xref: /openbmc/linux/arch/x86/kernel/cpu/mtrr/generic.c (revision a5b2c10c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This only handles 32bit MTRR on 32bit hosts. This is strictly wrong
4  * because MTRRs can span up to 40 bits (36bits on most modern x86)
5  */
6 #define DEBUG
7 
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/io.h>
11 #include <linux/mm.h>
12 
13 #include <asm/processor-flags.h>
14 #include <asm/cpufeature.h>
15 #include <asm/tlbflush.h>
16 #include <asm/mtrr.h>
17 #include <asm/msr.h>
18 #include <asm/memtype.h>
19 
20 #include "mtrr.h"
21 
22 struct fixed_range_block {
23 	int base_msr;		/* start address of an MTRR block */
24 	int ranges;		/* number of MTRRs in this block  */
25 };
26 
27 static struct fixed_range_block fixed_range_blocks[] = {
28 	{ MSR_MTRRfix64K_00000, 1 }, /* one   64k MTRR  */
29 	{ MSR_MTRRfix16K_80000, 2 }, /* two   16k MTRRs */
30 	{ MSR_MTRRfix4K_C0000,  8 }, /* eight  4k MTRRs */
31 	{}
32 };
33 
34 static unsigned long smp_changes_mask;
35 static int mtrr_state_set;
36 u64 mtrr_tom2;
37 
38 struct mtrr_state_type mtrr_state;
39 EXPORT_SYMBOL_GPL(mtrr_state);
40 
41 /*
42  * BIOS is expected to clear MtrrFixDramModEn bit, see for example
43  * "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
44  * Opteron Processors" (26094 Rev. 3.30 February 2006), section
45  * "13.2.1.2 SYSCFG Register": "The MtrrFixDramModEn bit should be set
46  * to 1 during BIOS initialization of the fixed MTRRs, then cleared to
47  * 0 for operation."
48  */
49 static inline void k8_check_syscfg_dram_mod_en(void)
50 {
51 	u32 lo, hi;
52 
53 	if (!((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) &&
54 	      (boot_cpu_data.x86 >= 0x0f)))
55 		return;
56 
57 	rdmsr(MSR_K8_SYSCFG, lo, hi);
58 	if (lo & K8_MTRRFIXRANGE_DRAM_MODIFY) {
59 		pr_err(FW_WARN "MTRR: CPU %u: SYSCFG[MtrrFixDramModEn]"
60 		       " not cleared by BIOS, clearing this bit\n",
61 		       smp_processor_id());
62 		lo &= ~K8_MTRRFIXRANGE_DRAM_MODIFY;
63 		mtrr_wrmsr(MSR_K8_SYSCFG, lo, hi);
64 	}
65 }
66 
67 /* Get the size of contiguous MTRR range */
68 static u64 get_mtrr_size(u64 mask)
69 {
70 	u64 size;
71 
72 	mask >>= PAGE_SHIFT;
73 	mask |= size_or_mask;
74 	size = -mask;
75 	size <<= PAGE_SHIFT;
76 	return size;
77 }
78 
79 /*
80  * Check and return the effective type for MTRR-MTRR type overlap.
81  * Returns 1 if the effective type is UNCACHEABLE, else returns 0
82  */
83 static int check_type_overlap(u8 *prev, u8 *curr)
84 {
85 	if (*prev == MTRR_TYPE_UNCACHABLE || *curr == MTRR_TYPE_UNCACHABLE) {
86 		*prev = MTRR_TYPE_UNCACHABLE;
87 		*curr = MTRR_TYPE_UNCACHABLE;
88 		return 1;
89 	}
90 
91 	if ((*prev == MTRR_TYPE_WRBACK && *curr == MTRR_TYPE_WRTHROUGH) ||
92 	    (*prev == MTRR_TYPE_WRTHROUGH && *curr == MTRR_TYPE_WRBACK)) {
93 		*prev = MTRR_TYPE_WRTHROUGH;
94 		*curr = MTRR_TYPE_WRTHROUGH;
95 	}
96 
97 	if (*prev != *curr) {
98 		*prev = MTRR_TYPE_UNCACHABLE;
99 		*curr = MTRR_TYPE_UNCACHABLE;
100 		return 1;
101 	}
102 
103 	return 0;
104 }
105 
106 /**
107  * mtrr_type_lookup_fixed - look up memory type in MTRR fixed entries
108  *
109  * Return the MTRR fixed memory type of 'start'.
