xref: /openbmc/linux/arch/x86/kernel/cpu/microcode/amd.c (revision 8edf4cd1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31 
32 #include <asm/microcode_amd.h>
33 #include <asm/microcode.h>
34 #include <asm/processor.h>
35 #include <asm/setup.h>
36 #include <asm/cpu.h>
37 #include <asm/msr.h>
38 
39 static struct equiv_cpu_table {
40 	unsigned int num_entries;
41 	struct equiv_cpu_entry *entry;
42 } equiv_table;
43 
44 /*
45  * This points to the current valid container of microcode patches which we will
46  * save from the initrd/builtin before jettisoning its contents. @mc is the
47  * microcode patch we found to match.
48  */
49 struct cont_desc {
50 	struct microcode_amd *mc;
51 	u32		     cpuid_1_eax;
52 	u32		     psize;
53 	u8		     *data;
54 	size_t		     size;
55 };
56 
57 static u32 ucode_new_rev;
58 static u8 amd_ucode_patch[PATCH_MAX_SIZE];
59 
60 /*
61  * Microcode patch container file is prepended to the initrd in cpio
62  * format. See Documentation/x86/microcode.rst
63  */
64 static const char
65 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
66 
67 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
68 {
69 	unsigned int i;
70 
71 	if (!et || !et->num_entries)
72 		return 0;
73 
74 	for (i = 0; i < et->num_entries; i++) {
75 		struct equiv_cpu_entry *e = &et->entry[i];
76 
77 		if (sig == e->installed_cpu)
78 			return e->equiv_cpu;
79 
80 		e++;
81 	}
82 	return 0;
83 }
84 
85 /*
86  * Check whether there is a valid microcode container file at the beginning
87  * of @buf of size @buf_size. Set @early to use this function in the early path.
88  */
89 static bool verify_container(const u8 *buf, size_t buf_size, bool early)
90 {
91 	u32 cont_magic;
92 
93 	if (buf_size <= CONTAINER_HDR_SZ) {
94 		if (!early)
95 			pr_debug("Truncated microcode container header.\n");
96 
97 		return false;
98 	}
99 
100 	cont_magic = *(const u32 *)buf;
101 	if (cont_magic != UCODE_MAGIC) {
102 		if (!early)
103 			pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
104 
105 		return false;
106 	}
107 
108 	return true;
109 }
110 
111 /*
112  * Check whether there is a valid, non-truncated CPU equivalence table at the
113  * beginning of @buf of size @buf_size. Set @early to use this function in the
114  * early path.
115  */
116 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
117 {
118 	const u32 *hdr = (const u32 *)buf;
119 	u32 cont_type, equiv_tbl_len;
120 
121 	if (!verify_container(buf, buf_size, early))
122 		return false;
123 
124 	cont_type = hdr[1];
125 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
126 		if (!early)
127 			pr_debug("Wrong microcode container equivalence table type: %u.\n",
128 			       cont_type);
129 
130 		return false;
131 	}
132 
133 	buf_size -= CONTAINER_HDR_SZ;
134 
135 	equiv_tbl_len = hdr[2];
136 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
137 	    buf_size < equiv_tbl_len) {
138 		if (!early)
139 			pr_debug("Truncated equivalence table.\n");
140 
141 		return false;
142 	}
143 
144 	return true;
145 }
146 
147 /*
148  * Check whether there is a valid, non-truncated microcode patch section at the
149  * beginning of @buf of size @buf_size. Set @early to use this function in the
150  * early path.
151  *
152  * On success, @sh_psize returns the patch size according to the section header,
153  * to the caller.
154  */
155 static bool
156 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
157 {
158 	u32 p_type, p_size;
159 	const u32 *hdr;
160 
161 	if (buf_size < SECTION_HDR_SIZE) {
162 		if (!early)
163 			pr_debug("Truncated patch section.\n");
164 
165 		return false;
166 	}
167 
168 	hdr = (const u32 *)buf;
169 	p_type = hdr[0];
170 	p_size = hdr[1];
171 
172 	if (p_type != UCODE_UCODE_TYPE) {
173 		if (!early)
174 			pr_debug("Invalid type field (0x%x) in container file section header.\n",
175 				p_type);
176 
177 		return false;
178 	}
179 
180 	if (p_size < sizeof(struct microcode_header_amd)) {
181 		if (!early)
182 			pr_debug("Patch of size %u too short.\n", p_size);
183 
184 		return false;
185 	}
186 
187 	*sh_psize = p_size;
188 
189 	return true;
190 }
191 
192 /*
193  * Check whether the passed remaining file @buf_size is large enough to contain
194  * a patch of the indicated @sh_psize (and also whether this size does not
195  * exceed the per-family maximum). @sh_psize is the size read from the section
196  * header.
