xref: /openbmc/linux/arch/x86/kernel/cpu/microcode/amd.c (revision 0c6dfa75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  AMD CPU Microcode Update Driver for Linux
4  *
5  *  This driver allows to upgrade microcode on F10h AMD
6  *  CPUs and later.
7  *
8  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9  *	          2013-2018 Borislav Petkov <bp@alien8.de>
10  *
11  *  Author: Peter Oruba <peter.oruba@amd.com>
12  *
13  *  Based on work by:
14  *  Tigran Aivazian <aivazian.tigran@gmail.com>
15  *
16  *  early loader:
17  *  Copyright (C) 2013 Advanced Micro Devices, Inc.
18  *
19  *  Author: Jacob Shin <jacob.shin@amd.com>
20  *  Fixes: Borislav Petkov <bp@suse.de>
21  */
22 #define pr_fmt(fmt) "microcode: " fmt
23 
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31 
32 #include <asm/microcode.h>
33 #include <asm/processor.h>
34 #include <asm/setup.h>
35 #include <asm/cpu.h>
36 #include <asm/msr.h>
37 
38 #include "internal.h"
39 
40 #define UCODE_MAGIC			0x00414d44
41 #define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
42 #define UCODE_UCODE_TYPE		0x00000001
43 
44 #define SECTION_HDR_SIZE		8
45 #define CONTAINER_HDR_SZ		12
46 
47 struct equiv_cpu_entry {
48 	u32	installed_cpu;
49 	u32	fixed_errata_mask;
50 	u32	fixed_errata_compare;
51 	u16	equiv_cpu;
52 	u16	res;
53 } __packed;
54 
55 struct microcode_header_amd {
56 	u32	data_code;
57 	u32	patch_id;
58 	u16	mc_patch_data_id;
59 	u8	mc_patch_data_len;
60 	u8	init_flag;
61 	u32	mc_patch_data_checksum;
62 	u32	nb_dev_id;
63 	u32	sb_dev_id;
64 	u16	processor_rev_id;
65 	u8	nb_rev_id;
66 	u8	sb_rev_id;
67 	u8	bios_api_rev;
68 	u8	reserved1[3];
69 	u32	match_reg[8];
70 } __packed;
71 
72 struct microcode_amd {
73 	struct microcode_header_amd	hdr;
74 	unsigned int			mpb[];
75 };
76 
77 #define PATCH_MAX_SIZE (3 * PAGE_SIZE)
78 
79 static struct equiv_cpu_table {
80 	unsigned int num_entries;
81 	struct equiv_cpu_entry *entry;
82 } equiv_table;
83 
84 /*
85  * This points to the current valid container of microcode patches which we will
86  * save from the initrd/builtin before jettisoning its contents. @mc is the
87  * microcode patch we found to match.
88  */
89 struct cont_desc {
90 	struct microcode_amd *mc;
91 	u32		     cpuid_1_eax;
92 	u32		     psize;
93 	u8		     *data;
94 	size_t		     size;
95 };
96 
97 static u32 ucode_new_rev;
98 
99 /*
100  * Microcode patch container file is prepended to the initrd in cpio
101  * format. See Documentation/arch/x86/microcode.rst
102  */
103 static const char
104 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
105 
106 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
107 {
108 	unsigned int i;
109 
110 	if (!et || !et->num_entries)
111 		return 0;
112 
113 	for (i = 0; i < et->num_entries; i++) {
114 		struct equiv_cpu_entry *e = &et->entry[i];
115 
116 		if (sig == e->installed_cpu)
117 			return e->equiv_cpu;
118 	}
119 	return 0;
120 }
121 
122 /*
123  * Check whether there is a valid microcode container file at the beginning
124  * of @buf of size @buf_size. Set @early to use this function in the early path.
