1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD CPU Microcode Update Driver for Linux 4 * 5 * This driver allows to upgrade microcode on F10h AMD 6 * CPUs and later. 7 * 8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc. 9 * 2013-2018 Borislav Petkov <bp@alien8.de> 10 * 11 * Author: Peter Oruba <peter.oruba@amd.com> 12 * 13 * Based on work by: 14 * Tigran Aivazian <aivazian.tigran@gmail.com> 15 * 16 * early loader: 17 * Copyright (C) 2013 Advanced Micro Devices, Inc. 18 * 19 * Author: Jacob Shin <jacob.shin@amd.com> 20 * Fixes: Borislav Petkov <bp@suse.de> 21 */ 22 #define pr_fmt(fmt) "microcode: " fmt 23 24 #include <linux/earlycpio.h> 25 #include <linux/firmware.h> 26 #include <linux/uaccess.h> 27 #include <linux/vmalloc.h> 28 #include <linux/initrd.h> 29 #include <linux/kernel.h> 30 #include <linux/pci.h> 31 32 #include <asm/microcode_amd.h> 33 #include <asm/microcode.h> 34 #include <asm/processor.h> 35 #include <asm/setup.h> 36 #include <asm/cpu.h> 37 #include <asm/msr.h> 38 39 static struct equiv_cpu_table { 40 unsigned int num_entries; 41 struct equiv_cpu_entry *entry; 42 } equiv_table; 43 44 /* 45 * This points to the current valid container of microcode patches which we will 46 * save from the initrd/builtin before jettisoning its contents. @mc is the 47 * microcode patch we found to match. 48 */ 49 struct cont_desc { 50 struct microcode_amd *mc; 51 u32 cpuid_1_eax; 52 u32 psize; 53 u8 *data; 54 size_t size; 55 }; 56 57 static u32 ucode_new_rev; 58 static u8 amd_ucode_patch[PATCH_MAX_SIZE]; 59 60 /* 61 * Microcode patch container file is prepended to the initrd in cpio 62 * format. See Documentation/x86/microcode.rst 63 */ 64 static const char 65 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; 66 67 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) 68 { 69 unsigned int i; 70 71 if (!et || !et->num_entries) 72 return 0; 73 74 for (i = 0; i < et->num_entries; i++) { 75 struct equiv_cpu_entry *e = &et->entry[i]; 76 77 if (sig == e->installed_cpu) 78 return e->equiv_cpu; 79 80 e++; 81 } 82 return 0; 83 } 84 85 /* 86 * Check whether there is a valid microcode container file at the beginning 87 * of @buf of size @buf_size. Set @early to use this function in the early path. 88 */ 89 static bool verify_container(const u8 *buf, size_t buf_size, bool early) 90 { 91 u32 cont_magic; 92 93 if (buf_size <= CONTAINER_HDR_SZ) { 94 if (!early) 95 pr_debug("Truncated microcode container header.\n"); 96 97 return false; 98 } 99 100 cont_magic = *(const u32 *)buf; 101 if (cont_magic != UCODE_MAGIC) { 102 if (!early) 103 pr_debug("Invalid magic value (0x%08x).\n", cont_magic); 104 105 return false; 106 } 107 108 return true; 109 } 110 111 /* 112 * Check whether there is a valid, non-truncated CPU equivalence table at the 113 * beginning of @buf of size @buf_size. Set @early to use this function in the 114 * early path. 115 */ 116 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early) 117 { 118 const u32 *hdr = (const u32 *)buf; 119 u32 cont_type, equiv_tbl_len; 120 121 if (!verify_container(buf, buf_size, early)) 122 return false; 123 124 cont_type = hdr[1]; 125 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { 126 if (!early) 127 pr_debug("Wrong microcode container equivalence table type: %u.\n", 128 cont_type); 129 130 return false; 131 } 132 133 buf_size -= CONTAINER_HDR_SZ; 134 135 equiv_tbl_len = hdr[2]; 136 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || 137 buf_size < equiv_tbl_len) { 138 if (!early) 139 pr_debug("Truncated equivalence table.\n"); 140 141 return false; 142 } 143 144 return true; 145 } 146 147 /* 148 * Check whether there is a valid, non-truncated microcode patch section at the 149 * beginning of @buf of size @buf_size. Set @early to use this function in the 150 * early path. 151 * 152 * On success, @sh_psize returns the patch size according to the section header, 153 * to the caller. 154 */ 155 static bool 156 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early) 157 { 158 u32 p_type, p_size; 159 const u32 *hdr; 160 161 if (buf_size < SECTION_HDR_SIZE) { 162 if (!early) 163 pr_debug("Truncated patch section.