110  *
111  * MTRR fixed entries are divided into the following ways:
112  *  0x00000 - 0x7FFFF : This range is divided into eight 64KB sub-ranges
113  *  0x80000 - 0xBFFFF : This range is divided into sixteen 16KB sub-ranges
114  *  0xC0000 - 0xFFFFF : This range is divided into sixty-four 4KB sub-ranges
115  *
116  * Return Values:
117  * MTRR_TYPE_(type)  - Matched memory type
118  * MTRR_TYPE_INVALID - Unmatched
119  */
120 static u8 mtrr_type_lookup_fixed(u64 start, u64 end)
121 {
122 	int idx;
123 
124 	if (start >= 0x100000)
125 		return MTRR_TYPE_INVALID;
126 
127 	/* 0x0 - 0x7FFFF */
128 	if (start < 0x80000) {
129 		idx = 0;
130 		idx += (start >> 16);
131 		return mtrr_state.fixed_ranges[idx];
132 	/* 0x80000 - 0xBFFFF */
133 	} else if (start < 0xC0000) {
134 		idx = 1 * 8;
135 		idx += ((start - 0x80000) >> 14);
136 		return mtrr_state.fixed_ranges[idx];
137 	}
138 
139 	/* 0xC0000 - 0xFFFFF */
140 	idx = 3 * 8;
141 	idx += ((start - 0xC0000) >> 12);
142 	return mtrr_state.fixed_ranges[idx];
143 }
144 
145 /**
146  * mtrr_type_lookup_variable - look up memory type in MTRR variable entries
147  *
148  * Return Value:
149  * MTRR_TYPE_(type) - Matched memory type or default memory type (unmatched)
150  *
151  * Output Arguments:
152  * repeat - Set to 1 when [start:end] spanned across MTRR range and type
153  *	    returned corresponds only to [start:*partial_end].  Caller has
154  *	    to lookup again for [*partial_end:end].
155  *
156  * uniform - Set to 1 when an MTRR covers the region uniformly, i.e. the
157  *	     region is fully covered by a single MTRR entry or the default
158  *	     type.
159  */
160 static u8 mtrr_type_lookup_variable(u64 start, u64 end, u64 *partial_end,
161 				    int *repeat, u8 *uniform)
162 {
163 	int i;
164 	u64 base, mask;
165 	u8 prev_match, curr_match;
166 
167 	*repeat = 0;
168 	*uniform = 1;
169 
170 	/* Make end inclusive instead of exclusive */
171 	end--;
172 
173 	prev_match = MTRR_TYPE_INVALID;
174 	for (i = 0; i < num_var_ranges; ++i) {
175 		unsigned short start_state, end_state, inclusive;
176 
177 		if (!(mtrr_state.var_ranges[i].mask_lo & (1 << 11)))
178 			continue;
179 
180 		base = (((u64)mtrr_state.var_ranges[i].base_hi) << 32) +
181 		       (mtrr_state.var_ranges[i].base_lo & PAGE_MASK);
182 		mask = (((u64)mtrr_state.var_ranges[i].mask_hi) << 32) +
183 		       (mtrr_state.var_ranges[i].mask_lo & PAGE_MASK);
184 
185 		start_state = ((start & mask) == (base & mask));
186 		end_state = ((end & mask) == (base & mask));
187 		inclusive = ((start < base) && (end > base));
188 
189 		if ((start_state != end_state) || inclusive) {
190 			/*
191 			 * We have start:end spanning across an MTRR.
192 			 * We split the region into either
193 			 *
194 			 * - start_state:1
195 			 * (start:mtrr_end)(mtrr_end:end)
196 			 * - end_state:1
197 			 * (start:mtrr_start)(mtrr_start:end)
198 			 * - inclusive:1
199 			 * (start:mtrr_start)(mtrr_start:mtrr_end)(mtrr_end:end)
200 			 *
201 			 * depending on kind of overlap.
202 			 *
203 			 * Return the type of the first region and a pointer
204 			 * to the start of next region so that caller will be
205 			 * advised to lookup again after having adjusted start
206 			 * and end.
207 			 *
208 			 * Note: This way we handle overlaps with multiple
209 			 * entries and the default type properly.
