xref: /openbmc/linux/arch/x86/kernel/cpu/mtrr/mtrr.c (revision ef4290e6)
1 /*  Generic MTRR (Memory Type Range Register) driver.
2 
3     Copyright (C) 1997-2000  Richard Gooch
4     Copyright (c) 2002	     Patrick Mochel
5 
6     This library is free software; you can redistribute it and/or
7     modify it under the terms of the GNU Library General Public
8     License as published by the Free Software Foundation; either
9     version 2 of the License, or (at your option) any later version.
10 
11     This library is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14     Library General Public License for more details.
15 
16     You should have received a copy of the GNU Library General Public
17     License along with this library; if not, write to the Free
18     Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 
20     Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
21     The postal address is:
22       Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23 
24     Source: "Pentium Pro Family Developer's Manual, Volume 3:
25     Operating System Writer's Guide" (Intel document number 242692),
26     section 11.11.7
27 
28     This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29     on 6-7 March 2002.
30     Source: Intel Architecture Software Developers Manual, Volume 3:
31     System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33 
34 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
35 
36 #include <linux/stop_machine.h>
37 #include <linux/kvm_para.h>
38 #include <linux/uaccess.h>
39 #include <linux/export.h>
40 #include <linux/mutex.h>
41 #include <linux/init.h>
42 #include <linux/sort.h>
43 #include <linux/cpu.h>
44 #include <linux/pci.h>
45 #include <linux/smp.h>
46 #include <linux/syscore_ops.h>
47 #include <linux/rcupdate.h>
48 
49 #include <asm/cacheinfo.h>
50 #include <asm/cpufeature.h>
51 #include <asm/e820/api.h>
52 #include <asm/mtrr.h>
53 #include <asm/msr.h>
54 #include <asm/memtype.h>
55 
56 #include "mtrr.h"
57 
58 /* arch_phys_wc_add returns an MTRR register index plus this offset. */
59 #define MTRR_TO_PHYS_WC_OFFSET 1000
60 
61 u32 num_var_ranges;
62 static bool mtrr_enabled(void)
63 {
64 	return !!mtrr_if;
65 }
66 
67 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
68 static DEFINE_MUTEX(mtrr_mutex);
69 
70 u64 size_or_mask, size_and_mask;
71 
72 const struct mtrr_ops *mtrr_if;
73 
74 /*  Returns non-zero if we have the write-combining memory type  */
75 static int have_wrcomb(void)
76 {
77 	struct pci_dev *dev;
78 
79 	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
80 	if (dev != NULL) {
81 		/*
82 		 * ServerWorks LE chipsets < rev 6 have problems with
83 		 * write-combining. Don't allow it and leave room for other
84 		 * chipsets to be tagged
85 		 */
86 		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
87 		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
88 		    dev->revision <= 5) {
89 			pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n");
90 			pci_dev_put(dev);
91 			return 0;
92 		}
93 		/*
94 		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
95 		 * write combining memory may resulting in data corruption
96 		 */
97 		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
98 		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
99 			pr_info("Intel 450NX MMC detected. Write-combining disabled.\n");
100 			pci_dev_put(dev);
101 			return 0;
102 		}
103 		pci_dev_put(dev);
104 	}
105 	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
106 }
107 
108 /*  This function returns the number of variable MTRRs  */
109 static void __init set_num_var_ranges(bool use_generic)
110 {
111 	unsigned long config = 0, dummy;
112 
113 	if (use_generic)
114 		rdmsr(MSR_MTRRcap, config, dummy);
115 	else if (is_cpu(AMD) || is_cpu(HYGON))
116 		config = 2;
117 	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
118 		config = 8;
119 
120 	num_var_ranges = config & 0xff;
121 }
122 
123 static void __init init_table(void)
124 {
125 	int i, max;
126 
127 	max = num_var_ranges;
128 	for (i = 0; i < max; i++)
129 		mtrr_usage_table[i] = 1;
130 }
131 
132 struct set_mtrr_data {
133 	unsigned long	smp_base;
134 	unsigned long	smp_size;
135 	unsigned int	smp_reg;
136 	mtrr_type	smp_type;
137 };
138 
139 /**
140  * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
141  * by all the CPUs.
