xref: /openbmc/linux/arch/x86/kernel/cpu/resctrl/monitor.c (revision 51ad5b54)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Resource Director Technology(RDT)
4  * - Monitoring code
5  *
6  * Copyright (C) 2017 Intel Corporation
7  *
8  * Author:
9  *    Vikas Shivappa <vikas.shivappa@intel.com>
10  *
11  * This replaces the cqm.c based on perf but we reuse a lot of
12  * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13  *
14  * More information about RDT be found in the Intel (R) x86 Architecture
15  * Software Developer Manual June 2016, volume 3, section 17.17.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <asm/cpu_device_id.h>
21 #include "internal.h"
22 
23 struct rmid_entry {
24 	u32				rmid;
25 	int				busy;
26 	struct list_head		list;
27 };
28 
29 /**
30  * @rmid_free_lru    A least recently used list of free RMIDs
31  *     These RMIDs are guaranteed to have an occupancy less than the
32  *     threshold occupancy
33  */
34 static LIST_HEAD(rmid_free_lru);
35 
36 /**
37  * @rmid_limbo_count     count of currently unused but (potentially)
38  *     dirty RMIDs.
39  *     This counts RMIDs that no one is currently using but that
40  *     may have a occupancy value > intel_cqm_threshold. User can change
41  *     the threshold occupancy value.
42  */
43 static unsigned int rmid_limbo_count;
44 
45 /**
46  * @rmid_entry - The entry in the limbo and free lists.
47  */
48 static struct rmid_entry	*rmid_ptrs;
49 
50 /*
51  * Global boolean for rdt_monitor which is true if any
52  * resource monitoring is enabled.
53  */
54 bool rdt_mon_capable;
55 
56 /*
57  * Global to indicate which monitoring events are enabled.
58  */
59 unsigned int rdt_mon_features;
60 
61 /*
62  * This is the threshold cache occupancy at which we will consider an
63  * RMID available for re-allocation.
64  */
65 unsigned int resctrl_cqm_threshold;
66 
67 static inline struct rmid_entry *__rmid_entry(u32 rmid)
68 {
69 	struct rmid_entry *entry;
70 
71 	entry = &rmid_ptrs[rmid];
72 	WARN_ON(entry->rmid != rmid);
73 
74 	return entry;
75 }
76 
77 static u64 __rmid_read(u32 rmid, u32 eventid)
78 {
79 	u64 val;
80 
81 	/*
82 	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
83 	 * with a valid event code for supported resource type and the bits
84 	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
85 	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
86 	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
87 	 * are error bits.
88 	 */
89 	wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
90 	rdmsrl(MSR_IA32_QM_CTR, val);
91 
92 	return val;
93 }
94 
95 static bool rmid_dirty(struct rmid_entry *entry)
96 {
97 	u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
98 
99 	return val >= resctrl_cqm_threshold;
100 }
101 
102 /*
103  * Check the RMIDs that are marked as busy for this domain. If the
104  * reported LLC occupancy is below the threshold clear the busy bit and
105  * decrement the count. If the busy count gets to zero on an RMID, we
106  * free the RMID
107  */
108 void __check_limbo(struct rdt_domain *d, bool force_free)
109 {
110 	struct rmid_entry *entry;
111 	struct rdt_resource *r;
112 	u32 crmid = 1, nrmid;
113 
114 	r = &rdt_resources_all[RDT_RESOURCE_L3];
115 
116 	/*
117 	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
118 	 * are marked as busy for occupancy < threshold. If the occupancy
119 	 * is less than the threshold decrement the busy counter of the
120 	 * RMID and move it to the free list when the counter reaches 0.
121 	 */
122 	for (;;) {
123 		nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
124 		if (nrmid >= r->num_rmid)
125 			break;
126 
127 		entry = __rmid_entry(nrmid);
128 		if (force_free || !rmid_dirty(entry)) {
129 			clear_bit(entry->rmid, d->rmid_busy_llc);
130 			if (!--entry->busy) {
131 				rmid_limbo_count--;
132 				list_add_tail(&entry->list, &rmid_free_lru);
133 			}
134 		}
135 		crmid = nrmid + 1;
136 	}
137 }
138 
139 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
140 {
141 	return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
142 }
143 
144 /*
145  * As of now the RMIDs allocation is global.
