xref: /openbmc/linux/arch/x86/kernel/cpu/microcode/amd.c (revision 160b8e75)
1 /*
2  *  AMD CPU Microcode Update Driver for Linux
3  *
4  *  This driver allows to upgrade microcode on F10h AMD
5  *  CPUs and later.
6  *
7  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8  *	          2013-2016 Borislav Petkov <bp@alien8.de>
9  *
10  *  Author: Peter Oruba <peter.oruba@amd.com>
11  *
12  *  Based on work by:
13  *  Tigran Aivazian <aivazian.tigran@gmail.com>
14  *
15  *  early loader:
16  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
17  *
18  *  Author: Jacob Shin <jacob.shin@amd.com>
19  *  Fixes: Borislav Petkov <bp@suse.de>
20  *
21  *  Licensed under the terms of the GNU General Public
22  *  License version 2. See file COPYING for details.
23  */
24 #define pr_fmt(fmt) "microcode: " fmt
25 
26 #include <linux/earlycpio.h>
27 #include <linux/firmware.h>
28 #include <linux/uaccess.h>
29 #include <linux/vmalloc.h>
30 #include <linux/initrd.h>
31 #include <linux/kernel.h>
32 #include <linux/pci.h>
33 
34 #include <asm/microcode_amd.h>
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/setup.h>
38 #include <asm/cpu.h>
39 #include <asm/msr.h>
40 
41 static struct equiv_cpu_entry *equiv_cpu_table;
42 
43 /*
44  * This points to the current valid container of microcode patches which we will
45  * save from the initrd/builtin before jettisoning its contents. @mc is the
46  * microcode patch we found to match.
47  */
48 struct cont_desc {
49 	struct microcode_amd *mc;
50 	u32		     cpuid_1_eax;
51 	u32		     psize;
52 	u8		     *data;
53 	size_t		     size;
54 };
55 
56 static u32 ucode_new_rev;
57 static u8 amd_ucode_patch[PATCH_MAX_SIZE];
58 
59 /*
60  * Microcode patch container file is prepended to the initrd in cpio
61  * format. See Documentation/x86/early-microcode.txt
62  */
63 static const char
64 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
65 
66 static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig)
67 {
68 	for (; equiv_table && equiv_table->installed_cpu; equiv_table++) {
69 		if (sig == equiv_table->installed_cpu)
70 			return equiv_table->equiv_cpu;
71 	}
72 
73 	return 0;
74 }
75 
76 /*
77  * This scans the ucode blob for the proper container as we can have multiple
78  * containers glued together. Returns the equivalence ID from the equivalence
79  * table or 0 if none found.
80  * Returns the amount of bytes consumed while scanning. @desc contains all the
81  * data we're going to use in later stages of the application.
82  */
83 static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc)
84 {
85 	struct equiv_cpu_entry *eq;
86 	ssize_t orig_size = size;
87 	u32 *hdr = (u32 *)ucode;
88 	u16 eq_id;
89 	u8 *buf;
90 
91 	/* Am I looking at an equivalence table header? */
92 	if (hdr[0] != UCODE_MAGIC ||
93 	    hdr[1] != UCODE_EQUIV_CPU_TABLE_TYPE ||
94 	    hdr[2] == 0)
95 		return CONTAINER_HDR_SZ;
96 
97 	buf = ucode;
98 
99 	eq = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
100 
101 	/* Find the equivalence ID of our CPU in this table: */
102 	eq_id = find_equiv_id(eq, desc->cpuid_1_eax);
103 
104 	buf  += hdr[2] + CONTAINER_HDR_SZ;
105 	size -= hdr[2] + CONTAINER_HDR_SZ;
106 
107 	/*
108 	 * Scan through the rest of the container to find where it ends. We do
109 	 * some basic sanity-checking too.
110 	 */
111 	while (size > 0) {
112 		struct microcode_amd *mc;
113 		u32 patch_size;
114 
115 		hdr = (u32 *)buf;
116 
117 		if (hdr[0] != UCODE_UCODE_TYPE)
118 			break;
119 
120 		/* Sanity-check patch size. */
121 		patch_size = hdr[1];
122 		if (patch_size > PATCH_MAX_SIZE)
123 			break;
124 
125 		/* Skip patch section header: */
126 		buf  += SECTION_HDR_SIZE;
127 		size -= SECTION_HDR_SIZE;
128 
129 		mc = (struct microcode_amd *)buf;
130 		if (eq_id == mc->hdr.processor_rev_id) {
131 			desc->psize = patch_size;
132 			desc->mc = mc;
133 		}
134 
135 		buf  += patch_size;
136 		size -= patch_size;
137 	}
138 
139 	/*
140 	 * If we have found a patch (desc->mc), it means we're looking at the
141 	 * container which has a patch for this CPU so return 0 to mean, @ucode
142 	 * already points to the proper container. Otherwise, we return the size
143 	 * we scanned so that we can advance to the next container in the
144 	 * buffer.