\n"); 164 165 return false; 166 } 167 168 hdr = (const u32 *)buf; 169 p_type = hdr[0]; 170 p_size = hdr[1]; 171 172 if (p_type != UCODE_UCODE_TYPE) { 173 if (!early) 174 pr_debug("Invalid type field (0x%x) in container file section header.\n", 175 p_type); 176 177 return false; 178 } 179 180 if (p_size < sizeof(struct microcode_header_amd)) { 181 if (!early) 182 pr_debug("Patch of size %u too short.\n", p_size); 183 184 return false; 185 } 186 187 *sh_psize = p_size; 188 189 return true; 190 } 191 192 /* 193 * Check whether the passed remaining file @buf_size is large enough to contain 194 * a patch of the indicated @sh_psize (and also whether this size does not 195 * exceed the per-family maximum). @sh_psize is the size read from the section 196 * header. 197 */ 198 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size) 199 { 200 u32 max_size; 201 202 if (family >= 0x15) 203 return min_t(u32, sh_psize, buf_size); 204 205 #define F1XH_MPB_MAX_SIZE 2048 206 #define F14H_MPB_MAX_SIZE 1824 207 208 switch (family) { 209 case 0x10 ... 0x12: 210 max_size = F1XH_MPB_MAX_SIZE; 211 break; 212 case 0x14: 213 max_size = F14H_MPB_MAX_SIZE; 214 break; 215 default: 216 WARN(1, "%s: WTF family: 0x%x\n", __func__, family); 217 return 0; 218 break; 219 } 220 221 if (sh_psize > min_t(u32, buf_size, max_size)) 222 return 0; 223 224 return sh_psize; 225 } 226 227 /* 228 * Verify the patch in @buf. 229 * 230 * Returns: 231 * negative: on error 232 * positive: patch is not for this family, skip it 233 * 0: success 234 */ 235 static int 236 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early) 237 { 238 struct microcode_header_amd *mc_hdr; 239 unsigned int ret; 240 u32 sh_psize; 241 u16 proc_id; 242 u8 patch_fam; 243 244 if (!__verify_patch_section(buf, buf_size, &sh_psize, early)) 245 return -1; 246 247 /* 248 * The section header length is not included in this indicated size 249 * but is present in the leftover file length so we need to subtract 250 * it before passing this value to the function below. 251 */ 252 buf_size -= SECTION_HDR_SIZE; 253 254 /* 255 * Check if the remaining buffer is big enough to contain a patch of 256 * size sh_psize, as the section claims. 257 */ 258 if (buf_size < sh_psize) { 259 if (!early) 260 pr_debug("Patch of size %u truncated.\n", sh_psize); 261 262 return -1; 263 } 264 265 ret = __verify_patch_size(family, sh_psize, buf_size); 266 if (!ret) { 267 if (!early) 268 pr_debug("Per-family patch size mismatch.\n"); 269 return -1; 270 } 271 272 *patch_size = sh_psize; 273 274 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); 275 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { 276 if (!early) 277 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); 278 return -1; 279 } 280 281 proc_id = mc_hdr->processor_rev_id; 282 patch_fam = 0xf + (proc_id >> 12); 283 if (patch_fam != family) 284 return 1; 285 286 return 0; 287 } 288 289 /* 290 * This scans the ucode blob for the proper container as we can have multiple 291 * containers glued together. Returns the equivalence ID from the equivalence 292 * table or 0 if none found. 293 * Returns the amount of bytes consumed while scanning. @desc contains all the 294 * data we're going to use in later stages of the application. 295 */ 296 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) 297 { 298 struct equiv_cpu_table table; 299 size_t orig_size = size; 300 u32 *hdr = (u32 *)ucode; 301 u16 eq_id; 302 u8 *buf; 303 304 if (!verify_equivalence_table(ucode, size, true)) 305 return 0; 306 307 buf = ucode; 308 309 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); 310 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); 311 312 /* 313 * Find the equivalence ID of our CPU in this table. Even if this table 314 * doesn't contain a patch for the CPU, scan through the whole container 315 * so that it can be skipped in case there are other containers appended. 