xref: /openbmc/linux/arch/x86/kernel/cpu/resctrl/monitor.c (revision 1fa0a7dc)
1 /*
2  * Resource Director Technology(RDT)
3  * - Monitoring code
4  *
5  * Copyright (C) 2017 Intel Corporation
6  *
7  * Author:
8  *    Vikas Shivappa <vikas.shivappa@intel.com>
9  *
10  * This replaces the cqm.c based on perf but we reuse a lot of
11  * code and datastructures originally from Peter Zijlstra and Matt Fleming.
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * More information about RDT be found in the Intel (R) x86 Architecture
23  * Software Developer Manual June 2016, volume 3, section 17.17.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <asm/cpu_device_id.h>
29 #include "internal.h"
30 
31 struct rmid_entry {
32 	u32				rmid;
33 	int				busy;
34 	struct list_head		list;
35 };
36 
37 /**
38  * @rmid_free_lru    A least recently used list of free RMIDs
39  *     These RMIDs are guaranteed to have an occupancy less than the
40  *     threshold occupancy
41  */
42 static LIST_HEAD(rmid_free_lru);
43 
44 /**
45  * @rmid_limbo_count     count of currently unused but (potentially)
46  *     dirty RMIDs.
47  *     This counts RMIDs that no one is currently using but that
48  *     may have a occupancy value > intel_cqm_threshold. User can change
49  *     the threshold occupancy value.
50  */
51 static unsigned int rmid_limbo_count;
52 
53 /**
54  * @rmid_entry - The entry in the limbo and free lists.
55  */
56 static struct rmid_entry	*rmid_ptrs;
57 
58 /*
59  * Global boolean for rdt_monitor which is true if any
60  * resource monitoring is enabled.
61  */
62 bool rdt_mon_capable;
63 
64 /*
65  * Global to indicate which monitoring events are enabled.
66  */
67 unsigned int rdt_mon_features;
68 
69 /*
70  * This is the threshold cache occupancy at which we will consider an
71  * RMID available for re-allocation.
72  */
73 unsigned int resctrl_cqm_threshold;
74 
75 static inline struct rmid_entry *__rmid_entry(u32 rmid)
76 {
77 	struct rmid_entry *entry;
78 
79 	entry = &rmid_ptrs[rmid];
80 	WARN_ON(entry->rmid != rmid);
81 
82 	return entry;
83 }
84 
85 static u64 __rmid_read(u32 rmid, u32 eventid)
86 {
87 	u64 val;
88 
89 	/*
90 	 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
91 	 * with a valid event code for supported resource type and the bits
92 	 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
93 	 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
94 	 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
95 	 * are error bits.
96 	 */
97 	wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
98 	rdmsrl(MSR_IA32_QM_CTR, val);
99 
100 	return val;
101 }
102 
103 static bool rmid_dirty(struct rmid_entry *entry)
104 {
105 	u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
106 
107 	return val >= resctrl_cqm_threshold;
108 }
109 
110 /*
111  * Check the RMIDs that are marked as busy for this domain. If the
112  * reported LLC occupancy is below the threshold clear the busy bit and
113  * decrement the count. If the busy count gets to zero on an RMID, we
114  * free the RMID
115  */
116 void __check_limbo(struct rdt_domain *d, bool force_free)
117 {
118 	struct rmid_entry *entry;
119 	struct rdt_resource *r;
120 	u32 crmid = 1, nrmid;
121 
122 	r = &rdt_resources_all[RDT_RESOURCE_L3];
123 
124 	/*
125 	 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
126 	 * are marked as busy for occupancy < threshold. If the occupancy
127 	 * is less than the threshold decrement the busy counter of the
128 	 * RMID and move it to the free list when the counter reaches 0.
129 	 */
130 	for (;;) {
131 		nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
132 		if (nrmid >= r->num_rmid)
133 			break;
134 
135 		entry = __rmid_entry(nrmid);
136 		if (force_free || !rmid_dirty(entry)) {
137 			clear_bit(entry->rmid, d->rmid_busy_llc);
138 			if (!--entry->busy) {
139 				rmid_limbo_count--;
140 				list_add_tail(&entry->list, &rmid_free_lru);
141 			}
142 		}
143 		crmid = nrmid + 1;
144 	}
145 }
146 
147 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
148 {
149 	return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
150 }
151 
152 /*
153  * As of now the RMIDs allocation is global.