210 			 */
211 			if (start_state)
212 				*partial_end = base + get_mtrr_size(mask);
213 			else
214 				*partial_end = base;
215 
216 			if (unlikely(*partial_end <= start)) {
217 				WARN_ON(1);
218 				*partial_end = start + PAGE_SIZE;
219 			}
220 
221 			end = *partial_end - 1; /* end is inclusive */
222 			*repeat = 1;
223 			*uniform = 0;
224 		}
225 
226 		if ((start & mask) != (base & mask))
227 			continue;
228 
229 		curr_match = mtrr_state.var_ranges[i].base_lo & 0xff;
230 		if (prev_match == MTRR_TYPE_INVALID) {
231 			prev_match = curr_match;
232 			continue;
233 		}
234 
235 		*uniform = 0;
236 		if (check_type_overlap(&prev_match, &curr_match))
237 			return curr_match;
238 	}
239 
240 	if (prev_match != MTRR_TYPE_INVALID)
241 		return prev_match;
242 
243 	return mtrr_state.def_type;
244 }
245 
246 /**
247  * mtrr_type_lookup - look up memory type in MTRR
248  *
249  * Return Values:
250  * MTRR_TYPE_(type)  - The effective MTRR type for the region
251  * MTRR_TYPE_INVALID - MTRR is disabled
252  *
253  * Output Argument:
254  * uniform - Set to 1 when an MTRR covers the region uniformly, i.e. the
255  *	     region is fully covered by a single MTRR entry or the default
256  *	     type.
257  */
258 u8 mtrr_type_lookup(u64 start, u64 end, u8 *uniform)
259 {
260 	u8 type, prev_type, is_uniform = 1, dummy;
261 	int repeat;
262 	u64 partial_end;
263 
264 	if (!mtrr_state_set)
265 		return MTRR_TYPE_INVALID;
266 
267 	if (!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED))
268 		return MTRR_TYPE_INVALID;
269 
270 	/*
271 	 * Look up the fixed ranges first, which take priority over
272 	 * the variable ranges.
273 	 */
274 	if ((start < 0x100000) &&
275 	    (mtrr_state.have_fixed) &&
276 	    (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED)) {
277 		is_uniform = 0;
278 		type = mtrr_type_lookup_fixed(start, end);
279 		goto out;
280 	}
281 
282 	/*
283 	 * Look up the variable ranges.  Look of multiple ranges matching
284 	 * this address and pick type as per MTRR precedence.
285 	 */
286 	type = mtrr_type_lookup_variable(start, end, &partial_end,
287 					 &repeat, &is_uniform);
288 
289 	/*
290 	 * Common path is with repeat = 0.
291 	 * However, we can have cases where [start:end] spans across some
292 	 * MTRR ranges and/or the default type.  Do repeated lookups for
293 	 * that case here.
294 	 */
295 	while (repeat) {
296 		prev_type = type;
297 		start = partial_end;
298 		is_uniform = 0;
299 		type = mtrr_type_lookup_variable(start, end, &partial_end,
300 						 &repeat, &dummy);
301 
302 		if (check_type_overlap(&prev_type, &type))
303 			goto out;
304 	}
305 
306 	if (mtrr_tom2 && (start >= (1ULL<<32)) && (end < mtrr_tom2))
307 		type = MTRR_TYPE_WRBACK;
308 
309 out:
310 	*uniform = is_uniform;
311 	return type;
312 }
313 
314 /* Get the MSR pair relating to a var range */
315 static void
316 get_mtrr_var_range(unsigned int index, struct mtrr_var_range *vr)
317 {
318 	rdmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi);
319 	rdmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi);
320 }
321 
322 /* Fill the MSR pair relating to a var range */
323 void fill_mtrr_var_range(unsigned int index,
324 		u32 base_lo, u32 base_hi, u32 mask_lo, u32 mask_hi)
325 {
326 	struct mtrr_var_range *vr;
327 
328 	vr = mtrr_state.var_ranges;
329 
330 	vr[index].base_lo = base_lo;
331 	vr[index].base_hi = base_hi;
332 	vr[index].mask_lo = mask_lo;
333 	vr[index].mask_hi = mask_hi;
334 }
335 
336 static void get_fixed_ranges(mtrr_type *frs)
337 {
338 	unsigned int *p = (unsigned int *)frs;
339 	int i;
340 
341 	k8_check_syscfg_dram_mod_en();
342 
343 	rdmsr(MSR_MTRRfix64K_00000, p[0], p[1]);
344 