197  */
198 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
199 {
200 	u32 max_size;
201 
202 	if (family >= 0x15)
203 		return min_t(u32, sh_psize, buf_size);
204 
205 #define F1XH_MPB_MAX_SIZE 2048
206 #define F14H_MPB_MAX_SIZE 1824
207 
208 	switch (family) {
209 	case 0x10 ... 0x12:
210 		max_size = F1XH_MPB_MAX_SIZE;
211 		break;
212 	case 0x14:
213 		max_size = F14H_MPB_MAX_SIZE;
214 		break;
215 	default:
216 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
217 		return 0;
218 		break;
219 	}
220 
221 	if (sh_psize > min_t(u32, buf_size, max_size))
222 		return 0;
223 
224 	return sh_psize;
225 }
226 
227 /*
228  * Verify the patch in @buf.
229  *
230  * Returns:
231  * negative: on error
232  * positive: patch is not for this family, skip it
233  * 0: success
234  */
235 static int
236 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
237 {
238 	struct microcode_header_amd *mc_hdr;
239 	unsigned int ret;
240 	u32 sh_psize;
241 	u16 proc_id;
242 	u8 patch_fam;
243 
244 	if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
245 		return -1;
246 
247 	/*
248 	 * The section header length is not included in this indicated size
249 	 * but is present in the leftover file length so we need to subtract
250 	 * it before passing this value to the function below.
251 	 */
252 	buf_size -= SECTION_HDR_SIZE;
253 
254 	/*
255 	 * Check if the remaining buffer is big enough to contain a patch of
256 	 * size sh_psize, as the section claims.
257 	 */
258 	if (buf_size < sh_psize) {
259 		if (!early)
260 			pr_debug("Patch of size %u truncated.\n", sh_psize);
261 
262 		return -1;
263 	}
264 
265 	ret = __verify_patch_size(family, sh_psize, buf_size);
266 	if (!ret) {
267 		if (!early)
268 			pr_debug("Per-family patch size mismatch.\n");
269 		return -1;
270 	}
271 
272 	*patch_size = sh_psize;
273 
274 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
275 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
276 		if (!early)
277 			pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
278 		return -1;
279 	}
280 
281 	proc_id	= mc_hdr->processor_rev_id;
282 	patch_fam = 0xf + (proc_id >> 12);
283 	if (patch_fam != family)
284 		return 1;
285 
286 	return 0;
287 }
288 
289 /*
290  * This scans the ucode blob for the proper container as we can have multiple
291  * containers glued together. Returns the equivalence ID from the equivalence
292  * table or 0 if none found.
293  * Returns the amount of bytes consumed while scanning. @desc contains all the
294  * data we're going to use in later stages of the application.
295  */
296 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
297 {
298 	struct equiv_cpu_table table;
299 	size_t orig_size = size;
300 	u32 *hdr = (u32 *)ucode;
301 	u16 eq_id;
302 	u8 *buf;
303 
304 	if (!verify_equivalence_table(ucode, size, true))
305 		return 0;
306 
307 	buf = ucode;
308 
309 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
310 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
311 
312 	/*
313 	 * Find the equivalence ID of our CPU in this table. Even if this table
314 	 * doesn't contain a patch for the CPU, scan through the whole container
315 	 * so that it can be skipped in case there are other containers appended.
316 	 */
317 	eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
318 
319 	buf  += hdr[2] + CONTAINER_HDR_SZ;
320 	size -= hdr[2] + CONTAINER_HDR_SZ;
321 
322 	/*
323 	 * Scan through the rest of the container to find where it ends. We do
324 	 * some basic sanity-checking too.