154  * However we keep track of which packages the RMIDs
155  * are used to optimize the limbo list management.
156  */
157 int alloc_rmid(void)
158 {
159 	struct rmid_entry *entry;
160 
161 	lockdep_assert_held(&rdtgroup_mutex);
162 
163 	if (list_empty(&rmid_free_lru))
164 		return rmid_limbo_count ? -EBUSY : -ENOSPC;
165 
166 	entry = list_first_entry(&rmid_free_lru,
167 				 struct rmid_entry, list);
168 	list_del(&entry->list);
169 
170 	return entry->rmid;
171 }
172 
173 static void add_rmid_to_limbo(struct rmid_entry *entry)
174 {
175 	struct rdt_resource *r;
176 	struct rdt_domain *d;
177 	int cpu;
178 	u64 val;
179 
180 	r = &rdt_resources_all[RDT_RESOURCE_L3];
181 
182 	entry->busy = 0;
183 	cpu = get_cpu();
184 	list_for_each_entry(d, &r->domains, list) {
185 		if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
186 			val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
187 			if (val <= resctrl_cqm_threshold)
188 				continue;
189 		}
190 
191 		/*
192 		 * For the first limbo RMID in the domain,
193 		 * setup up the limbo worker.
194 		 */
195 		if (!has_busy_rmid(r, d))
196 			cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
197 		set_bit(entry->rmid, d->rmid_busy_llc);
198 		entry->busy++;
199 	}
200 	put_cpu();
201 
202 	if (entry->busy)
203 		rmid_limbo_count++;
204 	else
205 		list_add_tail(&entry->list, &rmid_free_lru);
206 }
207 
208 void free_rmid(u32 rmid)
209 {
210 	struct rmid_entry *entry;
211 
212 	if (!rmid)
213 		return;
214 
215 	lockdep_assert_held(&rdtgroup_mutex);
216 
217 	entry = __rmid_entry(rmid);
218 
219 	if (is_llc_occupancy_enabled())
220 		add_rmid_to_limbo(entry);
221 	else
222 		list_add_tail(&entry->list, &rmid_free_lru);
223 }
224 
225 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr)
226 {
227 	u64 shift = 64 - MBM_CNTR_WIDTH, chunks;
228 
229 	chunks = (cur_msr << shift) - (prev_msr << shift);
230 	return chunks >>= shift;
231 }
232 
233 static int __mon_event_count(u32 rmid, struct rmid_read *rr)
234 {
235 	struct mbm_state *m;
236 	u64 chunks, tval;
237 
238 	tval = __rmid_read(rmid, rr->evtid);
239 	if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
240 		rr->val = tval;
241 		return -EINVAL;
242 	}
243 	switch (rr->evtid) {
244 	case QOS_L3_OCCUP_EVENT_ID:
245 		rr->val += tval;
246 		return 0;
247 	case QOS_L3_MBM_TOTAL_EVENT_ID:
248 		m = &rr->d->mbm_total[rmid];
249 		break;
250 	case QOS_L3_MBM_LOCAL_EVENT_ID:
251 		m = &rr->d->mbm_local[rmid];
252 		break;
253 	default:
254 		/*
255 		 * Code would never reach here because
256 		 * an invalid event id would fail the __rmid_read.
257 		 */
258 		return -EINVAL;
259 	}
260 
261 	if (rr->first) {
262 		memset(m, 0, sizeof(struct mbm_state));
263 		m->prev_bw_msr = m->prev_msr = tval;
264 		return 0;
265 	}
266 
267 	chunks = mbm_overflow_count(m->prev_msr, tval);
268 	m->chunks += chunks;
269 	m->prev_msr = tval;
270 
271 	rr->val += m->chunks;
272 	return 0;
273 }
274 
275 /*
276  * Supporting function to calculate the memory bandwidth
277  * and delta bandwidth in MBps.
