xref: /openbmc/linux/arch/x86/kernel/cpu/mtrr/mtrr.c (revision fbb6b31a)
1 /*  Generic MTRR (Memory Type Range Register) driver.
2 
3     Copyright (C) 1997-2000  Richard Gooch
4     Copyright (c) 2002	     Patrick Mochel
5 
6     This library is free software; you can redistribute it and/or
7     modify it under the terms of the GNU Library General Public
8     License as published by the Free Software Foundation; either
9     version 2 of the License, or (at your option) any later version.
10 
11     This library is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14     Library General Public License for more details.
15 
16     You should have received a copy of the GNU Library General Public
17     License along with this library; if not, write to the Free
18     Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 
20     Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
21     The postal address is:
22       Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23 
24     Source: "Pentium Pro Family Developer's Manual, Volume 3:
25     Operating System Writer's Guide" (Intel document number 242692),
26     section 11.11.7
27 
28     This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29     on 6-7 March 2002.
30     Source: Intel Architecture Software Developers Manual, Volume 3:
31     System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33 
34 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
35 
36 #include <linux/stop_machine.h>
37 #include <linux/kvm_para.h>
38 #include <linux/uaccess.h>
39 #include <linux/export.h>
40 #include <linux/mutex.h>
41 #include <linux/init.h>
42 #include <linux/sort.h>
43 #include <linux/cpu.h>
44 #include <linux/pci.h>
45 #include <linux/smp.h>
46 #include <linux/syscore_ops.h>
47 #include <linux/rcupdate.h>
48 
49 #include <asm/cpufeature.h>
50 #include <asm/e820/api.h>
51 #include <asm/mtrr.h>
52 #include <asm/msr.h>
53 #include <asm/memtype.h>
54 
55 #include "mtrr.h"
56 
57 /* arch_phys_wc_add returns an MTRR register index plus this offset. */
58 #define MTRR_TO_PHYS_WC_OFFSET 1000
59 
60 u32 num_var_ranges;
61 static bool __mtrr_enabled;
62 
63 static bool mtrr_enabled(void)
64 {
65 	return __mtrr_enabled;
66 }
67 
68 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
69 static DEFINE_MUTEX(mtrr_mutex);
70 
71 u64 size_or_mask, size_and_mask;
72 static bool mtrr_aps_delayed_init;
73 
74 static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM] __ro_after_init;
75 
76 const struct mtrr_ops *mtrr_if;
77 
78 static void set_mtrr(unsigned int reg, unsigned long base,
79 		     unsigned long size, mtrr_type type);
80 
81 void __init set_mtrr_ops(const struct mtrr_ops *ops)
82 {
83 	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
84 		mtrr_ops[ops->vendor] = ops;
85 }
86 
87 /*  Returns non-zero if we have the write-combining memory type  */
88 static int have_wrcomb(void)
89 {
90 	struct pci_dev *dev;
91 
92 	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
93 	if (dev != NULL) {
94 		/*
95 		 * ServerWorks LE chipsets < rev 6 have problems with
96 		 * write-combining. Don't allow it and leave room for other
97 		 * chipsets to be tagged
98 		 */
99 		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
100 		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
101 		    dev->revision <= 5) {
102 			pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n");
103 			pci_dev_put(dev);
104 			return 0;
105 		}
106 		/*
107 		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
108 		 * write combining memory may resulting in data corruption
109 		 */
110 		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
111 		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
112 			pr_info("Intel 450NX MMC detected. Write-combining disabled.\n");
113 			pci_dev_put(dev);
114 			return 0;
115 		}
116 		pci_dev_put(dev);
117 	}
118 	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
119 }
120 
121 /*  This function returns the number of variable MTRRs  */
122 static void __init set_num_var_ranges(void)
123 {
124 	unsigned long config = 0, dummy;
125 
126 	if (use_intel())
127 		rdmsr(MSR_MTRRcap, config, dummy);
128 	else if (is_cpu(AMD) || is_cpu(HYGON))
129 		config = 2;
130 	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
131 		config = 8;
132 
133 	num_var_ranges = config & 0xff;
134 }
135 
136 static void __init init_table(void)
137 {
138 	int i, max;
139 
140 	max = num_var_ranges;
141 	for (i = 0; i < max; i++)
142 		mtrr_usage_table[i] = 1;
143 }
144 
145 struct set_mtrr_data {
146 	unsigned long	smp_base;
147 	unsigned long	smp_size;
148 	unsigned int	smp_reg;
149 	mtrr_type	smp_type;
150 };
151 
152 /**
153  * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
154  * by all the CPUs.