316 */ 317 eq_id = find_equiv_id(&table, desc->cpuid_1_eax); 318 319 buf += hdr[2] + CONTAINER_HDR_SZ; 320 size -= hdr[2] + CONTAINER_HDR_SZ; 321 322 /* 323 * Scan through the rest of the container to find where it ends. We do 324 * some basic sanity-checking too. 325 */ 326 while (size > 0) { 327 struct microcode_amd *mc; 328 u32 patch_size; 329 int ret; 330 331 ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true); 332 if (ret < 0) { 333 /* 334 * Patch verification failed, skip to the next 335 * container, if there's one: 336 */ 337 goto out; 338 } else if (ret > 0) { 339 goto skip; 340 } 341 342 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); 343 if (eq_id == mc->hdr.processor_rev_id) { 344 desc->psize = patch_size; 345 desc->mc = mc; 346 } 347 348 skip: 349 /* Skip patch section header too: */ 350 buf += patch_size + SECTION_HDR_SIZE; 351 size -= patch_size + SECTION_HDR_SIZE; 352 } 353 354 /* 355 * If we have found a patch (desc->mc), it means we're looking at the 356 * container which has a patch for this CPU so return 0 to mean, @ucode 357 * already points to the proper container. Otherwise, we return the size 358 * we scanned so that we can advance to the next container in the 359 * buffer. 360 */ 361 if (desc->mc) { 362 desc->data = ucode; 363 desc->size = orig_size - size; 364 365 return 0; 366 } 367 368 out: 369 return orig_size - size; 370 } 371 372 /* 373 * Scan the ucode blob for the proper container as we can have multiple 374 * containers glued together. 375 */ 376 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) 377 { 378 while (size) { 379 size_t s = parse_container(ucode, size, desc); 380 if (!s) 381 return; 382 383 /* catch wraparound */ 384 if (size >= s) { 385 ucode += s; 386 size -= s; 387 } else { 388 return; 389 } 390 } 391 } 392 393 static int __apply_microcode_amd(struct microcode_amd *mc) 394 { 395 u32 rev, dummy; 396 397 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code); 398 399 /* verify patch application was successful */ 400 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 401 if (rev != mc->hdr.patch_id) 402 return -1; 403 404 return 0; 405 } 406 407 /* 408 * Early load occurs before we can vmalloc(). So we look for the microcode 409 * patch container file in initrd, traverse equivalent cpu table, look for a 410 * matching microcode patch, and update, all in initrd memory in place. 411 * When vmalloc() is available for use later -- on 64-bit during first AP load, 412 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call 413 * load_microcode_amd() to save equivalent cpu table and microcode patches in 414 * kernel heap memory. 415 * 416 * Returns true if container found (sets @desc), false otherwise. 417 */ 418 static bool 419 apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch) 420 { 421 struct cont_desc desc = { 0 }; 422 u8 (*patch)[PATCH_MAX_SIZE]; 423 struct microcode_amd *mc; 424 u32 rev, dummy, *new_rev; 425 bool ret = false; 426 427 #ifdef CONFIG_X86_32 428 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); 429 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch); 430 #else 431 new_rev = &ucode_new_rev; 432 patch = &amd_ucode_patch; 433 #endif 434 435 desc.cpuid_1_eax = cpuid_1_eax; 436 437 scan_containers(ucode, size, &desc); 438 439 mc = desc.mc; 440 if (!mc) 441 return ret; 442 443 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 444 if (rev >= mc->hdr.patch_id) 445 return ret; 446 447 if (!__apply_microcode_amd(mc)) { 448 *new_rev = mc->hdr.patch_id; 449 ret = true; 450 451 if (save_patch) 452 memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE)); 453 } 454 455 return ret; 456 } 457 458 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family) 459 { 460 #ifdef CONFIG_X86_64 461 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 462 463 if (family >= 0x15) 464 snprintf(fw_name, sizeof(fw_name), 465 "amd-ucode/microcode_amd_fam%.2xh.bin", family); 466 467 return get_builtin_firmware(cp, fw_name); 468 #else 469 return false; 470 #endif 471 } 472 473 static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret) 