325 	 */
326 	while (size > 0) {
327 		struct microcode_amd *mc;
328 		u32 patch_size;
329 		int ret;
330 
331 		ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
332 		if (ret < 0) {
333 			/*
334 			 * Patch verification failed, skip to the next
335 			 * container, if there's one:
336 			 */
337 			goto out;
338 		} else if (ret > 0) {
339 			goto skip;
340 		}
341 
342 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
343 		if (eq_id == mc->hdr.processor_rev_id) {
344 			desc->psize = patch_size;
345 			desc->mc = mc;
346 		}
347 
348 skip:
349 		/* Skip patch section header too: */
350 		buf  += patch_size + SECTION_HDR_SIZE;
351 		size -= patch_size + SECTION_HDR_SIZE;
352 	}
353 
354 	/*
355 	 * If we have found a patch (desc->mc), it means we're looking at the
356 	 * container which has a patch for this CPU so return 0 to mean, @ucode
357 	 * already points to the proper container. Otherwise, we return the size
358 	 * we scanned so that we can advance to the next container in the
359 	 * buffer.
360 	 */
361 	if (desc->mc) {
362 		desc->data = ucode;
363 		desc->size = orig_size - size;
364 
365 		return 0;
366 	}
367 
368 out:
369 	return orig_size - size;
370 }
371 
372 /*
373  * Scan the ucode blob for the proper container as we can have multiple
374  * containers glued together.
375  */
376 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
377 {
378 	while (size) {
379 		size_t s = parse_container(ucode, size, desc);
380 		if (!s)
381 			return;
382 
383 		/* catch wraparound */
384 		if (size >= s) {
385 			ucode += s;
386 			size  -= s;
387 		} else {
388 			return;
389 		}
390 	}
391 }
392 
393 static int __apply_microcode_amd(struct microcode_amd *mc)
394 {
395 	u32 rev, dummy;
396 
397 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
398 
399 	/* verify patch application was successful */
400 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
401 	if (rev != mc->hdr.patch_id)
402 		return -1;
403 
404 	return 0;
405 }
406 
407 /*
408  * Early load occurs before we can vmalloc(). So we look for the microcode
409  * patch container file in initrd, traverse equivalent cpu table, look for a
410  * matching microcode patch, and update, all in initrd memory in place.
411  * When vmalloc() is available for use later -- on 64-bit during first AP load,
412  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
413  * load_microcode_amd() to save equivalent cpu table and microcode patches in
414  * kernel heap memory.
415  *
416  * Returns true if container found (sets @desc), false otherwise.
417  */
418 static bool
419 apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
420 {
421 	struct cont_desc desc = { 0 };
422 	u8 (*patch)[PATCH_MAX_SIZE];
423 	struct microcode_amd *mc;
424 	u32 rev, dummy, *new_rev;
425 	bool ret = false;
426 
427 #ifdef CONFIG_X86_32
428 	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
429 	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
430 #else
431 	new_rev = &ucode_new_rev;
432 	patch	= &amd_ucode_patch;
433 #endif
434 
435 	desc.cpuid_1_eax = cpuid_1_eax;
436 
437 	scan_containers(ucode, size, &desc);
438 
439 	mc = desc.mc;
440 	if (!mc)
441 		return ret;
442 
443 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
444 	if (rev >= mc->hdr.patch_id)
445 		return ret;
446 
447 	if (!__apply_microcode_amd(mc)) {
448 		*new_rev = mc->hdr.patch_id;
449 		ret      = true;
450 
451 		if (save_patch)
452 			memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
453 	}
454 
455 	return ret;
456 }
457 
458 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
459 {
460 #ifdef CONFIG_X86_64
461 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
462 
463 	if (family >= 0x15)
464 		snprintf(fw_name, sizeof(fw_name),
465 			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
