xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision f97769fd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/jump_label.h>
44 #include <linux/set_memory.h>
45 #include <linux/sync_core.h>
46 #include <linux/task_work.h>
47 #include <linux/hardirq.h>
48 
49 #include <asm/intel-family.h>
50 #include <asm/processor.h>
51 #include <asm/traps.h>
52 #include <asm/tlbflush.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/reboot.h>
56 
57 #include "internal.h"
58 
59 /* sysfs synchronization */
60 static DEFINE_MUTEX(mce_sysfs_mutex);
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/mce.h>
64 
65 #define SPINUNIT		100	/* 100ns */
66 
67 DEFINE_PER_CPU(unsigned, mce_exception_count);
68 
69 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
70 
71 struct mce_bank {
72 	u64			ctl;			/* subevents to enable */
73 	bool			init;			/* initialise bank? */
74 };
75 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
76 
77 #define ATTR_LEN               16
78 /* One object for each MCE bank, shared by all CPUs */
79 struct mce_bank_dev {
80 	struct device_attribute	attr;			/* device attribute */
81 	char			attrname[ATTR_LEN];	/* attribute name */
82 	u8			bank;			/* bank number */
83 };
84 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
85 
86 struct mce_vendor_flags mce_flags __read_mostly;
87 
88 struct mca_config mca_cfg __read_mostly = {
89 	.bootlog  = -1,
90 	/*
91 	 * Tolerant levels:
92 	 * 0: always panic on uncorrected errors, log corrected errors
93 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
94 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
95 	 * 3: never panic or SIGBUS, log all errors (for testing only)
96 	 */
97 	.tolerant = 1,
98 	.monarch_timeout = -1
99 };
100 
101 static DEFINE_PER_CPU(struct mce, mces_seen);
102 static unsigned long mce_need_notify;
103 static int cpu_missing;
104 
105 /*
106  * MCA banks polled by the period polling timer for corrected events.
107  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
108  */
109 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
110 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
111 };
112 
113 /*
114  * MCA banks controlled through firmware first for corrected errors.
115  * This is a global list of banks for which we won't enable CMCI and we
116  * won't poll. Firmware controls these banks and is responsible for
117  * reporting corrected errors through GHES. Uncorrected/recoverable
118  * errors are still notified through a machine check.
119  */
120 mce_banks_t mce_banks_ce_disabled;
121 
122 static struct work_struct mce_work;
123 static struct irq_work mce_irq_work;
124 
125 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
126 
127 /*
128  * CPU/chipset specific EDAC code can register a notifier call here to print
129  * MCE errors in a human-readable form.
130  */
131 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
132 
133 /* Do initial initialization of a struct mce */
134 noinstr void mce_setup(struct mce *m)
135 {
136 	memset(m, 0, sizeof(struct mce));
137 	m->cpu = m->extcpu = smp_processor_id();
138 	/* need the internal __ version to avoid deadlocks */
139 	m->time = __ktime_get_real_seconds();
140 	m->cpuvendor = boot_cpu_data.x86_vendor;
141 	m->cpuid = cpuid_eax(1);
142 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
143 	m->apicid = cpu_data(m->extcpu).initial_apicid;
144 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
145 
146 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
147 		m->ppin = __rdmsr(MSR_PPIN);
148 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
149 		m->ppin = __rdmsr(MSR_AMD_PPIN);
150 
151 	m->microcode = boot_cpu_data.microcode;
152 }
153 
154 DEFINE_PER_CPU(struct mce, injectm);
155 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
156 
157 void mce_log(struct mce *m)
158 {
159 	if (!mce_gen_pool_add(m))
160 		irq_work_queue(&mce_irq_work);
161 }
162 EXPORT_SYMBOL_GPL(mce_log);
163 
164 void mce_register_decode_chain(struct notifier_block *nb)
165 {
166 	if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
167 		return;
168 
169 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
170 }
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
172 
173 void mce_unregister_decode_chain(struct notifier_block *nb)
174 {
175 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
176 }
177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
178 
179 static inline u32 ctl_reg(int bank)
180 {
181 	return MSR_IA32_MCx_CTL(bank);
182 }
183 
184 static inline u32 status_reg(int bank)
185 {
186 	return MSR_IA32_MCx_STATUS(bank);
187 }
188 
189 static inline u32 addr_reg(int bank)
190 {
191 	return MSR_IA32_MCx_ADDR(bank);
192 }
193 
194 static inline u32 misc_reg(int bank)
195 {
196 	return MSR_IA32_MCx_MISC(bank);
197 }
198 
199 static inline u32 smca_ctl_reg(int bank)
200 {
201 	return MSR_AMD64_SMCA_MCx_CTL(bank);
202 }
203 
204 static inline u32 smca_status_reg(int bank)
205 {
206 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
207 }
208 
209 static inline u32 smca_addr_reg(int bank)
210 {
211 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
212 }
213 
214 static inline u32 smca_misc_reg(int bank)
215 {
216 	return MSR_AMD64_SMCA_MCx_MISC(bank);
217 }
218 
219 struct mca_msr_regs msr_ops = {
220 	.ctl	= ctl_reg,
221 	.status	= status_reg,
222 	.addr	= addr_reg,
223 	.misc	= misc_reg
224 };
225 
226 static void __print_mce(struct mce *m)
227 {
228 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
229 		 m->extcpu,
230 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
231 		 m->mcgstatus, m->bank, m->status);
232 
233 	if (m->ip) {
234 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
235 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
236 			m->cs, m->ip);
237 
238 		if (m->cs == __KERNEL_CS)
239 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
240 		pr_cont("\n");
241 	}
242 
243 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
244 	if (m->addr)
245 		pr_cont("ADDR %llx ", m->addr);
246 	if (m->misc)
247 		pr_cont("MISC %llx ", m->misc);
248 	if (m->ppin)
249 		pr_cont("PPIN %llx ", m->ppin);
250 
251 	if (mce_flags.smca) {
252 		if (m->synd)
253 			pr_cont("SYND %llx ", m->synd);
254 		if (m->ipid)
255 			pr_cont("IPID %llx ", m->ipid);
256 	}
257 
258 	pr_cont("\n");
259 
260 	/*
261 	 * Note this output is parsed by external tools and old fields
262 	 * should not be changed.
