1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/uaccess.h> 27 #include <linux/vmalloc.h> 28 #include <linux/initrd.h> 29 #include <linux/kernel.h> 30 #include <linux/pci.h> 31 32 #include <asm/microcode_amd.h> 33 #include <asm/microcode.h> 34 #include <asm/processor.h> 35 #include <asm/setup.h> 36 #include <asm/cpu.h> 37 #include <asm/msr.h> 38 39 static struct equiv_cpu_table { 40 unsigned int num_entries; 41 struct equiv_cpu_entry *entry; 42 } equiv_table; 43 44 /* 45 * This points to the current valid container of microcode patches which we will 46 * save from the initrd/builtin before jettisoning its contents. @mc is the 47 * microcode patch we found to match. 48 */ 49 struct cont_desc { 50 struct microcode_amd *mc; 51 u32 cpuid_1_eax; 52 u32 psize; 53 u8 *data; 54 size_t size; 55 }; 56 57 static u32 ucode_new_rev; 58 59 /* One blob per node. */ 60 static u8 amd_ucode_patch[MAX_NUMNODES][PATCH_MAX_SIZE]; 61 62 /* 63 * Microcode patch container file is prepended to the initrd in cpio 64 * format. See Documentation/arch/x86/microcode.rst 65 */ 66 static const char 67 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 68 69 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 70 { 71 unsigned int i; 72 73 if (!et || !et->num_entries) 74 return 0; 75 76 for (i = 0; i < et->num_entries; i++) { 77 struct equiv_cpu_entry *e = &et->entry[i]; 78 79 if (sig == e->installed_cpu) 80 return e->equiv_cpu; 81 82 e++; 83 } 84 return 0; 85 } 86 87 /* 88 * Check whether there is a valid microcode container file at the beginning 89 * of @buf of size @buf_size. Set @early to use this function in the early path. 90 */ 91 static bool verify_container(const u8 *buf, size_t buf_size, bool early) 92 { 93 u32 cont_magic; 94 95 if (buf_size <= CONTAINER_HDR_SZ) { 96 if (!early) 97 pr_debug("Truncated microcode container header.\n"); 98 99 return false; 100 } 101 102 cont_magic = *(const u32 *)buf; 103 if (cont_magic != UCODE_MAGIC) { 104 if (!early) 105 pr_debug("Invalid magic value (0x%08x).\n", cont_magic); 106 107 return false; 108 } 109 110 return true; 111 } 112 113 /* 114 * Check whether there is a valid, non-truncated CPU equivalence table at the 115 * beginning of @buf of size @buf_size. Set @early to use this function in the 116 * early path. 117 */ 118 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early) 119 { 120 const u32 *hdr = (const u32 *)buf; 121 u32 cont_type, equiv_tbl_len; 122 123 if (!verify_container(buf, buf_size, early)) 124 return false; 125 126 cont_type = hdr[1]; 127 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 128 if (!early) 129 pr_debug("Wrong microcode container equivalence table type: %u.\n", 130 cont_type); 131 132 return false; 133 } 134 135 buf_size -= CONTAINER_HDR_SZ; 136 137 equiv_tbl_len = hdr[2]; 138 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 139 buf_size < equiv_tbl_len) { 140 if (!early) 141 pr_debug("Truncated equivalence table.\n"); 142 143 return false; 144 } 145 146 return true; 147 } 148 149 /* 150 * Check whether there is a valid, non-truncated microcode patch section at the 151 * beginning of @buf of size @buf_size. Set @early to use this function in the 152 * early path. 153 * 154 * On success, @sh_psize returns the patch size according to the section header, 155 * to the caller. 156 */ 157 static bool 158 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early) 159 { 160 u32 p_type, p_size; 161 const u32 *hdr; 162 163 if (buf_size < SECTION_HDR_SIZE) { 164 if (!early) 165 pr_debug("Truncated patch section.\n"); 166 167 return false; 168 } 169 170 hdr = (const u32 *)buf; 171 p_type = hdr[0]; 172 p_size = hdr[1]; 173 174 if (p_type != UCODE_UCODE_TYPE) { 175 if (!early) 176 pr_debug("Invalid type field (0x%x) in container file section header.\n", 177 p_type); 178 179 return false; 180 } 181 182 if (p_size < sizeof(struct microcode_header_amd)) { 183 if (!early) 184 pr_debug("Patch of size %u too short.