466 
467 	return get_builtin_firmware(cp, fw_name);
468 #else
469 	return false;
470 #endif
471 }
472 
473 static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
474 {
475 	struct ucode_cpu_info *uci;
476 	struct cpio_data cp;
477 	const char *path;
478 	bool use_pa;
479 
480 	if (IS_ENABLED(CONFIG_X86_32)) {
481 		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
482 		path	= (const char *)__pa_nodebug(ucode_path);
483 		use_pa	= true;
484 	} else {
485 		uci     = ucode_cpu_info;
486 		path	= ucode_path;
487 		use_pa	= false;
488 	}
489 
490 	if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
491 		cp = find_microcode_in_initrd(path, use_pa);
492 
493 	/* Needed in load_microcode_amd() */
494 	uci->cpu_sig.sig = cpuid_1_eax;
495 
496 	*ret = cp;
497 }
498 
499 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
500 {
501 	struct cpio_data cp = { };
502 
503 	__load_ucode_amd(cpuid_1_eax, &cp);
504 	if (!(cp.data && cp.size))
505 		return;
506 
507 	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
508 }
509 
510 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
511 {
512 	struct microcode_amd *mc;
513 	struct cpio_data cp;
514 	u32 *new_rev, rev, dummy;
515 
516 	if (IS_ENABLED(CONFIG_X86_32)) {
517 		mc	= (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
518 		new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
519 	} else {
520 		mc	= (struct microcode_amd *)amd_ucode_patch;
521 		new_rev = &ucode_new_rev;
522 	}
523 
524 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
525 
526 	/* Check whether we have saved a new patch already: */
527 	if (*new_rev && rev < mc->hdr.patch_id) {
528 		if (!__apply_microcode_amd(mc)) {
529 			*new_rev = mc->hdr.patch_id;
530 			return;
531 		}
532 	}
533 
534 	__load_ucode_amd(cpuid_1_eax, &cp);
535 	if (!(cp.data && cp.size))
536 		return;
537 
538 	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
539 }
540 
541 static enum ucode_state
542 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);
543 
544 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
545 {
546 	struct cont_desc desc = { 0 };
547 	enum ucode_state ret;
548 	struct cpio_data cp;
549 
550 	cp = find_microcode_in_initrd(ucode_path, false);
551 	if (!(cp.data && cp.size))
552 		return -EINVAL;
553 
554 	desc.cpuid_1_eax = cpuid_1_eax;
555 
556 	scan_containers(cp.data, cp.size, &desc);
557 	if (!desc.mc)
558 		return -EINVAL;
559 
560 	ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
561 	if (ret > UCODE_UPDATED)
562 		return -EINVAL;
563 
564 	return 0;
565 }
566 
567 void reload_ucode_amd(void)
568 {
569 	struct microcode_amd *mc;
570 	u32 rev, dummy __always_unused;
571 
572 	mc = (struct microcode_amd *)amd_ucode_patch;
573 
574 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
575 
576 	if (rev < mc->hdr.patch_id) {
577 		if (!__apply_microcode_amd(mc)) {
578 			ucode_new_rev = mc->hdr.patch_id;
579 			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
580 		}
581 	}
582 }
583 static u16 __find_equiv_id(unsigned int cpu)
584 {
585 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
586 	return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
587 }
588 
589 /*
590  * a small, trivial cache of per-family ucode patches
591  */
592 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
593 {
594 	struct ucode_patch *p;
595 
596 	list_for_each_entry(p, &microcode_cache, plist)
597 		if (p->equiv_cpu == equiv_cpu)
598 			return p;
599 	return NULL;
600 }
601 
602 static void update_cache(struct ucode_patch *new_patch)
603 {
604 	struct ucode_patch *p;
605 
606 	list_for_each_entry(p, &microcode_cache, plist) {
607 		if (p->equiv_cpu == new_patch->equiv_cpu) {
608 			if (p->patch_id >= new_patch->patch_id) {
609 				/* we already have the latest patch */