345 	for (i = 0; i < 2; i++)
346 		rdmsr(MSR_MTRRfix16K_80000 + i, p[2 + i * 2], p[3 + i * 2]);
347 	for (i = 0; i < 8; i++)
348 		rdmsr(MSR_MTRRfix4K_C0000 + i, p[6 + i * 2], p[7 + i * 2]);
349 }
350 
351 void mtrr_save_fixed_ranges(void *info)
352 {
353 	if (boot_cpu_has(X86_FEATURE_MTRR))
354 		get_fixed_ranges(mtrr_state.fixed_ranges);
355 }
356 
357 static unsigned __initdata last_fixed_start;
358 static unsigned __initdata last_fixed_end;
359 static mtrr_type __initdata last_fixed_type;
360 
361 static void __init print_fixed_last(void)
362 {
363 	if (!last_fixed_end)
364 		return;
365 
366 	pr_debug("  %05X-%05X %s\n", last_fixed_start,
367 		 last_fixed_end - 1, mtrr_attrib_to_str(last_fixed_type));
368 
369 	last_fixed_end = 0;
370 }
371 
372 static void __init update_fixed_last(unsigned base, unsigned end,
373 				     mtrr_type type)
374 {
375 	last_fixed_start = base;
376 	last_fixed_end = end;
377 	last_fixed_type = type;
378 }
379 
380 static void __init
381 print_fixed(unsigned base, unsigned step, const mtrr_type *types)
382 {
383 	unsigned i;
384 
385 	for (i = 0; i < 8; ++i, ++types, base += step) {
386 		if (last_fixed_end == 0) {
387 			update_fixed_last(base, base + step, *types);
388 			continue;
389 		}
390 		if (last_fixed_end == base && last_fixed_type == *types) {
391 			last_fixed_end = base + step;
392 			continue;
393 		}
394 		/* new segments: gap or different type */
395 		print_fixed_last();
396 		update_fixed_last(base, base + step, *types);
397 	}
398 }
399 
400 static void prepare_set(void);
401 static void post_set(void);
402 
403 static void __init print_mtrr_state(void)
404 {
405 	unsigned int i;
406 	int high_width;
407 
408 	pr_debug("MTRR default type: %s\n",
409 		 mtrr_attrib_to_str(mtrr_state.def_type));
410 	if (mtrr_state.have_fixed) {
411 		pr_debug("MTRR fixed ranges %sabled:\n",
412 			((mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED) &&
413 			 (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED)) ?
414 			 "en" : "dis");
415 		print_fixed(0x00000, 0x10000, mtrr_state.fixed_ranges + 0);
416 		for (i = 0; i < 2; ++i)
417 			print_fixed(0x80000 + i * 0x20000, 0x04000,
418 				    mtrr_state.fixed_ranges + (i + 1) * 8);
419 		for (i = 0; i < 8; ++i)
420 			print_fixed(0xC0000 + i * 0x08000, 0x01000,
421 				    mtrr_state.fixed_ranges + (i + 3) * 8);
422 
423 		/* tail */
424 		print_fixed_last();
425 	}
426 	pr_debug("MTRR variable ranges %sabled:\n",
427 		 mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED ? "en" : "dis");
428 	high_width = (__ffs64(size_or_mask) - (32 - PAGE_SHIFT) + 3) / 4;
429 
430 	for (i = 0; i < num_var_ranges; ++i) {
431 		if (mtrr_state.var_ranges[i].mask_lo & (1 << 11))
432 			pr_debug("  %u base %0*X%05X000 mask %0*X%05X000 %s\n",
433 				 i,
434 				 high_width,
435 				 mtrr_state.var_ranges[i].base_hi,
436 				 mtrr_state.var_ranges[i].base_lo >> 12,
437 				 high_width,
438 				 mtrr_state.var_ranges[i].mask_hi,
439 				 mtrr_state.var_ranges[i].mask_lo >> 12,
440 				 mtrr_attrib_to_str(mtrr_state.var_ranges[i].base_lo & 0xff));
441 		else
442 			pr_debug("  %u disabled\n", i);
443 	}
444 	if (mtrr_tom2)
445 		pr_debug("TOM2: %016llx aka %lldM\n", mtrr_tom2, mtrr_tom2>>20);
446 }
447 
448 /* PAT setup for BP. We need to go through sync steps here */
449 void __init mtrr_bp_pat_init(void)
450 {
451 	unsigned long flags;
452 
453 	local_irq_save(flags);
454 	prepare_set();
455 
456 	pat_init();
457 
458 	post_set();
459 	local_irq_restore(flags);
460 }
461 
462 /* Grab all of the MTRR state for this CPU into *state */
463 bool __init get_mtrr_state(void)
464 {
465 	struct mtrr_var_range *vrs;
466 	unsigned lo, dummy;
467 	unsigned int i;
468 