\n", p_size); 185 186 return false; 187 } 188 189 *sh_psize = p_size; 190 191 return true; 192 } 193 194 /* 195 * Check whether the passed remaining file @buf_size is large enough to contain 196 * a patch of the indicated @sh_psize (and also whether this size does not 197 * exceed the per-family maximum). @sh_psize is the size read from the section 198 * header. 199 */ 200 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size) 201 { 202 u32 max_size; 203 204 if (family >= 0x15) 205 return min_t(u32, sh_psize, buf_size); 206 207 #define F1XH_MPB_MAX_SIZE 2048 208 #define F14H_MPB_MAX_SIZE 1824 209 210 switch (family) { 211 case 0x10 ... 0x12: 212 max_size = F1XH_MPB_MAX_SIZE; 213 break; 214 case 0x14: 215 max_size = F14H_MPB_MAX_SIZE; 216 break; 217 default: 218 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 219 return 0; 220 } 221 222 if (sh_psize > min_t(u32, buf_size, max_size)) 223 return 0; 224 225 return sh_psize; 226 } 227 228 /* 229 * Verify the patch in @buf. 230 * 231 * Returns: 232 * negative: on error 233 * positive: patch is not for this family, skip it 234 * 0: success 235 */ 236 static int 237 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early) 238 { 239 struct microcode_header_amd *mc_hdr; 240 unsigned int ret; 241 u32 sh_psize; 242 u16 proc_id; 243 u8 patch_fam; 244 245 if (!__verify_patch_section(buf, buf_size, &sh_psize, early)) 246 return -1; 247 248 /* 249 * The section header length is not included in this indicated size 250 * but is present in the leftover file length so we need to subtract 251 * it before passing this value to the function below. 252 */ 253 buf_size -= SECTION_HDR_SIZE; 254 255 /* 256 * Check if the remaining buffer is big enough to contain a patch of 257 * size sh_psize, as the section claims. 258 */ 259 if (buf_size < sh_psize) { 260 if (!early) 261 pr_debug("Patch of size %u truncated.\n", sh_psize); 262 263 return -1; 264 } 265 266 ret = __verify_patch_size(family, sh_psize, buf_size); 267 if (!ret) { 268 if (!early) 269 pr_debug("Per-family patch size mismatch.\n"); 270 return -1; 271 } 272 273 *patch_size = sh_psize; 274 275 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 276 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 277 if (!early) 278 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 279 return -1; 280 } 281 282 proc_id = mc_hdr->processor_rev_id; 283 patch_fam = 0xf + (proc_id >> 12); 284 if (patch_fam != family) 285 return 1; 286 287 return 0; 288 } 289 290 /* 291 * This scans the ucode blob for the proper container as we can have multiple 292 * containers glued together. Returns the equivalence ID from the equivalence 293 * table or 0 if none found. 294 * Returns the amount of bytes consumed while scanning. @desc contains all the 295 * data we're going to use in later stages of the application. 296 */ 297 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 298 { 299 struct equiv_cpu_table table; 300 size_t orig_size = size; 301 u32 *hdr = (u32 *)ucode; 302 u16 eq_id; 303 u8 *buf; 304 305 if (!verify_equivalence_table(ucode, size, true)) 306 return 0; 307 308 buf = ucode; 309 310 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 311 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 312 313 /* 314 * Find the equivalence ID of our CPU in this table. Even if this table 315 * doesn't contain a patch for the CPU, scan through the whole container 316 * so that it can be skipped in case there are other containers appended. 