155  * @info: pointer to mtrr configuration data
156  *
157  * Returns nothing.
158  */
159 static int mtrr_rendezvous_handler(void *info)
160 {
161 	struct set_mtrr_data *data = info;
162 
163 	/*
164 	 * We use this same function to initialize the mtrrs during boot,
165 	 * resume, runtime cpu online and on an explicit request to set a
166 	 * specific MTRR.
167 	 *
168 	 * During boot or suspend, the state of the boot cpu's mtrrs has been
169 	 * saved, and we want to replicate that across all the cpus that come
170 	 * online (either at the end of boot or resume or during a runtime cpu
171 	 * online). If we're doing that, @reg is set to something special and on
172 	 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
173 	 * started the boot/resume sequence, this might be a duplicate
174 	 * set_all()).
175 	 */
176 	if (data->smp_reg != ~0U) {
177 		mtrr_if->set(data->smp_reg, data->smp_base,
178 			     data->smp_size, data->smp_type);
179 	} else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
180 		mtrr_if->set_all();
181 	}
182 	return 0;
183 }
184 
185 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
186 {
187 	return type1 == MTRR_TYPE_UNCACHABLE ||
188 	       type2 == MTRR_TYPE_UNCACHABLE ||
189 	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
190 	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
191 }
192 
193 /**
194  * set_mtrr - update mtrrs on all processors
195  * @reg:	mtrr in question
196  * @base:	mtrr base
197  * @size:	mtrr size
198  * @type:	mtrr type
199  *
200  * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
201  *
202  * 1. Queue work to do the following on all processors:
203  * 2. Disable Interrupts
204  * 3. Wait for all procs to do so
205  * 4. Enter no-fill cache mode
206  * 5. Flush caches
207  * 6. Clear PGE bit
208  * 7. Flush all TLBs
209  * 8. Disable all range registers
210  * 9. Update the MTRRs
211  * 10. Enable all range registers
212  * 11. Flush all TLBs and caches again
213  * 12. Enter normal cache mode and reenable caching
214  * 13. Set PGE
215  * 14. Wait for buddies to catch up
216  * 15. Enable interrupts.
217  *
218  * What does that mean for us? Well, stop_machine() will ensure that
219  * the rendezvous handler is started on each CPU. And in lockstep they
220  * do the state transition of disabling interrupts, updating MTRR's
221  * (the CPU vendors may each do it differently, so we call mtrr_if->set()
222  * callback and let them take care of it.) and enabling interrupts.
223  *
224  * Note that the mechanism is the same for UP systems, too; all the SMP stuff
225  * becomes nops.
226  */
227 static void
228 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
229 {
230 	struct set_mtrr_data data = { .smp_reg = reg,
231 				      .smp_base = base,
232 				      .smp_size = size,
233 				      .smp_type = type
234 				    };
235 
236 	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
237 }
238 
239 static void set_mtrr_cpuslocked(unsigned int reg, unsigned long base,
240 				unsigned long size, mtrr_type type)
241 {
242 	struct set_mtrr_data data = { .smp_reg = reg,
243 				      .smp_base = base,
244 				      .smp_size = size,
245 				      .smp_type = type
246 				    };
247 
248 	stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
249 }
250 
251 static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
252 				      unsigned long size, mtrr_type type)
253 {
254 	struct set_mtrr_data data = { .smp_reg = reg,
255 				      .smp_base = base,
256 				      .smp_size = size,
257 				      .smp_type = type
258 				    };
259 
260 	stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
261 				       cpu_callout_mask);
262 }
263 
264 /**
265  * mtrr_add_page - Add a memory type region
266  * @base: Physical base address of region in pages (in units of 4 kB!)