263 	 */
264 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
265 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
266 		m->microcode);
267 }
268 
269 static void print_mce(struct mce *m)
270 {
271 	__print_mce(m);
272 
273 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
274 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
275 }
276 
277 #define PANIC_TIMEOUT 5 /* 5 seconds */
278 
279 static atomic_t mce_panicked;
280 
281 static int fake_panic;
282 static atomic_t mce_fake_panicked;
283 
284 /* Panic in progress. Enable interrupts and wait for final IPI */
285 static void wait_for_panic(void)
286 {
287 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
288 
289 	preempt_disable();
290 	local_irq_enable();
291 	while (timeout-- > 0)
292 		udelay(1);
293 	if (panic_timeout == 0)
294 		panic_timeout = mca_cfg.panic_timeout;
295 	panic("Panicing machine check CPU died");
296 }
297 
298 static void mce_panic(const char *msg, struct mce *final, char *exp)
299 {
300 	int apei_err = 0;
301 	struct llist_node *pending;
302 	struct mce_evt_llist *l;
303 
304 	if (!fake_panic) {
305 		/*
306 		 * Make sure only one CPU runs in machine check panic
307 		 */
308 		if (atomic_inc_return(&mce_panicked) > 1)
309 			wait_for_panic();
310 		barrier();
311 
312 		bust_spinlocks(1);
313 		console_verbose();
314 	} else {
315 		/* Don't log too much for fake panic */
316 		if (atomic_inc_return(&mce_fake_panicked) > 1)
317 			return;
318 	}
319 	pending = mce_gen_pool_prepare_records();
320 	/* First print corrected ones that are still unlogged */
321 	llist_for_each_entry(l, pending, llnode) {
322 		struct mce *m = &l->mce;
323 		if (!(m->status & MCI_STATUS_UC)) {
324 			print_mce(m);
325 			if (!apei_err)
326 				apei_err = apei_write_mce(m);
327 		}
328 	}
329 	/* Now print uncorrected but with the final one last */
330 	llist_for_each_entry(l, pending, llnode) {
331 		struct mce *m = &l->mce;
332 		if (!(m->status & MCI_STATUS_UC))
333 			continue;
334 		if (!final || mce_cmp(m, final)) {
335 			print_mce(m);
336 			if (!apei_err)
337 				apei_err = apei_write_mce(m);
338 		}
339 	}
340 	if (final) {
341 		print_mce(final);
342 		if (!apei_err)
343 			apei_err = apei_write_mce(final);
344 	}
345 	if (cpu_missing)
346 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
347 	if (exp)
348 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
349 	if (!fake_panic) {
350 		if (panic_timeout == 0)
351 			panic_timeout = mca_cfg.panic_timeout;
352 		panic(msg);
353 	} else
354 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
355 }
356 
357 /* Support code for software error injection */
358 
359 static int msr_to_offset(u32 msr)
360 {
361 	unsigned bank = __this_cpu_read(injectm.bank);
362 
363 	if (msr == mca_cfg.rip_msr)
364 		return offsetof(struct mce, ip);
365 	if (msr == msr_ops.status(bank))
366 		return offsetof(struct mce, status);
367 	if (msr == msr_ops.addr(bank))
368 		return offsetof(struct mce, addr);
369 	if (msr == msr_ops.misc(bank))
370 		return offsetof(struct mce, misc);
371 	if (msr == MSR_IA32_MCG_STATUS)
372 		return offsetof(struct mce, mcgstatus);
373 	return -1;
374 }
375 
376 /* MSR access wrappers used for error injection */
377 static u64 mce_rdmsrl(u32 msr)
378 {
379 	u64 v;
380 
381 	if (__this_cpu_read(injectm.finished)) {
382 		int offset = msr_to_offset(msr);
383 
384 		if (offset < 0)
385 			return 0;
386 		return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
387 	}
388 
389 	if (rdmsrl_safe(msr, &v)) {
390 		WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
391 		/*
392 		 * Return zero in case the access faulted. This should
393 		 * not happen normally but can happen if the CPU does
394 		 * something weird, or if the code is buggy.
395 		 */
396 		v = 0;
397 	}
398 
399 	return v;
400 }
401 
402 static void mce_wrmsrl(u32 msr, u64 v)
403 {
404 	if (__this_cpu_read(injectm.finished)) {
405 		int offset = msr_to_offset(msr);
406 
407 		if (offset >= 0)
408 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
409 		return;
410 	}
411 	wrmsrl(msr, v);
412 }
413 
414 /*
415  * Collect all global (w.r.t. this processor) status about this machine
416  * check into our "mce" struct so that we can use it later to assess
417  * the severity of the problem as we read per-bank specific details.
418  */
419 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
420 {
421 	mce_setup(m);
422 
423 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
424 	if (regs) {
425 		/*
426 		 * Get the address of the instruction at the time of
427 		 * the machine check error.
428 		 */
429 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
430 			m->ip = regs->ip;
431 			m->cs = regs->cs;
432 
433 			/*
434 			 * When in VM86 mode make the cs look like ring 3
435 			 * always. This is a lie, but it's better than passing
436 			 * the additional vm86 bit around everywhere.
437 			 */
438 			if (v8086_mode(regs))
439 				m->cs |= 3;
440 		}
441 		/* Use accurate RIP reporting if available. */
442 		if (mca_cfg.rip_msr)
443 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
444 	}
445 }
446 
447 int mce_available(struct cpuinfo_x86 *c)
448 {
449 	if (mca_cfg.disabled)
450 		return 0;
451 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
452 }
453 
454 static void mce_schedule_work(void)
455 {
456 	if (!mce_gen_pool_empty())
457 		schedule_work(&mce_work);
458 }
459 
460 static void mce_irq_work_cb(struct irq_work *entry)
461 {
462 	mce_schedule_work();
463 }
464 
465 /*
466  * Check if the address reported by the CPU is in a format we can parse.
467  * It would be possible to add code for most other cases, but all would
468  * be somewhat complicated (e.g. segment offset would require an instruction
469  * parser). So only support physical addresses up to page granuality for now.
