xref: /openbmc/linux/arch/x86/kernel/cpu/mtrr/mtrr.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*  Generic MTRR (Memory Type Range Register) driver.
2 
3     Copyright (C) 1997-2000  Richard Gooch
4     Copyright (c) 2002	     Patrick Mochel
5 
6     This library is free software; you can redistribute it and/or
7     modify it under the terms of the GNU Library General Public
8     License as published by the Free Software Foundation; either
9     version 2 of the License, or (at your option) any later version.
10 
11     This library is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14     Library General Public License for more details.
15 
16     You should have received a copy of the GNU Library General Public
17     License along with this library; if not, write to the Free
18     Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 
20     Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
21     The postal address is:
22       Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23 
24     Source: "Pentium Pro Family Developer's Manual, Volume 3:
25     Operating System Writer's Guide" (Intel document number 242692),
26     section 11.11.7
27 
28     This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29     on 6-7 March 2002.
30     Source: Intel Architecture Software Developers Manual, Volume 3:
31     System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33 
34 #define DEBUG
35 
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
37 
38 #include <linux/stop_machine.h>
39 #include <linux/kvm_para.h>
40 #include <linux/uaccess.h>
41 #include <linux/export.h>
42 #include <linux/mutex.h>
43 #include <linux/init.h>
44 #include <linux/sort.h>
45 #include <linux/cpu.h>
46 #include <linux/pci.h>
47 #include <linux/smp.h>
48 #include <linux/syscore_ops.h>
49 #include <linux/rcupdate.h>
50 
51 #include <asm/cpufeature.h>
52 #include <asm/e820/api.h>
53 #include <asm/mtrr.h>
54 #include <asm/msr.h>
55 #include <asm/pat.h>
56 
57 #include "mtrr.h"
58 
59 /* arch_phys_wc_add returns an MTRR register index plus this offset. */
60 #define MTRR_TO_PHYS_WC_OFFSET 1000
61 
62 u32 num_var_ranges;
63 static bool __mtrr_enabled;
64 
65 static bool mtrr_enabled(void)
66 {
67 	return __mtrr_enabled;
68 }
69 
70 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
71 static DEFINE_MUTEX(mtrr_mutex);
72 
73 u64 size_or_mask, size_and_mask;
74 static bool mtrr_aps_delayed_init;
75 
76 static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM] __ro_after_init;
77 
78 const struct mtrr_ops *mtrr_if;
79 
80 static void set_mtrr(unsigned int reg, unsigned long base,
81 		     unsigned long size, mtrr_type type);
82 
83 void __init set_mtrr_ops(const struct mtrr_ops *ops)
84 {
85 	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
86 		mtrr_ops[ops->vendor] = ops;
87 }
88 
89 /*  Returns non-zero if we have the write-combining memory type  */
90 static int have_wrcomb(void)
91 {
92 	struct pci_dev *dev;
93 
94 	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
95 	if (dev != NULL) {
96 		/*
97 		 * ServerWorks LE chipsets < rev 6 have problems with
98 		 * write-combining. Don't allow it and leave room for other
99 		 * chipsets to be tagged
100 		 */
101 		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
102 		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
103 		    dev->revision <= 5) {
104 			pr_info("Serverworks LE rev < 6 detected. Write-combining disabled.\n");
105 			pci_dev_put(dev);
106 			return 0;
107 		}
108 		/*
109 		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
110 		 * write combining memory may resulting in data corruption
111 		 */
112 		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
113 		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
114 			pr_info("Intel 450NX MMC detected. Write-combining disabled.\n");
115 			pci_dev_put(dev);
116 			return 0;
117 		}
118 		pci_dev_put(dev);
119 	}
120 	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
121 }
122 
123 /*  This function returns the number of variable MTRRs  */
124 static void __init set_num_var_ranges(void)
125 {
126 	unsigned long config = 0, dummy;
127 
128 	if (use_intel())
129 		rdmsr(MSR_MTRRcap, config, dummy);
130 	else if (is_cpu(AMD) || is_cpu(HYGON))
131 		config = 2;
132 	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
133 		config = 8;
134 
135 	num_var_ranges = config & 0xff;
136 }
137 
138 static void __init init_table(void)
139 {
140 	int i, max;
141 
142 	max = num_var_ranges;
143 	for (i = 0; i < max; i++)
144 		mtrr_usage_table[i] = 1;
145 }
146 
147 struct set_mtrr_data {
148 	unsigned long	smp_base;
149 	unsigned long	smp_size;
150 	unsigned int	smp_reg;
151 	mtrr_type	smp_type;
152 };
153 
154 /**
155  * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
156  * by all the CPUs.