267  * @size: Physical size of region in pages (4 kB)
268  * @type: Type of MTRR desired
269  * @increment: If this is true do usage counting on the region
270  *
271  * Memory type region registers control the caching on newer Intel and
272  * non Intel processors. This function allows drivers to request an
273  * MTRR is added. The details and hardware specifics of each processor's
274  * implementation are hidden from the caller, but nevertheless the
275  * caller should expect to need to provide a power of two size on an
276  * equivalent power of two boundary.
277  *
278  * If the region cannot be added either because all regions are in use
279  * or the CPU cannot support it a negative value is returned. On success
280  * the register number for this entry is returned, but should be treated
281  * as a cookie only.
282  *
283  * On a multiprocessor machine the changes are made to all processors.
284  * This is required on x86 by the Intel processors.
285  *
286  * The available types are
287  *
288  * %MTRR_TYPE_UNCACHABLE - No caching
289  *
290  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
291  *
292  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
293  *
294  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
295  *
296  * BUGS: Needs a quiet flag for the cases where drivers do not mind
297  * failures and do not wish system log messages to be sent.
298  */
299 int mtrr_add_page(unsigned long base, unsigned long size,
300 		  unsigned int type, bool increment)
301 {
302 	unsigned long lbase, lsize;
303 	int i, replace, error;
304 	mtrr_type ltype;
305 
306 	if (!mtrr_enabled())
307 		return -ENXIO;
308 
309 	error = mtrr_if->validate_add_page(base, size, type);
310 	if (error)
311 		return error;
312 
313 	if (type >= MTRR_NUM_TYPES) {
314 		pr_warn("type: %u invalid\n", type);
315 		return -EINVAL;
316 	}
317 
318 	/* If the type is WC, check that this processor supports it */
319 	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
320 		pr_warn("your processor doesn't support write-combining\n");
321 		return -ENOSYS;
322 	}
323 
324 	if (!size) {
325 		pr_warn("zero sized request\n");
326 		return -EINVAL;
327 	}
328 
329 	if ((base | (base + size - 1)) >>
330 	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
331 		pr_warn("base or size exceeds the MTRR width\n");
332 		return -EINVAL;
333 	}
334 
335 	error = -EINVAL;
336 	replace = -1;
337 
338 	/* No CPU hotplug when we change MTRR entries */
339 	cpus_read_lock();
340 
341 	/* Search for existing MTRR  */
342 	mutex_lock(&mtrr_mutex);
343 	for (i = 0; i < num_var_ranges; ++i) {
344 		mtrr_if->get(i, &lbase, &lsize, &ltype);
345 		if (!lsize || base > lbase + lsize - 1 ||
346 		    base + size - 1 < lbase)
347 			continue;
348 		/*
349 		 * At this point we know there is some kind of
350 		 * overlap/enclosure
351 		 */
352 		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
353 			if (base <= lbase &&
354 			    base + size - 1 >= lbase + lsize - 1) {
355 				/*  New region encloses an existing region  */
356 				if (type == ltype) {
357 					replace = replace == -1 ? i : -2;
358 					continue;
359 				} else if (types_compatible(type, ltype))
360 					continue;
361 			}
362 			pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase,
363 				lsize);
364 			goto out;
365 		}
366 		/* New region is enclosed by an existing region */
367 		if (ltype != type) {
368 			if (types_compatible(type, ltype))
369 				continue;
