)) 308 return rmid_limbo_count ? -EBUSY : -ENOSPC; 309 310 entry = list_first_entry(&rmid_free_lru, 311 struct rmid_entry, list); 312 list_del(&entry->list); 313 314 return entry->rmid; 315 } 316 317 static void add_rmid_to_limbo(struct rmid_entry *entry) 318 { 319 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 320 struct rdt_domain *d; 321 int cpu, err; 322 u64 val = 0; 323 324 entry->busy = 0; 325 cpu = get_cpu(); 326 list_for_each_entry(d, &r->domains, list) { 327 if (cpumask_test_cpu(cpu, &d->cpu_mask)) { 328 err = resctrl_arch_rmid_read(r, d, entry->rmid, 329 QOS_L3_OCCUP_EVENT_ID, 330 &val); 331 if (err || val <= resctrl_rmid_realloc_threshold) 332 continue; 333 } 334 335 /* 336 * For the first limbo RMID in the domain, 337 * setup up the limbo worker. 338 */ 339 if (!has_busy_rmid(r, d)) 340 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL); 341 set_bit(entry->rmid, d->rmid_busy_llc); 342 entry->busy++; 343 } 344 put_cpu(); 345 346 if (entry->busy) 347 rmid_limbo_count++; 348 else 349 list_add_tail(&entry->list, &rmid_free_lru); 350 } 351 352 void free_rmid(u32 rmid) 353 { 354 struct rmid_entry *entry; 355 356 if (!rmid) 357 return; 358 359 lockdep_assert_held(&rdtgroup_mutex); 360 361 entry = __rmid_entry(rmid); 362 363 if (is_llc_occupancy_enabled()) 364 add_rmid_to_limbo(entry); 365 else 366 list_add_tail(&entry->list, &rmid_free_lru); 367 } 368 369 static int __mon_event_count(u32 rmid, struct rmid_read *rr) 370 { 371 struct mbm_state *m; 372 u64 tval = 0; 373 374 if (rr->first) 375 resctrl_arch_reset_rmid(rr->r, rr->d, rmid, rr->evtid); 376 377 rr->err = resctrl_arch_rmid_read(rr->r, rr->d, rmid, rr->evtid, &tval); 378 if (rr->err) 379 return rr->err; 380 381 switch (rr->evtid) { 382 case QOS_L3_OCCUP_EVENT_ID: 383 rr->val += tval; 384 return 0; 385 case QOS_L3_MBM_TOTAL_EVENT_ID: 386 m = &rr->d->mbm_total[rmid]; 387 break; 388 case QOS_L3_MBM_LOCAL_EVENT_ID: 389 m = &rr->d->mbm_local[rmid]; 390 break; 391 default: 392 /* 393 * Code would never reach here because an invalid 394 * event id would fail in resctrl_arch_rmid_read(). 395 */ 396 return -EINVAL; 397 } 398 399 if (rr->first) { 400 memset(m, 0, sizeof(struct mbm_state)); 401 return 0; 402 } 403 404 rr->val += tval; 405 406 return 0; 407 } 408 409 /* 410 * mbm_bw_count() - Update bw count from values previously read by 411 * __mon_event_count(). 412 * @rmid: The rmid used to identify the cached mbm_state. 413 * @rr: The struct rmid_read populated by __mon_event_count(). 414 * 415 * Supporting function to calculate the memory bandwidth 416 * and delta bandwidth in MBps. The chunks value previously read by 417 * __mon_event_count() is compared with the chunks value from the previous 418 * invocation. This must be called once per second to maintain values in MBps. 419 */ 420 static void mbm_bw_count(u32 rmid, struct rmid_read *rr) 421 { 422 struct mbm_state *m = &rr->d->mbm_local[rmid]; 423 u64 cur_bw, bytes, cur_bytes; 424 425 cur_bytes = rr->val; 426 bytes = cur_bytes - m->prev_bw_bytes; 427 m->prev_bw_bytes = cur_bytes; 428 429 cur_bw = bytes / SZ_1M; 430 431 if (m->delta_comp) 432 m->delta_bw = abs(cur_bw - m->prev_bw); 433 m->delta_comp = false; 434 m->prev_bw = cur_bw; 435 } 436 437 /* 438 * This is called via IPI to read the CQM/MBM counters 439 * on a domain. 440 */ 441 void mon_event_count(void *info) 442 { 443 struct rdtgroup *rdtgrp, *entry; 444 struct rmid_read *rr = info; 445 struct list_head *head; 446 int ret; 447 448 rdtgrp = rr->rgrp; 449 450 ret = __mon_event_count(rdtgrp->mon.rmid, rr); 451 452 /* 453 * For Ctrl groups read data from child monitor groups and 454 * add them together. Count events which are read successfully. 455 * Discard the rmid_read's reporting errors. 