xref: /openbmc/linux/arch/x86/kernel/cpu/microcode/amd.c (revision 7419995a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31 
32 #include <asm/microcode_amd.h>
33 #include <asm/microcode.h>
34 #include <asm/processor.h>
35 #include <asm/setup.h>
36 #include <asm/cpu.h>
37 #include <asm/msr.h>
38 
39 static struct equiv_cpu_table {
40 	unsigned int num_entries;
41 	struct equiv_cpu_entry *entry;
42 } equiv_table;
43 
44 /*
45  * This points to the current valid container of microcode patches which we will
46  * save from the initrd/builtin before jettisoning its contents. @mc is the
47  * microcode patch we found to match.
48  */
49 struct cont_desc {
50 	struct microcode_amd *mc;
51 	u32		     cpuid_1_eax;
52 	u32		     psize;
53 	u8		     *data;
54 	size_t		     size;
55 };
56 
57 static u32 ucode_new_rev;
58 static u8 amd_ucode_patch[PATCH_MAX_SIZE];
59 
60 /*
61  * Microcode patch container file is prepended to the initrd in cpio
62  * format. See Documentation/x86/microcode.rst
63  */
64 static const char
65 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
66 
67 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
68 {
69 	unsigned int i;
70 
71 	if (!et || !et->num_entries)
72 		return 0;
73 
74 	for (i = 0; i < et->num_entries; i++) {
75 		struct equiv_cpu_entry *e = &et->entry[i];
76 
77 		if (sig == e->installed_cpu)
78 			return e->equiv_cpu;
79 
80 		e++;
81 	}
82 	return 0;
83 }
84 
85 /*
86  * Check whether there is a valid microcode container file at the beginning
87  * of @buf of size @buf_size. Set @early to use this function in the early path.
88  */
89 static bool verify_container(const u8 *buf, size_t buf_size, bool early)
90 {
91 	u32 cont_magic;
92 
93 	if (buf_size <= CONTAINER_HDR_SZ) {
94 		if (!early)
95 			pr_debug("Truncated microcode container header.\n");
96 
97 		return false;
98 	}
99 
100 	cont_magic = *(const u32 *)buf;
101 	if (cont_magic != UCODE_MAGIC) {
102 		if (!early)
103 			pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
104 
105 		return false;
106 	}
107 
108 	return true;
109 }
110 
111 /*
112  * Check whether there is a valid, non-truncated CPU equivalence table at the
113  * beginning of @buf of size @buf_size. Set @early to use this function in the
114  * early path.
115  */
116 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
117 {
118 	const u32 *hdr = (const u32 *)buf;
119 	u32 cont_type, equiv_tbl_len;
120 
121 	if (!verify_container(buf, buf_size, early))
122 		return false;
123 
124 	cont_type = hdr[1];
125 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
126 		if (!early)
127 			pr_debug("Wrong microcode container equivalence table type: %u.\n",
128 			       cont_type);
129 
130 		return false;
131 	}
132 
133 	buf_size -= CONTAINER_HDR_SZ;
134 
135 	equiv_tbl_len = hdr[2];
136 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
137 	    buf_size < equiv_tbl_len) {
138 		if (!early)
139 			pr_debug("Truncated equivalence table.\n");
140 
141 		return false;
142 	}
143 
144 	return true;
145 }
146 
147 /*
148  * Check whether there is a valid, non-truncated microcode patch section at the
149  * beginning of @buf of size @buf_size. Set @early to use this function in the
150  * early path.
151  *
152  * On success, @sh_psize returns the patch size according to the section header,
153  * to the caller.
154  */
155 static bool
156 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
157 {
158 	u32 p_type, p_size;
159 	const u32 *hdr;
160 
161 	if (buf_size < SECTION_HDR_SIZE) {
162 		if (!early)
163 			pr_debug("Truncated patch section.\n");
164 
165 		return false;
166 	}
167 
168 	hdr = (const u32 *)buf;
169 	p_type = hdr[0];
170 	p_size = hdr[1];
171 
172 	if (p_type != UCODE_UCODE_TYPE) {
173 		if (!early)
174 			pr_debug("Invalid type field (0x%x) in container file section header.\n",
175 				p_type);
176 
177 		return false;
178 	}
179 
180 	if (p_size < sizeof(struct microcode_header_amd)) {
181 		if (!early)
182 			pr_debug("Patch of size %u too short.\n", p_size);
183 
184 		return false;
185 	}
186 
187 	*sh_psize = p_size;
188 
189 	return true;
190 }
191 
192 /*
193  * Check whether the passed remaining file @buf_size is large enough to contain
194  * a patch of the indicated @sh_psize (and also whether this size does not
195  * exceed the per-family maximum). @sh_psize is the size read from the section
196  * header.