278  */
279 static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
280 {
281 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
282 	struct mbm_state *m = &rr->d->mbm_local[rmid];
283 	u64 tval, cur_bw, chunks;
284 
285 	tval = __rmid_read(rmid, rr->evtid);
286 	if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
287 		return;
288 
289 	chunks = mbm_overflow_count(m->prev_bw_msr, tval);
290 	m->chunks_bw += chunks;
291 	m->chunks = m->chunks_bw;
292 	cur_bw = (chunks * r->mon_scale) >> 20;
293 
294 	if (m->delta_comp)
295 		m->delta_bw = abs(cur_bw - m->prev_bw);
296 	m->delta_comp = false;
297 	m->prev_bw = cur_bw;
298 	m->prev_bw_msr = tval;
299 }
300 
301 /*
302  * This is called via IPI to read the CQM/MBM counters
303  * on a domain.
304  */
305 void mon_event_count(void *info)
306 {
307 	struct rdtgroup *rdtgrp, *entry;
308 	struct rmid_read *rr = info;
309 	struct list_head *head;
310 
311 	rdtgrp = rr->rgrp;
312 
313 	if (__mon_event_count(rdtgrp->mon.rmid, rr))
314 		return;
315 
316 	/*
317 	 * For Ctrl groups read data from child monitor groups.
318 	 */
319 	head = &rdtgrp->mon.crdtgrp_list;
320 
321 	if (rdtgrp->type == RDTCTRL_GROUP) {
322 		list_for_each_entry(entry, head, mon.crdtgrp_list) {
323 			if (__mon_event_count(entry->mon.rmid, rr))
324 				return;
325 		}
326 	}
327 }
328 
329 /*
330  * Feedback loop for MBA software controller (mba_sc)
331  *
332  * mba_sc is a feedback loop where we periodically read MBM counters and
333  * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
334  * that:
335  *
336  *   current bandwdith(cur_bw) < user specified bandwidth(user_bw)
337  *
338  * This uses the MBM counters to measure the bandwidth and MBA throttle
339  * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
340  * fact that resctrl rdtgroups have both monitoring and control.
341  *
342  * The frequency of the checks is 1s and we just tag along the MBM overflow
343  * timer. Having 1s interval makes the calculation of bandwidth simpler.
344  *
345  * Although MBA's goal is to restrict the bandwidth to a maximum, there may
346  * be a need to increase the bandwidth to avoid uncecessarily restricting
347  * the L2 <-> L3 traffic.
348  *
349  * Since MBA controls the L2 external bandwidth where as MBM measures the
350  * L3 external bandwidth the following sequence could lead to such a
351  * situation.
352  *
353  * Consider an rdtgroup which had high L3 <-> memory traffic in initial
354  * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
355  * after some time rdtgroup has mostly L2 <-> L3 traffic.
356  *
357  * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
358  * throttle MSRs already have low percentage values.  To avoid
359  * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
360  */
361 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
362 {
363 	u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
364 	struct mbm_state *pmbm_data, *cmbm_data;
365 	u32 cur_bw, delta_bw, user_bw;
366 	struct rdt_resource *r_mba;
367 	struct rdt_domain *dom_mba;
368 	struct list_head *head;
369 	struct rdtgroup *entry;
370 
371 	r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
372 	closid = rgrp->closid;
373 	rmid = rgrp->mon.rmid;
374 	pmbm_data = &dom_mbm->mbm_local[rmid];
375 
376 	dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
377 	if (!dom_mba) {
378 		pr_warn_once("Failure to get domain for MBA update\n");
379 		return;
380 	}
381 
382 	cur_bw = pmbm_data->prev_bw;
383 	user_bw = dom_mba->mbps_val[closid];
384 	delta_bw = pmbm_data->delta_bw;
385 	cur_msr_val = dom_mba->ctrl_val[closid];
386 
387 	/*
388 	 * For Ctrl groups read data from child monitor groups.