142  * @info: pointer to mtrr configuration data
143  *
144  * Returns nothing.
145  */
146 static int mtrr_rendezvous_handler(void *info)
147 {
148 	struct set_mtrr_data *data = info;
149 
150 	mtrr_if->set(data->smp_reg, data->smp_base,
151 		     data->smp_size, data->smp_type);
152 	return 0;
153 }
154 
155 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
156 {
157 	return type1 == MTRR_TYPE_UNCACHABLE ||
158 	       type2 == MTRR_TYPE_UNCACHABLE ||
159 	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
160 	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
161 }
162 
163 /**
164  * set_mtrr - update mtrrs on all processors
165  * @reg:	mtrr in question
166  * @base:	mtrr base
167  * @size:	mtrr size
168  * @type:	mtrr type
169  *
170  * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
171  *
172  * 1. Queue work to do the following on all processors:
173  * 2. Disable Interrupts
174  * 3. Wait for all procs to do so
175  * 4. Enter no-fill cache mode
176  * 5. Flush caches
177  * 6. Clear PGE bit
178  * 7. Flush all TLBs
179  * 8. Disable all range registers
180  * 9. Update the MTRRs
181  * 10. Enable all range registers
182  * 11. Flush all TLBs and caches again
183  * 12. Enter normal cache mode and reenable caching
184  * 13. Set PGE
185  * 14. Wait for buddies to catch up
186  * 15. Enable interrupts.
187  *
188  * What does that mean for us? Well, stop_machine() will ensure that
189  * the rendezvous handler is started on each CPU. And in lockstep they
190  * do the state transition of disabling interrupts, updating MTRR's
191  * (the CPU vendors may each do it differently, so we call mtrr_if->set()
192  * callback and let them take care of it.) and enabling interrupts.
193  *
194  * Note that the mechanism is the same for UP systems, too; all the SMP stuff
195  * becomes nops.
196  */
197 static void
198 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
199 {
200 	struct set_mtrr_data data = { .smp_reg = reg,
201 				      .smp_base = base,
202 				      .smp_size = size,
203 				      .smp_type = type
204 				    };
205 
206 	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
207 }
208 
209 static void set_mtrr_cpuslocked(unsigned int reg, unsigned long base,
210 				unsigned long size, mtrr_type type)
211 {
212 	struct set_mtrr_data data = { .smp_reg = reg,
213 				      .smp_base = base,
214 				      .smp_size = size,
215 				      .smp_type = type
216 				    };
217 
218 	stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
219 }
220 
221 /**
222  * mtrr_add_page - Add a memory type region
223  * @base: Physical base address of region in pages (in units of 4 kB!)
224  * @size: Physical size of region in pages (4 kB)
225  * @type: Type of MTRR desired
226  * @increment: If this is true do usage counting on the region
227  *
228  * Memory type region registers control the caching on newer Intel and
229  * non Intel processors. This function allows drivers to request an
230  * MTRR is added. The details and hardware specifics of each processor's
231  * implementation are hidden from the caller, but nevertheless the
232  * caller should expect to need to provide a power of two size on an
233  * equivalent power of two boundary.
234  *
235  * If the region cannot be added either because all regions are in use
236  * or the CPU cannot support it a negative value is returned. On success
237  * the register number for this entry is returned, but should be treated
238  * as a cookie only.
239  *
240  * On a multiprocessor machine the changes are made to all processors.
241  * This is required on x86 by the Intel processors.
242  *
243  * The available types are
244  *
245  * %MTRR_TYPE_UNCACHABLE - No caching
246  *
247  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
248  *
249  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
250  *
251  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
252  *
253  * BUGS: Needs a quiet flag for the cases where drivers do not mind
254  * failures and do not wish system log messages to be sent.