456 */ 457 head = &rdtgrp->mon.crdtgrp_list; 458 459 if (rdtgrp->type == RDTCTRL_GROUP) { 460 list_for_each_entry(entry, head, mon.crdtgrp_list) { 461 if (__mon_event_count(entry->mon.rmid, rr) == 0) 462 ret = 0; 463 } 464 } 465 466 /* 467 * __mon_event_count() calls for newly created monitor groups may 468 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic. 469 * Discard error if any of the monitor event reads succeeded. 470 */ 471 if (ret == 0) 472 rr->err = 0; 473 } 474 475 /* 476 * Feedback loop for MBA software controller (mba_sc) 477 * 478 * mba_sc is a feedback loop where we periodically read MBM counters and 479 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so 480 * that: 481 * 482 * current bandwidth(cur_bw) < user specified bandwidth(user_bw) 483 * 484 * This uses the MBM counters to measure the bandwidth and MBA throttle 485 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the 486 * fact that resctrl rdtgroups have both monitoring and control. 487 * 488 * The frequency of the checks is 1s and we just tag along the MBM overflow 489 * timer. Having 1s interval makes the calculation of bandwidth simpler. 490 * 491 * Although MBA's goal is to restrict the bandwidth to a maximum, there may 492 * be a need to increase the bandwidth to avoid unnecessarily restricting 493 * the L2 <-> L3 traffic. 494 * 495 * Since MBA controls the L2 external bandwidth where as MBM measures the 496 * L3 external bandwidth the following sequence could lead to such a 497 * situation. 498 * 499 * Consider an rdtgroup which had high L3 <-> memory traffic in initial 500 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but 501 * after some time rdtgroup has mostly L2 <-> L3 traffic. 502 * 503 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its 504 * throttle MSRs already have low percentage values. To avoid 505 * unnecessarily restricting such rdtgroups, we also increase the bandwidth. 506 */ 507 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) 508 { 509 u32 closid, rmid, cur_msr_val, new_msr_val; 510 struct mbm_state *pmbm_data, *cmbm_data; 511 u32 cur_bw, delta_bw, user_bw; 512 struct rdt_resource *r_mba; 513 struct rdt_domain *dom_mba; 514 struct list_head *head; 515 struct rdtgroup *entry; 516 517 if (!is_mbm_local_enabled()) 518 return; 519 520 r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 521 522 closid = rgrp->closid; 523 rmid = rgrp->mon.rmid; 524 pmbm_data = &dom_mbm->mbm_local[rmid]; 525 526 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); 527 if (!dom_mba) { 528 pr_warn_once("Failure to get domain for MBA update\n"); 529 return; 530 } 531 532 cur_bw = pmbm_data->prev_bw; 533 user_bw = dom_mba->mbps_val[closid]; 534 delta_bw = pmbm_data->delta_bw; 535 536 /* MBA resource doesn't support CDP */ 537 cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); 538 539 /* 540 * For Ctrl groups read data from child monitor groups. 541 */ 542 head = &rgrp->mon.crdtgrp_list; 543 list_for_each_entry(entry, head, mon.crdtgrp_list) { 544 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 545 cur_bw += cmbm_data->prev_bw; 546 delta_bw += cmbm_data->delta_bw; 547 } 548 549 /* 550 * Scale up/down the bandwidth linearly for the ctrl group. The 551 * bandwidth step is the bandwidth granularity specified by the 552 * hardware. 553 * 554 * The delta_bw is used when increasing the bandwidth so that we 555 * dont alternately increase and decrease the control values 556 * continuously. 