469 	vrs = mtrr_state.var_ranges;
470 
471 	rdmsr(MSR_MTRRcap, lo, dummy);
472 	mtrr_state.have_fixed = (lo >> 8) & 1;
473 
474 	for (i = 0; i < num_var_ranges; i++)
475 		get_mtrr_var_range(i, &vrs[i]);
476 	if (mtrr_state.have_fixed)
477 		get_fixed_ranges(mtrr_state.fixed_ranges);
478 
479 	rdmsr(MSR_MTRRdefType, lo, dummy);
480 	mtrr_state.def_type = (lo & 0xff);
481 	mtrr_state.enabled = (lo & 0xc00) >> 10;
482 
483 	if (amd_special_default_mtrr()) {
484 		unsigned low, high;
485 
486 		/* TOP_MEM2 */
487 		rdmsr(MSR_K8_TOP_MEM2, low, high);
488 		mtrr_tom2 = high;
489 		mtrr_tom2 <<= 32;
490 		mtrr_tom2 |= low;
491 		mtrr_tom2 &= 0xffffff800000ULL;
492 	}
493 
494 	print_mtrr_state();
495 
496 	mtrr_state_set = 1;
497 
498 	return !!(mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED);
499 }
500 
501 /* Some BIOS's are messed up and don't set all MTRRs the same! */
502 void __init mtrr_state_warn(void)
503 {
504 	unsigned long mask = smp_changes_mask;
505 
506 	if (!mask)
507 		return;
508 	if (mask & MTRR_CHANGE_MASK_FIXED)
509 		pr_warn("mtrr: your CPUs had inconsistent fixed MTRR settings\n");
510 	if (mask & MTRR_CHANGE_MASK_VARIABLE)
511 		pr_warn("mtrr: your CPUs had inconsistent variable MTRR settings\n");
512 	if (mask & MTRR_CHANGE_MASK_DEFTYPE)
513 		pr_warn("mtrr: your CPUs had inconsistent MTRRdefType settings\n");
514 
515 	pr_info("mtrr: probably your BIOS does not setup all CPUs.\n");
516 	pr_info("mtrr: corrected configuration.\n");
517 }
518 
519 /*
520  * Doesn't attempt to pass an error out to MTRR users
521  * because it's quite complicated in some cases and probably not
522  * worth it because the best error handling is to ignore it.
523  */
524 void mtrr_wrmsr(unsigned msr, unsigned a, unsigned b)
525 {
526 	if (wrmsr_safe(msr, a, b) < 0) {
527 		pr_err("MTRR: CPU %u: Writing MSR %x to %x:%x failed\n",
528 			smp_processor_id(), msr, a, b);
529 	}
530 }
531 
532 /**
533  * set_fixed_range - checks & updates a fixed-range MTRR if it
534  *		     differs from the value it should have
535  * @msr: MSR address of the MTTR which should be checked and updated
536  * @changed: pointer which indicates whether the MTRR needed to be changed
537  * @msrwords: pointer to the MSR values which the MSR should have
538  */
539 static void set_fixed_range(int msr, bool *changed, unsigned int *msrwords)
540 {
541 	unsigned lo, hi;
542 
543 	rdmsr(msr, lo, hi);
544 
545 	if (lo != msrwords[0] || hi != msrwords[1]) {
546 		mtrr_wrmsr(msr, msrwords[0], msrwords[1]);
547 		*changed = true;
548 	}
549 }
550 
551 /**
552  * generic_get_free_region - Get a free MTRR.
553  * @base: The starting (base) address of the region.
554  * @size: The size (in bytes) of the region.
555  * @replace_reg: mtrr index to be replaced; set to invalid value if none.
556  *
557  * Returns: The index of the region on success, else negative on error.
558  */
559 int
560 generic_get_free_region(unsigned long base, unsigned long size, int replace_reg)
561 {
562 	unsigned long lbase, lsize;
563 	mtrr_type ltype;
564 	int i, max;
565 
566 	max = num_var_ranges;
567 	if (replace_reg >= 0 && replace_reg < max)
568 		return replace_reg;
569 
570 	for (i = 0; i < max; ++i) {
571 		mtrr_if->get(i, &lbase, &lsize, &ltype);
572 		if (lsize == 0)
573 			return i;
574 	}
575 
576 	return -ENOSPC;
577 }
578 
579 static void generic_get_mtrr(unsigned int reg, unsigned long *base,
580 			     unsigned long *size, mtrr_type *type)
581 {
582 	u32 mask_lo, mask_hi, base_lo, base_hi;
583 	unsigned int hi;
584 	u64 tmp, mask;
585 
586 	/*
587 	 * get_mtrr doesn't need to update mtrr_state, also it could be called
588 	 * from any cpu, so try to print it out directly.