470  */
471 int mce_usable_address(struct mce *m)
472 {
473 	if (!(m->status & MCI_STATUS_ADDRV))
474 		return 0;
475 
476 	/* Checks after this one are Intel/Zhaoxin-specific: */
477 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
478 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
479 		return 1;
480 
481 	if (!(m->status & MCI_STATUS_MISCV))
482 		return 0;
483 
484 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
485 		return 0;
486 
487 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
488 		return 0;
489 
490 	return 1;
491 }
492 EXPORT_SYMBOL_GPL(mce_usable_address);
493 
494 bool mce_is_memory_error(struct mce *m)
495 {
496 	switch (m->cpuvendor) {
497 	case X86_VENDOR_AMD:
498 	case X86_VENDOR_HYGON:
499 		return amd_mce_is_memory_error(m);
500 
501 	case X86_VENDOR_INTEL:
502 	case X86_VENDOR_ZHAOXIN:
503 		/*
504 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
505 		 *
506 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
507 		 * indicating a memory error. Bit 8 is used for indicating a
508 		 * cache hierarchy error. The combination of bit 2 and bit 3
509 		 * is used for indicating a `generic' cache hierarchy error
510 		 * But we can't just blindly check the above bits, because if
511 		 * bit 11 is set, then it is a bus/interconnect error - and
512 		 * either way the above bits just gives more detail on what
513 		 * bus/interconnect error happened. Note that bit 12 can be
514 		 * ignored, as it's the "filter" bit.
515 		 */
516 		return (m->status & 0xef80) == BIT(7) ||
517 		       (m->status & 0xef00) == BIT(8) ||
518 		       (m->status & 0xeffc) == 0xc;
519 
520 	default:
521 		return false;
522 	}
523 }
524 EXPORT_SYMBOL_GPL(mce_is_memory_error);
525 
526 static bool whole_page(struct mce *m)
527 {
528 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
529 		return true;
530 
531 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
532 }
533 
534 bool mce_is_correctable(struct mce *m)
535 {
536 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
537 		return false;
538 
539 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
540 		return false;
541 
542 	if (m->status & MCI_STATUS_UC)
543 		return false;
544 
545 	return true;
546 }
547 EXPORT_SYMBOL_GPL(mce_is_correctable);
548 
549 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
550 			      void *data)
551 {
552 	struct mce *m = (struct mce *)data;
553 
554 	if (!m)
555 		return NOTIFY_DONE;
556 
557 	/* Emit the trace record: */
558 	trace_mce_record(m);
559 
560 	set_bit(0, &mce_need_notify);
561 
562 	mce_notify_irq();
563 
564 	return NOTIFY_DONE;
565 }
566 
567 static struct notifier_block early_nb = {
568 	.notifier_call	= mce_early_notifier,
569 	.priority	= MCE_PRIO_EARLY,
570 };
571 
572 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
573 			      void *data)
574 {
575 	struct mce *mce = (struct mce *)data;
576 	unsigned long pfn;
577 
578 	if (!mce || !mce_usable_address(mce))
579 		return NOTIFY_DONE;
580 
581 	if (mce->severity != MCE_AO_SEVERITY &&
582 	    mce->severity != MCE_DEFERRED_SEVERITY)
583 		return NOTIFY_DONE;
584 
585 	pfn = mce->addr >> PAGE_SHIFT;
586 	if (!memory_failure(pfn, 0)) {
587 		set_mce_nospec(pfn, whole_page(mce));
588 		mce->kflags |= MCE_HANDLED_UC;
589 	}
590 
591 	return NOTIFY_OK;
592 }
593 
594 static struct notifier_block mce_uc_nb = {
595 	.notifier_call	= uc_decode_notifier,
596 	.priority	= MCE_PRIO_UC,
597 };
598 
599 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
600 				void *data)
601 {
602 	struct mce *m = (struct mce *)data;
603 
604 	if (!m)
605 		return NOTIFY_DONE;
606 
607 	if (mca_cfg.print_all || !m->kflags)
608 		__print_mce(m);
609 
610 	return NOTIFY_DONE;
611 }
612 
613 static struct notifier_block mce_default_nb = {
614 	.notifier_call	= mce_default_notifier,
615 	/* lowest prio, we want it to run last. */
616 	.priority	= MCE_PRIO_LOWEST,
617 };
618 
619 /*
620  * Read ADDR and MISC registers.
621  */
622 static void mce_read_aux(struct mce *m, int i)
623 {
624 	if (m->status & MCI_STATUS_MISCV)
625 		m->misc = mce_rdmsrl(msr_ops.misc(i));
626 
627 	if (m->status & MCI_STATUS_ADDRV) {
628 		m->addr = mce_rdmsrl(msr_ops.addr(i));
629 
630 		/*
631 		 * Mask the reported address by the reported granularity.
632 		 */
633 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
634 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
635 			m->addr >>= shift;
636 			m->addr <<= shift;
637 		}
638 
639 		/*
640 		 * Extract [55:<lsb>] where lsb is the least significant
641 		 * *valid* bit of the address bits.
642 		 */
643 		if (mce_flags.smca) {
644 			u8 lsb = (m->addr >> 56) & 0x3f;
645 
646 			m->addr &= GENMASK_ULL(55, lsb);
647 		}
648 	}
649 
650 	if (mce_flags.smca) {
651 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
652 
653 		if (m->status & MCI_STATUS_SYNDV)
654 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
655 	}
656 }
657 
658 DEFINE_PER_CPU(unsigned, mce_poll_count);
659 
660 /*
661  * Poll for corrected events or events that happened before reset.
662  * Those are just logged through /dev/mcelog.
663  *
664  * This is executed in standard interrupt context.
665  *
666  * Note: spec recommends to panic for fatal unsignalled
667  * errors here. However this would be quite problematic --
668  * we would need to reimplement the Monarch handling and
669  * it would mess up the exclusion between exception handler
670  * and poll handler -- * so we skip this for now.
671  * These cases should not happen anyways, or only when the CPU
672  * is already totally * confused. In this case it's likely it will
673  * not fully execute the machine check handler either.