255  */
256 int mtrr_add_page(unsigned long base, unsigned long size,
257 		  unsigned int type, bool increment)
258 {
259 	unsigned long lbase, lsize;
260 	int i, replace, error;
261 	mtrr_type ltype;
262 
263 	if (!mtrr_enabled())
264 		return -ENXIO;
265 
266 	error = mtrr_if->validate_add_page(base, size, type);
267 	if (error)
268 		return error;
269 
270 	if (type >= MTRR_NUM_TYPES) {
271 		pr_warn("type: %u invalid\n", type);
272 		return -EINVAL;
273 	}
274 
275 	/* If the type is WC, check that this processor supports it */
276 	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
277 		pr_warn("your processor doesn't support write-combining\n");
278 		return -ENOSYS;
279 	}
280 
281 	if (!size) {
282 		pr_warn("zero sized request\n");
283 		return -EINVAL;
284 	}
285 
286 	if ((base | (base + size - 1)) >>
287 	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
288 		pr_warn("base or size exceeds the MTRR width\n");
289 		return -EINVAL;
290 	}
291 
292 	error = -EINVAL;
293 	replace = -1;
294 
295 	/* No CPU hotplug when we change MTRR entries */
296 	cpus_read_lock();
297 
298 	/* Search for existing MTRR  */
299 	mutex_lock(&mtrr_mutex);
300 	for (i = 0; i < num_var_ranges; ++i) {
301 		mtrr_if->get(i, &lbase, &lsize, &ltype);
302 		if (!lsize || base > lbase + lsize - 1 ||
303 		    base + size - 1 < lbase)
304 			continue;
305 		/*
306 		 * At this point we know there is some kind of
307 		 * overlap/enclosure
308 		 */
309 		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
310 			if (base <= lbase &&
311 			    base + size - 1 >= lbase + lsize - 1) {
312 				/*  New region encloses an existing region  */
313 				if (type == ltype) {
314 					replace = replace == -1 ? i : -2;
315 					continue;
316 				} else if (types_compatible(type, ltype))
317 					continue;
318 			}
319 			pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase,
320 				lsize);
321 			goto out;
322 		}
323 		/* New region is enclosed by an existing region */
324 		if (ltype != type) {
325 			if (types_compatible(type, ltype))
326 				continue;
327 			pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n",
328 				base, size, mtrr_attrib_to_str(ltype),
329 				mtrr_attrib_to_str(type));
330 			goto out;
331 		}
332 		if (increment)
333 			++mtrr_usage_table[i];
334 		error = i;
335 		goto out;
336 	}
337 	/* Search for an empty MTRR */
338 	i = mtrr_if->get_free_region(base, size, replace);
339 	if (i >= 0) {
340 		set_mtrr_cpuslocked(i, base, size, type);
341 		if (likely(replace < 0)) {
342 			mtrr_usage_table[i] = 1;
343 		} else {
344 			mtrr_usage_table[i] = mtrr_usage_table[replace];
345 			if (increment)
346 				mtrr_usage_table[i]++;
347 			if (unlikely(replace != i)) {
348 				set_mtrr_cpuslocked(replace, 0, 0, 0);
349 				mtrr_usage_table[replace] = 0;
350 			}
351 		}
352 	} else {
353 		pr_info("no more MTRRs available\n");
354 	}
355 	error = i;
356  out:
357 	mutex_unlock(&mtrr_mutex);
358 	cpus_read_unlock();
359 	return error;
360 }
361 
362 static int mtrr_check(unsigned long base, unsigned long size)
363 {
364 	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
365 		pr_warn("size and base must be multiples of 4 kiB\n");
366 		pr_debug("size: 0x%lx  base: 0x%lx\n", size, base);
367 		dump_stack();
368 		return -1;
369 	}
370 	return 0;
371 }
372 
373 /**
374  * mtrr_add - Add a memory type region
375  * @base: Physical base address of region
376  * @size: Physical size of region
377  * @type: Type of MTRR desired
378  * @increment: If this is true do usage counting on the region
379  *
380  * Memory type region registers control the caching on newer Intel and
381  * non Intel processors. This function allows drivers to request an
382  * MTRR is added. The details and hardware specifics of each processor's
383  * implementation are hidden from the caller, but nevertheless the
384  * caller should expect to need to provide a power of two size on an
385  * equivalent power of two boundary.