474 { 475 struct ucode_cpu_info *uci; 476 struct cpio_data cp; 477 const char *path; 478 bool use_pa; 479 480 if (IS_ENABLED(CONFIG_X86_32)) { 481 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info); 482 path = (const char *)__pa_nodebug(ucode_path); 483 use_pa = true; 484 } else { 485 uci = ucode_cpu_info; 486 path = ucode_path; 487 use_pa = false; 488 } 489 490 if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax))) 491 cp = find_microcode_in_initrd(path, use_pa); 492 493 /* Needed in load_microcode_amd() */ 494 uci->cpu_sig.sig = cpuid_1_eax; 495 496 *ret = cp; 497 } 498 499 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax) 500 { 501 struct cpio_data cp = { }; 502 503 __load_ucode_amd(cpuid_1_eax, &cp); 504 if (!(cp.data && cp.size)) 505 return; 506 507 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true); 508 } 509 510 void load_ucode_amd_ap(unsigned int cpuid_1_eax) 511 { 512 struct microcode_amd *mc; 513 struct cpio_data cp; 514 u32 *new_rev, rev, dummy; 515 516 if (IS_ENABLED(CONFIG_X86_32)) { 517 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch); 518 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); 519 } else { 520 mc = (struct microcode_amd *)amd_ucode_patch; 521 new_rev = &ucode_new_rev; 522 } 523 524 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 525 526 /* Check whether we have saved a new patch already: */ 527 if (*new_rev && rev < mc->hdr.patch_id) { 528 if (!__apply_microcode_amd(mc)) { 529 *new_rev = mc->hdr.patch_id; 530 return; 531 } 532 } 533 534 __load_ucode_amd(cpuid_1_eax, &cp); 535 if (!(cp.data && cp.size)) 536 return; 537 538 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false); 539 } 540 541 static enum ucode_state 542 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size); 543 544 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax) 545 { 546 struct cont_desc desc = { 0 }; 547 enum ucode_state ret; 548 struct cpio_data cp; 549 550 cp = find_microcode_in_initrd(ucode_path, false); 551 if (!(cp.data && cp.size)) 552 return -EINVAL; 553 554 desc.cpuid_1_eax = cpuid_1_eax; 555 556 scan_containers(cp.data, cp.size, &desc); 557 if (!desc.mc) 558 return -EINVAL; 559 560 ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size); 561 if (ret > UCODE_UPDATED) 562 return -EINVAL; 563 564 return 0; 565 } 566 567 void reload_ucode_amd(void) 568 { 569 struct microcode_amd *mc; 570 u32 rev, dummy; 571 572 mc = (struct microcode_amd *)amd_ucode_patch; 573 574 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 575 576 if (rev < mc->hdr.patch_id) { 577 if (!__apply_microcode_amd(mc)) { 578 ucode_new_rev = mc->hdr.patch_id; 579 pr_info("reload patch_level=0x%08x\n", ucode_new_rev); 580 } 581 } 582 } 583 static u16 __find_equiv_id(unsigned int cpu) 584 { 585 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 586 return find_equiv_id(&equiv_table, uci->cpu_sig.sig); 587 } 588 589 /* 590 * a small, trivial cache of per-family ucode patches 591 */ 592 static struct ucode_patch *cache_find_patch(u16 equiv_cpu) 593 { 594 struct ucode_patch *p; 595 596 list_for_each_entry(p, µcode_cache, plist) 597 if (p->equiv_cpu == equiv_cpu) 598 return p; 599 return NULL; 600 } 601 602 static void update_cache(struct ucode_patch *new_patch) 603 { 604 struct ucode_patch *p; 605 606 list_for_each_entry(p, µcode_cache, plist) { 607 if (p->equiv_cpu == new_patch->equiv_cpu) { 608 if (p->patch_id >= new_patch->patch_id) { 609 /* we already have the latest patch */ 610 kfree(new_patch->data); 611 kfree(new_patch); 612 return; 613 } 614 615 list_replace(&p->plist, &new_patch->plist); 616 kfree(p->data); 617 kfree(p); 618 return; 619 } 620 } 621 /* no patch found, add it */ 622 list_add_tail(&new_patch->plist, µcode_cache); 623 } 624 625 static void free_cache(void) 626 { 627 struct ucode_patch *p, *tmp; 628 629 list_for_each_entry_safe(p, tmp, µcode_cache, plist) { 630 __list_del(p->plist.prev, p->plist.next); 631 kfree(p->data); 632 kfree(p); 633 } 634 } 635 636 static struct ucode_patch *find_patch(unsigned