317 */ 318 eq_id = find_equiv_id(&table, desc->cpuid_1_eax); 319 320 buf += hdr[2] + CONTAINER_HDR_SZ; 321 size -= hdr[2] + CONTAINER_HDR_SZ; 322 323 /* 324 * Scan through the rest of the container to find where it ends. We do 325 * some basic sanity-checking too. 326 */ 327 while (size > 0) { 328 struct microcode_amd *mc; 329 u32 patch_size; 330 int ret; 331 332 ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true); 333 if (ret < 0) { 334 /* 335 * Patch verification failed, skip to the next container, if 336 * there is one. Before exit, check whether that container has 337 * found a patch already. If so, use it. 338 */ 339 goto out; 340 } else if (ret > 0) { 341 goto skip; 342 } 343 344 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 345 if (eq_id == mc->hdr.processor_rev_id) { 346 desc->psize = patch_size; 347 desc->mc = mc; 348 } 349 350 skip: 351 /* Skip patch section header too: */ 352 buf += patch_size + SECTION_HDR_SIZE; 353 size -= patch_size + SECTION_HDR_SIZE; 354 } 355 356 out: 357 /* 358 * If we have found a patch (desc->mc), it means we're looking at the 359 * container which has a patch for this CPU so return 0 to mean, @ucode 360 * already points to the proper container. Otherwise, we return the size 361 * we scanned so that we can advance to the next container in the 362 * buffer. 363 */ 364 if (desc->mc) { 365 desc->data = ucode; 366 desc->size = orig_size - size; 367 368 return 0; 369 } 370 371 return orig_size - size; 372 } 373 374 /* 375 * Scan the ucode blob for the proper container as we can have multiple 376 * containers glued together. 377 */ 378 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 379 { 380 while (size) { 381 size_t s = parse_container(ucode, size, desc); 382 if (!s) 383 return; 384 385 /* catch wraparound */ 386 if (size >= s) { 387 ucode += s; 388 size -= s; 389 } else { 390 return; 391 } 392 } 393 } 394 395 static int __apply_microcode_amd(struct microcode_amd *mc) 396 { 397 u32 rev, dummy; 398 399 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code); 400 401 /* verify patch application was successful */ 402 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 403 if (rev != mc->hdr.patch_id) 404 return -1; 405 406 return 0; 407 } 408 409 /* 410 * Early load occurs before we can vmalloc(). So we look for the microcode 411 * patch container file in initrd, traverse equivalent cpu table, look for a 412 * matching microcode patch, and update, all in initrd memory in place. 413 * When vmalloc() is available for use later -- on 64-bit during first AP load, 414 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call 415 * load_microcode_amd() to save equivalent cpu table and microcode patches in 416 * kernel heap memory. 417 * 418 * Returns true if container found (sets @desc), false otherwise. 419 */ 420 static bool early_apply_microcode(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch) 421 { 422 struct cont_desc desc = { 0 }; 423 u8 (*patch)[PATCH_MAX_SIZE]; 424 struct microcode_amd *mc; 425 u32 rev, dummy, *new_rev; 426 bool ret = false; 427 428 #ifdef CONFIG_X86_32 429 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); 430 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch); 431 #else 432 new_rev = &ucode_new_rev; 433 patch = &amd_ucode_patch[0]; 434 #endif 435 436 desc.cpuid_1_eax = cpuid_1_eax; 437 438 scan_containers(ucode, size, &desc); 439 440 mc = desc.mc; 441 if (!mc) 442 return ret; 443 444 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 445 446 /* 447 * Allow application of the same revision to pick up SMT-specific 448 * changes even if the revision of the other SMT thread is already 449 * up-to-date. 450 */ 451 if (rev > mc->hdr.patch_id) 452 return ret; 453 454 if (!__apply_microcode_amd(mc)) { 455 *new_rev = mc->hdr.patch_id; 456 ret = true; 457 458 if (save_patch) 459 memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE)); 460 } 461 462 return ret; 463 } 464 465 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family) 466 { 467 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 468 struct firmware fw; 469 470 if (IS_ENABLED(CONFIG_X86_32)) 471 return false; 472 473 if (family >= 0x15) 474 snprintf(fw_name, sizeof(fw_name), 475 "amd-ucode/microcode_amd_fam%.2xh.bin", family); 476 477 if (firmware_request_builtin(&fw, fw_name)) { 478 cp->size = fw.size; 479 cp->data = (void *)fw.data; 480 return true; 481 } 482 483 return false; 484 } 485 486 static void find_blobs_in_containers(unsigned int cpuid_1_eax, struct cpio_data *ret) 487 { 488 struct ucode_cpu_info *uci; 489 struct cpio_data cp; 490 const