674  */
675 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
676 {
677 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
678 	bool error_seen = false;
679 	struct mce m;
680 	int i;
681 
682 	this_cpu_inc(mce_poll_count);
683 
684 	mce_gather_info(&m, NULL);
685 
686 	if (flags & MCP_TIMESTAMP)
687 		m.tsc = rdtsc();
688 
689 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
690 		if (!mce_banks[i].ctl || !test_bit(i, *b))
691 			continue;
692 
693 		m.misc = 0;
694 		m.addr = 0;
695 		m.bank = i;
696 
697 		barrier();
698 		m.status = mce_rdmsrl(msr_ops.status(i));
699 
700 		/* If this entry is not valid, ignore it */
701 		if (!(m.status & MCI_STATUS_VAL))
702 			continue;
703 
704 		/*
705 		 * If we are logging everything (at CPU online) or this
706 		 * is a corrected error, then we must log it.
707 		 */
708 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
709 			goto log_it;
710 
711 		/*
712 		 * Newer Intel systems that support software error
713 		 * recovery need to make additional checks. Other
714 		 * CPUs should skip over uncorrected errors, but log
715 		 * everything else.
716 		 */
717 		if (!mca_cfg.ser) {
718 			if (m.status & MCI_STATUS_UC)
719 				continue;
720 			goto log_it;
721 		}
722 
723 		/* Log "not enabled" (speculative) errors */
724 		if (!(m.status & MCI_STATUS_EN))
725 			goto log_it;
726 
727 		/*
728 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
729 		 * UC == 1 && PCC == 0 && S == 0
730 		 */
731 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
732 			goto log_it;
733 
734 		/*
735 		 * Skip anything else. Presumption is that our read of this
736 		 * bank is racing with a machine check. Leave the log alone
737 		 * for do_machine_check() to deal with it.
738 		 */
739 		continue;
740 
741 log_it:
742 		error_seen = true;
743 
744 		if (flags & MCP_DONTLOG)
745 			goto clear_it;
746 
747 		mce_read_aux(&m, i);
748 		m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
749 		/*
750 		 * Don't get the IP here because it's unlikely to
751 		 * have anything to do with the actual error location.
752 		 */
753 
754 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
755 			goto clear_it;
756 
757 		mce_log(&m);
758 
759 clear_it:
760 		/*
761 		 * Clear state for this bank.
762 		 */
763 		mce_wrmsrl(msr_ops.status(i), 0);
764 	}
765 
766 	/*
767 	 * Don't clear MCG_STATUS here because it's only defined for
768 	 * exceptions.
769 	 */
770 
771 	sync_core();
772 
773 	return error_seen;
774 }
775 EXPORT_SYMBOL_GPL(machine_check_poll);
776 
777 /*
778  * Do a quick check if any of the events requires a panic.
779  * This decides if we keep the events around or clear them.
780  */
781 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
782 			  struct pt_regs *regs)
783 {
784 	char *tmp = *msg;
785 	int i;
786 
787 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
788 		m->status = mce_rdmsrl(msr_ops.status(i));
789 		if (!(m->status & MCI_STATUS_VAL))
790 			continue;
791 
792 		__set_bit(i, validp);
793 		if (quirk_no_way_out)
794 			quirk_no_way_out(i, m, regs);
795 
796 		m->bank = i;
797 		if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
798 			mce_read_aux(m, i);
799 			*msg = tmp;
800 			return 1;
801 		}
802 	}
803 	return 0;
804 }
805 
806 /*
807  * Variable to establish order between CPUs while scanning.
808  * Each CPU spins initially until executing is equal its number.
809  */
810 static atomic_t mce_executing;
811 
812 /*
813  * Defines order of CPUs on entry. First CPU becomes Monarch.
814  */
815 static atomic_t mce_callin;
816 
817 /*
818  * Check if a timeout waiting for other CPUs happened.
819  */
820 static int mce_timed_out(u64 *t, const char *msg)
821 {
822 	/*
823 	 * The others already did panic for some reason.
824 	 * Bail out like in a timeout.
825 	 * rmb() to tell the compiler that system_state
826 	 * might have been modified by someone else.
827 	 */
828 	rmb();
829 	if (atomic_read(&mce_panicked))
830 		wait_for_panic();
831 	if (!mca_cfg.monarch_timeout)
832 		goto out;
833 	if ((s64)*t < SPINUNIT) {
834 		if (mca_cfg.tolerant <= 1)
835 			mce_panic(msg, NULL, NULL);
836 		cpu_missing = 1;
837 		return 1;
838 	}
839 	*t -= SPINUNIT;
840 out:
841 	touch_nmi_watchdog();
842 	return 0;
843 }
844 
845 /*
846  * The Monarch's reign.  The Monarch is the CPU who entered
847  * the machine check handler first. It waits for the others to
848  * raise the exception too and then grades them. When any
849  * error is fatal panic. Only then let the others continue.
850  *
851  * The other CPUs entering the MCE handler will be controlled by the
852  * Monarch. They are called Subjects.
853  *
854  * This way we prevent any potential data corruption in a unrecoverable case
855  * and also makes sure always all CPU's errors are examined.
856  *
857  * Also this detects the case of a machine check event coming from outer
858  * space (not detected by any CPUs) In this case some external agent wants
859  * us to shut down, so panic too.
860  *
861  * The other CPUs might still decide to panic if the handler happens
862  * in a unrecoverable place, but in this case the system is in a semi-stable
863  * state and won't corrupt anything by itself. It's ok to let the others
864  * continue for a bit first.
865  *
866  * All the spin loops have timeouts; when a timeout happens a CPU
867  * typically elects itself to be Monarch.
868  */
869 static void mce_reign(void)
870 {
871 	int cpu;
872 	struct mce *m = NULL;
873 	int global_worst = 0;
874 	char *msg = NULL;
875 	char *nmsg = NULL;
876 
877 	/*
878 	 * This CPU is the Monarch and the other CPUs have run
879 	 * through their handlers.
880 	 * Grade the severity of the errors of all the CPUs.
881 	 */
882 	for_each_possible_cpu(cpu) {
883 		int severity = mce_severity(&per_cpu(mces_seen, cpu),
884 					    mca_cfg.tolerant,
885 					    &nmsg, true);
886 		if (severity > global_worst) {
887 			msg = nmsg;
888 			global_worst = severity;
889 			m = &per_cpu(mces_seen, cpu);
890 		}
891 	}
892 
893 	/*
894 	 * Cannot recover? Panic here then.