589 	 */
590 	get_cpu();
591 
592 	rdmsr(MTRRphysMask_MSR(reg), mask_lo, mask_hi);
593 
594 	if ((mask_lo & 0x800) == 0) {
595 		/*  Invalid (i.e. free) range */
596 		*base = 0;
597 		*size = 0;
598 		*type = 0;
599 		goto out_put_cpu;
600 	}
601 
602 	rdmsr(MTRRphysBase_MSR(reg), base_lo, base_hi);
603 
604 	/* Work out the shifted address mask: */
605 	tmp = (u64)mask_hi << (32 - PAGE_SHIFT) | mask_lo >> PAGE_SHIFT;
606 	mask = size_or_mask | tmp;
607 
608 	/* Expand tmp with high bits to all 1s: */
609 	hi = fls64(tmp);
610 	if (hi > 0) {
611 		tmp |= ~((1ULL<<(hi - 1)) - 1);
612 
613 		if (tmp != mask) {
614 			pr_warn("mtrr: your BIOS has configured an incorrect mask, fixing it.\n");
615 			add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
616 			mask = tmp;
617 		}
618 	}
619 
620 	/*
621 	 * This works correctly if size is a power of two, i.e. a
622 	 * contiguous range:
623 	 */
624 	*size = -mask;
625 	*base = (u64)base_hi << (32 - PAGE_SHIFT) | base_lo >> PAGE_SHIFT;
626 	*type = base_lo & 0xff;
627 
628 out_put_cpu:
629 	put_cpu();
630 }
631 
632 /**
633  * set_fixed_ranges - checks & updates the fixed-range MTRRs if they
634  *		      differ from the saved set
635  * @frs: pointer to fixed-range MTRR values, saved by get_fixed_ranges()
636  */
637 static int set_fixed_ranges(mtrr_type *frs)
638 {
639 	unsigned long long *saved = (unsigned long long *)frs;
640 	bool changed = false;
641 	int block = -1, range;
642 
643 	k8_check_syscfg_dram_mod_en();
644 
645 	while (fixed_range_blocks[++block].ranges) {
646 		for (range = 0; range < fixed_range_blocks[block].ranges; range++)
647 			set_fixed_range(fixed_range_blocks[block].base_msr + range,
648 					&changed, (unsigned int *)saved++);
649 	}
650 
651 	return changed;
652 }
653 
654 /*
655  * Set the MSR pair relating to a var range.
656  * Returns true if changes are made.
657  */
658 static bool set_mtrr_var_ranges(unsigned int index, struct mtrr_var_range *vr)
659 {
660 	unsigned int lo, hi;
661 	bool changed = false;
662 
663 	rdmsr(MTRRphysBase_MSR(index), lo, hi);
664 	if ((vr->base_lo & 0xfffff0ffUL) != (lo & 0xfffff0ffUL)
665 	    || (vr->base_hi & (size_and_mask >> (32 - PAGE_SHIFT))) !=
666 		(hi & (size_and_mask >> (32 - PAGE_SHIFT)))) {
667 
668 		mtrr_wrmsr(MTRRphysBase_MSR(index), vr->base_lo, vr->base_hi);
669 		changed = true;
670 	}
671 
672 	rdmsr(MTRRphysMask_MSR(index), lo, hi);
673 
674 	if ((vr->mask_lo & 0xfffff800UL) != (lo & 0xfffff800UL)
675 	    || (vr->mask_hi & (size_and_mask >> (32 - PAGE_SHIFT))) !=
676 		(hi & (size_and_mask >> (32 - PAGE_SHIFT)))) {
677 		mtrr_wrmsr(MTRRphysMask_MSR(index), vr->mask_lo, vr->mask_hi);
678 		changed = true;
679 	}
680 	return changed;
681 }
682 
683 static u32 deftype_lo, deftype_hi;
684 
685 /**
686  * set_mtrr_state - Set the MTRR state for this CPU.
687  *
688  * NOTE: The CPU must already be in a safe state for MTRR changes.