197  */
198 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
199 {
200 	u32 max_size;
201 
202 	if (family >= 0x15)
203 		return min_t(u32, sh_psize, buf_size);
204 
205 #define F1XH_MPB_MAX_SIZE 2048
206 #define F14H_MPB_MAX_SIZE 1824
207 
208 	switch (family) {
209 	case 0x10 ... 0x12:
210 		max_size = F1XH_MPB_MAX_SIZE;
211 		break;
212 	case 0x14:
213 		max_size = F14H_MPB_MAX_SIZE;
214 		break;
215 	default:
216 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
217 		return 0;
218 	}
219 
220 	if (sh_psize > min_t(u32, buf_size, max_size))
221 		return 0;
222 
223 	return sh_psize;
224 }
225 
226 /*
227  * Verify the patch in @buf.
228  *
229  * Returns:
230  * negative: on error
231  * positive: patch is not for this family, skip it
232  * 0: success
233  */
234 static int
235 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
236 {
237 	struct microcode_header_amd *mc_hdr;
238 	unsigned int ret;
239 	u32 sh_psize;
240 	u16 proc_id;
241 	u8 patch_fam;
242 
243 	if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
244 		return -1;
245 
246 	/*
247 	 * The section header length is not included in this indicated size
248 	 * but is present in the leftover file length so we need to subtract
249 	 * it before passing this value to the function below.
250 	 */
251 	buf_size -= SECTION_HDR_SIZE;
252 
253 	/*
254 	 * Check if the remaining buffer is big enough to contain a patch of
255 	 * size sh_psize, as the section claims.
256 	 */
257 	if (buf_size < sh_psize) {
258 		if (!early)
259 			pr_debug("Patch of size %u truncated.\n", sh_psize);
260 
261 		return -1;
262 	}
263 
264 	ret = __verify_patch_size(family, sh_psize, buf_size);
265 	if (!ret) {
266 		if (!early)
267 			pr_debug("Per-family patch size mismatch.\n");
268 		return -1;
269 	}
270 
271 	*patch_size = sh_psize;
272 
273 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
274 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
275 		if (!early)
276 			pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
277 		return -1;
278 	}
279 
280 	proc_id	= mc_hdr->processor_rev_id;
281 	patch_fam = 0xf + (proc_id >> 12);
282 	if (patch_fam != family)
283 		return 1;
284 
285 	return 0;
286 }
287 
288 /*
289  * This scans the ucode blob for the proper container as we can have multiple
290  * containers glued together. Returns the equivalence ID from the equivalence
291  * table or 0 if none found.
292  * Returns the amount of bytes consumed while scanning. @desc contains all the
293  * data we're going to use in later stages of the application.
294  */
295 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
296 {
297 	struct equiv_cpu_table table;
298 	size_t orig_size = size;
299 	u32 *hdr = (u32 *)ucode;
300 	u16 eq_id;
301 	u8 *buf;
302 
303 	if (!verify_equivalence_table(ucode, size, true))
304 		return 0;
305 
306 	buf = ucode;
307 
308 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
309 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
310 
311 	/*
312 	 * Find the equivalence ID of our CPU in this table. Even if this table
313 	 * doesn't contain a patch for the CPU, scan through the whole container
314 	 * so that it can be skipped in case there are other containers appended.
315 	 */
316 	eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
317 
318 	buf  += hdr[2] + CONTAINER_HDR_SZ;
319 	size -= hdr[2] + CONTAINER_HDR_SZ;
320 
321 	/*
322 	 * Scan through the rest of the container to find where it ends. We do
323 	 * some basic sanity-checking too.