157  * @info: pointer to mtrr configuration data
158  *
159  * Returns nothing.
160  */
161 static int mtrr_rendezvous_handler(void *info)
162 {
163 	struct set_mtrr_data *data = info;
164 
165 	/*
166 	 * We use this same function to initialize the mtrrs during boot,
167 	 * resume, runtime cpu online and on an explicit request to set a
168 	 * specific MTRR.
169 	 *
170 	 * During boot or suspend, the state of the boot cpu's mtrrs has been
171 	 * saved, and we want to replicate that across all the cpus that come
172 	 * online (either at the end of boot or resume or during a runtime cpu
173 	 * online). If we're doing that, @reg is set to something special and on
174 	 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
175 	 * started the boot/resume sequence, this might be a duplicate
176 	 * set_all()).
177 	 */
178 	if (data->smp_reg != ~0U) {
179 		mtrr_if->set(data->smp_reg, data->smp_base,
180 			     data->smp_size, data->smp_type);
181 	} else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
182 		mtrr_if->set_all();
183 	}
184 	return 0;
185 }
186 
187 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
188 {
189 	return type1 == MTRR_TYPE_UNCACHABLE ||
190 	       type2 == MTRR_TYPE_UNCACHABLE ||
191 	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
192 	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
193 }
194 
195 /**
196  * set_mtrr - update mtrrs on all processors
197  * @reg:	mtrr in question
198  * @base:	mtrr base
199  * @size:	mtrr size
200  * @type:	mtrr type
201  *
202  * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
203  *
204  * 1. Queue work to do the following on all processors:
205  * 2. Disable Interrupts
206  * 3. Wait for all procs to do so
207  * 4. Enter no-fill cache mode
208  * 5. Flush caches
209  * 6. Clear PGE bit
210  * 7. Flush all TLBs
211  * 8. Disable all range registers
212  * 9. Update the MTRRs
213  * 10. Enable all range registers
214  * 11. Flush all TLBs and caches again
215  * 12. Enter normal cache mode and reenable caching
216  * 13. Set PGE
217  * 14. Wait for buddies to catch up
218  * 15. Enable interrupts.
219  *
220  * What does that mean for us? Well, stop_machine() will ensure that
221  * the rendezvous handler is started on each CPU. And in lockstep they
222  * do the state transition of disabling interrupts, updating MTRR's
223  * (the CPU vendors may each do it differently, so we call mtrr_if->set()
224  * callback and let them take care of it.) and enabling interrupts.
225  *
226  * Note that the mechanism is the same for UP systems, too; all the SMP stuff
227  * becomes nops.
228  */
229 static void
230 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
231 {
232 	struct set_mtrr_data data = { .smp_reg = reg,
233 				      .smp_base = base,
234 				      .smp_size = size,
235 				      .smp_type = type
236 				    };
237 
238 	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
239 }
240 
241 static void set_mtrr_cpuslocked(unsigned int reg, unsigned long base,
242 				unsigned long size, mtrr_type type)
243 {
244 	struct set_mtrr_data data = { .smp_reg = reg,
245 				      .smp_base = base,
246 				      .smp_size = size,
247 				      .smp_type = type
248 				    };
249 
250 	stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
251 }
252 
253 static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
254 				      unsigned long size, mtrr_type type)
255 {
256 	struct set_mtrr_data data = { .smp_reg = reg,
257 				      .smp_base = base,
258 				      .smp_size = size,
259 				      .smp_type = type
260 				    };
261 
262 	stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
263 				       cpu_callout_mask);
264 }
265 
266 /**
267  * mtrr_add_page - Add a memory type region
268  * @base: Physical base address of region in pages (in units of 4 kB!)