125  */
126 static bool verify_container(const u8 *buf, size_t buf_size, bool early)
127 {
128 	u32 cont_magic;
129 
130 	if (buf_size <= CONTAINER_HDR_SZ) {
131 		if (!early)
132 			pr_debug("Truncated microcode container header.\n");
133 
134 		return false;
135 	}
136 
137 	cont_magic = *(const u32 *)buf;
138 	if (cont_magic != UCODE_MAGIC) {
139 		if (!early)
140 			pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
141 
142 		return false;
143 	}
144 
145 	return true;
146 }
147 
148 /*
149  * Check whether there is a valid, non-truncated CPU equivalence table at the
150  * beginning of @buf of size @buf_size. Set @early to use this function in the
151  * early path.
152  */
153 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
154 {
155 	const u32 *hdr = (const u32 *)buf;
156 	u32 cont_type, equiv_tbl_len;
157 
158 	if (!verify_container(buf, buf_size, early))
159 		return false;
160 
161 	cont_type = hdr[1];
162 	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
163 		if (!early)
164 			pr_debug("Wrong microcode container equivalence table type: %u.\n",
165 			       cont_type);
166 
167 		return false;
168 	}
169 
170 	buf_size -= CONTAINER_HDR_SZ;
171 
172 	equiv_tbl_len = hdr[2];
173 	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
174 	    buf_size < equiv_tbl_len) {
175 		if (!early)
176 			pr_debug("Truncated equivalence table.\n");
177 
178 		return false;
179 	}
180 
181 	return true;
182 }
183 
184 /*
185  * Check whether there is a valid, non-truncated microcode patch section at the
186  * beginning of @buf of size @buf_size. Set @early to use this function in the
187  * early path.
188  *
189  * On success, @sh_psize returns the patch size according to the section header,
190  * to the caller.
191  */
192 static bool
193 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
194 {
195 	u32 p_type, p_size;
196 	const u32 *hdr;
197 
198 	if (buf_size < SECTION_HDR_SIZE) {
199 		if (!early)
200 			pr_debug("Truncated patch section.\n");
201 
202 		return false;
203 	}
204 
205 	hdr = (const u32 *)buf;
206 	p_type = hdr[0];
207 	p_size = hdr[1];
208 
209 	if (p_type != UCODE_UCODE_TYPE) {
210 		if (!early)
211 			pr_debug("Invalid type field (0x%x) in container file section header.\n",
212 				p_type);
213 
214 		return false;
215 	}
216 
217 	if (p_size < sizeof(struct microcode_header_amd)) {
218 		if (!early)
219 			pr_debug("Patch of size %u too short.\n", p_size);
220 
221 		return false;
222 	}
223 
224 	*sh_psize = p_size;
225 
226 	return true;
227 }
228 
229 /*
230  * Check whether the passed remaining file @buf_size is large enough to contain
231  * a patch of the indicated @sh_psize (and also whether this size does not
232  * exceed the per-family maximum). @sh_psize is the size read from the section
233  * header.
234  */
235 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
236 {
237 	u32 max_size;
238 
239 	if (family >= 0x15)
240 		return min_t(u32, sh_psize, buf_size);
241 
242 #define F1XH_MPB_MAX_SIZE 2048
243 #define F14H_MPB_MAX_SIZE 1824
244 
245 	switch (family) {
246 	case 0x10 ... 0x12:
247 		max_size = F1XH_MPB_MAX_SIZE;
248 		break;
249 	case 0x14:
250 		max_size = F14H_MPB_MAX_SIZE;
251 		break;
252 	default:
253 		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
254 		return 0;
255 	}
256 
257 	if (sh_psize > min_t(u32, buf_size, max_size))
258 		return 0;
259 
260 	return sh_psize;
261 }
262 
263 /*
264  * Verify the patch in @buf.
265  *
266  * Returns:
267  * negative: on error
268  * positive: patch is not for this family, skip it
269  * 0: success
270  */
271 static int
272 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
273 {
274 	struct microcode_header_amd *mc_hdr;
275 	unsigned int ret;
276 	u32 sh_psize;
277 	u16 proc_id;
278 	u8 patch_fam;
279 
280 	if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
281 		return -1;
282 
283 	/*
284 	 * The section header length is not included in this indicated size
285 	 * but is present in the leftover file length so we need to subtract
286 	 * it before passing this value to the function below.