145 	 */
146 	if (desc->mc) {
147 		desc->data = ucode;
148 		desc->size = orig_size - size;
149 
150 		return 0;
151 	}
152 
153 	return orig_size - size;
154 }
155 
156 /*
157  * Scan the ucode blob for the proper container as we can have multiple
158  * containers glued together.
159  */
160 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
161 {
162 	ssize_t rem = size;
163 
164 	while (rem >= 0) {
165 		ssize_t s = parse_container(ucode, rem, desc);
166 		if (!s)
167 			return;
168 
169 		ucode += s;
170 		rem   -= s;
171 	}
172 }
173 
174 static int __apply_microcode_amd(struct microcode_amd *mc)
175 {
176 	u32 rev, dummy;
177 
178 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
179 
180 	/* verify patch application was successful */
181 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
182 	if (rev != mc->hdr.patch_id)
183 		return -1;
184 
185 	return 0;
186 }
187 
188 /*
189  * Early load occurs before we can vmalloc(). So we look for the microcode
190  * patch container file in initrd, traverse equivalent cpu table, look for a
191  * matching microcode patch, and update, all in initrd memory in place.
192  * When vmalloc() is available for use later -- on 64-bit during first AP load,
193  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
194  * load_microcode_amd() to save equivalent cpu table and microcode patches in
195  * kernel heap memory.
196  *
197  * Returns true if container found (sets @desc), false otherwise.
198  */
199 static bool
200 apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
201 {
202 	struct cont_desc desc = { 0 };
203 	u8 (*patch)[PATCH_MAX_SIZE];
204 	struct microcode_amd *mc;
205 	u32 rev, dummy, *new_rev;
206 	bool ret = false;
207 
208 #ifdef CONFIG_X86_32
209 	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
210 	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
211 #else
212 	new_rev = &ucode_new_rev;
213 	patch	= &amd_ucode_patch;
214 #endif
215 
216 	desc.cpuid_1_eax = cpuid_1_eax;
217 
218 	scan_containers(ucode, size, &desc);
219 
220 	mc = desc.mc;
221 	if (!mc)
222 		return ret;
223 
224 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
225 	if (rev >= mc->hdr.patch_id)
226 		return ret;
227 
228 	if (!__apply_microcode_amd(mc)) {
229 		*new_rev = mc->hdr.patch_id;
230 		ret      = true;
231 
232 		if (save_patch)
233 			memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
234 	}
235 
236 	return ret;
237 }
238 
239 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
240 {
241 #ifdef CONFIG_X86_64
242 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
243 
244 	if (family >= 0x15)
245 		snprintf(fw_name, sizeof(fw_name),
246 			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
247 
248 	return get_builtin_firmware(cp, fw_name);
249 #else
250 	return false;
251 #endif
252 }
253 
254 static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
255 {
256 	struct ucode_cpu_info *uci;
257 	struct cpio_data cp;
258 	const char *path;
259 	bool use_pa;
260 
261 	if (IS_ENABLED(CONFIG_X86_32)) {
262 		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
263 		path	= (const char *)__pa_nodebug(ucode_path);
264 		use_pa	= true;
265 	} else {
266 		uci     = ucode_cpu_info;
267 		path	= ucode_path;
268 		use_pa	= false;
269 	}
270 
271 	if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
272 		cp = find_microcode_in_initrd(path, use_pa);
273 
274 	/* Needed in load_microcode_amd() */
275 	uci->cpu_sig.sig = cpuid_1_eax;
276 
277 	*ret = cp;
278 }
279 
280 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
281 {
282 	struct cpio_data cp = { };
283 
284 	__load_ucode_amd(cpuid_1_eax, &cp);
285 	if (!(cp.data && cp.size))
286 		return;
287 
288 	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