char *path; 491 bool use_pa; 492 493 if (IS_ENABLED(CONFIG_X86_32)) { 494 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info); 495 path = (const char *)__pa_nodebug(ucode_path); 496 use_pa = true; 497 } else { 498 uci = ucode_cpu_info; 499 path = ucode_path; 500 use_pa = false; 501 } 502 503 if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax))) 504 cp = find_microcode_in_initrd(path, use_pa); 505 506 /* Needed in load_microcode_amd() */ 507 uci->cpu_sig.sig = cpuid_1_eax; 508 509 *ret = cp; 510 } 511 512 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax) 513 { 514 struct cpio_data cp = { }; 515 516 find_blobs_in_containers(cpuid_1_eax, &cp); 517 if (!(cp.data && cp.size)) 518 return; 519 520 early_apply_microcode(cpuid_1_eax, cp.data, cp.size, true); 521 } 522 523 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 524 { 525 struct microcode_amd *mc; 526 struct cpio_data cp; 527 u32 *new_rev, rev, dummy; 528 529 if (IS_ENABLED(CONFIG_X86_32)) { 530 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch); 531 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); 532 } else { 533 mc = (struct microcode_amd *)amd_ucode_patch; 534 new_rev = &ucode_new_rev; 535 } 536 537 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 538 539 /* 540 * Check whether a new patch has been saved already. Also, allow application of 541 * the same revision in order to pick up SMT-thread-specific configuration even 542 * if the sibling SMT thread already has an up-to-date revision. 543 */ 544 if (*new_rev && rev <= mc->hdr.patch_id) { 545 if (!__apply_microcode_amd(mc)) { 546 *new_rev = mc->hdr.patch_id; 547 return; 548 } 549 } 550 551 find_blobs_in_containers(cpuid_1_eax, &cp); 552 if (!(cp.data && cp.size)) 553 return; 554 555 early_apply_microcode(cpuid_1_eax, cp.data, cp.size, false); 556 } 557 558 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size); 559 560 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax) 561 { 562 struct cont_desc desc = { 0 }; 563 enum ucode_state ret; 564 struct cpio_data cp; 565 566 cp = find_microcode_in_initrd(ucode_path, false); 567 if (!(cp.data && cp.size)) 568 return -EINVAL; 569 570 desc.cpuid_1_eax = cpuid_1_eax; 571 572 scan_containers(cp.data, cp.size, &desc); 573 if (!desc.mc) 574 return -EINVAL; 575 576 ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); 577 if (ret > UCODE_UPDATED) 578 return -EINVAL; 579 580 return 0; 581 } 582 583 void reload_ucode_amd(unsigned int cpu) 584 { 585 u32 rev, dummy __always_unused; 586 struct microcode_amd *mc; 587 588 mc = (struct microcode_amd *)amd_ucode_patch[cpu_to_node(cpu)]; 589 590 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 591 592 if (rev < mc->hdr.patch_id) { 593 if (!__apply_microcode_amd(mc)) { 594 ucode_new_rev = mc->hdr.patch_id; 595 pr_info("reload patch_level=0x%08x\n", ucode_new_rev); 596 } 597 } 598 } 599 static u16 __find_equiv_id(unsigned int cpu) 600 { 601 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 602 return find_equiv_id(&equiv_table, uci->cpu_sig.sig); 603 } 604 605 /* 606 * a small, trivial cache of per-family ucode patches 607 */ 608 static struct ucode_patch *cache_find_patch(u16 equiv_cpu) 609 { 610 struct ucode_patch *p; 611 612 list_for_each_entry(p, µcode_cache, plist) 613 if (p->equiv_cpu == equiv_cpu) 614 return p; 615 return NULL; 616 } 617 618 static void update_cache(struct ucode_patch *new_patch) 619 { 620 struct ucode_patch *p; 621 622 list_for_each_entry(p, µcode_cache, plist) { 623 if (p->equiv_cpu == new_patch->equiv_cpu) { 624 if (p->patch_id >= new_patch->patch_id) { 625 /* we already have the latest patch */ 626 kfree(new_patch->data); 627 kfree(new_patch); 628 return; 629 } 630 631 list_replace(&p->plist, &new_patch->plist); 632 kfree(p->data); 633 kfree(p); 634 return; 635 } 636 } 637 /* no patch found, add it */ 638 list_add_tail(&new_patch->plist, µcode_cache); 639 } 640 641 static void free_cache(void) 642 { 643 struct ucode_patch *p, *tmp; 644 645 