389 	 */
390 	head = &rgrp->mon.crdtgrp_list;
391 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
392 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
393 		cur_bw += cmbm_data->prev_bw;
394 		delta_bw += cmbm_data->delta_bw;
395 	}
396 
397 	/*
398 	 * Scale up/down the bandwidth linearly for the ctrl group.  The
399 	 * bandwidth step is the bandwidth granularity specified by the
400 	 * hardware.
401 	 *
402 	 * The delta_bw is used when increasing the bandwidth so that we
403 	 * dont alternately increase and decrease the control values
404 	 * continuously.
405 	 *
406 	 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
407 	 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
408 	 * switching between 90 and 110 continuously if we only check
409 	 * cur_bw < user_bw.
410 	 */
411 	if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
412 		new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
413 	} else if (cur_msr_val < MAX_MBA_BW &&
414 		   (user_bw > (cur_bw + delta_bw))) {
415 		new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
416 	} else {
417 		return;
418 	}
419 
420 	cur_msr = r_mba->msr_base + closid;
421 	wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
422 	dom_mba->ctrl_val[closid] = new_msr_val;
423 
424 	/*
425 	 * Delta values are updated dynamically package wise for each
426 	 * rdtgrp everytime the throttle MSR changes value.
427 	 *
428 	 * This is because (1)the increase in bandwidth is not perfectly
429 	 * linear and only "approximately" linear even when the hardware
430 	 * says it is linear.(2)Also since MBA is a core specific
431 	 * mechanism, the delta values vary based on number of cores used
432 	 * by the rdtgrp.
433 	 */
434 	pmbm_data->delta_comp = true;
435 	list_for_each_entry(entry, head, mon.crdtgrp_list) {
436 		cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
437 		cmbm_data->delta_comp = true;
438 	}
439 }
440 
441 static void mbm_update(struct rdt_domain *d, int rmid)
442 {
443 	struct rmid_read rr;
444 
445 	rr.first = false;
446 	rr.d = d;
447 
448 	/*
449 	 * This is protected from concurrent reads from user
450 	 * as both the user and we hold the global mutex.
451 	 */
452 	if (is_mbm_total_enabled()) {
453 		rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
454 		__mon_event_count(rmid, &rr);
455 	}
456 	if (is_mbm_local_enabled()) {
457 		rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
458 
459 		/*
460 		 * Call the MBA software controller only for the
461 		 * control groups and when user has enabled
462 		 * the software controller explicitly.
463 		 */
464 		if (!is_mba_sc(NULL))
465 			__mon_event_count(rmid, &rr);
466 		else
467 			mbm_bw_count(rmid, &rr);
468 	}
469 }
470 
471 /*
472  * Handler to scan the limbo list and move the RMIDs
473  * to free list whose occupancy < threshold_occupancy.
474  */
475 void cqm_handle_limbo(struct work_struct *work)
476 {
477 	unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
478 	int cpu = smp_processor_id();
479 	struct rdt_resource *r;
480 	struct rdt_domain *d;
481 
482 	mutex_lock(&rdtgroup_mutex);
483 
484 	r = &rdt_resources_all[RDT_RESOURCE_L3];
485 	d = get_domain_from_cpu(cpu, r);
486 
487 	if (!d) {
488 		pr_warn_once("Failure to get domain for limbo worker\n");
489 		goto out_unlock;
490 	}
491 
492 	__check_limbo(d, false);
493 
494 	if (has_busy_rmid(r, d))
495 		schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
496 
497 out_unlock:
498 	mutex_unlock(&rdtgroup_mutex);
499 }
500 
501 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
502 {
503 	unsigned long delay = msecs_to_jiffies(delay_ms);
504 	int cpu;
505 
506 	cpu = cpumask_any(&dom->cpu_mask);
507 	dom->cqm_work_cpu = cpu;
508 
509 	schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
510 }
511 