289 }
290 
291 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
292 {
293 	struct microcode_amd *mc;
294 	struct cpio_data cp;
295 	u32 *new_rev, rev, dummy;
296 
297 	if (IS_ENABLED(CONFIG_X86_32)) {
298 		mc	= (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
299 		new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
300 	} else {
301 		mc	= (struct microcode_amd *)amd_ucode_patch;
302 		new_rev = &ucode_new_rev;
303 	}
304 
305 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
306 
307 	/* Check whether we have saved a new patch already: */
308 	if (*new_rev && rev < mc->hdr.patch_id) {
309 		if (!__apply_microcode_amd(mc)) {
310 			*new_rev = mc->hdr.patch_id;
311 			return;
312 		}
313 	}
314 
315 	__load_ucode_amd(cpuid_1_eax, &cp);
316 	if (!(cp.data && cp.size))
317 		return;
318 
319 	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
320 }
321 
322 static enum ucode_state
323 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);
324 
325 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
326 {
327 	struct cont_desc desc = { 0 };
328 	enum ucode_state ret;
329 	struct cpio_data cp;
330 
331 	cp = find_microcode_in_initrd(ucode_path, false);
332 	if (!(cp.data && cp.size))
333 		return -EINVAL;
334 
335 	desc.cpuid_1_eax = cpuid_1_eax;
336 
337 	scan_containers(cp.data, cp.size, &desc);
338 	if (!desc.mc)
339 		return -EINVAL;
340 
341 	ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
342 	if (ret != UCODE_OK)
343 		return -EINVAL;
344 
345 	return 0;
346 }
347 
348 void reload_ucode_amd(void)
349 {
350 	struct microcode_amd *mc;
351 	u32 rev, dummy;
352 
353 	mc = (struct microcode_amd *)amd_ucode_patch;
354 
355 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
356 
357 	if (rev < mc->hdr.patch_id) {
358 		if (!__apply_microcode_amd(mc)) {
359 			ucode_new_rev = mc->hdr.patch_id;
360 			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
361 		}
362 	}
363 }
364 static u16 __find_equiv_id(unsigned int cpu)
365 {
366 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
367 	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
368 }
369 
370 static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
371 {
372 	int i = 0;
373 
374 	BUG_ON(!equiv_cpu_table);
375 
376 	while (equiv_cpu_table[i].equiv_cpu != 0) {
377 		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
378 			return equiv_cpu_table[i].installed_cpu;
379 		i++;
380 	}
381 	return 0;
382 }
383 
384 /*
385  * a small, trivial cache of per-family ucode patches
386  */
387 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
388 {
389 	struct ucode_patch *p;
390 
391 	list_for_each_entry(p, &microcode_cache, plist)
392 		if (p->equiv_cpu == equiv_cpu)
393 			return p;
394 	return NULL;
395 }
396 
397 static void update_cache(struct ucode_patch *new_patch)
398 {
399 	struct ucode_patch *p;
400 
401 	list_for_each_entry(p, &microcode_cache, plist) {
402 		if (p->equiv_cpu == new_patch->equiv_cpu) {
403 			if (p->patch_id >= new_patch->patch_id) {
404 				/* we already have the latest patch */
405 				kfree(new_patch->data);
406 				kfree(new_patch);
407 				return;
408 			}
409 
410 			list_replace(&p->plist, &new_patch->plist);
411 			kfree(p->data);
412 			kfree(p);
413 			return;
414 		}
415 	}
416 	/* no patch found, add it */
417 	list_add_tail(&new_patch->plist, &microcode_cache);
418 }
419 
420 static void free_cache(void)
421 {
422 	struct ucode_patch *p, *tmp;
423 
424 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
425 		__list_del(p->plist.prev, p->plist.next);
426 		kfree(p->data);
427 		kfree(p);
428 	}
429 }
430 
431 static struct ucode_patch *find_patch(unsigned int cpu)
432 {
433 	u16 equiv_id;
434 
435 	equiv_id = __find_equiv_id(cpu);
436 	if (!equiv_id)