146  * However we keep track of which packages the RMIDs
147  * are used to optimize the limbo list management.
148  */
149 int alloc_rmid(void)
150 {
151 	struct rmid_entry *entry;
152 
153 	lockdep_assert_held(&rdtgroup_mutex);
154 
155 	if (list_empty(&rmid_free_lru))
156 		return rmid_limbo_count ? -EBUSY : -ENOSPC;
157 
158 	entry = list_first_entry(&rmid_free_lru,
159 				 struct rmid_entry, list);
160 	list_del(&entry->list);
161 
162 	return entry->rmid;
163 }
164 
165 static void add_rmid_to_limbo(struct rmid_entry *entry)
166 {
167 	struct rdt_resource *r;
168 	struct rdt_domain *d;
169 	int cpu;
170 	u64 val;
171 
172 	r = &rdt_resources_all[RDT_RESOURCE_L3];
173 
174 	entry->busy = 0;
175 	cpu = get_cpu();
176 	list_for_each_entry(d, &r->domains, list) {
177 		if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
178 			val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
179 			if (val <= resctrl_cqm_threshold)
180 				continue;
181 		}
182 
183 		/*
184 		 * For the first limbo RMID in the domain,
185 		 * setup up the limbo worker.
186 		 */
187 		if (!has_busy_rmid(r, d))
188 			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
189 		set_bit(entry->rmid, d->rmid_busy_llc);
190 		entry->busy++;
191 	}
192 	put_cpu();
193 
194 	if (entry->busy)
195 		rmid_limbo_count++;
196 	else
197 		list_add_tail(&entry->list, &rmid_free_lru);
198 }
199 
200 void free_rmid(u32 rmid)
201 {
202 	struct rmid_entry *entry;
203 
204 	if (!rmid)
205 		return;
206 
207 	lockdep_assert_held(&rdtgroup_mutex);
208 
209 	entry = __rmid_entry(rmid);
210 
211 	if (is_llc_occupancy_enabled())
212 		add_rmid_to_limbo(entry);
213 	else
214 		list_add_tail(&entry->list, &rmid_free_lru);
215 }
216 
217 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
218 {
219 	u64 shift = 64 - width, chunks;
220 
221 	chunks = (cur_msr << shift) - (prev_msr << shift);
222 	return chunks >>= shift;
223 }
224 
225 static int __mon_event_count(u32 rmid, struct rmid_read *rr)
226 {
227 	struct mbm_state *m;
228 	u64 chunks, tval;
229 
230 	tval = __rmid_read(rmid, rr->evtid);
231 	if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
232 		rr->val = tval;
233 		return -EINVAL;
234 	}
235 	switch (rr->evtid) {
236 	case QOS_L3_OCCUP_EVENT_ID:
237 		rr->val += tval;
238 		return 0;
239 	case QOS_L3_MBM_TOTAL_EVENT_ID:
240 		m = &rr->d->mbm_total[rmid];
241 		break;
242 	case QOS_L3_MBM_LOCAL_EVENT_ID:
243 		m = &rr->d->mbm_local[rmid];
244 		break;
245 	default:
246 		/*
247 		 * Code would never reach here because
248 		 * an invalid event id would fail the __rmid_read.
249 		 */
250 		return -EINVAL;
251 	}
252 
253 	if (rr->first) {
254 		memset(m, 0, sizeof(struct mbm_state));
255 		m->prev_bw_msr = m->prev_msr = tval;
256 		return 0;
257 	}
258 
259 	chunks = mbm_overflow_count(m->prev_msr, tval, rr->r->mbm_width);
260 	m->chunks += chunks;
261 	m->prev_msr = tval;
262 
263 	rr->val += m->chunks;
264 	return 0;
265 }
266 
267 /*
268  * Supporting function to calculate the memory bandwidth
269  * and delta bandwidth in MBps.