269  * @size: Physical size of region in pages (4 kB)
270  * @type: Type of MTRR desired
271  * @increment: If this is true do usage counting on the region
272  *
273  * Memory type region registers control the caching on newer Intel and
274  * non Intel processors. This function allows drivers to request an
275  * MTRR is added. The details and hardware specifics of each processor's
276  * implementation are hidden from the caller, but nevertheless the
277  * caller should expect to need to provide a power of two size on an
278  * equivalent power of two boundary.
279  *
280  * If the region cannot be added either because all regions are in use
281  * or the CPU cannot support it a negative value is returned. On success
282  * the register number for this entry is returned, but should be treated
283  * as a cookie only.
284  *
285  * On a multiprocessor machine the changes are made to all processors.
286  * This is required on x86 by the Intel processors.
287  *
288  * The available types are
289  *
290  * %MTRR_TYPE_UNCACHABLE - No caching
291  *
292  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
293  *
294  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
295  *
296  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
297  *
298  * BUGS: Needs a quiet flag for the cases where drivers do not mind
299  * failures and do not wish system log messages to be sent.
300  */
301 int mtrr_add_page(unsigned long base, unsigned long size,
302 		  unsigned int type, bool increment)
303 {
304 	unsigned long lbase, lsize;
305 	int i, replace, error;
306 	mtrr_type ltype;
307 
308 	if (!mtrr_enabled())
309 		return -ENXIO;
310 
311 	error = mtrr_if->validate_add_page(base, size, type);
312 	if (error)
313 		return error;
314 
315 	if (type >= MTRR_NUM_TYPES) {
316 		pr_warn("type: %u invalid\n", type);
317 		return -EINVAL;
318 	}
319 
320 	/* If the type is WC, check that this processor supports it */
321 	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
322 		pr_warn("your processor doesn't support write-combining\n");
323 		return -ENOSYS;
324 	}
325 
326 	if (!size) {
327 		pr_warn("zero sized request\n");
328 		return -EINVAL;
329 	}
330 
331 	if ((base | (base + size - 1)) >>
332 	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
333 		pr_warn("base or size exceeds the MTRR width\n");
334 		return -EINVAL;
335 	}
336 
337 	error = -EINVAL;
338 	replace = -1;
339 
340 	/* No CPU hotplug when we change MTRR entries */
341 	get_online_cpus();
342 
343 	/* Search for existing MTRR  */
344 	mutex_lock(&mtrr_mutex);
345 	for (i = 0; i < num_var_ranges; ++i) {
346 		mtrr_if->get(i, &lbase, &lsize, &ltype);
347 		if (!lsize || base > lbase + lsize - 1 ||
348 		    base + size - 1 < lbase)
349 			continue;
350 		/*
351 		 * At this point we know there is some kind of
352 		 * overlap/enclosure
353 		 */
354 		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
355 			if (base <= lbase &&
356 			    base + size - 1 >= lbase + lsize - 1) {
357 				/*  New region encloses an existing region  */
358 				if (type == ltype) {
359 					replace = replace == -1 ? i : -2;
360 					continue;
361 				} else if (types_compatible(type, ltype))
362 					continue;
363 			}
364 			pr_warn("0x%lx000,0x%lx000 overlaps existing 0x%lx000,0x%lx000\n", base, size, lbase,
365 				lsize);
366 			goto out;
367 		}
368 		/* New region is enclosed by an existing region */
369 		if (ltype != type) {
370 			if (types_compatible(type, ltype))
371 				continue;