370 			pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n",
371 				base, size, mtrr_attrib_to_str(ltype),
372 				mtrr_attrib_to_str(type));
373 			goto out;
374 		}
375 		if (increment)
376 			++mtrr_usage_table[i];
377 		error = i;
378 		goto out;
379 	}
380 	/* Search for an empty MTRR */
381 	i = mtrr_if->get_free_region(base, size, replace);
382 	if (i >= 0) {
383 		set_mtrr_cpuslocked(i, base, size, type);
384 		if (likely(replace < 0)) {
385 			mtrr_usage_table[i] = 1;
386 		} else {
387 			mtrr_usage_table[i] = mtrr_usage_table[replace];
388 			if (increment)
389 				mtrr_usage_table[i]++;
390 			if (unlikely(replace != i)) {
391 				set_mtrr_cpuslocked(replace, 0, 0, 0);
392 				mtrr_usage_table[replace] = 0;
393 			}
394 		}
395 	} else {
396 		pr_info("no more MTRRs available\n");
397 	}
398 	error = i;
399  out:
400 	mutex_unlock(&mtrr_mutex);
401 	cpus_read_unlock();
402 	return error;
403 }
404 
405 static int mtrr_check(unsigned long base, unsigned long size)
406 {
407 	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
408 		pr_warn("size and base must be multiples of 4 kiB\n");
409 		pr_debug("size: 0x%lx  base: 0x%lx\n", size, base);
410 		dump_stack();
411 		return -1;
412 	}
413 	return 0;
414 }
415 
416 /**
417  * mtrr_add - Add a memory type region
418  * @base: Physical base address of region
419  * @size: Physical size of region
420  * @type: Type of MTRR desired
421  * @increment: If this is true do usage counting on the region
422  *
423  * Memory type region registers control the caching on newer Intel and
424  * non Intel processors. This function allows drivers to request an
425  * MTRR is added. The details and hardware specifics of each processor's
426  * implementation are hidden from the caller, but nevertheless the
427  * caller should expect to need to provide a power of two size on an
428  * equivalent power of two boundary.
429  *
430  * If the region cannot be added either because all regions are in use
431  * or the CPU cannot support it a negative value is returned. On success
432  * the register number for this entry is returned, but should be treated
433  * as a cookie only.
434  *
435  * On a multiprocessor machine the changes are made to all processors.
436  * This is required on x86 by the Intel processors.
437  *
438  * The available types are
439  *
440  * %MTRR_TYPE_UNCACHABLE - No caching
441  *
442  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
443  *
444  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
445  *
446  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
447  *
448  * BUGS: Needs a quiet flag for the cases where drivers do not mind
449  * failures and do not wish system log messages to be sent.
450  */
451 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
452 	     bool increment)
453 {
454 	if (!mtrr_enabled())
455 		return -ENODEV;
456 	if (mtrr_check(base, size))
457 		return -EINVAL;
458 	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
459 			     increment);
460 }
461 
462 /**
463  * mtrr_del_page - delete a memory type region
464  * @reg: Register returned by mtrr_add
465  * @base: Physical base address
466  * @size: Size of region
467  *
468  * If register is supplied then base and size are ignored. This is
469  * how drivers should call it.
470  *
471  * Releases an MTRR region. If the usage count drops to zero the
472  * register is freed and the region returns to default state.
473  * On success the register is returned, on failure a negative error
474  * code.