386  *
387  * If the region cannot be added either because all regions are in use
388  * or the CPU cannot support it a negative value is returned. On success
389  * the register number for this entry is returned, but should be treated
390  * as a cookie only.
391  *
392  * On a multiprocessor machine the changes are made to all processors.
393  * This is required on x86 by the Intel processors.
394  *
395  * The available types are
396  *
397  * %MTRR_TYPE_UNCACHABLE - No caching
398  *
399  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
400  *
401  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
402  *
403  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
404  *
405  * BUGS: Needs a quiet flag for the cases where drivers do not mind
406  * failures and do not wish system log messages to be sent.
407  */
408 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
409 	     bool increment)
410 {
411 	if (!mtrr_enabled())
412 		return -ENODEV;
413 	if (mtrr_check(base, size))
414 		return -EINVAL;
415 	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
416 			     increment);
417 }
418 
419 /**
420  * mtrr_del_page - delete a memory type region
421  * @reg: Register returned by mtrr_add
422  * @base: Physical base address
423  * @size: Size of region
424  *
425  * If register is supplied then base and size are ignored. This is
426  * how drivers should call it.
427  *
428  * Releases an MTRR region. If the usage count drops to zero the
429  * register is freed and the region returns to default state.
430  * On success the register is returned, on failure a negative error
431  * code.
432  */
433 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
434 {
435 	int i, max;
436 	mtrr_type ltype;
437 	unsigned long lbase, lsize;
438 	int error = -EINVAL;
439 
440 	if (!mtrr_enabled())
441 		return -ENODEV;
442 
443 	max = num_var_ranges;
444 	/* No CPU hotplug when we change MTRR entries */
445 	cpus_read_lock();
446 	mutex_lock(&mtrr_mutex);
447 	if (reg < 0) {
448 		/*  Search for existing MTRR  */
449 		for (i = 0; i < max; ++i) {
450 			mtrr_if->get(i, &lbase, &lsize, &ltype);
451 			if (lbase == base && lsize == size) {
452 				reg = i;
453 				break;
454 			}
455 		}
456 		if (reg < 0) {
457 			pr_debug("no MTRR for %lx000,%lx000 found\n",
458 				 base, size);
459 			goto out;
460 		}
461 	}
462 	if (reg >= max) {
463 		pr_warn("register: %d too big\n", reg);
464 		goto out;
465 	}
466 	mtrr_if->get(reg, &lbase, &lsize, &ltype);
467 	if (lsize < 1) {
468 		pr_warn("MTRR %d not used\n", reg);
469 		goto out;
470 	}
471 	if (mtrr_usage_table[reg] < 1) {
472 		pr_warn("reg: %d has count=0\n", reg);
473 		goto out;
474 	}
475 	if (--mtrr_usage_table[reg] < 1)
476 		set_mtrr_cpuslocked(reg, 0, 0, 0);
477 	error = reg;
478  out:
479 	mutex_unlock(&mtrr_mutex);
480 	cpus_read_unlock();
481 	return error;
482 }
483 
484 /**
485  * mtrr_del - delete a memory type region
486  * @reg: Register returned by mtrr_add
487  * @base: Physical base address
488  * @size: Size of region
489  *
490  * If register is supplied then base and size are ignored. This is
491  * how drivers should call it.
492  *
493  * Releases an MTRR region. If the usage count drops to zero the
494  * register is freed and the region returns to default state.
495  * On success the register is returned, on failure a negative error
496  * code.
497  */
498 int mtrr_del(int reg, unsigned long base, unsigned long size)
499 {
500 	if (!mtrr_enabled())
501 		return -ENODEV;
502 	if (mtrr_check(base, size))
503 		return -EINVAL;
504 	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
505 }
506 
507 /**
508  * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
509  * @base: Physical base address
510  * @size: Size of region
511  *
512  * If PAT is available, this does nothing.  If PAT is unavailable, it
513  * attempts to add a WC MTRR covering size bytes starting at base and
514  * logs an error if this fails.