610 				kfree(new_patch->data);
611 				kfree(new_patch);
612 				return;
613 			}
614 
615 			list_replace(&p->plist, &new_patch->plist);
616 			kfree(p->data);
617 			kfree(p);
618 			return;
619 		}
620 	}
621 	/* no patch found, add it */
622 	list_add_tail(&new_patch->plist, &microcode_cache);
623 }
624 
625 static void free_cache(void)
626 {
627 	struct ucode_patch *p, *tmp;
628 
629 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
630 		__list_del(p->plist.prev, p->plist.next);
631 		kfree(p->data);
632 		kfree(p);
633 	}
634 }
635 
636 static struct ucode_patch *find_patch(unsigned int cpu)
637 {
638 	u16 equiv_id;
639 
640 	equiv_id = __find_equiv_id(cpu);
641 	if (!equiv_id)
642 		return NULL;
643 
644 	return cache_find_patch(equiv_id);
645 }
646 
647 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
648 {
649 	struct cpuinfo_x86 *c = &cpu_data(cpu);
650 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
651 	struct ucode_patch *p;
652 
653 	csig->sig = cpuid_eax(0x00000001);
654 	csig->rev = c->microcode;
655 
656 	/*
657 	 * a patch could have been loaded early, set uci->mc so that
658 	 * mc_bp_resume() can call apply_microcode()
659 	 */
660 	p = find_patch(cpu);
661 	if (p && (p->patch_id == csig->rev))
662 		uci->mc = p->data;
663 
664 	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
665 
666 	return 0;
667 }
668 
669 static enum ucode_state apply_microcode_amd(int cpu)
670 {
671 	struct cpuinfo_x86 *c = &cpu_data(cpu);
672 	struct microcode_amd *mc_amd;
673 	struct ucode_cpu_info *uci;
674 	struct ucode_patch *p;
675 	enum ucode_state ret;
676 	u32 rev, dummy __always_unused;
677 
678 	BUG_ON(raw_smp_processor_id() != cpu);
679 
680 	uci = ucode_cpu_info + cpu;
681 
682 	p = find_patch(cpu);
683 	if (!p)
684 		return UCODE_NFOUND;
685 
686 	mc_amd  = p->data;
687 	uci->mc = p->data;
688 
689 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
690 
691 	/* need to apply patch? */
692 	if (rev >= mc_amd->hdr.patch_id) {
693 		ret = UCODE_OK;
694 		goto out;
695 	}
696 
697 	if (__apply_microcode_amd(mc_amd)) {
698 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
699 			cpu, mc_amd->hdr.patch_id);
700 		return UCODE_ERROR;
701 	}
702 
703 	rev = mc_amd->hdr.patch_id;
704 	ret = UCODE_UPDATED;
705 
706 	pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
707 
708 out:
709 	uci->cpu_sig.rev = rev;
710 	c->microcode	 = rev;
711 
712 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
713 	if (c->cpu_index == boot_cpu_data.cpu_index)
714 		boot_cpu_data.microcode = rev;
715 
716 	return ret;
717 }
718 
719 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
720 {
721 	u32 equiv_tbl_len;
722 	const u32 *hdr;
723 
724 	if (!verify_equivalence_table(buf, buf_size, false))
725 		return 0;
726 
727 	hdr = (const u32 *)buf;
728 	equiv_tbl_len = hdr[2];
729 
730 	equiv_table.entry = vmalloc(equiv_tbl_len);
731 	if (!equiv_table.entry) {
732 		pr_err("failed to allocate equivalent CPU table\n");
733 		return 0;
734 	}
735 
736 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
737 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
738 
739 	/* add header length */
740 	return equiv_tbl_len + CONTAINER_HDR_SZ;
741 }
742 
743 static void free_equiv_cpu_table(void)
744 {
745 	vfree(equiv_table.entry);
746 	memset(&equiv_table, 0, sizeof(equiv_table));
747 }
748 
749 static void cleanup(void)
750 {
751 	free_equiv_cpu_table();
752 	free_cache();
753 }
754 
755 /*
756  * Return a non-negative value even if some of the checks failed so that
757  * we can skip over the next patch. If we return a negative value, we
758  * signal a grave error like a memory allocation has failed and the
759  * driver cannot continue functioning normally. In such cases, we tear
760  * down everything we've used up so far and exit.