512 void mbm_handle_overflow(struct work_struct *work)
513 {
514 	unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
515 	struct rdtgroup *prgrp, *crgrp;
516 	int cpu = smp_processor_id();
517 	struct list_head *head;
518 	struct rdt_domain *d;
519 
520 	mutex_lock(&rdtgroup_mutex);
521 
522 	if (!static_branch_likely(&rdt_enable_key))
523 		goto out_unlock;
524 
525 	d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]);
526 	if (!d)
527 		goto out_unlock;
528 
529 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
530 		mbm_update(d, prgrp->mon.rmid);
531 
532 		head = &prgrp->mon.crdtgrp_list;
533 		list_for_each_entry(crgrp, head, mon.crdtgrp_list)
534 			mbm_update(d, crgrp->mon.rmid);
535 
536 		if (is_mba_sc(NULL))
537 			update_mba_bw(prgrp, d);
538 	}
539 
540 	schedule_delayed_work_on(cpu, &d->mbm_over, delay);
541 
542 out_unlock:
543 	mutex_unlock(&rdtgroup_mutex);
544 }
545 
546 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
547 {
548 	unsigned long delay = msecs_to_jiffies(delay_ms);
549 	int cpu;
550 
551 	if (!static_branch_likely(&rdt_enable_key))
552 		return;
553 	cpu = cpumask_any(&dom->cpu_mask);
554 	dom->mbm_work_cpu = cpu;
555 	schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
556 }
557 
558 static int dom_data_init(struct rdt_resource *r)
559 {
560 	struct rmid_entry *entry = NULL;
561 	int i, nr_rmids;
562 
563 	nr_rmids = r->num_rmid;
564 	rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
565 	if (!rmid_ptrs)
566 		return -ENOMEM;
567 
568 	for (i = 0; i < nr_rmids; i++) {
569 		entry = &rmid_ptrs[i];
570 		INIT_LIST_HEAD(&entry->list);
571 
572 		entry->rmid = i;
573 		list_add_tail(&entry->list, &rmid_free_lru);
574 	}
575 
576 	/*
577 	 * RMID 0 is special and is always allocated. It's used for all
578 	 * tasks that are not monitored.
579 	 */
580 	entry = __rmid_entry(0);
581 	list_del(&entry->list);
582 
583 	return 0;
584 }
585 
586 static struct mon_evt llc_occupancy_event = {
587 	.name		= "llc_occupancy",
588 	.evtid		= QOS_L3_OCCUP_EVENT_ID,
589 };
590 
591 static struct mon_evt mbm_total_event = {
592 	.name		= "mbm_total_bytes",
593 	.evtid		= QOS_L3_MBM_TOTAL_EVENT_ID,
594 };
595 
596 static struct mon_evt mbm_local_event = {
597 	.name		= "mbm_local_bytes",
598 	.evtid		= QOS_L3_MBM_LOCAL_EVENT_ID,
599 };
600 
601 /*
602  * Initialize the event list for the resource.
603  *
604  * Note that MBM events are also part of RDT_RESOURCE_L3 resource
605  * because as per the SDM the total and local memory bandwidth
606  * are enumerated as part of L3 monitoring.
607  */
608 static void l3_mon_evt_init(struct rdt_resource *r)
609 {
610 	INIT_LIST_HEAD(&r->evt_list);
611 
612 	if (is_llc_occupancy_enabled())
613 		list_add_tail(&llc_occupancy_event.list, &r->evt_list);
614 	if (is_mbm_total_enabled())
615 		list_add_tail(&mbm_total_event.list, &r->evt_list);
616 	if (is_mbm_local_enabled())
617 		list_add_tail(&mbm_local_event.list, &r->evt_list);
618 }
619 
620 int rdt_get_mon_l3_config(struct rdt_resource *r)
621 {
622 	unsigned int cl_size = boot_cpu_data.x86_cache_size;
623 	int ret;
624 
625 	r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
626 	r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
627 
628 	/*
629 	 * A reasonable upper limit on the max threshold is the number
630 	 * of lines tagged per RMID if all RMIDs have the same number of
631 	 * lines tagged in the LLC.
632 	 *
633 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
634 	 */
635 	resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
636 
637 	/* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
638 	resctrl_cqm_threshold /= r->mon_scale;
639 
640 	ret = dom_data_init(r);
641 	if (ret)
642 		return ret;
643 
644 	l3_mon_evt_init(r);
645 
646 	r->mon_capable = true;
647 	r->mon_enabled = true;
648 
649 	return 0;
650 }
651