515  *
516  * The called should provide a power of two size on an equivalent
517  * power of two boundary.
518  *
519  * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
520  * but drivers should not try to interpret that return value.
521  */
522 int arch_phys_wc_add(unsigned long base, unsigned long size)
523 {
524 	int ret;
525 
526 	if (pat_enabled() || !mtrr_enabled())
527 		return 0;  /* Success!  (We don't need to do anything.) */
528 
529 	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
530 	if (ret < 0) {
531 		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
532 			(void *)base, (void *)(base + size - 1));
533 		return ret;
534 	}
535 	return ret + MTRR_TO_PHYS_WC_OFFSET;
536 }
537 EXPORT_SYMBOL(arch_phys_wc_add);
538 
539 /*
540  * arch_phys_wc_del - undoes arch_phys_wc_add
541  * @handle: Return value from arch_phys_wc_add
542  *
543  * This cleans up after mtrr_add_wc_if_needed.
544  *
545  * The API guarantees that mtrr_del_wc_if_needed(error code) and
546  * mtrr_del_wc_if_needed(0) do nothing.
547  */
548 void arch_phys_wc_del(int handle)
549 {
550 	if (handle >= 1) {
551 		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
552 		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
553 	}
554 }
555 EXPORT_SYMBOL(arch_phys_wc_del);
556 
557 /*
558  * arch_phys_wc_index - translates arch_phys_wc_add's return value
559  * @handle: Return value from arch_phys_wc_add
560  *
561  * This will turn the return value from arch_phys_wc_add into an mtrr
562  * index suitable for debugging.
563  *
564  * Note: There is no legitimate use for this function, except possibly
565  * in printk line.  Alas there is an illegitimate use in some ancient
566  * drm ioctls.
567  */
568 int arch_phys_wc_index(int handle)
569 {
570 	if (handle < MTRR_TO_PHYS_WC_OFFSET)
571 		return -1;
572 	else
573 		return handle - MTRR_TO_PHYS_WC_OFFSET;
574 }
575 EXPORT_SYMBOL_GPL(arch_phys_wc_index);
576 
577 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
578  * MTRR driver doesn't require this
579  */
580 struct mtrr_value {
581 	mtrr_type	ltype;
582 	unsigned long	lbase;
583 	unsigned long	lsize;
584 };
585 
586 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
587 
588 static int mtrr_save(void)
589 {
590 	int i;
591 
592 	for (i = 0; i < num_var_ranges; i++) {
593 		mtrr_if->get(i, &mtrr_value[i].lbase,
594 				&mtrr_value[i].lsize,
595 				&mtrr_value[i].ltype);
596 	}
597 	return 0;
598 }
599 
600 static void mtrr_restore(void)
601 {
602 	int i;
603 
604 	for (i = 0; i < num_var_ranges; i++) {
605 		if (mtrr_value[i].lsize) {
606 			set_mtrr(i, mtrr_value[i].lbase,
607 				    mtrr_value[i].lsize,
608 				    mtrr_value[i].ltype);
609 		}
610 	}
611 }
612 
613 
614 
615 static struct syscore_ops mtrr_syscore_ops = {
616 	.suspend	= mtrr_save,
617 	.resume		= mtrr_restore,
618 };
619 
620 int __initdata changed_by_mtrr_cleanup;
621 
622 #define SIZE_OR_MASK_BITS(n)  (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
623 /**
624  * mtrr_bp_init - initialize mtrrs on the boot CPU
625  *
626  * This needs to be called early; before any of the other CPUs are
627  * initialized (i.e. before smp_init()).
628  *
629  */
630 void __init mtrr_bp_init(void)
631 {
632 	const char *why = "(not available)";
633 	u32 phys_addr;
634 
635 	phys_addr = 32;
636 
637 	if (boot_cpu_has(X86_FEATURE_MTRR)) {
638 		mtrr_if = &generic_mtrr_ops;
639 		size_or_mask = SIZE_OR_MASK_BITS(36);
640 		size_and_mask = 0x00f00000;
641 		phys_addr = 36;
642 
643 		/*
644 		 * This is an AMD specific MSR, but we assume(hope?) that
645 		 * Intel will implement it too when they extend the address
646 		 * bus of the Xeon.