761  */
762 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
763 				unsigned int *patch_size)
764 {
765 	struct microcode_header_amd *mc_hdr;
766 	struct ucode_patch *patch;
767 	u16 proc_id;
768 	int ret;
769 
770 	ret = verify_patch(family, fw, leftover, patch_size, false);
771 	if (ret)
772 		return ret;
773 
774 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
775 	if (!patch) {
776 		pr_err("Patch allocation failure.\n");
777 		return -EINVAL;
778 	}
779 
780 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
781 	if (!patch->data) {
782 		pr_err("Patch data allocation failure.\n");
783 		kfree(patch);
784 		return -EINVAL;
785 	}
786 
787 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
788 	proc_id     = mc_hdr->processor_rev_id;
789 
790 	INIT_LIST_HEAD(&patch->plist);
791 	patch->patch_id  = mc_hdr->patch_id;
792 	patch->equiv_cpu = proc_id;
793 
794 	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
795 		 __func__, patch->patch_id, proc_id);
796 
797 	/* ... and add to cache. */
798 	update_cache(patch);
799 
800 	return 0;
801 }
802 
803 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
804 					     size_t size)
805 {
806 	u8 *fw = (u8 *)data;
807 	size_t offset;
808 
809 	offset = install_equiv_cpu_table(data, size);
810 	if (!offset)
811 		return UCODE_ERROR;
812 
813 	fw   += offset;
814 	size -= offset;
815 
816 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
817 		pr_err("invalid type field in container file section header\n");
818 		free_equiv_cpu_table();
819 		return UCODE_ERROR;
820 	}
821 
822 	while (size > 0) {
823 		unsigned int crnt_size = 0;
824 		int ret;
825 
826 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
827 		if (ret < 0)
828 			return UCODE_ERROR;
829 
830 		fw   +=  crnt_size + SECTION_HDR_SIZE;
831 		size -= (crnt_size + SECTION_HDR_SIZE);
832 	}
833 
834 	return UCODE_OK;
835 }
836 
837 static enum ucode_state
838 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
839 {
840 	struct ucode_patch *p;
841 	enum ucode_state ret;
842 
843 	/* free old equiv table */
844 	free_equiv_cpu_table();
845 
846 	ret = __load_microcode_amd(family, data, size);
847 	if (ret != UCODE_OK) {
848 		cleanup();
849 		return ret;
850 	}
851 
852 	p = find_patch(0);
853 	if (!p) {
854 		return ret;
855 	} else {
856 		if (boot_cpu_data.microcode >= p->patch_id)
857 			return ret;
858 
859 		ret = UCODE_NEW;
860 	}
861 
862 	/* save BSP's matching patch for early load */
863 	if (!save)
864 		return ret;
865 
866 	memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
867 	memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), PATCH_MAX_SIZE));
868 
869 	return ret;
870 }
871 
872 /*
873  * AMD microcode firmware naming convention, up to family 15h they are in
874  * the legacy file:
875  *
876  *    amd-ucode/microcode_amd.bin
877  *
878  * This legacy file is always smaller than 2K in size.
879  *
880  * Beginning with family 15h, they are in family-specific firmware files:
881  *
882  *    amd-ucode/microcode_amd_fam15h.bin
883  *    amd-ucode/microcode_amd_fam16h.bin
884  *    ...
885  *
886  * These might be larger than 2K.
887  */
888 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
889 					      bool refresh_fw)
890 {
891 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
892 	struct cpuinfo_x86 *c = &cpu_data(cpu);
893 	bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
894 	enum ucode_state ret = UCODE_NFOUND;
895 	const struct firmware *fw;
896 
897 	/* reload ucode container only on the boot cpu */
898 	if (!refresh_fw || !bsp)
899 		return UCODE_OK;
900 
901 	if (c->x86 >= 0x15)
902 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
903 
904 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
905 		pr_debug("failed to load file %s\n", fw_name);
906 		goto out;
907 	}
908 
909 	ret = UCODE_ERROR;
910 	if (!verify_container(fw->data, fw->size, false))
911 		goto fw_release;
912 
913 	ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
914 
915  fw_release:
916 	release_firmware(fw);
917 
918  out:
919 	return ret;
920 }
921 
922 static enum ucode_state
923 request_microcode_user(int cpu, const void __user *buf, size_t size)
924 {
925 	return UCODE_ERROR;
926 }
927 
928 static void microcode_fini_cpu_amd(int cpu)
929 {
930 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
931 
932 	uci->mc = NULL;
933 }
934 
935 static struct microcode_ops microcode_amd_ops = {
936 	.request_microcode_user           = request_microcode_user,
937 	.request_microcode_fw             = request_microcode_amd,
938 	.collect_cpu_info                 = collect_cpu_info_amd,
939 	.apply_microcode                  = apply_microcode_amd,
940 	.microcode_fini_cpu               = microcode_fini_cpu_amd,
941 };
942 
943 struct microcode_ops * __init init_amd_microcode(void)
944 {
945 	struct cpuinfo_x86 *c = &boot_cpu_data;
946 
947 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
948 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
949 		return NULL;
950 	}
951 
952 	if (ucode_new_rev)
953 		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
954 			     ucode_new_rev);
955 
956 	return &microcode_amd_ops;
957 }
958 
959 void __exit exit_amd_microcode(void)
960 {
961 	cleanup();
962 }
963