324 	 */
325 	while (size > 0) {
326 		struct microcode_amd *mc;
327 		u32 patch_size;
328 		int ret;
329 
330 		ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
331 		if (ret < 0) {
332 			/*
333 			 * Patch verification failed, skip to the next
334 			 * container, if there's one:
335 			 */
336 			goto out;
337 		} else if (ret > 0) {
338 			goto skip;
339 		}
340 
341 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
342 		if (eq_id == mc->hdr.processor_rev_id) {
343 			desc->psize = patch_size;
344 			desc->mc = mc;
345 		}
346 
347 skip:
348 		/* Skip patch section header too: */
349 		buf  += patch_size + SECTION_HDR_SIZE;
350 		size -= patch_size + SECTION_HDR_SIZE;
351 	}
352 
353 	/*
354 	 * If we have found a patch (desc->mc), it means we're looking at the
355 	 * container which has a patch for this CPU so return 0 to mean, @ucode
356 	 * already points to the proper container. Otherwise, we return the size
357 	 * we scanned so that we can advance to the next container in the
358 	 * buffer.
359 	 */
360 	if (desc->mc) {
361 		desc->data = ucode;
362 		desc->size = orig_size - size;
363 
364 		return 0;
365 	}
366 
367 out:
368 	return orig_size - size;
369 }
370 
371 /*
372  * Scan the ucode blob for the proper container as we can have multiple
373  * containers glued together.
374  */
375 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
376 {
377 	while (size) {
378 		size_t s = parse_container(ucode, size, desc);
379 		if (!s)
380 			return;
381 
382 		/* catch wraparound */
383 		if (size >= s) {
384 			ucode += s;
385 			size  -= s;
386 		} else {
387 			return;
388 		}
389 	}
390 }
391 
392 static int __apply_microcode_amd(struct microcode_amd *mc)
393 {
394 	u32 rev, dummy;
395 
396 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
397 
398 	/* verify patch application was successful */
399 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
400 	if (rev != mc->hdr.patch_id)
401 		return -1;
402 
403 	return 0;
404 }
405 
406 /*
407  * Early load occurs before we can vmalloc(). So we look for the microcode
408  * patch container file in initrd, traverse equivalent cpu table, look for a
409  * matching microcode patch, and update, all in initrd memory in place.
410  * When vmalloc() is available for use later -- on 64-bit during first AP load,
411  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
412  * load_microcode_amd() to save equivalent cpu table and microcode patches in
413  * kernel heap memory.
414  *
415  * Returns true if container found (sets @desc), false otherwise.
416  */
417 static bool
418 apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
419 {
420 	struct cont_desc desc = { 0 };
421 	u8 (*patch)[PATCH_MAX_SIZE];
422 	struct microcode_amd *mc;
423 	u32 rev, dummy, *new_rev;
424 	bool ret = false;
425 
426 #ifdef CONFIG_X86_32
427 	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
428 	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
429 #else
430 	new_rev = &ucode_new_rev;
431 	patch	= &amd_ucode_patch;
432 #endif
433 
434 	desc.cpuid_1_eax = cpuid_1_eax;
435 
436 	scan_containers(ucode, size, &desc);
437 
438 	mc = desc.mc;
439 	if (!mc)
440 		return ret;
441 
442 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
443 	if (rev >= mc->hdr.patch_id)
444 		return ret;
445 
446 	if (!__apply_microcode_amd(mc)) {
447 		*new_rev = mc->hdr.patch_id;
448 		ret      = true;
449 
450 		if (save_patch)
451 			memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
452 	}
453 
454 	return ret;
455 }
456 
457 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
458 {
459 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
460 	struct firmware fw;
461 
462 	if (IS_ENABLED(CONFIG_X86_32))
463 		return false;
464 
465 	if (family >= 0x15)
466 		snprintf(fw_name, sizeof(fw_name),
467 			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