557 * 558 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if 559 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep 560 * switching between 90 and 110 continuously if we only check 561 * cur_bw < user_bw. 562 */ 563 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { 564 new_msr_val = cur_msr_val - r_mba->membw.bw_gran; 565 } else if (cur_msr_val < MAX_MBA_BW && 566 (user_bw > (cur_bw + delta_bw))) { 567 new_msr_val = cur_msr_val + r_mba->membw.bw_gran; 568 } else { 569 return; 570 } 571 572 resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val); 573 574 /* 575 * Delta values are updated dynamically package wise for each 576 * rdtgrp every time the throttle MSR changes value. 577 * 578 * This is because (1)the increase in bandwidth is not perfectly 579 * linear and only "approximately" linear even when the hardware 580 * says it is linear.(2)Also since MBA is a core specific 581 * mechanism, the delta values vary based on number of cores used 582 * by the rdtgrp. 583 */ 584 pmbm_data->delta_comp = true; 585 list_for_each_entry(entry, head, mon.crdtgrp_list) { 586 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 587 cmbm_data->delta_comp = true; 588 } 589 } 590 591 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid) 592 { 593 struct rmid_read rr; 594 595 rr.first = false; 596 rr.r = r; 597 rr.d = d; 598 599 /* 600 * This is protected from concurrent reads from user 601 * as both the user and we hold the global mutex. 602 */ 603 if (is_mbm_total_enabled()) { 604 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; 605 rr.val = 0; 606 __mon_event_count(rmid, &rr); 607 } 608 if (is_mbm_local_enabled()) { 609 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; 610 rr.val = 0; 611 __mon_event_count(rmid, &rr); 612 613 /* 614 * Call the MBA software controller only for the 615 * control groups and when user has enabled 616 * the software controller explicitly. 617 */ 618 if (is_mba_sc(NULL)) 619 mbm_bw_count(rmid, &rr); 620 } 621 } 622 623 /* 624 * Handler to scan the limbo list and move the RMIDs 625 * to free list whose occupancy < threshold_occupancy. 626 */ 627 void cqm_handle_limbo(struct work_struct *work) 628 { 629 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); 630 int cpu = smp_processor_id(); 631 struct rdt_resource *r; 632 struct rdt_domain *d; 633 634 mutex_lock(&rdtgroup_mutex); 635 636 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 637 d = container_of(work, struct rdt_domain, cqm_limbo.work); 638 639 __check_limbo(d, false); 640 641 if (has_busy_rmid(r, d)) 642 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay); 643 644 mutex_unlock(&rdtgroup_mutex); 645 } 646 647 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms) 648 { 649 unsigned long delay = msecs_to_jiffies(delay_ms); 650 int cpu; 651 652 cpu = cpumask_any(&dom->cpu_mask); 653 dom->cqm_work_cpu = cpu; 654 655 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); 656 } 657 658 void mbm_handle_overflow(struct work_struct *work) 659 { 660 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); 661 struct rdtgroup *prgrp, *crgrp; 662 int cpu = smp_processor_id(); 663 struct list_head *head; 664 struct rdt_resource *r; 665 struct rdt_domain *d; 666 667 mutex_lock(&rdtgroup_mutex); 668 669 if (!static_branch_likely(&rdt_mon_enable_key)) 670 goto out_unlock; 671 672 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 673 d = container_of(work, struct rdt_domain, mbm_over.work); 674 675 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 676 mbm_update(r, d, prgrp->mon.rmid); 677 678 head = &prgrp->mon.crdtgrp_list; 679 list_for_each_entry(crgrp, head, mon.crdtgrp_list) 680 mbm_update(r, d, crgrp->mon.rmid); 681 682 if (is_mba_sc(NULL)) 683 update_mba_bw(prgrp, d); 684 } 685 686 schedule_delayed_work_on(cpu, &d->mbm_over, delay); 687 688 out_unlock: 689 mutex_unlock(&rdtgroup_mutex); 690 } 691 692 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms) 693 { 694 unsigned long delay = msecs_to_jiffies(delay_ms); 695 int cpu; 696 697 if (!static_branch_likely(&rdt_mon_enable_key)) 698 return; 699 cpu = cpumask_any(&dom->cpu_mask); 700 dom->mbm_work_cpu = cpu; 701 schedule_delayed_work_on(cpu, &dom->mbm_over, delay); 702 } 703 704 static int dom_data_init(struct rdt_resource *r) 705 { 706 struct rmid_entry *entry = NULL; 707 int i, nr_rmids; 708 709 nr_rmids = r->num_rmid; 710 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL); 711 if (!rmid_ptrs) 712 return -ENOMEM; 713 714 for (i = 0; i < nr_rmids; i++) { 715 entry = &rmid_ptrs[i]; 716 INIT_LIST_HEAD(&entry->list); 717 718 entry->rmid = i; 719 list_add_tail(&entry->list, &rmid_free_lru); 720 } 721 722 /* 723 * RMID 0 is special and is always allocated. It's used for all 724 * tasks that are not monitored. 725 */ 726 entry = __rmid_entry(0); 727 list_del(&entry->list); 728 729 return 0; 730 } 731 732 static struct mon_evt llc_occupancy_event = { 733 .name = "llc_occupancy", 734 .evtid = QOS_L3_OCCUP_EVENT_ID, 735 }; 736 737 static struct mon_evt mbm_total_event = { 738 .name = "mbm_total_bytes", 739 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, 740 }; 741 742 static struct mon_evt mbm_local_event = { 743 .name = "mbm_local_bytes", 744 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, 745 }; 746 747 /* 748 * Initialize the event list for the resource. 749 * 750 * Note that MBM events are also part of RDT_RESOURCE_L3 resource 751 * because as per the SDM the total and local memory bandwidth 752 * are enumerated as part of L3 monitoring. 753 */ 754 static void l3_mon_evt_init(struct rdt_resource *r) 755 { 756 INIT_LIST_HEAD(&r->evt_list); 757 758 if (is_llc_occupancy_enabled()) 759 list_add_tail(&llc_occupancy_event.list, &r->evt_list); 760 if (is_mbm_total_enabled()) 761 list_add_tail(&mbm_total_event.list, &r->evt_list); 762 if (is_mbm_local_enabled()) 763 list_add_tail(&mbm_local_event.list, &r->evt_list); 764 } 765 766 int rdt_get_mon_l3_config(struct rdt_resource *r) 767 { 768 unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset; 769 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 770 unsigned int threshold; 771 int ret; 772 773 resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024; 774 hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale; 775 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; 776 hw_res->mbm_width = MBM_CNTR_WIDTH_BASE; 777 778 if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX) 779 hw_res->mbm_width += mbm_offset; 780 else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX) 781 pr_warn("Ignoring impossible MBM counter offset\n"); 782 783 /* 784 * A reasonable upper limit on the max threshold is the number 785 * of lines tagged per RMID if all RMIDs have the same number of 786 * lines tagged in the LLC. 787 * 788 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. 789 */ 790 threshold = resctrl_rmid_realloc_limit / r->num_rmid; 791 792 /* 793 * Because num_rmid may not be a power of two, round the value 794 * to the nearest multiple of hw_res->mon_scale so it matches a 795 * value the hardware will measure. mon_scale may not be a power of 2. 796 */ 797 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold); 798 799 ret = dom_data_init(r); 800 if (ret) 801 return ret; 802 803 l3_mon_evt_init(r); 804 805 r->mon_capable = true; 806 807 return 0; 808 } 809 810 void __init intel_rdt_mbm_apply_quirk(void) 811 { 812 int cf_index; 813 814 cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1; 815 if (cf_index >= ARRAY_SIZE(mbm_cf_table)) { 816 pr_info("No MBM correction factor available\n"); 817 return; 818 } 819 820 mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold; 821 mbm_cf = mbm_cf_table[cf_index].cf; 822 } 823