689  * RETURNS: 0 if no changes made, else a mask indicating what was changed.
690  */
691 static unsigned long set_mtrr_state(void)
692 {
693 	unsigned long change_mask = 0;
694 	unsigned int i;
695 
696 	for (i = 0; i < num_var_ranges; i++) {
697 		if (set_mtrr_var_ranges(i, &mtrr_state.var_ranges[i]))
698 			change_mask |= MTRR_CHANGE_MASK_VARIABLE;
699 	}
700 
701 	if (mtrr_state.have_fixed && set_fixed_ranges(mtrr_state.fixed_ranges))
702 		change_mask |= MTRR_CHANGE_MASK_FIXED;
703 
704 	/*
705 	 * Set_mtrr_restore restores the old value of MTRRdefType,
706 	 * so to set it we fiddle with the saved value:
707 	 */
708 	if ((deftype_lo & 0xff) != mtrr_state.def_type
709 	    || ((deftype_lo & 0xc00) >> 10) != mtrr_state.enabled) {
710 
711 		deftype_lo = (deftype_lo & ~0xcff) | mtrr_state.def_type |
712 			     (mtrr_state.enabled << 10);
713 		change_mask |= MTRR_CHANGE_MASK_DEFTYPE;
714 	}
715 
716 	return change_mask;
717 }
718 
719 
720 static unsigned long cr4;
721 static DEFINE_RAW_SPINLOCK(set_atomicity_lock);
722 
723 /*
724  * Since we are disabling the cache don't allow any interrupts,
725  * they would run extremely slow and would only increase the pain.
726  *
727  * The caller must ensure that local interrupts are disabled and
728  * are reenabled after post_set() has been called.
729  */
730 static void prepare_set(void) __acquires(set_atomicity_lock)
731 {
732 	unsigned long cr0;
733 
734 	/*
735 	 * Note that this is not ideal
736 	 * since the cache is only flushed/disabled for this CPU while the
737 	 * MTRRs are changed, but changing this requires more invasive
738 	 * changes to the way the kernel boots
739 	 */
740 
741 	raw_spin_lock(&set_atomicity_lock);
742 
743 	/* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */
744 	cr0 = read_cr0() | X86_CR0_CD;
745 	write_cr0(cr0);
746 
747 	/*
748 	 * Cache flushing is the most time-consuming step when programming
749 	 * the MTRRs. Fortunately, as per the Intel Software Development
750 	 * Manual, we can skip it if the processor supports cache self-
751 	 * snooping.
752 	 */
753 	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
754 		wbinvd();
755 
756 	/* Save value of CR4 and clear Page Global Enable (bit 7) */
757 	if (boot_cpu_has(X86_FEATURE_PGE)) {
758 		cr4 = __read_cr4();
759 		__write_cr4(cr4 & ~X86_CR4_PGE);
760 	}
761 
762 	/* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */
763 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
764 	flush_tlb_local();
765 
766 	/* Save MTRR state */
767 	rdmsr(MSR_MTRRdefType, deftype_lo, deftype_hi);
768 
769 	/* Disable MTRRs, and set the default type to uncached */
770 	mtrr_wrmsr(MSR_MTRRdefType, deftype_lo & ~0xcff, deftype_hi);
771 
772 	/* Again, only flush caches if we have to. */
773 	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
774 		wbinvd();
775 }
776 
777 static void post_set(void) __releases(set_atomicity_lock)
778 {
779 	/* Flush TLBs (no need to flush caches - they are disabled) */
780 	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
781 	flush_tlb_local();
782 
783 	/* Intel (P6) standard MTRRs */
784 	mtrr_wrmsr(MSR_MTRRdefType, deftype_lo, deftype_hi);
785 
786 	/* Enable caches */
787 	write_cr0(read_cr0() & ~X86_CR0_CD);
788 
789 	/* Restore value of CR4 */
790 	if (boot_cpu_has(X86_FEATURE_PGE))
791 		__write_cr4(cr4);
792 	raw_spin_unlock(&set_atomicity_lock);
793 }
794 
795 static void generic_set_all(void)
796 {
797 	unsigned long mask, count;
798 	unsigned long flags;
799 
800 	local_irq_save(flags);
801 	prepare_set();
802 
803 	/* Actually set the state */
804 	mask = set_mtrr_state();
805 
806 	/* also set PAT */
807 	pat_init();
808 
809 	post_set();
810 	local_irq_restore(flags);
811 
812 	/* Use the atomic bitops to update the global mask */
813 	for (count = 0; count < sizeof(mask) * 8; ++count) {
814 		if (mask & 0x01)
815 			set_bit(count, &smp_changes_mask);
816 		mask >>= 1;
817 	}
818 
819 }
820 
821 /**
822  * generic_set_mtrr - set variable MTRR register on the local CPU.
