1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resource Director Technology(RDT) 4 * - Monitoring code 5 * 6 * Copyright (C) 2017 Intel Corporation 7 * 8 * Author: 9 * Vikas Shivappa <vikas.shivappa@intel.com> 10 * 11 * This replaces the cqm.c based on perf but we reuse a lot of 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming. 13 * 14 * More information about RDT be found in the Intel (R) x86 Architecture 15 * Software Developer Manual June 2016, volume 3, section 17.17. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/sizes.h> 20 #include <linux/slab.h> 21 22 #include <asm/cpu_device_id.h> 23 #include <asm/resctrl.h> 24 25 #include "internal.h" 26 27 struct rmid_entry { 28 u32 rmid; 29 int busy; 30 struct list_head list; 31 }; 32 33 /* 34 * @rmid_free_lru - A least recently used list of free RMIDs 35 * These RMIDs are guaranteed to have an occupancy less than the 36 * threshold occupancy 37 */ 38 static LIST_HEAD(rmid_free_lru); 39 40 /* 41 * @rmid_limbo_count - count of currently unused but (potentially) 42 * dirty RMIDs. 43 * This counts RMIDs that no one is currently using but that 44 * may have a occupancy value > resctrl_rmid_realloc_threshold. User can 45 * change the threshold occupancy value. 46 */ 47 static unsigned int rmid_limbo_count; 48 49 /* 50 * @rmid_entry - The entry in the limbo and free lists. 51 */ 52 static struct rmid_entry *rmid_ptrs; 53 54 /* 55 * Global boolean for rdt_monitor which is true if any 56 * resource monitoring is enabled. 57 */ 58 bool rdt_mon_capable; 59 60 /* 61 * Global to indicate which monitoring events are enabled. 62 */ 63 unsigned int rdt_mon_features; 64 65 /* 66 * This is the threshold cache occupancy in bytes at which we will consider an 67 * RMID available for re-allocation. 68 */ 69 unsigned int resctrl_rmid_realloc_threshold; 70 71 /* 72 * This is the maximum value for the reallocation threshold, in bytes. 73 */ 74 unsigned int resctrl_rmid_realloc_limit; 75 76 #define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5)) 77 78 /* 79 * The correction factor table is documented in Documentation/arch/x86/resctrl.rst. 80 * If rmid > rmid threshold, MBM total and local values should be multiplied 81 * by the correction factor. 82 * 83 * The original table is modified for better code: 84 * 85 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction 86 * for the case. 87 * 2. MBM total and local correction table indexed by core counter which is 88 * equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27. 89 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster 90 * to calculate corrected value by shifting: 91 * corrected_value = (original_value * correction_factor) >> 20 92 */ 93 static const struct mbm_correction_factor_table { 94 u32 rmidthreshold; 95 u64 cf; 96 } mbm_cf_table[] __initconst = { 97 {7, CF(1.000000)}, 98 {15, CF(1.000000)}, 99 {15, CF(0.969650)}, 100 {31, CF(1.000000)}, 101 {31, CF(1.066667)}, 102 {31, CF(0.969650)}, 103 {47, CF(1.142857)}, 104 {63, CF(1.000000)}, 105 {63, CF(1.185115)}, 106 {63, CF(1.066553)}, 107 {79, CF(1.454545)}, 108 {95, CF(1.000000)}, 109 {95, CF(1.230769)}, 110 {95, CF(1.142857)}, 111 {95, CF(1.066667)}, 112 {127, CF(1.000000)}, 113 {127, CF(1.254863)}, 114 {127, CF(1.185255)}, 115 {151, CF(1.000000)}, 116 {127, CF(1.066667)}, 117 {167, CF(1.000000)}, 118 {159, CF(1.454334)}, 119 {183, CF(1.000000)}, 120 {127, CF(0.969744)}, 121 {191, CF(1.280246)}, 122 {191, CF(1.230921)}, 123 {215, CF(1.000000)}, 124 {191, CF(1.143118)}, 125 }; 126 127 static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX; 128 static u64 mbm_cf __read_mostly; 129 130 static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val) 131 { 132 /* Correct MBM value. */ 133 if (rmid > mbm_cf_rmidthreshold) 134 val = (val * mbm_cf) >> 20; 135 136 return val; 137 } 138 139 static inline struct rmid_entry *__rmid_entry(u32 rmid) 140 { 141 struct rmid_entry *entry; 142 143 entry = &rmid_ptrs[rmid]; 144 WARN_ON(entry->rmid != rmid); 145 146 return entry; 147 } 148 149 static int __rmid_read(u32 rmid, enum resctrl_event_id eventid, u64 *val) 150 { 151 u64 msr_val; 152 153 /* 154 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured 155 * with a valid event code for supported resource type and the bits 156 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID, 157 * IA32_QM_CTR.data (bits 61:0) reports the monitored data. 158 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) 159 * are error bits. 160 */ 161 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); 162 rdmsrl(MSR_IA32_QM_CTR, msr_val); 163 164 if (msr_val & RMID_VAL_ERROR) 165 return -EIO; 166 if (msr_val & RMID_VAL_UNAVAIL) 167 return -EINVAL; 168 169 *val = msr_val; 170 return 0; 171 } 172 173 static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_domain *hw_dom, 174 u32 rmid, 175 enum resctrl_event_id eventid) 176 { 177 switch (eventid) { 178 case QOS_L3_OCCUP_EVENT_ID: 179 return NULL; 180 case QOS_L3_MBM_TOTAL_EVENT_ID: 181 return &hw_dom->arch_mbm_total[rmid]; 182 case QOS_L3_MBM_LOCAL_EVENT_ID: 183 return &hw_dom->arch_mbm_local[rmid]; 184 } 185 186 /* Never expect to get here */ 187 WARN_ON_ONCE(1); 188 189 return NULL; 190 } 191 192 void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_domain *d, 193 u32 rmid, enum resctrl_event_id eventid) 194 { 195 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); 196 struct arch_mbm_state *am; 197 198 am = get_arch_mbm_state(hw_dom, rmid, eventid); 199 if (am) { 200 memset(am, 0, sizeof(*am)); 201 202 /* Record any initial, non-zero count value. */ 203 __rmid_read(rmid, eventid, &am->prev_msr); 204 } 205 } 206 207 /* 208 * Assumes that hardware counters are also reset and thus that there is 209 * no need to record initial non-zero counts. 210 */ 211 void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_domain *d) 212 { 213 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); 214 215 if (is_mbm_total_enabled()) 216 memset(hw_dom->arch_mbm_total, 0, 217 sizeof(*hw_dom->arch_mbm_total) * r->num_rmid); 218 219 if (is_mbm_local_enabled()) 220 memset(hw_dom->arch_mbm_local, 0, 221 sizeof(*hw_dom->arch_mbm_local) * r->num_rmid); 222 } 223 224 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) 225 { 226 u64 shift = 64 - width, chunks; 227 228 chunks = (cur_msr << shift) - (prev_msr << shift); 229 return chunks >> shift; 230 } 231 232 int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_domain *d, 233 u32 rmid, enum resctrl_event_id eventid, u64 *val) 234 { 235 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 236 struct rdt_hw_domain *hw_dom = resctrl_to_arch_dom(d); 237 struct arch_mbm_state *am; 238 u64 msr_val, chunks; 239 int ret; 240 241 if (!cpumask_test_cpu(smp_processor_id(), &d->cpu_mask)) 242 return -EINVAL; 243 244 ret = __rmid_read(rmid, eventid, &msr_val); 245 if (ret) 246 return ret; 247 248 am = get_arch_mbm_state(hw_dom, rmid, eventid); 249 if (am) { 250 am->chunks += mbm_overflow_count(am->prev_msr, msr_val, 251 hw_res->mbm_width); 252 chunks = get_corrected_mbm_count(rmid, am->chunks); 253 am->prev_msr = msr_val; 254 } else { 255 chunks = msr_val; 256 } 257 258 *val = chunks * hw_res->mon_scale; 259 260 return 0; 261 } 262 263 /* 264 * Check the RMIDs that are marked as busy for this domain. If the 265 * reported LLC occupancy is below the threshold clear the busy bit and 266 * decrement the count. If the busy count gets to zero on an RMID, we 267 * free the RMID 268 */ 269 void __check_limbo(struct rdt_domain *d, bool force_free) 270 { 271 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 272 struct rmid_entry *entry; 273 u32 crmid = 1, nrmid; 274 bool rmid_dirty; 275 u64 val = 0; 276 277 /* 278 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that 279 * are marked as busy for occupancy < threshold. If the occupancy 280 * is less than the threshold decrement the busy counter of the 281 * RMID and move it to the free list when the counter reaches 0. 