475  */
476 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
477 {
478 	int i, max;
479 	mtrr_type ltype;
480 	unsigned long lbase, lsize;
481 	int error = -EINVAL;
482 
483 	if (!mtrr_enabled())
484 		return -ENODEV;
485 
486 	max = num_var_ranges;
487 	/* No CPU hotplug when we change MTRR entries */
488 	cpus_read_lock();
489 	mutex_lock(&mtrr_mutex);
490 	if (reg < 0) {
491 		/*  Search for existing MTRR  */
492 		for (i = 0; i < max; ++i) {
493 			mtrr_if->get(i, &lbase, &lsize, &ltype);
494 			if (lbase == base && lsize == size) {
495 				reg = i;
496 				break;
497 			}
498 		}
499 		if (reg < 0) {
500 			pr_debug("no MTRR for %lx000,%lx000 found\n",
501 				 base, size);
502 			goto out;
503 		}
504 	}
505 	if (reg >= max) {
506 		pr_warn("register: %d too big\n", reg);
507 		goto out;
508 	}
509 	mtrr_if->get(reg, &lbase, &lsize, &ltype);
510 	if (lsize < 1) {
511 		pr_warn("MTRR %d not used\n", reg);
512 		goto out;
513 	}
514 	if (mtrr_usage_table[reg] < 1) {
515 		pr_warn("reg: %d has count=0\n", reg);
516 		goto out;
517 	}
518 	if (--mtrr_usage_table[reg] < 1)
519 		set_mtrr_cpuslocked(reg, 0, 0, 0);
520 	error = reg;
521  out:
522 	mutex_unlock(&mtrr_mutex);
523 	cpus_read_unlock();
524 	return error;
525 }
526 
527 /**
528  * mtrr_del - delete a memory type region
529  * @reg: Register returned by mtrr_add
530  * @base: Physical base address
531  * @size: Size of region
532  *
533  * If register is supplied then base and size are ignored. This is
534  * how drivers should call it.
535  *
536  * Releases an MTRR region. If the usage count drops to zero the
537  * register is freed and the region returns to default state.
538  * On success the register is returned, on failure a negative error
539  * code.
540  */
541 int mtrr_del(int reg, unsigned long base, unsigned long size)
542 {
543 	if (!mtrr_enabled())
544 		return -ENODEV;
545 	if (mtrr_check(base, size))
546 		return -EINVAL;
547 	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
548 }
549 
550 /**
551  * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
552  * @base: Physical base address
553  * @size: Size of region
554  *
555  * If PAT is available, this does nothing.  If PAT is unavailable, it
556  * attempts to add a WC MTRR covering size bytes starting at base and
557  * logs an error if this fails.
558  *
559  * The called should provide a power of two size on an equivalent
560  * power of two boundary.
561  *
562  * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
563  * but drivers should not try to interpret that return value.
564  */
565 int arch_phys_wc_add(unsigned long base, unsigned long size)
566 {
567 	int ret;
568 
569 	if (pat_enabled() || !mtrr_enabled())
570 		return 0;  /* Success!  (We don't need to do anything.) */
571 
572 	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
573 	if (ret < 0) {
574 		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
575 			(void *)base, (void *)(base + size - 1));
576 		return ret;
577 	}
578 	return ret + MTRR_TO_PHYS_WC_OFFSET;
579 }
580 EXPORT_SYMBOL(arch_phys_wc_add);
581 
582 /*
583  * arch_phys_wc_del - undoes arch_phys_wc_add
584  * @handle: Return value from arch_phys_wc_add
585  *
586  * This cleans up after mtrr_add_wc_if_needed.
587  *
588  * The API guarantees that mtrr_del_wc_if_needed(error code) and
589  * mtrr_del_wc_if_needed(0) do nothing.
590  */
591 void arch_phys_wc_del(int handle)
592 {
593 	if (handle >= 1) {
594 		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
595 		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
596 	}
597 }
598 EXPORT_SYMBOL(arch_phys_wc_del);
599 
600 /*
601  * arch_phys_wc_index - translates arch_phys_wc_add's return value
602  * @handle: Return value from arch_phys_wc_add
603  *
604  * This will turn the return value from arch_phys_wc_add into an mtrr
605  * index suitable for debugging.
606  *
607  * Note: There is no legitimate use for this function, except possibly
608  * in printk line.  Alas there is an illegitimate use in some ancient
609  * drm ioctls.
610  */
611 int arch_phys_wc_index(int handle)
612 {
613 	if (handle < MTRR_TO_PHYS_WC_OFFSET)
614 		return -1;
615 	else
616 		return handle - MTRR_TO_PHYS_WC_OFFSET;
617 }
618 EXPORT_SYMBOL_GPL(arch_phys_wc_index);
619 
620 /*
621  * HACK ALERT!