468 
469 	if (firmware_request_builtin(&fw, fw_name)) {
470 		cp->size = fw.size;
471 		cp->data = (void *)fw.data;
472 		return true;
473 	}
474 
475 	return false;
476 }
477 
478 static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
479 {
480 	struct ucode_cpu_info *uci;
481 	struct cpio_data cp;
482 	const char *path;
483 	bool use_pa;
484 
485 	if (IS_ENABLED(CONFIG_X86_32)) {
486 		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
487 		path	= (const char *)__pa_nodebug(ucode_path);
488 		use_pa	= true;
489 	} else {
490 		uci     = ucode_cpu_info;
491 		path	= ucode_path;
492 		use_pa	= false;
493 	}
494 
495 	if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
496 		cp = find_microcode_in_initrd(path, use_pa);
497 
498 	/* Needed in load_microcode_amd() */
499 	uci->cpu_sig.sig = cpuid_1_eax;
500 
501 	*ret = cp;
502 }
503 
504 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
505 {
506 	struct cpio_data cp = { };
507 
508 	__load_ucode_amd(cpuid_1_eax, &cp);
509 	if (!(cp.data && cp.size))
510 		return;
511 
512 	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
513 }
514 
515 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
516 {
517 	struct microcode_amd *mc;
518 	struct cpio_data cp;
519 	u32 *new_rev, rev, dummy;
520 
521 	if (IS_ENABLED(CONFIG_X86_32)) {
522 		mc	= (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
523 		new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
524 	} else {
525 		mc	= (struct microcode_amd *)amd_ucode_patch;
526 		new_rev = &ucode_new_rev;
527 	}
528 
529 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
530 
531 	/* Check whether we have saved a new patch already: */
532 	if (*new_rev && rev < mc->hdr.patch_id) {
533 		if (!__apply_microcode_amd(mc)) {
534 			*new_rev = mc->hdr.patch_id;
535 			return;
536 		}
537 	}
538 
539 	__load_ucode_amd(cpuid_1_eax, &cp);
540 	if (!(cp.data && cp.size))
541 		return;
542 
543 	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
544 }
545 
546 static enum ucode_state
547 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);
548 
549 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
550 {
551 	struct cont_desc desc = { 0 };
552 	enum ucode_state ret;
553 	struct cpio_data cp;
554 
555 	cp = find_microcode_in_initrd(ucode_path, false);
556 	if (!(cp.data && cp.size))
557 		return -EINVAL;
558 
559 	desc.cpuid_1_eax = cpuid_1_eax;
560 
561 	scan_containers(cp.data, cp.size, &desc);
562 	if (!desc.mc)
563 		return -EINVAL;
564 
565 	ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
566 	if (ret > UCODE_UPDATED)
567 		return -EINVAL;
568 
569 	return 0;
570 }
571 
572 void reload_ucode_amd(void)
573 {
574 	struct microcode_amd *mc;
575 	u32 rev, dummy __always_unused;
576 
577 	mc = (struct microcode_amd *)amd_ucode_patch;
578 
579 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
580 
581 	if (rev < mc->hdr.patch_id) {
582 		if (!__apply_microcode_amd(mc)) {
583 			ucode_new_rev = mc->hdr.patch_id;
584 			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
585 		}
586 	}
587 }
588 static u16 __find_equiv_id(unsigned int cpu)
589 {
590 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
591 	return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
592 }
593 
594 /*
595  * a small, trivial cache of per-family ucode patches
596  */
597 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
598 {
599 	struct ucode_patch *p;
600 
601 	list_for_each_entry(p, &microcode_cache, plist)
602 		if (p->equiv_cpu == equiv_cpu)
603 			return p;
604 	return NULL;
605 }
606 
607 static void update_cache(struct ucode_patch *new_patch)
608 {
609 	struct ucode_patch *p;
610 
611 	list_for_each_entry(p, &microcode_cache, plist) {
612 		if (p->equiv_cpu == new_patch->equiv_cpu) {
613 			if (p->patch_id >= new_patch->patch_id) {