895 	 * This dumps all the mces in the log buffer and stops the
896 	 * other CPUs.
897 	 */
898 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
899 		mce_panic("Fatal machine check", m, msg);
900 
901 	/*
902 	 * For UC somewhere we let the CPU who detects it handle it.
903 	 * Also must let continue the others, otherwise the handling
904 	 * CPU could deadlock on a lock.
905 	 */
906 
907 	/*
908 	 * No machine check event found. Must be some external
909 	 * source or one CPU is hung. Panic.
910 	 */
911 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
912 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
913 
914 	/*
915 	 * Now clear all the mces_seen so that they don't reappear on
916 	 * the next mce.
917 	 */
918 	for_each_possible_cpu(cpu)
919 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
920 }
921 
922 static atomic_t global_nwo;
923 
924 /*
925  * Start of Monarch synchronization. This waits until all CPUs have
926  * entered the exception handler and then determines if any of them
927  * saw a fatal event that requires panic. Then it executes them
928  * in the entry order.
929  * TBD double check parallel CPU hotunplug
930  */
931 static int mce_start(int *no_way_out)
932 {
933 	int order;
934 	int cpus = num_online_cpus();
935 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
936 
937 	if (!timeout)
938 		return -1;
939 
940 	atomic_add(*no_way_out, &global_nwo);
941 	/*
942 	 * Rely on the implied barrier below, such that global_nwo
943 	 * is updated before mce_callin.
944 	 */
945 	order = atomic_inc_return(&mce_callin);
946 
947 	/*
948 	 * Wait for everyone.
949 	 */
950 	while (atomic_read(&mce_callin) != cpus) {
951 		if (mce_timed_out(&timeout,
952 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
953 			atomic_set(&global_nwo, 0);
954 			return -1;
955 		}
956 		ndelay(SPINUNIT);
957 	}
958 
959 	/*
960 	 * mce_callin should be read before global_nwo
961 	 */
962 	smp_rmb();
963 
964 	if (order == 1) {
965 		/*
966 		 * Monarch: Starts executing now, the others wait.
967 		 */
968 		atomic_set(&mce_executing, 1);
969 	} else {
970 		/*
971 		 * Subject: Now start the scanning loop one by one in
972 		 * the original callin order.
973 		 * This way when there are any shared banks it will be
974 		 * only seen by one CPU before cleared, avoiding duplicates.
975 		 */
976 		while (atomic_read(&mce_executing) < order) {
977 			if (mce_timed_out(&timeout,
978 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
979 				atomic_set(&global_nwo, 0);
980 				return -1;
981 			}
982 			ndelay(SPINUNIT);
983 		}
984 	}
985 
986 	/*
987 	 * Cache the global no_way_out state.
988 	 */
989 	*no_way_out = atomic_read(&global_nwo);
990 
991 	return order;
992 }
993 
994 /*
995  * Synchronize between CPUs after main scanning loop.
996  * This invokes the bulk of the Monarch processing.
997  */
998 static int mce_end(int order)
999 {
1000 	int ret = -1;
1001 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1002 
1003 	if (!timeout)
1004 		goto reset;
1005 	if (order < 0)
1006 		goto reset;
1007 
1008 	/*
1009 	 * Allow others to run.
1010 	 */
1011 	atomic_inc(&mce_executing);
1012 
1013 	if (order == 1) {
1014 		/* CHECKME: Can this race with a parallel hotplug? */
1015 		int cpus = num_online_cpus();
1016 
1017 		/*
1018 		 * Monarch: Wait for everyone to go through their scanning
1019 		 * loops.
1020 		 */
1021 		while (atomic_read(&mce_executing) <= cpus) {
1022 			if (mce_timed_out(&timeout,
1023 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1024 				goto reset;
1025 			ndelay(SPINUNIT);
1026 		}
1027 
1028 		mce_reign();
1029 		barrier();
1030 		ret = 0;
1031 	} else {
1032 		/*
1033 		 * Subject: Wait for Monarch to finish.
1034 		 */
1035 		while (atomic_read(&mce_executing) != 0) {
1036 			if (mce_timed_out(&timeout,
1037 					  "Timeout: Monarch CPU did not finish machine check processing"))
1038 				goto reset;
1039 			ndelay(SPINUNIT);
1040 		}
1041 
1042 		/*
1043 		 * Don't reset anything. That's done by the Monarch.
1044 		 */
1045 		return 0;
1046 	}
1047 
1048 	/*
1049 	 * Reset all global state.
1050 	 */
1051 reset:
1052 	atomic_set(&global_nwo, 0);
1053 	atomic_set(&mce_callin, 0);
1054 	barrier();
1055 
1056 	/*
1057 	 * Let others run again.
1058 	 */
1059 	atomic_set(&mce_executing, 0);
1060 	return ret;
1061 }
1062 
1063 static void mce_clear_state(unsigned long *toclear)
1064 {
1065 	int i;
1066 
1067 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1068 		if (test_bit(i, toclear))
1069 			mce_wrmsrl(msr_ops.status(i), 0);
1070 	}
1071 }
1072 
1073 /*
1074  * Cases where we avoid rendezvous handler timeout:
1075  * 1) If this CPU is offline.
1076  *
1077  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1078  *  skip those CPUs which remain looping in the 1st kernel - see
1079  *  crash_nmi_callback().
1080  *
1081  * Note: there still is a small window between kexec-ing and the new,
1082  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1083  * might not get handled properly.