282 */ 283 for (;;) { 284 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid); 285 if (nrmid >= r->num_rmid) 286 break; 287 288 entry = __rmid_entry(nrmid); 289 290 if (resctrl_arch_rmid_read(r, d, entry->rmid, 291 QOS_L3_OCCUP_EVENT_ID, &val)) { 292 rmid_dirty = true; 293 } else { 294 rmid_dirty = (val >= resctrl_rmid_realloc_threshold); 295 } 296 297 if (force_free || !rmid_dirty) { 298 clear_bit(entry->rmid, d->rmid_busy_llc); 299 if (!--entry->busy) { 300 rmid_limbo_count--; 301 list_add_tail(&entry->list, &rmid_free_lru); 302 } 303 } 304 crmid = nrmid + 1; 305 } 306 } 307 308 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d) 309 { 310 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid; 311 } 312 313 /* 314 * As of now the RMIDs allocation is global. 315 * However we keep track of which packages the RMIDs 316 * are used to optimize the limbo list management. 317 */ 318 int alloc_rmid(void) 319 { 320 struct rmid_entry *entry; 321 322 lockdep_assert_held(&rdtgroup_mutex); 323 324 if (list_empty(&rmid_free_lru)) 325 return rmid_limbo_count ? -EBUSY : -ENOSPC; 326 327 entry = list_first_entry(&rmid_free_lru, 328 struct rmid_entry, list); 329 list_del(&entry->list); 330 331 return entry->rmid; 332 } 333 334 static void add_rmid_to_limbo(struct rmid_entry *entry) 335 { 336 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 337 struct rdt_domain *d; 338 int cpu, err; 339 u64 val = 0; 340 341 entry->busy = 0; 342 cpu = get_cpu(); 343 list_for_each_entry(d, &r->domains, list) { 344 if (cpumask_test_cpu(cpu, &d->cpu_mask)) { 345 err = resctrl_arch_rmid_read(r, d, entry->rmid, 346 QOS_L3_OCCUP_EVENT_ID, 347 &val); 348 if (err || val <= resctrl_rmid_realloc_threshold) 349 continue; 350 } 351 352 /* 353 * For the first limbo RMID in the domain, 354 * setup up the limbo worker. 355 */ 356 if (!has_busy_rmid(r, d)) 357 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL); 358 set_bit(entry->rmid, d->rmid_busy_llc); 359 entry->busy++; 360 } 361 put_cpu(); 362 363 if (entry->busy) 364 rmid_limbo_count++; 365 else 366 list_add_tail(&entry->list, &rmid_free_lru); 367 } 368 369 void free_rmid(u32 rmid) 370 { 371 struct rmid_entry *entry; 372 373 if (!rmid) 374 return; 375 376 lockdep_assert_held(&rdtgroup_mutex); 377 378 entry = __rmid_entry(rmid); 379 380 if (is_llc_occupancy_enabled()) 381 add_rmid_to_limbo(entry); 382 else 383 list_add_tail(&entry->list, &rmid_free_lru); 384 } 385 386 static struct mbm_state *get_mbm_state(struct rdt_domain *d, u32 rmid, 387 enum resctrl_event_id evtid) 388 { 389 switch (evtid) { 390 case QOS_L3_MBM_TOTAL_EVENT_ID: 391 return &d->mbm_total[rmid]; 392 case QOS_L3_MBM_LOCAL_EVENT_ID: 393 return &d->mbm_local[rmid]; 394 default: 395 return NULL; 396 } 397 } 398 399 static int __mon_event_count(u32 rmid, struct rmid_read *rr) 400 { 401 struct mbm_state *m; 402 u64 tval = 0; 403 404 if (rr->first) { 405 resctrl_arch_reset_rmid(rr->r, rr->d, rmid, rr->evtid); 406 m = get_mbm_state(rr->d, rmid, rr->evtid); 407 if (m) 408 memset(m, 0, sizeof(struct mbm_state)); 409 return 0; 410 } 411 412 rr->err = resctrl_arch_rmid_read(rr->r, rr->d, rmid, rr->evtid, &tval); 413 if (rr->err) 414 return rr->err; 415 416 rr->val += tval; 417 418 return 0; 419 } 420 421 /* 422 * mbm_bw_count() - Update bw count from values previously read by 423 * __mon_event_count(). 424 * @rmid: The rmid used to identify the cached mbm_state. 425 * @rr: The struct rmid_read populated by __mon_event_count(). 426 * 427 * Supporting function to calculate the memory bandwidth 428 * and delta bandwidth in MBps. The chunks value previously read by 429 * __mon_event_count() is compared with the chunks value from the previous 430 * invocation. This must be called once per second to maintain values in MBps. 431 */ 432 static void mbm_bw_count(u32 rmid, struct rmid_read *rr) 433 { 434 struct mbm_state *m = &rr->d->mbm_local[rmid]; 435 u64 cur_bw, bytes, cur_bytes; 436 437 cur_bytes = rr->val; 438 bytes = cur_bytes - m->prev_bw_bytes; 439 m->prev_bw_bytes = cur_bytes; 440 441 cur_bw = bytes / SZ_1M; 442 443 if (m->delta_comp) 444 m->delta_bw = abs(cur_bw - m->prev_bw); 445 m->delta_comp = false; 446 m->prev_bw = cur_bw; 447 } 448 449 /* 450 * This is called via IPI to read the CQM/MBM counters 451 * on a domain. 