614 				/* we already have the latest patch */
615 				kfree(new_patch->data);
616 				kfree(new_patch);
617 				return;
618 			}
619 
620 			list_replace(&p->plist, &new_patch->plist);
621 			kfree(p->data);
622 			kfree(p);
623 			return;
624 		}
625 	}
626 	/* no patch found, add it */
627 	list_add_tail(&new_patch->plist, &microcode_cache);
628 }
629 
630 static void free_cache(void)
631 {
632 	struct ucode_patch *p, *tmp;
633 
634 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
635 		__list_del(p->plist.prev, p->plist.next);
636 		kfree(p->data);
637 		kfree(p);
638 	}
639 }
640 
641 static struct ucode_patch *find_patch(unsigned int cpu)
642 {
643 	u16 equiv_id;
644 
645 	equiv_id = __find_equiv_id(cpu);
646 	if (!equiv_id)
647 		return NULL;
648 
649 	return cache_find_patch(equiv_id);
650 }
651 
652 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
653 {
654 	struct cpuinfo_x86 *c = &cpu_data(cpu);
655 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
656 	struct ucode_patch *p;
657 
658 	csig->sig = cpuid_eax(0x00000001);
659 	csig->rev = c->microcode;
660 
661 	/*
662 	 * a patch could have been loaded early, set uci->mc so that
663 	 * mc_bp_resume() can call apply_microcode()
664 	 */
665 	p = find_patch(cpu);
666 	if (p && (p->patch_id == csig->rev))
667 		uci->mc = p->data;
668 
669 	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
670 
671 	return 0;
672 }
673 
674 static enum ucode_state apply_microcode_amd(int cpu)
675 {
676 	struct cpuinfo_x86 *c = &cpu_data(cpu);
677 	struct microcode_amd *mc_amd;
678 	struct ucode_cpu_info *uci;
679 	struct ucode_patch *p;
680 	enum ucode_state ret;
681 	u32 rev, dummy __always_unused;
682 
683 	BUG_ON(raw_smp_processor_id() != cpu);
684 
685 	uci = ucode_cpu_info + cpu;
686 
687 	p = find_patch(cpu);
688 	if (!p)
689 		return UCODE_NFOUND;
690 
691 	mc_amd  = p->data;
692 	uci->mc = p->data;
693 
694 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
695 
696 	/* need to apply patch? */
697 	if (rev >= mc_amd->hdr.patch_id) {
698 		ret = UCODE_OK;
699 		goto out;
700 	}
701 
702 	if (__apply_microcode_amd(mc_amd)) {
703 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
704 			cpu, mc_amd->hdr.patch_id);
705 		return UCODE_ERROR;
706 	}
707 
708 	rev = mc_amd->hdr.patch_id;
709 	ret = UCODE_UPDATED;
710 
711 	pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
712 
713 out:
714 	uci->cpu_sig.rev = rev;
715 	c->microcode	 = rev;
716 
717 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
718 	if (c->cpu_index == boot_cpu_data.cpu_index)
719 		boot_cpu_data.microcode = rev;
720 
721 	return ret;
722 }
723 
724 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
725 {
726 	u32 equiv_tbl_len;
727 	const u32 *hdr;
728 
729 	if (!verify_equivalence_table(buf, buf_size, false))
730 		return 0;
731 
732 	hdr = (const u32 *)buf;
733 	equiv_tbl_len = hdr[2];
734 
735 	equiv_table.entry = vmalloc(equiv_tbl_len);
736 	if (!equiv_table.entry) {
737 		pr_err("failed to allocate equivalent CPU table\n");
738 		return 0;
739 	}
740 
741 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
742 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
743 
744 	/* add header length */
745 	return equiv_tbl_len + CONTAINER_HDR_SZ;
746 }
747 
748 static void free_equiv_cpu_table(void)
749 {
750 	vfree(equiv_table.entry);
751 	memset(&equiv_table, 0, sizeof(equiv_table));
752 }
753 
754 static void cleanup(void)
755 {
756 	free_equiv_cpu_table();
757 	free_cache();
758 }
759 
760 /*
761  * Return a non-negative value even if some of the checks failed so that
762  * we can skip over the next patch. If we return a negative value, we
763  * signal a grave error like a memory allocation has failed and the
764  * driver cannot continue functioning normally. In such cases, we tear
765  * down everything we've used up so far and exit.