1084  */
1085 static noinstr bool mce_check_crashing_cpu(void)
1086 {
1087 	unsigned int cpu = smp_processor_id();
1088 
1089 	if (arch_cpu_is_offline(cpu) ||
1090 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1091 		u64 mcgstatus;
1092 
1093 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1094 
1095 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1096 			if (mcgstatus & MCG_STATUS_LMCES)
1097 				return false;
1098 		}
1099 
1100 		if (mcgstatus & MCG_STATUS_RIPV) {
1101 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1102 			return true;
1103 		}
1104 	}
1105 	return false;
1106 }
1107 
1108 static void __mc_scan_banks(struct mce *m, struct mce *final,
1109 			    unsigned long *toclear, unsigned long *valid_banks,
1110 			    int no_way_out, int *worst)
1111 {
1112 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1113 	struct mca_config *cfg = &mca_cfg;
1114 	int severity, i;
1115 
1116 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1117 		__clear_bit(i, toclear);
1118 		if (!test_bit(i, valid_banks))
1119 			continue;
1120 
1121 		if (!mce_banks[i].ctl)
1122 			continue;
1123 
1124 		m->misc = 0;
1125 		m->addr = 0;
1126 		m->bank = i;
1127 
1128 		m->status = mce_rdmsrl(msr_ops.status(i));
1129 		if (!(m->status & MCI_STATUS_VAL))
1130 			continue;
1131 
1132 		/*
1133 		 * Corrected or non-signaled errors are handled by
1134 		 * machine_check_poll(). Leave them alone, unless this panics.
1135 		 */
1136 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1137 			!no_way_out)
1138 			continue;
1139 
1140 		/* Set taint even when machine check was not enabled. */
1141 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1142 
1143 		severity = mce_severity(m, cfg->tolerant, NULL, true);
1144 
1145 		/*
1146 		 * When machine check was for corrected/deferred handler don't
1147 		 * touch, unless we're panicking.
1148 		 */
1149 		if ((severity == MCE_KEEP_SEVERITY ||
1150 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1151 			continue;
1152 
1153 		__set_bit(i, toclear);
1154 
1155 		/* Machine check event was not enabled. Clear, but ignore. */
1156 		if (severity == MCE_NO_SEVERITY)
1157 			continue;
1158 
1159 		mce_read_aux(m, i);
1160 
1161 		/* assuming valid severity level != 0 */
1162 		m->severity = severity;
1163 
1164 		mce_log(m);
1165 
1166 		if (severity > *worst) {
1167 			*final = *m;
1168 			*worst = severity;
1169 		}
1170 	}
1171 
1172 	/* mce_clear_state will clear *final, save locally for use later */
1173 	*m = *final;
1174 }
1175 
1176 static void kill_me_now(struct callback_head *ch)
1177 {
1178 	force_sig(SIGBUS);
1179 }
1180 
1181 static void kill_me_maybe(struct callback_head *cb)
1182 {
1183 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1184 	int flags = MF_ACTION_REQUIRED;
1185 
1186 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1187 
1188 	if (!p->mce_ripv)
1189 		flags |= MF_MUST_KILL;
1190 
1191 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags)) {
1192 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1193 		return;
1194 	}
1195 
1196 	pr_err("Memory error not recovered");
1197 	kill_me_now(cb);
1198 }
1199 
1200 /*
1201  * The actual machine check handler. This only handles real
1202  * exceptions when something got corrupted coming in through int 18.
1203  *
1204  * This is executed in NMI context not subject to normal locking rules. This
1205  * implies that most kernel services cannot be safely used. Don't even
1206  * think about putting a printk in there!
1207  *
1208  * On Intel systems this is entered on all CPUs in parallel through
1209  * MCE broadcast. However some CPUs might be broken beyond repair,
1210  * so be always careful when synchronizing with others.
1211  *
1212  * Tracing and kprobes are disabled: if we interrupted a kernel context
1213  * with IF=1, we need to minimize stack usage.  There are also recursion
1214  * issues: if the machine check was due to a failure of the memory
1215  * backing the user stack, tracing that reads the user stack will cause
1216  * potentially infinite recursion.
1217  */
1218 noinstr void do_machine_check(struct pt_regs *regs)
1219 {
1220 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1221 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1222 	struct mca_config *cfg = &mca_cfg;
1223 	struct mce m, *final;
1224 	char *msg = NULL;
1225 	int worst = 0;
1226 
1227 	/*
1228 	 * Establish sequential order between the CPUs entering the machine
1229 	 * check handler.
1230 	 */
1231 	int order = -1;
1232 
1233 	/*
1234 	 * If no_way_out gets set, there is no safe way to recover from this
1235 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1236 	 */
1237 	int no_way_out = 0;
1238 
1239 	/*
1240 	 * If kill_it gets set, there might be a way to recover from this
1241 	 * error.
1242 	 */
1243 	int kill_it = 0;
1244 
1245 	/*
1246 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1247 	 * on Intel.
1248 	 */
1249 	int lmce = 1;
1250 
1251 	this_cpu_inc(mce_exception_count);
1252 
1253 	mce_gather_info(&m, regs);
1254 	m.tsc = rdtsc();
1255 
1256 	final = this_cpu_ptr(&mces_seen);
1257 	*final = m;
1258 
1259 	memset(valid_banks, 0, sizeof(valid_banks));
1260 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1261 
1262 	barrier();
1263 
1264 	/*
1265 	 * When no restart IP might need to kill or panic.
1266 	 * Assume the worst for now, but if we find the
1267 	 * severity is MCE_AR_SEVERITY we have other options.
1268 	 */
1269 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1270 		kill_it = 1;
1271 
1272 	/*
1273 	 * Check if this MCE is signaled to only this logical processor,
1274 	 * on Intel, Zhaoxin only.
1275 	 */
1276 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1277 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1278 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1279 
1280 	/*
1281 	 * Local machine check may already know that we have to panic.
1282 	 * Broadcast machine check begins rendezvous in mce_start()
1283 	 * Go through all banks in exclusion of the other CPUs. This way we
1284 	 * don't report duplicated events on shared banks because the first one
1285 	 * to see it will clear it.
1286 	 */
1287 	if (lmce) {
1288 		if (no_way_out)
1289 			mce_panic("Fatal local machine check", &m, msg);
1290 	} else {
1291 		order = mce_start(&no_way_out);
1292 	}
1293 
1294 	__mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst);
1295 
1296 	if (!no_way_out)
1297 		mce_clear_state(toclear);
1298 
1299 	/*
1300 	 * Do most of the synchronization with other CPUs.
1301 	 * When there's any problem use only local no_way_out state.
1302 	 */
1303 	if (!lmce) {
1304 		if (mce_end(order) < 0)
1305 			no_way_out = worst >= MCE_PANIC_SEVERITY;
1306 	} else {
1307 		/*
1308 		 * If there was a fatal machine check we should have
1309 		 * already called mce_panic earlier in this function.