372 			pr_warn("type mismatch for %lx000,%lx000 old: %s new: %s\n",
373 				base, size, mtrr_attrib_to_str(ltype),
374 				mtrr_attrib_to_str(type));
375 			goto out;
376 		}
377 		if (increment)
378 			++mtrr_usage_table[i];
379 		error = i;
380 		goto out;
381 	}
382 	/* Search for an empty MTRR */
383 	i = mtrr_if->get_free_region(base, size, replace);
384 	if (i >= 0) {
385 		set_mtrr_cpuslocked(i, base, size, type);
386 		if (likely(replace < 0)) {
387 			mtrr_usage_table[i] = 1;
388 		} else {
389 			mtrr_usage_table[i] = mtrr_usage_table[replace];
390 			if (increment)
391 				mtrr_usage_table[i]++;
392 			if (unlikely(replace != i)) {
393 				set_mtrr_cpuslocked(replace, 0, 0, 0);
394 				mtrr_usage_table[replace] = 0;
395 			}
396 		}
397 	} else {
398 		pr_info("no more MTRRs available\n");
399 	}
400 	error = i;
401  out:
402 	mutex_unlock(&mtrr_mutex);
403 	put_online_cpus();
404 	return error;
405 }
406 
407 static int mtrr_check(unsigned long base, unsigned long size)
408 {
409 	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
410 		pr_warn("size and base must be multiples of 4 kiB\n");
411 		pr_debug("size: 0x%lx  base: 0x%lx\n", size, base);
412 		dump_stack();
413 		return -1;
414 	}
415 	return 0;
416 }
417 
418 /**
419  * mtrr_add - Add a memory type region
420  * @base: Physical base address of region
421  * @size: Physical size of region
422  * @type: Type of MTRR desired
423  * @increment: If this is true do usage counting on the region
424  *
425  * Memory type region registers control the caching on newer Intel and
426  * non Intel processors. This function allows drivers to request an
427  * MTRR is added. The details and hardware specifics of each processor's
428  * implementation are hidden from the caller, but nevertheless the
429  * caller should expect to need to provide a power of two size on an
430  * equivalent power of two boundary.
431  *
432  * If the region cannot be added either because all regions are in use
433  * or the CPU cannot support it a negative value is returned. On success
434  * the register number for this entry is returned, but should be treated
435  * as a cookie only.
436  *
437  * On a multiprocessor machine the changes are made to all processors.
438  * This is required on x86 by the Intel processors.
439  *
440  * The available types are
441  *
442  * %MTRR_TYPE_UNCACHABLE - No caching
443  *
444  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
445  *
446  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
447  *
448  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
449  *
450  * BUGS: Needs a quiet flag for the cases where drivers do not mind
451  * failures and do not wish system log messages to be sent.
452  */
453 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
454 	     bool increment)
455 {
456 	if (!mtrr_enabled())
457 		return -ENODEV;
458 	if (mtrr_check(base, size))
459 		return -EINVAL;
460 	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
461 			     increment);
462 }
463 
464 /**
465  * mtrr_del_page - delete a memory type region
466  * @reg: Register returned by mtrr_add
467  * @base: Physical base address
468  * @size: Size of region
469  *
470  * If register is supplied then base and size are ignored. This is
471  * how drivers should call it.
472  *
473  * Releases an MTRR region. If the usage count drops to zero the
474  * register is freed and the region returns to default state.
475  * On success the register is returned, on failure a negative error
476  * code.