452 */ 453 void mon_event_count(void *info) 454 { 455 struct rdtgroup *rdtgrp, *entry; 456 struct rmid_read *rr = info; 457 struct list_head *head; 458 int ret; 459 460 rdtgrp = rr->rgrp; 461 462 ret = __mon_event_count(rdtgrp->mon.rmid, rr); 463 464 /* 465 * For Ctrl groups read data from child monitor groups and 466 * add them together. Count events which are read successfully. 467 * Discard the rmid_read's reporting errors. 468 */ 469 head = &rdtgrp->mon.crdtgrp_list; 470 471 if (rdtgrp->type == RDTCTRL_GROUP) { 472 list_for_each_entry(entry, head, mon.crdtgrp_list) { 473 if (__mon_event_count(entry->mon.rmid, rr) == 0) 474 ret = 0; 475 } 476 } 477 478 /* 479 * __mon_event_count() calls for newly created monitor groups may 480 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic. 481 * Discard error if any of the monitor event reads succeeded. 482 */ 483 if (ret == 0) 484 rr->err = 0; 485 } 486 487 /* 488 * Feedback loop for MBA software controller (mba_sc) 489 * 490 * mba_sc is a feedback loop where we periodically read MBM counters and 491 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so 492 * that: 493 * 494 * current bandwidth(cur_bw) < user specified bandwidth(user_bw) 495 * 496 * This uses the MBM counters to measure the bandwidth and MBA throttle 497 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the 498 * fact that resctrl rdtgroups have both monitoring and control. 499 * 500 * The frequency of the checks is 1s and we just tag along the MBM overflow 501 * timer. Having 1s interval makes the calculation of bandwidth simpler. 502 * 503 * Although MBA's goal is to restrict the bandwidth to a maximum, there may 504 * be a need to increase the bandwidth to avoid unnecessarily restricting 505 * the L2 <-> L3 traffic. 506 * 507 * Since MBA controls the L2 external bandwidth where as MBM measures the 508 * L3 external bandwidth the following sequence could lead to such a 509 * situation. 510 * 511 * Consider an rdtgroup which had high L3 <-> memory traffic in initial 512 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but 513 * after some time rdtgroup has mostly L2 <-> L3 traffic. 514 * 515 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its 516 * throttle MSRs already have low percentage values. To avoid 517 * unnecessarily restricting such rdtgroups, we also increase the bandwidth. 518 */ 519 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) 520 { 521 u32 closid, rmid, cur_msr_val, new_msr_val; 522 struct mbm_state *pmbm_data, *cmbm_data; 523 u32 cur_bw, delta_bw, user_bw; 524 struct rdt_resource *r_mba; 525 struct rdt_domain *dom_mba; 526 struct list_head *head; 527 struct rdtgroup *entry; 528 529 if (!is_mbm_local_enabled()) 530 return; 531 532 r_mba = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 533 534 closid = rgrp->closid; 535 rmid = rgrp->mon.rmid; 536 pmbm_data = &dom_mbm->mbm_local[rmid]; 537 538 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); 539 if (!dom_mba) { 540 pr_warn_once("Failure to get domain for MBA update\n"); 541 return; 542 } 543 544 cur_bw = pmbm_data->prev_bw; 545 user_bw = dom_mba->mbps_val[closid]; 546 delta_bw = pmbm_data->delta_bw; 547 548 /* MBA resource doesn't support CDP */ 549 cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); 550 551 /* 552 * For Ctrl groups read data from child monitor groups. 553 */ 554 head = &rgrp->mon.crdtgrp_list; 555 list_for_each_entry(entry, head, mon.crdtgrp_list) { 556 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 557 cur_bw += cmbm_data->prev_bw; 558 delta_bw += cmbm_data->delta_bw; 559 } 560 561 /* 562 * Scale up/down the bandwidth linearly for the ctrl group. The 563 * bandwidth step is the bandwidth granularity specified by the 564 * hardware. 565 * 566 * The delta_bw is used when increasing the bandwidth so that we 567 * dont alternately increase and decrease the control values 568 * continuously. 