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 646 __list_del(p->plist.prev, p->plist.next); 647 kfree(p->data); 648 kfree(p); 649 } 650 } 651 652 static struct ucode_patch *find_patch(unsigned int cpu) 653 { 654 u16 equiv_id; 655 656 equiv_id = __find_equiv_id(cpu); 657 if (!equiv_id) 658 return NULL; 659 660 return cache_find_patch(equiv_id); 661 } 662 663 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 664 { 665 struct cpuinfo_x86 *c = &cpu_data(cpu); 666 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 667 struct ucode_patch *p; 668 669 csig->sig = cpuid_eax(0x00000001); 670 csig->rev = c->microcode; 671 672 /* 673 * a patch could have been loaded early, set uci->mc so that 674 * mc_bp_resume() can call apply_microcode() 675 */ 676 p = find_patch(cpu); 677 if (p && (p->patch_id == csig->rev)) 678 uci->mc = p->data; 679 680 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev); 681 682 return 0; 683 } 684 685 static enum ucode_state apply_microcode_amd(int cpu) 686 { 687 struct cpuinfo_x86 *c = &cpu_data(cpu); 688 struct microcode_amd *mc_amd; 689 struct ucode_cpu_info *uci; 690 struct ucode_patch *p; 691 enum ucode_state ret; 692 u32 rev, dummy __always_unused; 693 694 BUG_ON(raw_smp_processor_id() != cpu); 695 696 uci = ucode_cpu_info + cpu; 697 698 p = find_patch(cpu); 699 if (!p) 700 return UCODE_NFOUND; 701 702 mc_amd = p->data; 703 uci->mc = p->data; 704 705 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 706 707 /* need to apply patch? */ 708 if (rev >= mc_amd->hdr.patch_id) { 709 ret = UCODE_OK; 710 goto out; 711 } 712 713 if (__apply_microcode_amd(mc_amd)) { 714 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 715 cpu, mc_amd->hdr.patch_id); 716 return UCODE_ERROR; 717 } 718 719 rev = mc_amd->hdr.patch_id; 720 ret = UCODE_UPDATED; 721 722 pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev); 723 724 out: 725 uci->cpu_sig.rev = rev; 726 c->microcode = rev; 727 728 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 729 if (c->cpu_index == boot_cpu_data.cpu_index) 730 boot_cpu_data.microcode = rev; 731 732 return ret; 733 } 734 735 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 736 { 737 u32 equiv_tbl_len; 738 const u32 *hdr; 739 740 if (!verify_equivalence_table(buf, buf_size, false)) 741 return 0; 742 743 hdr = (const u32 *)buf; 744 equiv_tbl_len = hdr[2]; 745 746 equiv_table.entry = vmalloc(equiv_tbl_len); 747 if (!equiv_table.entry) { 748 pr_err("failed to allocate equivalent CPU table\n"); 749 return 0; 750 } 751 752 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 753 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 754 755 /* add header length */ 756 return equiv_tbl_len + CONTAINER_HDR_SZ; 757 } 758 759 static void free_equiv_cpu_table(void) 760 { 761 vfree(equiv_table.entry); 762 memset(&equiv_table, 0, sizeof(equiv_table)); 763 } 764 765 static void cleanup(void) 766 { 767 free_equiv_cpu_table(); 768 free_cache(); 769 } 770 771 /* 772 * Return a non-negative value even if some of the checks failed so that 773 * we can skip over the next patch. If we return a negative value, we 774 * signal a grave error like a memory allocation has failed and the 775 * driver cannot continue functioning normally. In such cases, we tear 776 * down everything we've used up so far and exit. 777 */ 778 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 779 unsigned int *patch_size) 780 { 781 struct microcode_header_amd *mc_hdr; 782 struct ucode_patch *patch; 783 u16 proc_id; 784 int ret; 785 786 ret = verify_patch(family, fw, leftover, patch_size, false); 787 if (ret) 788 return ret; 789 790 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 791 if (!patch) { 792 pr_err("Patch allocation failure.\n"); 793 return -EINVAL; 794 } 795 796 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 797 if (!patch->data) { 798 pr_err("Patch data allocation failure.