477  */
478 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
479 {
480 	int i, max;
481 	mtrr_type ltype;
482 	unsigned long lbase, lsize;
483 	int error = -EINVAL;
484 
485 	if (!mtrr_enabled())
486 		return -ENODEV;
487 
488 	max = num_var_ranges;
489 	/* No CPU hotplug when we change MTRR entries */
490 	get_online_cpus();
491 	mutex_lock(&mtrr_mutex);
492 	if (reg < 0) {
493 		/*  Search for existing MTRR  */
494 		for (i = 0; i < max; ++i) {
495 			mtrr_if->get(i, &lbase, &lsize, &ltype);
496 			if (lbase == base && lsize == size) {
497 				reg = i;
498 				break;
499 			}
500 		}
501 		if (reg < 0) {
502 			pr_debug("no MTRR for %lx000,%lx000 found\n",
503 				 base, size);
504 			goto out;
505 		}
506 	}
507 	if (reg >= max) {
508 		pr_warn("register: %d too big\n", reg);
509 		goto out;
510 	}
511 	mtrr_if->get(reg, &lbase, &lsize, &ltype);
512 	if (lsize < 1) {
513 		pr_warn("MTRR %d not used\n", reg);
514 		goto out;
515 	}
516 	if (mtrr_usage_table[reg] < 1) {
517 		pr_warn("reg: %d has count=0\n", reg);
518 		goto out;
519 	}
520 	if (--mtrr_usage_table[reg] < 1)
521 		set_mtrr_cpuslocked(reg, 0, 0, 0);
522 	error = reg;
523  out:
524 	mutex_unlock(&mtrr_mutex);
525 	put_online_cpus();
526 	return error;
527 }
528 
529 /**
530  * mtrr_del - delete a memory type region
531  * @reg: Register returned by mtrr_add
532  * @base: Physical base address
533  * @size: Size of region
534  *
535  * If register is supplied then base and size are ignored. This is
536  * how drivers should call it.
537  *
538  * Releases an MTRR region. If the usage count drops to zero the
539  * register is freed and the region returns to default state.
540  * On success the register is returned, on failure a negative error
541  * code.
542  */
543 int mtrr_del(int reg, unsigned long base, unsigned long size)
544 {
545 	if (!mtrr_enabled())
546 		return -ENODEV;
547 	if (mtrr_check(base, size))
548 		return -EINVAL;
549 	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
550 }
551 
552 /**
553  * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
554  * @base: Physical base address
555  * @size: Size of region
556  *
557  * If PAT is available, this does nothing.  If PAT is unavailable, it
558  * attempts to add a WC MTRR covering size bytes starting at base and
559  * logs an error if this fails.
560  *
561  * The called should provide a power of two size on an equivalent
562  * power of two boundary.
563  *
564  * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
565  * but drivers should not try to interpret that return value.
566  */
567 int arch_phys_wc_add(unsigned long base, unsigned long size)
568 {
569 	int ret;
570 
571 	if (pat_enabled() || !mtrr_enabled())
572 		return 0;  /* Success!  (We don't need to do anything.) */
573 
574 	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
575 	if (ret < 0) {
576 		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
577 			(void *)base, (void *)(base + size - 1));
578 		return ret;
579 	}
580 	return ret + MTRR_TO_PHYS_WC_OFFSET;
581 }
582 EXPORT_SYMBOL(arch_phys_wc_add);
583 
584 /*
585  * arch_phys_wc_del - undoes arch_phys_wc_add
586  * @handle: Return value from arch_phys_wc_add
587  *
588  * This cleans up after mtrr_add_wc_if_needed.
589  *
590  * The API guarantees that mtrr_del_wc_if_needed(error code) and
591  * mtrr_del_wc_if_needed(0) do nothing.
592  */
593 void arch_phys_wc_del(int handle)
594 {
595 	if (handle >= 1) {
596 		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
597 		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
598 	}
599 }
600 EXPORT_SYMBOL(arch_phys_wc_del);
601 
602 /*
603  * arch_phys_wc_index - translates arch_phys_wc_add's return value
604  * @handle: Return value from arch_phys_wc_add
605  *
606  * This will turn the return value from arch_phys_wc_add into an mtrr
607  * index suitable for debugging.
608  *
609  * Note: There is no legitimate use for this function, except possibly
610  * in printk line.  Alas there is an illegitimate use in some ancient
611  * drm ioctls.
612  */
613 int arch_phys_wc_index(int handle)
614 {
615 	if (handle < MTRR_TO_PHYS_WC_OFFSET)
616 		return -1;
617 	else
618 		return handle - MTRR_TO_PHYS_WC_OFFSET;
619 }
620 EXPORT_SYMBOL_GPL(arch_phys_wc_index);
621 
622 /*
623  * HACK ALERT!