287 	 */
288 	buf_size -= SECTION_HDR_SIZE;
289 
290 	/*
291 	 * Check if the remaining buffer is big enough to contain a patch of
292 	 * size sh_psize, as the section claims.
293 	 */
294 	if (buf_size < sh_psize) {
295 		if (!early)
296 			pr_debug("Patch of size %u truncated.\n", sh_psize);
297 
298 		return -1;
299 	}
300 
301 	ret = __verify_patch_size(family, sh_psize, buf_size);
302 	if (!ret) {
303 		if (!early)
304 			pr_debug("Per-family patch size mismatch.\n");
305 		return -1;
306 	}
307 
308 	*patch_size = sh_psize;
309 
310 	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
311 	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
312 		if (!early)
313 			pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
314 		return -1;
315 	}
316 
317 	proc_id	= mc_hdr->processor_rev_id;
318 	patch_fam = 0xf + (proc_id >> 12);
319 	if (patch_fam != family)
320 		return 1;
321 
322 	return 0;
323 }
324 
325 /*
326  * This scans the ucode blob for the proper container as we can have multiple
327  * containers glued together. Returns the equivalence ID from the equivalence
328  * table or 0 if none found.
329  * Returns the amount of bytes consumed while scanning. @desc contains all the
330  * data we're going to use in later stages of the application.
331  */
332 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
333 {
334 	struct equiv_cpu_table table;
335 	size_t orig_size = size;
336 	u32 *hdr = (u32 *)ucode;
337 	u16 eq_id;
338 	u8 *buf;
339 
340 	if (!verify_equivalence_table(ucode, size, true))
341 		return 0;
342 
343 	buf = ucode;
344 
345 	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
346 	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
347 
348 	/*
349 	 * Find the equivalence ID of our CPU in this table. Even if this table
350 	 * doesn't contain a patch for the CPU, scan through the whole container
351 	 * so that it can be skipped in case there are other containers appended.
352 	 */
353 	eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
354 
355 	buf  += hdr[2] + CONTAINER_HDR_SZ;
356 	size -= hdr[2] + CONTAINER_HDR_SZ;
357 
358 	/*
359 	 * Scan through the rest of the container to find where it ends. We do
360 	 * some basic sanity-checking too.
361 	 */
362 	while (size > 0) {
363 		struct microcode_amd *mc;
364 		u32 patch_size;
365 		int ret;
366 
367 		ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
368 		if (ret < 0) {
369 			/*
370 			 * Patch verification failed, skip to the next container, if
371 			 * there is one. Before exit, check whether that container has
372 			 * found a patch already. If so, use it.
373 			 */
374 			goto out;
375 		} else if (ret > 0) {
376 			goto skip;
377 		}
378 
379 		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
380 		if (eq_id == mc->hdr.processor_rev_id) {
381 			desc->psize = patch_size;
382 			desc->mc = mc;
383 		}
384 
385 skip:
386 		/* Skip patch section header too: */
387 		buf  += patch_size + SECTION_HDR_SIZE;
388 		size -= patch_size + SECTION_HDR_SIZE;
389 	}
390 
391 out:
392 	/*
393 	 * If we have found a patch (desc->mc), it means we're looking at the
394 	 * container which has a patch for this CPU so return 0 to mean, @ucode
395 	 * already points to the proper container. Otherwise, we return the size
396 	 * we scanned so that we can advance to the next container in the
397 	 * buffer.
398 	 */
399 	if (desc->mc) {
400 		desc->data = ucode;
401 		desc->size = orig_size - size;
402 
403 		return 0;
404 	}
405 
406 	return orig_size - size;
407 }
408 
409 /*
410  * Scan the ucode blob for the proper container as we can have multiple
411  * containers glued together.