823  *
824  * @reg: The register to set.
825  * @base: The base address of the region.
826  * @size: The size of the region. If this is 0 the region is disabled.
827  * @type: The type of the region.
828  *
829  * Returns nothing.
830  */
831 static void generic_set_mtrr(unsigned int reg, unsigned long base,
832 			     unsigned long size, mtrr_type type)
833 {
834 	unsigned long flags;
835 	struct mtrr_var_range *vr;
836 
837 	vr = &mtrr_state.var_ranges[reg];
838 
839 	local_irq_save(flags);
840 	prepare_set();
841 
842 	if (size == 0) {
843 		/*
844 		 * The invalid bit is kept in the mask, so we simply
845 		 * clear the relevant mask register to disable a range.
846 		 */
847 		mtrr_wrmsr(MTRRphysMask_MSR(reg), 0, 0);
848 		memset(vr, 0, sizeof(struct mtrr_var_range));
849 	} else {
850 		vr->base_lo = base << PAGE_SHIFT | type;
851 		vr->base_hi = (base & size_and_mask) >> (32 - PAGE_SHIFT);
852 		vr->mask_lo = -size << PAGE_SHIFT | 0x800;
853 		vr->mask_hi = (-size & size_and_mask) >> (32 - PAGE_SHIFT);
854 
855 		mtrr_wrmsr(MTRRphysBase_MSR(reg), vr->base_lo, vr->base_hi);
856 		mtrr_wrmsr(MTRRphysMask_MSR(reg), vr->mask_lo, vr->mask_hi);
857 	}
858 
859 	post_set();
860 	local_irq_restore(flags);
861 }
862 
863 int generic_validate_add_page(unsigned long base, unsigned long size,
864 			      unsigned int type)
865 {
866 	unsigned long lbase, last;
867 
868 	/*
869 	 * For Intel PPro stepping <= 7
870 	 * must be 4 MiB aligned and not touch 0x70000000 -> 0x7003FFFF
871 	 */
872 	if (is_cpu(INTEL) && boot_cpu_data.x86 == 6 &&
873 	    boot_cpu_data.x86_model == 1 &&
874 	    boot_cpu_data.x86_stepping <= 7) {
875 		if (base & ((1 << (22 - PAGE_SHIFT)) - 1)) {
876 			pr_warn("mtrr: base(0x%lx000) is not 4 MiB aligned\n", base);
877 			return -EINVAL;
878 		}
879 		if (!(base + size < 0x70000 || base > 0x7003F) &&
880 		    (type == MTRR_TYPE_WRCOMB
881 		     || type == MTRR_TYPE_WRBACK)) {
882 			pr_warn("mtrr: writable mtrr between 0x70000000 and 0x7003FFFF may hang the CPU.\n");
883 			return -EINVAL;
884 		}
885 	}
886 
887 	/*
888 	 * Check upper bits of base and last are equal and lower bits are 0
889 	 * for base and 1 for last
890 	 */
891 	last = base + size - 1;
892 	for (lbase = base; !(lbase & 1) && (last & 1);
893 	     lbase = lbase >> 1, last = last >> 1)
894 		;
895 	if (lbase != last) {
896 		pr_warn("mtrr: base(0x%lx000) is not aligned on a size(0x%lx000) boundary\n", base, size);
897 		return -EINVAL;
898 	}
899 	return 0;
900 }
901 
902 static int generic_have_wrcomb(void)
903 {
904 	unsigned long config, dummy;
905 	rdmsr(MSR_MTRRcap, config, dummy);
906 	return config & (1 << 10);
907 }
908 
909 int positive_have_wrcomb(void)
910 {
911 	return 1;
912 }
913 
914 /*
915  * Generic structure...
916  */
917 const struct mtrr_ops generic_mtrr_ops = {
918 	.use_intel_if		= 1,
919 	.set_all		= generic_set_all,
920 	.get			= generic_get_mtrr,
921 	.get_free_region	= generic_get_free_region,
922 	.set			= generic_set_mtrr,
923 	.validate_add_page	= generic_validate_add_page,
924 	.have_wrcomb		= generic_have_wrcomb,
925 };
926