\n"); 799 kfree(patch); 800 return -EINVAL; 801 } 802 patch->size = *patch_size; 803 804 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 805 proc_id = mc_hdr->processor_rev_id; 806 807 INIT_LIST_HEAD(&patch->plist); 808 patch->patch_id = mc_hdr->patch_id; 809 patch->equiv_cpu = proc_id; 810 811 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n", 812 __func__, patch->patch_id, proc_id); 813 814 /* ... and add to cache. */ 815 update_cache(patch); 816 817 return 0; 818 } 819 820 /* Scan the blob in @data and add microcode patches to the cache. */ 821 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, 822 size_t size) 823 { 824 u8 *fw = (u8 *)data; 825 size_t offset; 826 827 offset = install_equiv_cpu_table(data, size); 828 if (!offset) 829 return UCODE_ERROR; 830 831 fw += offset; 832 size -= offset; 833 834 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 835 pr_err("invalid type field in container file section header\n"); 836 free_equiv_cpu_table(); 837 return UCODE_ERROR; 838 } 839 840 while (size > 0) { 841 unsigned int crnt_size = 0; 842 int ret; 843 844 ret = verify_and_add_patch(family, fw, size, &crnt_size); 845 if (ret < 0) 846 return UCODE_ERROR; 847 848 fw += crnt_size + SECTION_HDR_SIZE; 849 size -= (crnt_size + SECTION_HDR_SIZE); 850 } 851 852 return UCODE_OK; 853 } 854 855 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) 856 { 857 struct cpuinfo_x86 *c; 858 unsigned int nid, cpu; 859 struct ucode_patch *p; 860 enum ucode_state ret; 861 862 /* free old equiv table */ 863 free_equiv_cpu_table(); 864 865 ret = __load_microcode_amd(family, data, size); 866 if (ret != UCODE_OK) { 867 cleanup(); 868 return ret; 869 } 870 871 for_each_node(nid) { 872 cpu = cpumask_first(cpumask_of_node(nid)); 873 c = &cpu_data(cpu); 874 875 p = find_patch(cpu); 876 if (!p) 877 continue; 878 879 if (c->microcode >= p->patch_id) 880 continue; 881 882 ret = UCODE_NEW; 883 884 memset(&amd_ucode_patch[nid], 0, PATCH_MAX_SIZE); 885 memcpy(&amd_ucode_patch[nid], p->data, min_t(u32, p->size, PATCH_MAX_SIZE)); 886 } 887 888 return ret; 889 } 890 891 /* 892 * AMD microcode firmware naming convention, up to family 15h they are in 893 * the legacy file: 894 * 895 * amd-ucode/microcode_amd.bin 896 * 897 * This legacy file is always smaller than 2K in size. 898 * 899 * Beginning with family 15h, they are in family-specific firmware files: 900 * 901 * amd-ucode/microcode_amd_fam15h.bin 902 * amd-ucode/microcode_amd_fam16h.bin 903 * ... 904 * 905 * These might be larger than 2K. 906 */ 907 static enum ucode_state request_microcode_amd(int cpu, struct device *device) 908 { 909 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 910 struct cpuinfo_x86 *c = &cpu_data(cpu); 911 enum ucode_state ret = UCODE_NFOUND; 912 const struct firmware *fw; 913 914 if (c->x86 >= 0x15) 915 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 916 917 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 918 pr_debug("failed to load file %s\n", fw_name); 919 goto out; 920 } 921 922 ret = UCODE_ERROR; 923 if (!verify_container(fw->data, fw->size, false)) 924 goto fw_release; 925 926 ret = load_microcode_amd(c->x86, fw->data, fw->size); 927 928 fw_release: 929 release_firmware(fw); 930 931 out: 932 return ret; 933 } 934 935 static void microcode_fini_cpu_amd(int cpu) 936 { 937 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 938 939 uci->mc = NULL; 940 } 941 942 static struct microcode_ops microcode_amd_ops = { 943 .request_microcode_fw = request_microcode_amd, 944 .collect_cpu_info = collect_cpu_info_amd, 945 .apply_microcode = apply_microcode_amd, 946 .microcode_fini_cpu = microcode_fini_cpu_amd, 947 }; 948 949 struct microcode_ops * __init init_amd_microcode(void) 950 { 951 struct cpuinfo_x86 *c = &boot_cpu_data; 952 953 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 954 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 955 return NULL; 956 } 957 958 if (ucode_new_rev) 959 pr_info_once("microcode updated early to new patch_level=0x%08x\n", 960 ucode_new_rev); 961 962 return µcode_amd_ops; 963 } 964 965 void __exit exit_amd_microcode(void) 966 { 967 cleanup(); 968 } 969