569 * 570 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if 571 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep 572 * switching between 90 and 110 continuously if we only check 573 * cur_bw < user_bw. 574 */ 575 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { 576 new_msr_val = cur_msr_val - r_mba->membw.bw_gran; 577 } else if (cur_msr_val < MAX_MBA_BW && 578 (user_bw > (cur_bw + delta_bw))) { 579 new_msr_val = cur_msr_val + r_mba->membw.bw_gran; 580 } else { 581 return; 582 } 583 584 resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val); 585 586 /* 587 * Delta values are updated dynamically package wise for each 588 * rdtgrp every time the throttle MSR changes value. 589 * 590 * This is because (1)the increase in bandwidth is not perfectly 591 * linear and only "approximately" linear even when the hardware 592 * says it is linear.(2)Also since MBA is a core specific 593 * mechanism, the delta values vary based on number of cores used 594 * by the rdtgrp. 595 */ 596 pmbm_data->delta_comp = true; 597 list_for_each_entry(entry, head, mon.crdtgrp_list) { 598 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; 599 cmbm_data->delta_comp = true; 600 } 601 } 602 603 static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid) 604 { 605 struct rmid_read rr; 606 607 rr.first = false; 608 rr.r = r; 609 rr.d = d; 610 611 /* 612 * This is protected from concurrent reads from user 613 * as both the user and we hold the global mutex. 614 */ 615 if (is_mbm_total_enabled()) { 616 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; 617 rr.val = 0; 618 __mon_event_count(rmid, &rr); 619 } 620 if (is_mbm_local_enabled()) { 621 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; 622 rr.val = 0; 623 __mon_event_count(rmid, &rr); 624 625 /* 626 * Call the MBA software controller only for the 627 * control groups and when user has enabled 628 * the software controller explicitly. 629 */ 630 if (is_mba_sc(NULL)) 631 mbm_bw_count(rmid, &rr); 632 } 633 } 634 635 /* 636 * Handler to scan the limbo list and move the RMIDs 637 * to free list whose occupancy < threshold_occupancy. 638 */ 639 void cqm_handle_limbo(struct work_struct *work) 640 { 641 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); 642 int cpu = smp_processor_id(); 643 struct rdt_resource *r; 644 struct rdt_domain *d; 645 646 mutex_lock(&rdtgroup_mutex); 647 648 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 649 d = container_of(work, struct rdt_domain, cqm_limbo.work); 650 651 __check_limbo(d, false); 652 653 if (has_busy_rmid(r, d)) 654 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay); 655 656 mutex_unlock(&rdtgroup_mutex); 657 } 658 659 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms) 660 { 661 unsigned long delay = msecs_to_jiffies(delay_ms); 662 int cpu; 663 664 cpu = cpumask_any(&dom->cpu_mask); 665 dom->cqm_work_cpu = cpu; 666 667 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); 668 } 669 670 void mbm_handle_overflow(struct work_struct *work) 671 { 672 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); 673 struct rdtgroup *prgrp, *crgrp; 674 int cpu = smp_processor_id(); 675 struct list_head *head; 676 struct rdt_resource *r; 677 struct rdt_domain *d; 678 679 mutex_lock(&rdtgroup_mutex); 680 681 if (!static_branch_likely(&rdt_mon_enable_key)) 682 goto out_unlock; 683 684 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 685 d = container_of(work, struct rdt_domain, mbm_over.work); 686 687 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 688 mbm_update(r, d, prgrp->mon.rmid); 689 690 head = &prgrp->mon.crdtgrp_list; 691 list_for_each_entry(crgrp, head, mon.crdtgrp_list) 692 mbm_update(r, d, crgrp->mon.rmid); 693 694 if (is_mba_sc(NULL)) 695 update_mba_bw(prgrp, d); 696 } 697 698 schedule_delayed_work_on(cpu, &d->mbm_over, delay); 699 700 out_unlock: 701 mutex_unlock(&rdtgroup_mutex); 702 } 703 704 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms) 705 { 706 unsigned long delay = msecs_to_jiffies(delay_ms); 707 int cpu; 708 709 if (!static_branch_likely(&rdt_mon_enable_key)) 710 return; 711 cpu = cpumask_any(&dom->cpu_mask); 712 dom->mbm_work_cpu = cpu; 713 schedule_delayed_work_on(cpu, &dom->mbm_over, delay); 714 } 715 716 static int dom_data_init(struct rdt_resource *r) 717 { 718 struct rmid_entry *entry = NULL; 719 int i, nr_rmids; 720 721 nr_rmids = r->num_rmid; 722 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL); 723 if (!rmid_ptrs) 724 return -ENOMEM; 725 726 for (i = 0; i < nr_rmids; i++) { 727 entry = &rmid_ptrs[i]; 728 INIT_LIST_HEAD(&entry->list); 729 730 entry->rmid = i; 731 list_add_tail(&entry->list, &rmid_free_lru); 732 } 733 734 /* 735 * RMID 0 is special and is always allocated. It's used for all 736 * tasks that are not monitored. 737 */ 738 entry = __rmid_entry(0); 739 list_del(&entry->list); 740 741 return 0; 742 } 743 744 static struct mon_evt llc_occupancy_event = { 745 .name = "llc_occupancy", 746 .evtid = QOS_L3_OCCUP_EVENT_ID, 747 }; 748 749 static struct mon_evt mbm_total_event = { 750 .name = "mbm_total_bytes", 751 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, 752 }; 753 754 static struct mon_evt mbm_local_event = { 755 .name = "mbm_local_bytes", 756 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, 757 }; 758 759 /* 760 * Initialize the event list for the resource. 761 * 762 * Note that MBM events are also part of RDT_RESOURCE_L3 resource 763 * because as per the SDM the total and local memory bandwidth 764 * are enumerated as part of L3 monitoring. 765 */ 766 static void l3_mon_evt_init(struct rdt_resource *r) 767 { 768 INIT_LIST_HEAD(&r->evt_list); 769 770 if (is_llc_occupancy_enabled()) 771 list_add_tail(&llc_occupancy_event.list, &r->evt_list); 772 if (is_mbm_total_enabled()) 773 list_add_tail(&mbm_total_event.list, &r->evt_list); 774 if (is_mbm_local_enabled()) 775 list_add_tail(&mbm_local_event.list, &r->evt_list); 776 } 777 778 int __init rdt_get_mon_l3_config(struct rdt_resource *r) 779 { 780 unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset; 781 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 782 unsigned int threshold; 783 int ret; 784 785 resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024; 786 hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale; 787 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; 788 hw_res->mbm_width = MBM_CNTR_WIDTH_BASE; 789 790 if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX) 791 hw_res->mbm_width += mbm_offset; 792 else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX) 793 pr_warn("Ignoring impossible MBM counter offset\n"); 794 795 /* 796 * A reasonable upper limit on the max threshold is the number 797 * of lines tagged per RMID if all RMIDs have the same number of 798 * lines tagged in the LLC. 799 * 800 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. 801 */ 802 threshold = resctrl_rmid_realloc_limit / r->num_rmid; 803 804 /* 805 * Because num_rmid may not be a power of two, round the value 806 * to the nearest multiple of hw_res->mon_scale so it matches a 807 * value the hardware will measure. mon_scale may not be a power of 2. 808 */ 809 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold); 810 811 ret = dom_data_init(r); 812 if (ret) 813 return ret; 814 815 if (rdt_cpu_has(X86_FEATURE_BMEC)) { 816 if (rdt_cpu_has(X86_FEATURE_CQM_MBM_TOTAL)) { 817 mbm_total_event.configurable = true; 818 mbm_config_rftype_init("mbm_total_bytes_config"); 819 } 820 if (rdt_cpu_has(X86_FEATURE_CQM_MBM_LOCAL)) { 821 mbm_local_event.configurable = true; 822 mbm_config_rftype_init("mbm_local_bytes_config"); 823 } 824 } 825 826 l3_mon_evt_init(r); 827 828 r->mon_capable = true; 829 830 return 0; 831 } 832 833 void __init intel_rdt_mbm_apply_quirk(void) 834 { 835 int cf_index; 836 837 cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1; 838 if (cf_index >= ARRAY_SIZE(mbm_cf_table)) { 839 pr_info("No MBM correction factor available\n"); 840 return; 841 } 842 843 mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold; 844 mbm_cf = mbm_cf_table[cf_index].cf; 845 } 846