412  */
413 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
414 {
415 	while (size) {
416 		size_t s = parse_container(ucode, size, desc);
417 		if (!s)
418 			return;
419 
420 		/* catch wraparound */
421 		if (size >= s) {
422 			ucode += s;
423 			size  -= s;
424 		} else {
425 			return;
426 		}
427 	}
428 }
429 
430 static int __apply_microcode_amd(struct microcode_amd *mc)
431 {
432 	u32 rev, dummy;
433 
434 	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
435 
436 	/* verify patch application was successful */
437 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
438 	if (rev != mc->hdr.patch_id)
439 		return -1;
440 
441 	return 0;
442 }
443 
444 /*
445  * Early load occurs before we can vmalloc(). So we look for the microcode
446  * patch container file in initrd, traverse equivalent cpu table, look for a
447  * matching microcode patch, and update, all in initrd memory in place.
448  * When vmalloc() is available for use later -- on 64-bit during first AP load,
449  * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
450  * load_microcode_amd() to save equivalent cpu table and microcode patches in
451  * kernel heap memory.
452  *
453  * Returns true if container found (sets @desc), false otherwise.
454  */
455 static bool early_apply_microcode(u32 cpuid_1_eax, void *ucode, size_t size)
456 {
457 	struct cont_desc desc = { 0 };
458 	struct microcode_amd *mc;
459 	u32 rev, dummy, *new_rev;
460 	bool ret = false;
461 
462 #ifdef CONFIG_X86_32
463 	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
464 #else
465 	new_rev = &ucode_new_rev;
466 #endif
467 
468 	desc.cpuid_1_eax = cpuid_1_eax;
469 
470 	scan_containers(ucode, size, &desc);
471 
472 	mc = desc.mc;
473 	if (!mc)
474 		return ret;
475 
476 	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
477 
478 	/*
479 	 * Allow application of the same revision to pick up SMT-specific
480 	 * changes even if the revision of the other SMT thread is already
481 	 * up-to-date.
482 	 */
483 	if (rev > mc->hdr.patch_id)
484 		return ret;
485 
486 	if (!__apply_microcode_amd(mc)) {
487 		*new_rev = mc->hdr.patch_id;
488 		ret      = true;
489 	}
490 
491 	return ret;
492 }
493 
494 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
495 {
496 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
497 	struct firmware fw;
498 
499 	if (IS_ENABLED(CONFIG_X86_32))
500 		return false;
501 
502 	if (family >= 0x15)
503 		snprintf(fw_name, sizeof(fw_name),
504 			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
505 
506 	if (firmware_request_builtin(&fw, fw_name)) {
507 		cp->size = fw.size;
508 		cp->data = (void *)fw.data;
509 		return true;
510 	}
511 
512 	return false;
513 }
514 
515 static void find_blobs_in_containers(unsigned int cpuid_1_eax, struct cpio_data *ret)
516 {
517 	struct ucode_cpu_info *uci;
518 	struct cpio_data cp;
519 	const char *path;
520 	bool use_pa;
521 
522 	if (IS_ENABLED(CONFIG_X86_32)) {
523 		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
524 		path	= (const char *)__pa_nodebug(ucode_path);
525 		use_pa	= true;
526 	} else {
527 		uci     = ucode_cpu_info;
528 		path	= ucode_path;
529 		use_pa	= false;
530 	}
531 
532 	if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
533 		cp = find_microcode_in_initrd(path, use_pa);
534 
535 	/* Needed in load_microcode_amd() */
536 	uci->cpu_sig.sig = cpuid_1_eax;
537 
538 	*ret = cp;
539 }
540 
541 static void apply_ucode_from_containers(unsigned int cpuid_1_eax)
542 {
543 	struct cpio_data cp = { };
544 
545 	find_blobs_in_containers(cpuid_1_eax, &cp);