624  * These should be called implicitly, but we can't yet until all the initcall
625  * stuff is done...
626  */
627 static void __init init_ifs(void)
628 {
629 #ifndef CONFIG_X86_64
630 	amd_init_mtrr();
631 	cyrix_init_mtrr();
632 	centaur_init_mtrr();
633 #endif
634 }
635 
636 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
637  * MTRR driver doesn't require this
638  */
639 struct mtrr_value {
640 	mtrr_type	ltype;
641 	unsigned long	lbase;
642 	unsigned long	lsize;
643 };
644 
645 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
646 
647 static int mtrr_save(void)
648 {
649 	int i;
650 
651 	for (i = 0; i < num_var_ranges; i++) {
652 		mtrr_if->get(i, &mtrr_value[i].lbase,
653 				&mtrr_value[i].lsize,
654 				&mtrr_value[i].ltype);
655 	}
656 	return 0;
657 }
658 
659 static void mtrr_restore(void)
660 {
661 	int i;
662 
663 	for (i = 0; i < num_var_ranges; i++) {
664 		if (mtrr_value[i].lsize) {
665 			set_mtrr(i, mtrr_value[i].lbase,
666 				    mtrr_value[i].lsize,
667 				    mtrr_value[i].ltype);
668 		}
669 	}
670 }
671 
672 
673 
674 static struct syscore_ops mtrr_syscore_ops = {
675 	.suspend	= mtrr_save,
676 	.resume		= mtrr_restore,
677 };
678 
679 int __initdata changed_by_mtrr_cleanup;
680 
681 #define SIZE_OR_MASK_BITS(n)  (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
682 /**
683  * mtrr_bp_init - initialize mtrrs on the boot CPU
684  *
685  * This needs to be called early; before any of the other CPUs are
686  * initialized (i.e. before smp_init()).
687  *
688  */
689 void __init mtrr_bp_init(void)
690 {
691 	u32 phys_addr;
692 
693 	init_ifs();
694 
695 	phys_addr = 32;
696 
697 	if (boot_cpu_has(X86_FEATURE_MTRR)) {
698 		mtrr_if = &generic_mtrr_ops;
699 		size_or_mask = SIZE_OR_MASK_BITS(36);
700 		size_and_mask = 0x00f00000;
701 		phys_addr = 36;
702 
703 		/*
704 		 * This is an AMD specific MSR, but we assume(hope?) that
705 		 * Intel will implement it too when they extend the address
706 		 * bus of the Xeon.
707 		 */
708 		if (cpuid_eax(0x80000000) >= 0x80000008) {
709 			phys_addr = cpuid_eax(0x80000008) & 0xff;
710 			/* CPUID workaround for Intel 0F33/0F34 CPU */
711 			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
712 			    boot_cpu_data.x86 == 0xF &&
713 			    boot_cpu_data.x86_model == 0x3 &&
714 			    (boot_cpu_data.x86_stepping == 0x3 ||
715 			     boot_cpu_data.x86_stepping == 0x4))
716 				phys_addr = 36;
717 
718 			size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
719 			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
720 		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
721 			   boot_cpu_data.x86 == 6) {
722 			/*
723 			 * VIA C* family have Intel style MTRRs,
724 			 * but don't support PAE
725 			 */
726 			size_or_mask = SIZE_OR_MASK_BITS(32);
727 			size_and_mask = 0;
728 			phys_addr = 32;
729 		}
730 	} else {
731 		switch (boot_cpu_data.x86_vendor) {
732 		case X86_VENDOR_AMD:
733 			if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
734 				/* Pre-Athlon (K6) AMD CPU MTRRs */
735 				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
736 				size_or_mask = SIZE_OR_MASK_BITS(32);
737 				size_and_mask = 0;
738 			}
739 			break;
740 		case X86_VENDOR_CENTAUR:
741 			if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
742 				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
743 				size_or_mask = SIZE_OR_MASK_BITS(32);
744 				size_and_mask = 0;
745 			}
746 			break;
747 		case X86_VENDOR_CYRIX:
748 			if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
749 				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
750 				size_or_mask = SIZE_OR_MASK_BITS(32);
751 				size_and_mask = 0;
752 			}
753 			break;
754 		default:
755 			break;
756 		}
757 	}
758 
759 	if (mtrr_if) {
760 		__mtrr_enabled = true;
761 		set_num_var_ranges();
762 		init_table();
763 		if (use_intel()) {
764 			/* BIOS may override */
765 			__mtrr_enabled = get_mtrr_state();
766 
767 			if (mtrr_enabled())
768 				mtrr_bp_pat_init();
769 
770 			if (mtrr_cleanup(phys_addr)) {
771 				changed_by_mtrr_cleanup = 1;
772 				mtrr_if->set_all();
773 			}
774 		}
775 	}
776 
777 	if (!mtrr_enabled()) {
778 		pr_info("Disabled\n");
779 
780 		/*
781 		 * PAT initialization relies on MTRR's rendezvous handler.