622  * These should be called implicitly, but we can't yet until all the initcall
623  * stuff is done...
624  */
625 static void __init init_ifs(void)
626 {
627 #ifndef CONFIG_X86_64
628 	amd_init_mtrr();
629 	cyrix_init_mtrr();
630 	centaur_init_mtrr();
631 #endif
632 }
633 
634 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
635  * MTRR driver doesn't require this
636  */
637 struct mtrr_value {
638 	mtrr_type	ltype;
639 	unsigned long	lbase;
640 	unsigned long	lsize;
641 };
642 
643 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
644 
645 static int mtrr_save(void)
646 {
647 	int i;
648 
649 	for (i = 0; i < num_var_ranges; i++) {
650 		mtrr_if->get(i, &mtrr_value[i].lbase,
651 				&mtrr_value[i].lsize,
652 				&mtrr_value[i].ltype);
653 	}
654 	return 0;
655 }
656 
657 static void mtrr_restore(void)
658 {
659 	int i;
660 
661 	for (i = 0; i < num_var_ranges; i++) {
662 		if (mtrr_value[i].lsize) {
663 			set_mtrr(i, mtrr_value[i].lbase,
664 				    mtrr_value[i].lsize,
665 				    mtrr_value[i].ltype);
666 		}
667 	}
668 }
669 
670 
671 
672 static struct syscore_ops mtrr_syscore_ops = {
673 	.suspend	= mtrr_save,
674 	.resume		= mtrr_restore,
675 };
676 
677 int __initdata changed_by_mtrr_cleanup;
678 
679 #define SIZE_OR_MASK_BITS(n)  (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
680 /**
681  * mtrr_bp_init - initialize mtrrs on the boot CPU
682  *
683  * This needs to be called early; before any of the other CPUs are
684  * initialized (i.e. before smp_init()).
685  *
686  */
687 void __init mtrr_bp_init(void)
688 {
689 	u32 phys_addr;
690 
691 	init_ifs();
692 
693 	phys_addr = 32;
694 
695 	if (boot_cpu_has(X86_FEATURE_MTRR)) {
696 		mtrr_if = &generic_mtrr_ops;
697 		size_or_mask = SIZE_OR_MASK_BITS(36);
698 		size_and_mask = 0x00f00000;
699 		phys_addr = 36;
700 
701 		/*
702 		 * This is an AMD specific MSR, but we assume(hope?) that
703 		 * Intel will implement it too when they extend the address
704 		 * bus of the Xeon.
705 		 */
706 		if (cpuid_eax(0x80000000) >= 0x80000008) {
707 			phys_addr = cpuid_eax(0x80000008) & 0xff;
708 			/* CPUID workaround for Intel 0F33/0F34 CPU */
709 			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
710 			    boot_cpu_data.x86 == 0xF &&
711 			    boot_cpu_data.x86_model == 0x3 &&
712 			    (boot_cpu_data.x86_stepping == 0x3 ||
713 			     boot_cpu_data.x86_stepping == 0x4))
714 				phys_addr = 36;
715 
716 			size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
717 			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
718 		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
719 			   boot_cpu_data.x86 == 6) {
720 			/*
721 			 * VIA C* family have Intel style MTRRs,
722 			 * but don't support PAE
723 			 */
724 			size_or_mask = SIZE_OR_MASK_BITS(32);
725 			size_and_mask = 0;
726 			phys_addr = 32;
727 		}
728 	} else {
729 		switch (boot_cpu_data.x86_vendor) {
730 		case X86_VENDOR_AMD:
731 			if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
732 				/* Pre-Athlon (K6) AMD CPU MTRRs */
733 				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
734 				size_or_mask = SIZE_OR_MASK_BITS(32);
735 				size_and_mask = 0;
736 			}
737 			break;
738 		case X86_VENDOR_CENTAUR:
739 			if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
740 				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
741 				size_or_mask = SIZE_OR_MASK_BITS(32);
742 				size_and_mask = 0;
743 			}
744 			break;
745 		case X86_VENDOR_CYRIX:
746 			if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
747 				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
748 				size_or_mask = SIZE_OR_MASK_BITS(32);
749 				size_and_mask = 0;
750 			}
751 			break;
752 		default:
753 			break;
754 		}
755 	}
756 
757 	if (mtrr_if) {
758 		__mtrr_enabled = true;
759 		set_num_var_ranges();
760 		init_table();
761 		if (use_intel()) {
762 			/* BIOS may override */
763 			__mtrr_enabled = get_mtrr_state();
764 
765 			if (mtrr_enabled())
766 				mtrr_bp_pat_init();
767 
768 			if (mtrr_cleanup(phys_addr)) {
769 				changed_by_mtrr_cleanup = 1;
770 				mtrr_if->set_all();
771 			}
772 		}
773 	}
774 
775 	if (!mtrr_enabled()) {
776 		pr_info("Disabled\n");
777 
778 		/*
779 		 * PAT initialization relies on MTRR's rendezvous handler.