546 	if (!(cp.data && cp.size))
547 		return;
548 
549 	early_apply_microcode(cpuid_1_eax, cp.data, cp.size);
550 }
551 
552 void load_ucode_amd_early(unsigned int cpuid_1_eax)
553 {
554 	return apply_ucode_from_containers(cpuid_1_eax);
555 }
556 
557 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size);
558 
559 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
560 {
561 	struct cont_desc desc = { 0 };
562 	enum ucode_state ret;
563 	struct cpio_data cp;
564 
565 	cp = find_microcode_in_initrd(ucode_path, false);
566 	if (!(cp.data && cp.size))
567 		return -EINVAL;
568 
569 	desc.cpuid_1_eax = cpuid_1_eax;
570 
571 	scan_containers(cp.data, cp.size, &desc);
572 	if (!desc.mc)
573 		return -EINVAL;
574 
575 	ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
576 	if (ret > UCODE_UPDATED)
577 		return -EINVAL;
578 
579 	return 0;
580 }
581 
582 /*
583  * a small, trivial cache of per-family ucode patches
584  */
585 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
586 {
587 	struct ucode_patch *p;
588 
589 	list_for_each_entry(p, &microcode_cache, plist)
590 		if (p->equiv_cpu == equiv_cpu)
591 			return p;
592 	return NULL;
593 }
594 
595 static void update_cache(struct ucode_patch *new_patch)
596 {
597 	struct ucode_patch *p;
598 
599 	list_for_each_entry(p, &microcode_cache, plist) {
600 		if (p->equiv_cpu == new_patch->equiv_cpu) {
601 			if (p->patch_id >= new_patch->patch_id) {
602 				/* we already have the latest patch */
603 				kfree(new_patch->data);
604 				kfree(new_patch);
605 				return;
606 			}
607 
608 			list_replace(&p->plist, &new_patch->plist);
609 			kfree(p->data);
610 			kfree(p);
611 			return;
612 		}
613 	}
614 	/* no patch found, add it */
615 	list_add_tail(&new_patch->plist, &microcode_cache);
616 }
617 
618 static void free_cache(void)
619 {
620 	struct ucode_patch *p, *tmp;
621 
622 	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
623 		__list_del(p->plist.prev, p->plist.next);
624 		kfree(p->data);
625 		kfree(p);
626 	}
627 }
628 
629 static struct ucode_patch *find_patch(unsigned int cpu)
630 {
631 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
632 	u16 equiv_id;
633 
634 
635 	equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
636 	if (!equiv_id)
637 		return NULL;
638 
639 	return cache_find_patch(equiv_id);
640 }
641 
642 void reload_ucode_amd(unsigned int cpu)
643 {
644 	u32 rev, dummy __always_unused;
645 	struct microcode_amd *mc;
646 	struct ucode_patch *p;
647 
648 	p = find_patch(cpu);
649 	if (!p)
650 		return;
651 
652 	mc = p->data;
653 
654 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
655 
656 	if (rev < mc->hdr.patch_id) {
657 		if (!__apply_microcode_amd(mc)) {
658 			ucode_new_rev = mc->hdr.patch_id;
659 			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
660 		}
661 	}
662 }
663 
664 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
665 {
666 	struct cpuinfo_x86 *c = &cpu_data(cpu);
667 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
668 	struct ucode_patch *p;
669 
670 	csig->sig = cpuid_eax(0x00000001);
671 	csig->rev = c->microcode;
672 
673 	/*
674 	 * a patch could have been loaded early, set uci->mc so that
675 	 * mc_bp_resume() can call apply_microcode()
676 	 */
677 	p = find_patch(cpu);
678 	if (p && (p->patch_id == csig->rev))
679 		uci->mc = p->data;
680 
681 	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
682 
683 	return 0;
684 }
685 
686 static enum ucode_state apply_microcode_amd(int cpu)
687 {
688 	struct cpuinfo_x86 *c = &cpu_data(cpu);
689 	struct microcode_amd *mc_amd;
690 	struct ucode_cpu_info *uci;