int cpu) 637 { 638 u16 equiv_id; 639 640 equiv_id = __find_equiv_id(cpu); 641 if (!equiv_id) 642 return NULL; 643 644 return cache_find_patch(equiv_id); 645 } 646 647 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) 648 { 649 struct cpuinfo_x86 *c = &cpu_data(cpu); 650 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 651 struct ucode_patch *p; 652 653 csig->sig = cpuid_eax(0x00000001); 654 csig->rev = c->microcode; 655 656 /* 657 * a patch could have been loaded early, set uci->mc so that 658 * mc_bp_resume() can call apply_microcode() 659 */ 660 p = find_patch(cpu); 661 if (p && (p->patch_id == csig->rev)) 662 uci->mc = p->data; 663 664 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev); 665 666 return 0; 667 } 668 669 static enum ucode_state apply_microcode_amd(int cpu) 670 { 671 struct cpuinfo_x86 *c = &cpu_data(cpu); 672 struct microcode_amd *mc_amd; 673 struct ucode_cpu_info *uci; 674 struct ucode_patch *p; 675 enum ucode_state ret; 676 u32 rev, dummy; 677 678 BUG_ON(raw_smp_processor_id() != cpu); 679 680 uci = ucode_cpu_info + cpu; 681 682 p = find_patch(cpu); 683 if (!p) 684 return UCODE_NFOUND; 685 686 mc_amd = p->data; 687 uci->mc = p->data; 688 689 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); 690 691 /* need to apply patch? */ 692 if (rev >= mc_amd->hdr.patch_id) { 693 ret = UCODE_OK; 694 goto out; 695 } 696 697 if (__apply_microcode_amd(mc_amd)) { 698 pr_err("CPU%d: update failed for patch_level=0x%08x\n", 699 cpu, mc_amd->hdr.patch_id); 700 return UCODE_ERROR; 701 } 702 703 rev = mc_amd->hdr.patch_id; 704 ret = UCODE_UPDATED; 705 706 pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev); 707 708 out: 709 uci->cpu_sig.rev = rev; 710 c->microcode = rev; 711 712 /* Update boot_cpu_data's revision too, if we're on the BSP: */ 713 if (c->cpu_index == boot_cpu_data.cpu_index) 714 boot_cpu_data.microcode = rev; 715 716 return ret; 717 } 718 719 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) 720 { 721 u32 equiv_tbl_len; 722 const u32 *hdr; 723 724 if (!verify_equivalence_table(buf, buf_size, false)) 725 return 0; 726 727 hdr = (const u32 *)buf; 728 equiv_tbl_len = hdr[2]; 729 730 equiv_table.entry = vmalloc(equiv_tbl_len); 731 if (!equiv_table.entry) { 732 pr_err("failed to allocate equivalent CPU table\n"); 733 return 0; 734 } 735 736 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); 737 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); 738 739 /* add header length */ 740 return equiv_tbl_len + CONTAINER_HDR_SZ; 741 } 742 743 static void free_equiv_cpu_table(void) 744 { 745 vfree(equiv_table.entry); 746 memset(&equiv_table, 0, sizeof(equiv_table)); 747 } 748 749 static void cleanup(void) 750 { 751 free_equiv_cpu_table(); 752 free_cache(); 753 } 754 755 /* 756 * Return a non-negative value even if some of the checks failed so that 757 * we can skip over the next patch. If we return a negative value, we 758 * signal a grave error like a memory allocation has failed and the 759 * driver cannot continue functioning normally. In such cases, we tear 760 * down everything we've used up so far and exit. 761 */ 762 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, 763 unsigned int *patch_size) 764 { 765 struct microcode_header_amd *mc_hdr; 766 struct ucode_patch *patch; 767 u16 proc_id; 768 int ret; 769 770 ret = verify_patch(family, fw, leftover, patch_size, false); 771 if (ret) 772 return ret; 773 774 patch = kzalloc(sizeof(*patch), GFP_KERNEL); 775 if (!patch) { 776 pr_err("Patch allocation failure.\n"); 777 return -EINVAL; 778 } 779 780 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); 781 if (!patch->data) { 782 pr_err("Patch data allocation failure.