437 		return NULL;
438 
439 	return cache_find_patch(equiv_id);
440 }
441 
442 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
443 {
444 	struct cpuinfo_x86 *c = &cpu_data(cpu);
445 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
446 	struct ucode_patch *p;
447 
448 	csig->sig = cpuid_eax(0x00000001);
449 	csig->rev = c->microcode;
450 
451 	/*
452 	 * a patch could have been loaded early, set uci->mc so that
453 	 * mc_bp_resume() can call apply_microcode()
454 	 */
455 	p = find_patch(cpu);
456 	if (p && (p->patch_id == csig->rev))
457 		uci->mc = p->data;
458 
459 	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
460 
461 	return 0;
462 }
463 
464 static unsigned int verify_patch_size(u8 family, u32 patch_size,
465 				      unsigned int size)
466 {
467 	u32 max_size;
468 
469 #define F1XH_MPB_MAX_SIZE 2048
470 #define F14H_MPB_MAX_SIZE 1824
471 #define F15H_MPB_MAX_SIZE 4096
472 #define F16H_MPB_MAX_SIZE 3458
473 #define F17H_MPB_MAX_SIZE 3200
474 
475 	switch (family) {
476 	case 0x14:
477 		max_size = F14H_MPB_MAX_SIZE;
478 		break;
479 	case 0x15:
480 		max_size = F15H_MPB_MAX_SIZE;
481 		break;
482 	case 0x16:
483 		max_size = F16H_MPB_MAX_SIZE;
484 		break;
485 	case 0x17:
486 		max_size = F17H_MPB_MAX_SIZE;
487 		break;
488 	default:
489 		max_size = F1XH_MPB_MAX_SIZE;
490 		break;
491 	}
492 
493 	if (patch_size > min_t(u32, size, max_size)) {
494 		pr_err("patch size mismatch\n");
495 		return 0;
496 	}
497 
498 	return patch_size;
499 }
500 
501 static int apply_microcode_amd(int cpu)
502 {
503 	struct cpuinfo_x86 *c = &cpu_data(cpu);
504 	struct microcode_amd *mc_amd;
505 	struct ucode_cpu_info *uci;
506 	struct ucode_patch *p;
507 	u32 rev, dummy;
508 
509 	BUG_ON(raw_smp_processor_id() != cpu);
510 
511 	uci = ucode_cpu_info + cpu;
512 
513 	p = find_patch(cpu);
514 	if (!p)
515 		return 0;
516 
517 	mc_amd  = p->data;
518 	uci->mc = p->data;
519 
520 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
521 
522 	/* need to apply patch? */
523 	if (rev >= mc_amd->hdr.patch_id) {
524 		c->microcode = rev;
525 		uci->cpu_sig.rev = rev;
526 		return 0;
527 	}
528 
529 	if (__apply_microcode_amd(mc_amd)) {
530 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
531 			cpu, mc_amd->hdr.patch_id);
532 		return -1;
533 	}
534 	pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
535 		mc_amd->hdr.patch_id);
536 
537 	uci->cpu_sig.rev = mc_amd->hdr.patch_id;
538 	c->microcode = mc_amd->hdr.patch_id;
539 
540 	return 0;
541 }
542 
543 static int install_equiv_cpu_table(const u8 *buf)
544 {
545 	unsigned int *ibuf = (unsigned int *)buf;
546 	unsigned int type = ibuf[1];
547 	unsigned int size = ibuf[2];
548 
549 	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
550 		pr_err("empty section/"
551 		       "invalid type field in container file section header\n");
552 		return -EINVAL;
553 	}
554 
555 	equiv_cpu_table = vmalloc(size);
556 	if (!equiv_cpu_table) {
557 		pr_err("failed to allocate equivalent CPU table\n");
558 		return -ENOMEM;
559 	}
560 
561 	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
562 
563 	/* add header length */
564 	return size + CONTAINER_HDR_SZ;
565 }
566 
567 static void free_equiv_cpu_table(void)
568 {
569 	vfree(equiv_cpu_table);
570 	equiv_cpu_table = NULL;
571 }
572 
573 static void cleanup(void)
574 {
575 	free_equiv_cpu_table();
576 	free_cache();
577 }
578 
579 /*
580  * We return the current size even if some of the checks failed so that
581  * we can skip over the next patch. If we return a negative value, we
582  * signal a grave error like a memory allocation has failed and the
583  * driver cannot continue functioning normally. In such cases, we tear
584  * down everything we've used up so far and exit.