691 	struct ucode_patch *p;
692 	enum ucode_state ret;
693 	u32 rev, dummy __always_unused;
694 
695 	BUG_ON(raw_smp_processor_id() != cpu);
696 
697 	uci = ucode_cpu_info + cpu;
698 
699 	p = find_patch(cpu);
700 	if (!p)
701 		return UCODE_NFOUND;
702 
703 	mc_amd  = p->data;
704 	uci->mc = p->data;
705 
706 	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
707 
708 	/* need to apply patch? */
709 	if (rev > mc_amd->hdr.patch_id) {
710 		ret = UCODE_OK;
711 		goto out;
712 	}
713 
714 	if (__apply_microcode_amd(mc_amd)) {
715 		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
716 			cpu, mc_amd->hdr.patch_id);
717 		return UCODE_ERROR;
718 	}
719 
720 	rev = mc_amd->hdr.patch_id;
721 	ret = UCODE_UPDATED;
722 
723 	pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
724 
725 out:
726 	uci->cpu_sig.rev = rev;
727 	c->microcode	 = rev;
728 
729 	/* Update boot_cpu_data's revision too, if we're on the BSP: */
730 	if (c->cpu_index == boot_cpu_data.cpu_index)
731 		boot_cpu_data.microcode = rev;
732 
733 	return ret;
734 }
735 
736 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
737 {
738 	u32 equiv_tbl_len;
739 	const u32 *hdr;
740 
741 	if (!verify_equivalence_table(buf, buf_size, false))
742 		return 0;
743 
744 	hdr = (const u32 *)buf;
745 	equiv_tbl_len = hdr[2];
746 
747 	equiv_table.entry = vmalloc(equiv_tbl_len);
748 	if (!equiv_table.entry) {
749 		pr_err("failed to allocate equivalent CPU table\n");
750 		return 0;
751 	}
752 
753 	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
754 	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
755 
756 	/* add header length */
757 	return equiv_tbl_len + CONTAINER_HDR_SZ;
758 }
759 
760 static void free_equiv_cpu_table(void)
761 {
762 	vfree(equiv_table.entry);
763 	memset(&equiv_table, 0, sizeof(equiv_table));
764 }
765 
766 static void cleanup(void)
767 {
768 	free_equiv_cpu_table();
769 	free_cache();
770 }
771 
772 /*
773  * Return a non-negative value even if some of the checks failed so that
774  * we can skip over the next patch. If we return a negative value, we
775  * signal a grave error like a memory allocation has failed and the
776  * driver cannot continue functioning normally. In such cases, we tear
777  * down everything we've used up so far and exit.
778  */
779 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
780 				unsigned int *patch_size)
781 {
782 	struct microcode_header_amd *mc_hdr;
783 	struct ucode_patch *patch;
784 	u16 proc_id;
785 	int ret;
786 
787 	ret = verify_patch(family, fw, leftover, patch_size, false);
788 	if (ret)
789 		return ret;
790 
791 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
792 	if (!patch) {
793 		pr_err("Patch allocation failure.\n");
794 		return -EINVAL;
795 	}
796 
797 	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
798 	if (!patch->data) {
799 		pr_err("Patch data allocation failure.\n");
800 		kfree(patch);
801 		return -EINVAL;
802 	}
803 	patch->size = *patch_size;
804 
805 	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
806 	proc_id     = mc_hdr->processor_rev_id;
807 
808 	INIT_LIST_HEAD(&patch->plist);
809 	patch->patch_id  = mc_hdr->patch_id;
810 	patch->equiv_cpu = proc_id;
811 
812 	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
813 		 __func__, patch->patch_id, proc_id);
814 
815 	/* ... and add to cache. */
816 	update_cache(patch);
817 
818 	return 0;
819 }
820 
821 /* Scan the blob in @data and add microcode patches to the cache. */
822 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
823 					     size_t size)
824 {