782 		 * Skip PAT init until the handler can initialize both
783 		 * features independently.
784 		 */
785 		pat_disable("MTRRs disabled, skipping PAT initialization too.");
786 	}
787 }
788 
789 void mtrr_ap_init(void)
790 {
791 	if (!mtrr_enabled())
792 		return;
793 
794 	if (!use_intel() || mtrr_aps_delayed_init)
795 		return;
796 
797 	rcu_cpu_starting(smp_processor_id());
798 
799 	/*
800 	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
801 	 * changed, but this routine will be called in cpu boot time,
802 	 * holding the lock breaks it.
803 	 *
804 	 * This routine is called in two cases:
805 	 *
806 	 *   1. very earily time of software resume, when there absolutely
807 	 *      isn't mtrr entry changes;
808 	 *
809 	 *   2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
810 	 *      lock to prevent mtrr entry changes
811 	 */
812 	set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
813 }
814 
815 /**
816  * Save current fixed-range MTRR state of the first cpu in cpu_online_mask.
817  */
818 void mtrr_save_state(void)
819 {
820 	int first_cpu;
821 
822 	if (!mtrr_enabled())
823 		return;
824 
825 	first_cpu = cpumask_first(cpu_online_mask);
826 	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
827 }
828 
829 void set_mtrr_aps_delayed_init(void)
830 {
831 	if (!mtrr_enabled())
832 		return;
833 	if (!use_intel())
834 		return;
835 
836 	mtrr_aps_delayed_init = true;
837 }
838 
839 /*
840  * Delayed MTRR initialization for all AP's
841  */
842 void mtrr_aps_init(void)
843 {
844 	if (!use_intel() || !mtrr_enabled())
845 		return;
846 
847 	/*
848 	 * Check if someone has requested the delay of AP MTRR initialization,
849 	 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
850 	 * then we are done.
851 	 */
852 	if (!mtrr_aps_delayed_init)
853 		return;
854 
855 	set_mtrr(~0U, 0, 0, 0);
856 	mtrr_aps_delayed_init = false;
857 }
858 
859 void mtrr_bp_restore(void)
860 {
861 	if (!use_intel() || !mtrr_enabled())
862 		return;
863 
864 	mtrr_if->set_all();
865 }
866 
867 static int __init mtrr_init_finialize(void)
868 {
869 	if (!mtrr_enabled())
870 		return 0;
871 
872 	if (use_intel()) {
873 		if (!changed_by_mtrr_cleanup)
874 			mtrr_state_warn();
875 		return 0;
876 	}
877 
878 	/*
879 	 * The CPU has no MTRR and seems to not support SMP. They have
880 	 * specific drivers, we use a tricky method to support
881 	 * suspend/resume for them.
882 	 *
883 	 * TBD: is there any system with such CPU which supports
884 	 * suspend/resume? If no, we should remove the code.
885 	 */
886 	register_syscore_ops(&mtrr_syscore_ops);
887 
888 	return 0;
889 }
890 subsys_initcall(mtrr_init_finialize);
891