780 		 * Skip PAT init until the handler can initialize both
781 		 * features independently.
782 		 */
783 		pat_disable("MTRRs disabled, skipping PAT initialization too.");
784 	}
785 }
786 
787 void mtrr_ap_init(void)
788 {
789 	if (!mtrr_enabled())
790 		return;
791 
792 	if (!use_intel() || mtrr_aps_delayed_init)
793 		return;
794 
795 	/*
796 	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
797 	 * changed, but this routine will be called in cpu boot time,
798 	 * holding the lock breaks it.
799 	 *
800 	 * This routine is called in two cases:
801 	 *
802 	 *   1. very early time of software resume, when there absolutely
803 	 *      isn't mtrr entry changes;
804 	 *
805 	 *   2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
806 	 *      lock to prevent mtrr entry changes
807 	 */
808 	set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
809 }
810 
811 /**
812  * mtrr_save_state - Save current fixed-range MTRR state of the first
813  *	cpu in cpu_online_mask.
814  */
815 void mtrr_save_state(void)
816 {
817 	int first_cpu;
818 
819 	if (!mtrr_enabled())
820 		return;
821 
822 	first_cpu = cpumask_first(cpu_online_mask);
823 	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
824 }
825 
826 void set_mtrr_aps_delayed_init(void)
827 {
828 	if (!mtrr_enabled())
829 		return;
830 	if (!use_intel())
831 		return;
832 
833 	mtrr_aps_delayed_init = true;
834 }
835 
836 /*
837  * Delayed MTRR initialization for all AP's
838  */
839 void mtrr_aps_init(void)
840 {
841 	if (!use_intel() || !mtrr_enabled())
842 		return;
843 
844 	/*
845 	 * Check if someone has requested the delay of AP MTRR initialization,
846 	 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
847 	 * then we are done.
848 	 */
849 	if (!mtrr_aps_delayed_init)
850 		return;
851 
852 	set_mtrr(~0U, 0, 0, 0);
853 	mtrr_aps_delayed_init = false;
854 }
855 
856 void mtrr_bp_restore(void)
857 {
858 	if (!use_intel() || !mtrr_enabled())
859 		return;
860 
861 	mtrr_if->set_all();
862 }
863 
864 static int __init mtrr_init_finialize(void)
865 {
866 	if (!mtrr_enabled())
867 		return 0;
868 
869 	if (use_intel()) {
870 		if (!changed_by_mtrr_cleanup)
871 			mtrr_state_warn();
872 		return 0;
873 	}
874 
875 	/*
876 	 * The CPU has no MTRR and seems to not support SMP. They have
877 	 * specific drivers, we use a tricky method to support
878 	 * suspend/resume for them.
879 	 *
880 	 * TBD: is there any system with such CPU which supports
881 	 * suspend/resume? If no, we should remove the code.
882 	 */
883 	register_syscore_ops(&mtrr_syscore_ops);
884 
885 	return 0;
886 }
887 subsys_initcall(mtrr_init_finialize);
888