\n"); 783 kfree(patch); 784 return -EINVAL; 785 } 786 787 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); 788 proc_id = mc_hdr->processor_rev_id; 789 790 INIT_LIST_HEAD(&patch->plist); 791 patch->patch_id = mc_hdr->patch_id; 792 patch->equiv_cpu = proc_id; 793 794 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n", 795 __func__, patch->patch_id, proc_id); 796 797 /* ... and add to cache. */ 798 update_cache(patch); 799 800 return 0; 801 } 802 803 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, 804 size_t size) 805 { 806 u8 *fw = (u8 *)data; 807 size_t offset; 808 809 offset = install_equiv_cpu_table(data, size); 810 if (!offset) 811 return UCODE_ERROR; 812 813 fw += offset; 814 size -= offset; 815 816 if (*(u32 *)fw != UCODE_UCODE_TYPE) { 817 pr_err("invalid type field in container file section header\n"); 818 free_equiv_cpu_table(); 819 return UCODE_ERROR; 820 } 821 822 while (size > 0) { 823 unsigned int crnt_size = 0; 824 int ret; 825 826 ret = verify_and_add_patch(family, fw, size, &crnt_size); 827 if (ret < 0) 828 return UCODE_ERROR; 829 830 fw += crnt_size + SECTION_HDR_SIZE; 831 size -= (crnt_size + SECTION_HDR_SIZE); 832 } 833 834 return UCODE_OK; 835 } 836 837 static enum ucode_state 838 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size) 839 { 840 struct ucode_patch *p; 841 enum ucode_state ret; 842 843 /* free old equiv table */ 844 free_equiv_cpu_table(); 845 846 ret = __load_microcode_amd(family, data, size); 847 if (ret != UCODE_OK) { 848 cleanup(); 849 return ret; 850 } 851 852 p = find_patch(0); 853 if (!p) { 854 return ret; 855 } else { 856 if (boot_cpu_data.microcode >= p->patch_id) 857 return ret; 858 859 ret = UCODE_NEW; 860 } 861 862 /* save BSP's matching patch for early load */ 863 if (!save) 864 return ret; 865 866 memset(amd_ucode_patch, 0, PATCH_MAX_SIZE); 867 memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), PATCH_MAX_SIZE)); 868 869 return ret; 870 } 871 872 /* 873 * AMD microcode firmware naming convention, up to family 15h they are in 874 * the legacy file: 875 * 876 * amd-ucode/microcode_amd.bin 877 * 878 * This legacy file is always smaller than 2K in size. 879 * 880 * Beginning with family 15h, they are in family-specific firmware files: 881 * 882 * amd-ucode/microcode_amd_fam15h.bin 883 * amd-ucode/microcode_amd_fam16h.bin 884 * ... 885 * 886 * These might be larger than 2K. 887 */ 888 static enum ucode_state request_microcode_amd(int cpu, struct device *device, 889 bool refresh_fw) 890 { 891 char fw_name[36] = "amd-ucode/microcode_amd.bin"; 892 struct cpuinfo_x86 *c = &cpu_data(cpu); 893 bool bsp = c->cpu_index == boot_cpu_data.cpu_index; 894 enum ucode_state ret = UCODE_NFOUND; 895 const struct firmware *fw; 896 897 /* reload ucode container only on the boot cpu */ 898 if (!refresh_fw || !bsp) 899 return UCODE_OK; 900 901 if (c->x86 >= 0x15) 902 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); 903 904 if (request_firmware_direct(&fw, (const char *)fw_name, device)) { 905 pr_debug("failed to load file %s\n", fw_name); 906 goto out; 907 } 908 909 ret = UCODE_ERROR; 910 if (!verify_container(fw->data, fw->size, false)) 911 goto fw_release; 912 913 ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size); 914 915 fw_release: 916 release_firmware(fw); 917 918 out: 919 return ret; 920 } 921 922 static enum ucode_state 923 request_microcode_user(int cpu, const void __user *buf, size_t size) 924 { 925 return UCODE_ERROR; 926 } 927 928 static void microcode_fini_cpu_amd(int cpu) 929 { 930 struct ucode_cpu_info *uci = ucode_cpu_info + cpu; 931 932 uci->mc = NULL; 933 } 934 935 static struct microcode_ops microcode_amd_ops = { 936 .request_microcode_user = request_microcode_user, 937 .request_microcode_fw = request_microcode_amd, 938 .collect_cpu_info = collect_cpu_info_amd, 939 .apply_microcode = apply_microcode_amd, 940 .microcode_fini_cpu = microcode_fini_cpu_amd, 941 }; 942 943 struct microcode_ops * __init init_amd_microcode(void) 944 { 945 struct cpuinfo_x86 *c = &boot_cpu_data; 946 947 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { 948 pr_warn("AMD CPU family 0x%x not supported\n", c->x86); 949 return NULL; 950 } 951 952 if (ucode_new_rev) 953 pr_info_once("microcode updated early to new patch_level=0x%08x\n", 954 ucode_new_rev); 955 956 return µcode_amd_ops; 957 } 958 959 void __exit exit_amd_microcode(void) 960 { 961 cleanup(); 962 } 963