270  */
271 static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
272 {
273 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
274 	struct mbm_state *m = &rr->d->mbm_local[rmid];
275 	u64 tval, cur_bw, chunks;
276 
277 	tval = __rmid_read(rmid, rr->evtid);
278 	if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
279 		return;
280 
281 	chunks = mbm_overflow_count(m->prev_bw_msr, tval, rr->r->mbm_width);
282 	m->chunks_bw += chunks;
283 	m->chunks = m->chunks_bw;
284 	cur_bw = (chunks * r->mon_scale) >> 20;
285 
286 	if (m->delta_comp)
287 		m->delta_bw = abs(cur_bw - m->prev_bw);
288 	m->delta_comp = false;
289 	m->prev_bw = cur_bw;
290 	m->prev_bw_msr = tval;
291 }
292 
293 /*
294  * This is called via IPI to read the CQM/MBM counters
295  * on a domain.
296  */
297 void mon_event_count(void *info)
298 {
299 	struct rdtgroup *rdtgrp, *entry;
300 	struct rmid_read *rr = info;
301 	struct list_head *head;
302 
303 	rdtgrp = rr->rgrp;
304 
305 	if (__mon_event_count(rdtgrp->mon.rmid, rr))
306 		return;
307 
308 	/*
309 	 * For Ctrl groups read data from child monitor groups.
310 	 */
311 	head = &rdtgrp->mon.crdtgrp_list;
312 
313 	if (rdtgrp->type == RDTCTRL_GROUP) {
314 		list_for_each_entry(entry, head, mon.crdtgrp_list) {
315 			if (__mon_event_count(entry->mon.rmid, rr))
316 				return;
317 		}
318 	}
319 }
320 
321 /*
322  * Feedback loop for MBA software controller (mba_sc)
323  *
324  * mba_sc is a feedback loop where we periodically read MBM counters and
325  * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
326  * that:
327  *
328  *   current bandwdith(cur_bw) < user specified bandwidth(user_bw)
329  *
330  * This uses the MBM counters to measure the bandwidth and MBA throttle
331  * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
332  * fact that resctrl rdtgroups have both monitoring and control.
333  *
334  * The frequency of the checks is 1s and we just tag along the MBM overflow
335  * timer. Having 1s interval makes the calculation of bandwidth simpler.
336  *
337  * Although MBA's goal is to restrict the bandwidth to a maximum, there may
338  * be a need to increase the bandwidth to avoid uncecessarily restricting
339  * the L2 <-> L3 traffic.
340  *
341  * Since MBA controls the L2 external bandwidth where as MBM measures the
342  * L3 external bandwidth the following sequence could lead to such a
343  * situation.
344  *
345  * Consider an rdtgroup which had high L3 <-> memory traffic in initial
346  * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
347  * after some time rdtgroup has mostly L2 <-> L3 traffic.
348  *
349  * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
350  * throttle MSRs already have low percentage values.  To avoid
351  * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
352  */
353 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
354 {
355 	u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
356 	struct mbm_state *pmbm_data, *cmbm_data;
357 	u32 cur_bw, delta_bw, user_bw;
358 	struct rdt_resource *r_mba;
359 	struct rdt_domain *dom_mba;
360 	struct list_head *head;
361 	struct rdtgroup *entry;
362 
363 	if (!is_mbm_local_enabled())
364 		return;
365 
366 	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
367 	closid = rgrp->closid;
368 	rmid = rgrp->mon.rmid;
369 	pmbm_data = &dom_mbm->mbm_local[rmid];
370 
371 	dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
372 	if (!dom_mba) {
373 		pr_warn_once("Failure to get domain for MBA update\n");
374 		return;
375 	}
376 
377 	cur_bw = pmbm_data->prev_bw;
378 	user_bw = dom_mba->mbps_val[closid];
379 	delta_bw = pmbm_data->delta_bw;
380 	cur_msr_val = dom_mba->ctrl_val[closid];
381 
382 	/*
383 	 * For Ctrl groups read data from child monitor groups.