825 	u8 *fw = (u8 *)data;
826 	size_t offset;
827 
828 	offset = install_equiv_cpu_table(data, size);
829 	if (!offset)
830 		return UCODE_ERROR;
831 
832 	fw   += offset;
833 	size -= offset;
834 
835 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
836 		pr_err("invalid type field in container file section header\n");
837 		free_equiv_cpu_table();
838 		return UCODE_ERROR;
839 	}
840 
841 	while (size > 0) {
842 		unsigned int crnt_size = 0;
843 		int ret;
844 
845 		ret = verify_and_add_patch(family, fw, size, &crnt_size);
846 		if (ret < 0)
847 			return UCODE_ERROR;
848 
849 		fw   +=  crnt_size + SECTION_HDR_SIZE;
850 		size -= (crnt_size + SECTION_HDR_SIZE);
851 	}
852 
853 	return UCODE_OK;
854 }
855 
856 static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
857 {
858 	struct cpuinfo_x86 *c;
859 	unsigned int nid, cpu;
860 	struct ucode_patch *p;
861 	enum ucode_state ret;
862 
863 	/* free old equiv table */
864 	free_equiv_cpu_table();
865 
866 	ret = __load_microcode_amd(family, data, size);
867 	if (ret != UCODE_OK) {
868 		cleanup();
869 		return ret;
870 	}
871 
872 	for_each_node(nid) {
873 		cpu = cpumask_first(cpumask_of_node(nid));
874 		c = &cpu_data(cpu);
875 
876 		p = find_patch(cpu);
877 		if (!p)
878 			continue;
879 
880 		if (c->microcode >= p->patch_id)
881 			continue;
882 
883 		ret = UCODE_NEW;
884 	}
885 
886 	return ret;
887 }
888 
889 /*
890  * AMD microcode firmware naming convention, up to family 15h they are in
891  * the legacy file:
892  *
893  *    amd-ucode/microcode_amd.bin
894  *
895  * This legacy file is always smaller than 2K in size.
896  *
897  * Beginning with family 15h, they are in family-specific firmware files:
898  *
899  *    amd-ucode/microcode_amd_fam15h.bin
900  *    amd-ucode/microcode_amd_fam16h.bin
901  *    ...
902  *
903  * These might be larger than 2K.
904  */
905 static enum ucode_state request_microcode_amd(int cpu, struct device *device)
906 {
907 	char fw_name[36] = "amd-ucode/microcode_amd.bin";
908 	struct cpuinfo_x86 *c = &cpu_data(cpu);
909 	enum ucode_state ret = UCODE_NFOUND;
910 	const struct firmware *fw;
911 
912 	if (c->x86 >= 0x15)
913 		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
914 
915 	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
916 		pr_debug("failed to load file %s\n", fw_name);
917 		goto out;
918 	}
919 
920 	ret = UCODE_ERROR;
921 	if (!verify_container(fw->data, fw->size, false))
922 		goto fw_release;
923 
924 	ret = load_microcode_amd(c->x86, fw->data, fw->size);
925 
926  fw_release:
927 	release_firmware(fw);
928 
929  out:
930 	return ret;
931 }
932 
933 static void microcode_fini_cpu_amd(int cpu)
934 {
935 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
936 
937 	uci->mc = NULL;
938 }
939 
940 static struct microcode_ops microcode_amd_ops = {
941 	.request_microcode_fw             = request_microcode_amd,
942 	.collect_cpu_info                 = collect_cpu_info_amd,
943 	.apply_microcode                  = apply_microcode_amd,
944 	.microcode_fini_cpu               = microcode_fini_cpu_amd,
945 };
946 
947 struct microcode_ops * __init init_amd_microcode(void)
948 {
949 	struct cpuinfo_x86 *c = &boot_cpu_data;
950 
951 	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
952 		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
953 		return NULL;
954 	}
955 
956 	if (ucode_new_rev)
957 		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
958 			     ucode_new_rev);
959 
960 	return &microcode_amd_ops;
961 }
962 
963 void __exit exit_amd_microcode(void)
964 {
965 	cleanup();
966 }
967