1310 		 * Since we re-read the banks, we might have found
1311 		 * something new. Check again to see if we found a
1312 		 * fatal error. We call "mce_severity()" again to
1313 		 * make sure we have the right "msg".
1314 		 */
1315 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1316 			mce_severity(&m, cfg->tolerant, &msg, true);
1317 			mce_panic("Local fatal machine check!", &m, msg);
1318 		}
1319 	}
1320 
1321 	/*
1322 	 * If tolerant is at an insane level we drop requests to kill
1323 	 * processes and continue even when there is no way out.
1324 	 */
1325 	if (cfg->tolerant == 3)
1326 		kill_it = 0;
1327 	else if (no_way_out)
1328 		mce_panic("Fatal machine check on current CPU", &m, msg);
1329 
1330 	if (worst > 0)
1331 		irq_work_queue(&mce_irq_work);
1332 
1333 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1334 
1335 	sync_core();
1336 
1337 	if (worst != MCE_AR_SEVERITY && !kill_it)
1338 		return;
1339 
1340 	/* Fault was in user mode and we need to take some action */
1341 	if ((m.cs & 3) == 3) {
1342 		/* If this triggers there is no way to recover. Die hard. */
1343 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1344 
1345 		current->mce_addr = m.addr;
1346 		current->mce_ripv = !!(m.mcgstatus & MCG_STATUS_RIPV);
1347 		current->mce_whole_page = whole_page(&m);
1348 		current->mce_kill_me.func = kill_me_maybe;
1349 		if (kill_it)
1350 			current->mce_kill_me.func = kill_me_now;
1351 		task_work_add(current, &current->mce_kill_me, true);
1352 	} else {
1353 		/*
1354 		 * Handle an MCE which has happened in kernel space but from
1355 		 * which the kernel can recover: ex_has_fault_handler() has
1356 		 * already verified that the rIP at which the error happened is
1357 		 * a rIP from which the kernel can recover (by jumping to
1358 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1359 		 * corresponding exception handler which would do that is the
1360 		 * proper one.
1361 		 */
1362 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1363 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1364 				mce_panic("Failed kernel mode recovery", &m, msg);
1365 		}
1366 	}
1367 }
1368 EXPORT_SYMBOL_GPL(do_machine_check);
1369 
1370 #ifndef CONFIG_MEMORY_FAILURE
1371 int memory_failure(unsigned long pfn, int flags)
1372 {
1373 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1374 	BUG_ON(flags & MF_ACTION_REQUIRED);
1375 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1376 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1377 	       pfn);
1378 
1379 	return 0;
1380 }
1381 #endif
1382 
1383 /*
1384  * Periodic polling timer for "silent" machine check errors.  If the
1385  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1386  * errors, poll 2x slower (up to check_interval seconds).
1387  */
1388 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1389 
1390 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1391 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1392 
1393 static unsigned long mce_adjust_timer_default(unsigned long interval)
1394 {
1395 	return interval;
1396 }
1397 
1398 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1399 
1400 static void __start_timer(struct timer_list *t, unsigned long interval)
1401 {
1402 	unsigned long when = jiffies + interval;
1403 	unsigned long flags;
1404 
1405 	local_irq_save(flags);
1406 
1407 	if (!timer_pending(t) || time_before(when, t->expires))
1408 		mod_timer(t, round_jiffies(when));
1409 
1410 	local_irq_restore(flags);
1411 }
1412 
1413 static void mce_timer_fn(struct timer_list *t)
1414 {
1415 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1416 	unsigned long iv;
1417 
1418 	WARN_ON(cpu_t != t);
1419 
1420 	iv = __this_cpu_read(mce_next_interval);
1421 
1422 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1423 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1424 
1425 		if (mce_intel_cmci_poll()) {
1426 			iv = mce_adjust_timer(iv);
1427 			goto done;
1428 		}
1429 	}
1430 
1431 	/*
1432 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1433 	 * interval, otherwise increase the polling interval.
1434 	 */
1435 	if (mce_notify_irq())
1436 		iv = max(iv / 2, (unsigned long) HZ/100);
1437 	else
1438 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1439 
1440 done:
1441 	__this_cpu_write(mce_next_interval, iv);
1442 	__start_timer(t, iv);
1443 }
1444 
1445 /*
1446  * Ensure that the timer is firing in @interval from now.
1447  */
1448 void mce_timer_kick(unsigned long interval)
1449 {
1450 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1451 	unsigned long iv = __this_cpu_read(mce_next_interval);
1452 
1453 	__start_timer(t, interval);
1454 
1455 	if (interval < iv)
1456 		__this_cpu_write(mce_next_interval, interval);
1457 }
1458 
1459 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1460 static void mce_timer_delete_all(void)
1461 {
1462 	int cpu;
1463 
1464 	for_each_online_cpu(cpu)
1465 		del_timer_sync(&per_cpu(mce_timer, cpu));
1466 }
1467 
1468 /*
1469  * Notify the user(s) about new machine check events.
1470  * Can be called from interrupt context, but not from machine check/NMI
1471  * context.
1472  */
1473 int mce_notify_irq(void)
1474 {
1475 	/* Not more than two messages every minute */
1476 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1477 
1478 	if (test_and_clear_bit(0, &mce_need_notify)) {
1479 		mce_work_trigger();
1480 
1481 		if (__ratelimit(&ratelimit))
1482 			pr_info(HW_ERR "Machine check events logged\n");
1483 
1484 		return 1;
1485 	}
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL_GPL(mce_notify_irq);
1489 
1490 static void __mcheck_cpu_mce_banks_init(void)
1491 {
1492 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1493 	u8 n_banks = this_cpu_read(mce_num_banks);
1494 	int i;
1495 
1496 	for (i = 0; i < n_banks; i++) {
1497 		struct mce_bank *b = &mce_banks[i];
1498 
1499 		/*
1500 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1501 		 * the required vendor quirks before
1502 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1503 		 */
1504 		b->ctl = -1ULL;
1505 		b->init = 1;
1506 	}
1507 }
1508 
1509 /*
1510  * Initialize Machine Checks for a CPU.