766  */
767 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
768 				unsigned int *patch_size)
769 {
770 	struct microcode_header_amd *mc_hdr;
771 	struct ucode_patch *patch;
772 	u16 proc_id;
773 	int ret;
774 
775 	ret = verify_patch(family, fw, leftover, patch_size, false);
776 	if (ret)
777 		return ret;
778 
779 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
780 	if (!patch) {
781 		pr_err("Patch allocation failure.\n");
782 		return -EINVAL;
783 	}
784 
785 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
786 	if (!patch->data) {
787 		pr_err("Patch data allocation failure.\n");
788 		kfree(patch);
789 		return -EINVAL;
790 	}
791 
792 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
793 	proc_id     = mc_hdr->processor_rev_id;
794 
795 	INIT_LIST_HEAD(&patch->plist);
796 	patch->patch_id  = mc_hdr->patch_id;
797 	patch->equiv_cpu = proc_id;
798 
799 	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
800 		 __func__, patch->patch_id, proc_id);
801 
802 	/* ... and add to cache. */
803 	update_cache(patch);
804 
805 	return 0;
806 }
807 
808 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
809 					     size_t size)
810 {
811 	u8 *fw = (u8 *)data;
812 	size_t offset;
813 
814 	offset = install_equiv_cpu_table(data, size);
815 	if (!offset)
816 		return UCODE_ERROR;
817 
818 	fw   += offset;
819 	size -= offset;
820 
821 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
822 		pr_err("invalid type field in container file section header\n");
823 		free_equiv_cpu_table();
824 		return UCODE_ERROR;
825 	}
826 
827 	while (size > 0) {
828 		unsigned int crnt_size = 0;
829 		int ret;
830 
831 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
832 		if (ret < 0)
833 			return UCODE_ERROR;
834 
835 		fw   +=  crnt_size + SECTION_HDR_SIZE;
836 		size -= (crnt_size + SECTION_HDR_SIZE);
837 	}
838 
839 	return UCODE_OK;
840 }
841 
842 static enum ucode_state
843 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
844 {
845 	struct ucode_patch *p;
846 	enum ucode_state ret;
847 
848 	/* free old equiv table */
849 	free_equiv_cpu_table();
850 
851 	ret = __load_microcode_amd(family, data, size);
852 	if (ret != UCODE_OK) {
853 		cleanup();
854 		return ret;
855 	}
856 
857 	p = find_patch(0);
858 	if (!p) {
859 		return ret;
860 	} else {
861 		if (boot_cpu_data.microcode >= p->patch_id)
862 			return ret;
863 
864 		ret = UCODE_NEW;
865 	}
866 
867 	/* save BSP's matching patch for early load */
868 	if (!save)
869 		return ret;
870 
871 	memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
872 	memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), PATCH_MAX_SIZE));
873 
874 	return ret;
875 }
876 
877 /*
878  * AMD microcode firmware naming convention, up to family 15h they are in
879  * the legacy file:
880  *
881  *    amd-ucode/microcode_amd.bin
882  *
883  * This legacy file is always smaller than 2K in size.
884  *
885  * Beginning with family 15h, they are in family-specific firmware files:
886  *
887  *    amd-ucode/microcode_amd_fam15h.bin
888  *    amd-ucode/microcode_amd_fam16h.bin
889  *    ...
890  *
891  * These might be larger than 2K.
892  */
893 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
894 					      bool refresh_fw)
895 {
896 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
897 	struct cpuinfo_x86 *c = &cpu_data(cpu);
898 	bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
899 	enum ucode_state ret = UCODE_NFOUND;
900 	const struct firmware *fw;
901 
902 	/* reload ucode container only on the boot cpu */
903 	if (!refresh_fw || !bsp)
904 		return UCODE_OK;
905 
906 	if (c->x86 >= 0x15)
907 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
908 
909 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
910 		pr_debug("failed to load file %s\n", fw_name);
911 		goto out;
912 	}
913 
914 	ret = UCODE_ERROR;
915 	if (!verify_container(fw->data, fw->size, false))
916 		goto fw_release;
917 
918 	ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
919 
920  fw_release:
921 	release_firmware(fw);
922 
923  out:
924 	return ret;
925 }
926 
927 static enum ucode_state
928 request_microcode_user(int cpu, const void __user *buf, size_t size)
929 {
930 	return UCODE_ERROR;
931 }
932 
933 static void microcode_fini_cpu_amd(int cpu)
934 {
935 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
936 
937 	uci->mc = NULL;
938 }
939 
940 static struct microcode_ops microcode_amd_ops = {
941 	.request_microcode_user           = request_microcode_user,
942 	.request_microcode_fw             = request_microcode_amd,
943 	.collect_cpu_info                 = collect_cpu_info_amd,
944 	.apply_microcode                  = apply_microcode_amd,
945 	.microcode_fini_cpu               = microcode_fini_cpu_amd,
946 };
947 
948 struct microcode_ops * __init init_amd_microcode(void)
949 {
950 	struct cpuinfo_x86 *c = &boot_cpu_data;
951 
952 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
953 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
954 		return NULL;
955 	}
956 
957 	if (ucode_new_rev)
958 		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
959 			     ucode_new_rev);
960 
961 	return &microcode_amd_ops;
962 }
963 
964 void __exit exit_amd_microcode(void)
965 {
966 	cleanup();
967 }
968