585  */
586 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
587 {
588 	struct microcode_header_amd *mc_hdr;
589 	struct ucode_patch *patch;
590 	unsigned int patch_size, crnt_size, ret;
591 	u32 proc_fam;
592 	u16 proc_id;
593 
594 	patch_size  = *(u32 *)(fw + 4);
595 	crnt_size   = patch_size + SECTION_HDR_SIZE;
596 	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
597 	proc_id	    = mc_hdr->processor_rev_id;
598 
599 	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
600 	if (!proc_fam) {
601 		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
602 		return crnt_size;
603 	}
604 
605 	/* check if patch is for the current family */
606 	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
607 	if (proc_fam != family)
608 		return crnt_size;
609 
610 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
611 		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
612 			mc_hdr->patch_id);
613 		return crnt_size;
614 	}
615 
616 	ret = verify_patch_size(family, patch_size, leftover);
617 	if (!ret) {
618 		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
619 		return crnt_size;
620 	}
621 
622 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
623 	if (!patch) {
624 		pr_err("Patch allocation failure.\n");
625 		return -EINVAL;
626 	}
627 
628 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
629 	if (!patch->data) {
630 		pr_err("Patch data allocation failure.\n");
631 		kfree(patch);
632 		return -EINVAL;
633 	}
634 
635 	INIT_LIST_HEAD(&patch->plist);
636 	patch->patch_id  = mc_hdr->patch_id;
637 	patch->equiv_cpu = proc_id;
638 
639 	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
640 		 __func__, patch->patch_id, proc_id);
641 
642 	/* ... and add to cache. */
643 	update_cache(patch);
644 
645 	return crnt_size;
646 }
647 
648 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
649 					     size_t size)
650 {
651 	enum ucode_state ret = UCODE_ERROR;
652 	unsigned int leftover;
653 	u8 *fw = (u8 *)data;
654 	int crnt_size = 0;
655 	int offset;
656 
657 	offset = install_equiv_cpu_table(data);
658 	if (offset < 0) {
659 		pr_err("failed to create equivalent cpu table\n");
660 		return ret;
661 	}
662 	fw += offset;
663 	leftover = size - offset;
664 
665 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
666 		pr_err("invalid type field in container file section header\n");
667 		free_equiv_cpu_table();
668 		return ret;
669 	}
670 
671 	while (leftover) {
672 		crnt_size = verify_and_add_patch(family, fw, leftover);
673 		if (crnt_size < 0)
674 			return ret;
675 
676 		fw	 += crnt_size;
677 		leftover -= crnt_size;
678 	}
679 
680 	return UCODE_OK;
681 }
682 
683 static enum ucode_state
684 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
685 {
686 	enum ucode_state ret;
687 
688 	/* free old equiv table */
689 	free_equiv_cpu_table();
690 
691 	ret = __load_microcode_amd(family, data, size);
692 
693 	if (ret != UCODE_OK)
694 		cleanup();
695 
696 #ifdef CONFIG_X86_32
697 	/* save BSP's matching patch for early load */
698 	if (save) {
699 		struct ucode_patch *p = find_patch(0);
700 		if (p) {
701 			memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
702 			memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
703 							       PATCH_MAX_SIZE));
704 		}
705 	}
706 #endif
707 	return ret;
708 }
709 
710 /*
711  * AMD microcode firmware naming convention, up to family 15h they are in
712  * the legacy file:
713  *
714  *    amd-ucode/microcode_amd.bin
715  *
716  * This legacy file is always smaller than 2K in size.
717  *
718  * Beginning with family 15h, they are in family-specific firmware files:
719  *
720  *    amd-ucode/microcode_amd_fam15h.bin
721  *    amd-ucode/microcode_amd_fam16h.bin
722  *    ...
723  *
724  * These might be larger than 2K.
725  */
726 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
727 					      bool refresh_fw)
728 {
729 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
730 	struct cpuinfo_x86 *c = &cpu_data(cpu);
731 	bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
732 	enum ucode_state ret = UCODE_NFOUND;
733 	const struct firmware *fw;
734 
735 	/* reload ucode container only on the boot cpu */
736 	if (!refresh_fw || !bsp)
737 		return UCODE_OK;
738 
739 	if (c->x86 >= 0x15)
740 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
741 
742 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
743 		pr_debug("failed to load file %s\n", fw_name);
744 		goto out;
745 	}
746 
747 	ret = UCODE_ERROR;
748 	if (*(u32 *)fw->data != UCODE_MAGIC) {
749 		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
750 		goto fw_release;
751 	}
752 
753 	ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
754 
755  fw_release:
756 	release_firmware(fw);
757 
758  out:
759 	return ret;
760 }
761 
762 static enum ucode_state
763 request_microcode_user(int cpu, const void __user *buf, size_t size)
764 {
765 	return UCODE_ERROR;
766 }
767 
768 static void microcode_fini_cpu_amd(int cpu)
769 {
770 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
771 
772 	uci->mc = NULL;
773 }
774 
775 static struct microcode_ops microcode_amd_ops = {
776 	.request_microcode_user           = request_microcode_user,
777 	.request_microcode_fw             = request_microcode_amd,
778 	.collect_cpu_info                 = collect_cpu_info_amd,
779 	.apply_microcode                  = apply_microcode_amd,
780 	.microcode_fini_cpu               = microcode_fini_cpu_amd,
781 };
782 
783 struct microcode_ops * __init init_amd_microcode(void)
784 {
785 	struct cpuinfo_x86 *c = &boot_cpu_data;
786 
787 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
788 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
789 		return NULL;
790 	}
791 
792 	if (ucode_new_rev)
793 		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
794 			     ucode_new_rev);
795 
796 	return &microcode_amd_ops;
797 }
798 
799 void __exit exit_amd_microcode(void)
800 {
801 	cleanup();
802 }
803