384 	 */
385 	head = &rgrp->mon.crdtgrp_list;
386 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
387 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
388 		cur_bw += cmbm_data->prev_bw;
389 		delta_bw += cmbm_data->delta_bw;
390 	}
391 
392 	/*
393 	 * Scale up/down the bandwidth linearly for the ctrl group.  The
394 	 * bandwidth step is the bandwidth granularity specified by the
395 	 * hardware.
396 	 *
397 	 * The delta_bw is used when increasing the bandwidth so that we
398 	 * dont alternately increase and decrease the control values
399 	 * continuously.
400 	 *
401 	 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
402 	 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
403 	 * switching between 90 and 110 continuously if we only check
404 	 * cur_bw < user_bw.
405 	 */
406 	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
407 		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
408 	} else if (cur_msr_val < MAX_MBA_BW &&
409 		   (user_bw > (cur_bw + delta_bw))) {
410 		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
411 	} else {
412 		return;
413 	}
414 
415 	cur_msr = r_mba->msr_base + closid;
416 	wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
417 	dom_mba->ctrl_val[closid] = new_msr_val;
418 
419 	/*
420 	 * Delta values are updated dynamically package wise for each
421 	 * rdtgrp everytime the throttle MSR changes value.
422 	 *
423 	 * This is because (1)the increase in bandwidth is not perfectly
424 	 * linear and only "approximately" linear even when the hardware
425 	 * says it is linear.(2)Also since MBA is a core specific
426 	 * mechanism, the delta values vary based on number of cores used
427 	 * by the rdtgrp.
428 	 */
429 	pmbm_data->delta_comp = true;
430 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
431 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
432 		cmbm_data->delta_comp = true;
433 	}
434 }
435 
436 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid)
437 {
438 	struct rmid_read rr;
439 
440 	rr.first = false;
441 	rr.r = r;
442 	rr.d = d;
443 
444 	/*
445 	 * This is protected from concurrent reads from user
446 	 * as both the user and we hold the global mutex.
447 	 */
448 	if (is_mbm_total_enabled()) {
449 		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
450 		__mon_event_count(rmid, &rr);
451 	}
452 	if (is_mbm_local_enabled()) {
453 		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
454 
455 		/*
456 		 * Call the MBA software controller only for the
457 		 * control groups and when user has enabled
458 		 * the software controller explicitly.
459 		 */
460 		if (!is_mba_sc(NULL))
461 			__mon_event_count(rmid, &rr);
462 		else
463 			mbm_bw_count(rmid, &rr);
464 	}
465 }
466 
467 /*
468  * Handler to scan the limbo list and move the RMIDs
469  * to free list whose occupancy < threshold_occupancy.
470  */
471 void cqm_handle_limbo(struct work_struct *work)
472 {
473 	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
474 	int cpu = smp_processor_id();
475 	struct rdt_resource *r;
476 	struct rdt_domain *d;
477 
478 	mutex_lock(&rdtgroup_mutex);
479 
480 	r = &rdt_resources_all[RDT_RESOURCE_L3];
481 	d = get_domain_from_cpu(cpu, r);
482 
483 	if (!d) {
484 		pr_warn_once("Failure to get domain for limbo worker\n");
485 		goto out_unlock;
486 	}
487 
488 	__check_limbo(d, false);
489 
490 	if (has_busy_rmid(r, d))
491 		schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
492 
493 out_unlock:
494 	mutex_unlock(&rdtgroup_mutex);
495 }
496 
497 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
498 {
499 	unsigned long delay = msecs_to_jiffies(delay_ms);
500 	int cpu;
501 
502 	cpu = cpumask_any(&dom->cpu_mask);
503 	dom->cqm_work_cpu = cpu;
504 
505 	schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
506 }
507 
508 void mbm_handle_overflow(struct work_struct *work)
509 {
510 	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
511 	struct rdtgroup *prgrp, *crgrp;
512 	int cpu = smp_processor_id();
513 	struct list_head *head;