647 		 */
648 		if (cpuid_eax(0x80000000) >= 0x80000008) {
649 			phys_addr = cpuid_eax(0x80000008) & 0xff;
650 			/* CPUID workaround for Intel 0F33/0F34 CPU */
651 			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
652 			    boot_cpu_data.x86 == 0xF &&
653 			    boot_cpu_data.x86_model == 0x3 &&
654 			    (boot_cpu_data.x86_stepping == 0x3 ||
655 			     boot_cpu_data.x86_stepping == 0x4))
656 				phys_addr = 36;
657 
658 			size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
659 			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
660 		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
661 			   boot_cpu_data.x86 == 6) {
662 			/*
663 			 * VIA C* family have Intel style MTRRs,
664 			 * but don't support PAE
665 			 */
666 			size_or_mask = SIZE_OR_MASK_BITS(32);
667 			size_and_mask = 0;
668 			phys_addr = 32;
669 		}
670 	} else {
671 		switch (boot_cpu_data.x86_vendor) {
672 		case X86_VENDOR_AMD:
673 			if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
674 				/* Pre-Athlon (K6) AMD CPU MTRRs */
675 				mtrr_if = &amd_mtrr_ops;
676 				size_or_mask = SIZE_OR_MASK_BITS(32);
677 				size_and_mask = 0;
678 			}
679 			break;
680 		case X86_VENDOR_CENTAUR:
681 			if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
682 				mtrr_if = &centaur_mtrr_ops;
683 				size_or_mask = SIZE_OR_MASK_BITS(32);
684 				size_and_mask = 0;
685 			}
686 			break;
687 		case X86_VENDOR_CYRIX:
688 			if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
689 				mtrr_if = &cyrix_mtrr_ops;
690 				size_or_mask = SIZE_OR_MASK_BITS(32);
691 				size_and_mask = 0;
692 			}
693 			break;
694 		default:
695 			break;
696 		}
697 	}
698 
699 	if (mtrr_enabled()) {
700 		set_num_var_ranges(mtrr_if == &generic_mtrr_ops);
701 		init_table();
702 		if (mtrr_if == &generic_mtrr_ops) {
703 			/* BIOS may override */
704 			if (get_mtrr_state()) {
705 				memory_caching_control |= CACHE_MTRR;
706 				changed_by_mtrr_cleanup = mtrr_cleanup(phys_addr);
707 			} else {
708 				mtrr_if = NULL;
709 				why = "by BIOS";
710 			}
711 		}
712 	}
713 
714 	if (!mtrr_enabled())
715 		pr_info("MTRRs disabled %s\n", why);
716 }
717 
718 /**
719  * mtrr_save_state - Save current fixed-range MTRR state of the first
720  *	cpu in cpu_online_mask.
721  */
722 void mtrr_save_state(void)
723 {
724 	int first_cpu;
725 
726 	if (!mtrr_enabled())
727 		return;
728 
729 	first_cpu = cpumask_first(cpu_online_mask);
730 	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
731 }
732 
733 static int __init mtrr_init_finialize(void)
734 {
735 	if (!mtrr_enabled())
736 		return 0;
737 
738 	if (memory_caching_control & CACHE_MTRR) {
739 		if (!changed_by_mtrr_cleanup)
740 			mtrr_state_warn();
741 		return 0;
742 	}
743 
744 	/*
745 	 * The CPU has no MTRR and seems to not support SMP. They have
746 	 * specific drivers, we use a tricky method to support
747 	 * suspend/resume for them.
748 	 *
749 	 * TBD: is there any system with such CPU which supports
750 	 * suspend/resume? If no, we should remove the code.
751 	 */
752 	register_syscore_ops(&mtrr_syscore_ops);
753 
754 	return 0;
755 }
756 subsys_initcall(mtrr_init_finialize);
757