514 	struct rdt_resource *r;
515 	struct rdt_domain *d;
516 
517 	mutex_lock(&rdtgroup_mutex);
518 
519 	if (!static_branch_likely(&rdt_mon_enable_key))
520 		goto out_unlock;
521 
522 	r = &rdt_resources_all[RDT_RESOURCE_L3];
523 
524 	d = get_domain_from_cpu(cpu, r);
525 	if (!d)
526 		goto out_unlock;
527 
528 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
529 		mbm_update(r, d, prgrp->mon.rmid);
530 
531 		head = &prgrp->mon.crdtgrp_list;
532 		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
533 			mbm_update(r, d, crgrp->mon.rmid);
534 
535 		if (is_mba_sc(NULL))
536 			update_mba_bw(prgrp, d);
537 	}
538 
539 	schedule_delayed_work_on(cpu, &d->mbm_over, delay);
540 
541 out_unlock:
542 	mutex_unlock(&rdtgroup_mutex);
543 }
544 
545 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
546 {
547 	unsigned long delay = msecs_to_jiffies(delay_ms);
548 	int cpu;
549 
550 	if (!static_branch_likely(&rdt_mon_enable_key))
551 		return;
552 	cpu = cpumask_any(&dom->cpu_mask);
553 	dom->mbm_work_cpu = cpu;
554 	schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
555 }
556 
557 static int dom_data_init(struct rdt_resource *r)
558 {
559 	struct rmid_entry *entry = NULL;
560 	int i, nr_rmids;
561 
562 	nr_rmids = r->num_rmid;
563 	rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
564 	if (!rmid_ptrs)
565 		return -ENOMEM;
566 
567 	for (i = 0; i < nr_rmids; i++) {
568 		entry = &rmid_ptrs[i];
569 		INIT_LIST_HEAD(&entry->list);
570 
571 		entry->rmid = i;
572 		list_add_tail(&entry->list, &rmid_free_lru);
573 	}
574 
575 	/*
576 	 * RMID 0 is special and is always allocated. It's used for all
577 	 * tasks that are not monitored.
578 	 */
579 	entry = __rmid_entry(0);
580 	list_del(&entry->list);
581 
582 	return 0;
583 }
584 
585 static struct mon_evt llc_occupancy_event = {
586 	.name		= "llc_occupancy",
587 	.evtid		= QOS_L3_OCCUP_EVENT_ID,
588 };
589 
590 static struct mon_evt mbm_total_event = {
591 	.name		= "mbm_total_bytes",
592 	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
593 };
594 
595 static struct mon_evt mbm_local_event = {
596 	.name		= "mbm_local_bytes",
597 	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
598 };
599 
600 /*
601  * Initialize the event list for the resource.
602  *
603  * Note that MBM events are also part of RDT_RESOURCE_L3 resource
604  * because as per the SDM the total and local memory bandwidth
605  * are enumerated as part of L3 monitoring.
606  */
607 static void l3_mon_evt_init(struct rdt_resource *r)
608 {
609 	INIT_LIST_HEAD(&r->evt_list);
610 
611 	if (is_llc_occupancy_enabled())
612 		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
613 	if (is_mbm_total_enabled())
614 		list_add_tail(&mbm_total_event.list, &r->evt_list);
615 	if (is_mbm_local_enabled())
616 		list_add_tail(&mbm_local_event.list, &r->evt_list);
617 }
618 
619 int rdt_get_mon_l3_config(struct rdt_resource *r)
620 {
621 	unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
622 	unsigned int cl_size = boot_cpu_data.x86_cache_size;
623 	int ret;
624 
625 	r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
626 	r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
627 	r->mbm_width = MBM_CNTR_WIDTH_BASE;
628 
629 	if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
630 		r->mbm_width += mbm_offset;
631 	else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
632 		pr_warn("Ignoring impossible MBM counter offset\n");
633 
634 	/*
635 	 * A reasonable upper limit on the max threshold is the number
636 	 * of lines tagged per RMID if all RMIDs have the same number of
637 	 * lines tagged in the LLC.
638 	 *
639 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
640 	 */
641 	resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
642 
643 	/* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
644 	resctrl_cqm_threshold /= r->mon_scale;
645 
646 	ret = dom_data_init(r);
647 	if (ret)
648 		return ret;
649 
650 	l3_mon_evt_init(r);
651 
652 	r->mon_capable = true;
653 	r->mon_enabled = true;
654 
655 	return 0;
656 }
657