1511  */
1512 static void __mcheck_cpu_cap_init(void)
1513 {
1514 	u64 cap;
1515 	u8 b;
1516 
1517 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1518 
1519 	b = cap & MCG_BANKCNT_MASK;
1520 
1521 	if (b > MAX_NR_BANKS) {
1522 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1523 			smp_processor_id(), MAX_NR_BANKS, b);
1524 		b = MAX_NR_BANKS;
1525 	}
1526 
1527 	this_cpu_write(mce_num_banks, b);
1528 
1529 	__mcheck_cpu_mce_banks_init();
1530 
1531 	/* Use accurate RIP reporting if available. */
1532 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1533 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1534 
1535 	if (cap & MCG_SER_P)
1536 		mca_cfg.ser = 1;
1537 }
1538 
1539 static void __mcheck_cpu_init_generic(void)
1540 {
1541 	enum mcp_flags m_fl = 0;
1542 	mce_banks_t all_banks;
1543 	u64 cap;
1544 
1545 	if (!mca_cfg.bootlog)
1546 		m_fl = MCP_DONTLOG;
1547 
1548 	/*
1549 	 * Log the machine checks left over from the previous reset.
1550 	 */
1551 	bitmap_fill(all_banks, MAX_NR_BANKS);
1552 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1553 
1554 	cr4_set_bits(X86_CR4_MCE);
1555 
1556 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1557 	if (cap & MCG_CTL_P)
1558 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1559 }
1560 
1561 static void __mcheck_cpu_init_clear_banks(void)
1562 {
1563 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1564 	int i;
1565 
1566 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1567 		struct mce_bank *b = &mce_banks[i];
1568 
1569 		if (!b->init)
1570 			continue;
1571 		wrmsrl(msr_ops.ctl(i), b->ctl);
1572 		wrmsrl(msr_ops.status(i), 0);
1573 	}
1574 }
1575 
1576 /*
1577  * Do a final check to see if there are any unused/RAZ banks.
1578  *
1579  * This must be done after the banks have been initialized and any quirks have
1580  * been applied.
1581  *
1582  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1583  * Otherwise, a user who disables a bank will not be able to re-enable it
1584  * without a system reboot.
1585  */
1586 static void __mcheck_cpu_check_banks(void)
1587 {
1588 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1589 	u64 msrval;
1590 	int i;
1591 
1592 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1593 		struct mce_bank *b = &mce_banks[i];
1594 
1595 		if (!b->init)
1596 			continue;
1597 
1598 		rdmsrl(msr_ops.ctl(i), msrval);
1599 		b->init = !!msrval;
1600 	}
1601 }
1602 
1603 /*
1604  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1605  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1606  * Vol 3B Table 15-20). But this confuses both the code that determines
1607  * whether the machine check occurred in kernel or user mode, and also
1608  * the severity assessment code. Pretend that EIPV was set, and take the
1609  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1610  */
1611 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1612 {
1613 	if (bank != 0)
1614 		return;
1615 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1616 		return;
1617 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1618 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1619 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1620 			  MCACOD)) !=
1621 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1622 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1623 			  MCI_STATUS_AR|MCACOD_INSTR))
1624 		return;
1625 
1626 	m->mcgstatus |= MCG_STATUS_EIPV;
1627 	m->ip = regs->ip;
1628 	m->cs = regs->cs;
1629 }
1630 
1631 /* Add per CPU specific workarounds here */
1632 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1633 {
1634 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1635 	struct mca_config *cfg = &mca_cfg;
1636 
1637 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1638 		pr_info("unknown CPU type - not enabling MCE support\n");
1639 		return -EOPNOTSUPP;
1640 	}
1641 
1642 	/* This should be disabled by the BIOS, but isn't always */
1643 	if (c->x86_vendor == X86_VENDOR_AMD) {
1644 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1645 			/*
1646 			 * disable GART TBL walk error reporting, which
1647 			 * trips off incorrectly with the IOMMU & 3ware
1648 			 * & Cerberus:
1649 			 */
1650 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1651 		}
1652 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1653 			/*
1654 			 * Lots of broken BIOS around that don't clear them
1655 			 * by default and leave crap in there. Don't log:
1656 			 */
1657 			cfg->bootlog = 0;
1658 		}
1659 		/*
1660 		 * Various K7s with broken bank 0 around. Always disable
1661 		 * by default.
1662 		 */
1663 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1664 			mce_banks[0].ctl = 0;
1665 
1666 		/*
1667 		 * overflow_recov is supported for F15h Models 00h-0fh
1668 		 * even though we don't have a CPUID bit for it.
1669 		 */
1670 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1671 			mce_flags.overflow_recov = 1;
1672 
1673 	}
1674 
1675 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1676 		/*
1677 		 * SDM documents that on family 6 bank 0 should not be written
1678 		 * because it aliases to another special BIOS controlled
1679 		 * register.
1680 		 * But it's not aliased anymore on model 0x1a+
1681 		 * Don't ignore bank 0 completely because there could be a
1682 		 * valid event later, merely don't write CTL0.
1683 		 */
1684 
1685 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1686 			mce_banks[0].init = 0;
1687 
1688 		/*
1689 		 * All newer Intel systems support MCE broadcasting. Enable
1690 		 * synchronization with a one second timeout.
1691 		 */
1692 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1693 			cfg->monarch_timeout < 0)
1694 			cfg->monarch_timeout = USEC_PER_SEC;
1695 
1696 		/*
1697 		 * There are also broken BIOSes on some Pentium M and
1698 		 * earlier systems:
1699 		 */
1700 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1701 			cfg->bootlog = 0;
1702 
1703 		if (c->x86 == 6 && c->x86_model == 45)
1704 			quirk_no_way_out = quirk_sandybridge_ifu;
1705 	}
1706 
1707 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1708 		/*
1709 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1710 		 * synchronization with a one second timeout.
1711 		 */
1712 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1713 			if (cfg->monarch_timeout < 0)
1714 				cfg->monarch_timeout = USEC_PER_SEC;
1715 		}
1716 	}
1717 
1718 	if (cfg->monarch_timeout < 0)
1719 		cfg->monarch_timeout = 0;
1720 	if (cfg->bootlog != 0)
1721 		cfg->panic_timeout = 30;
1722 
1723 	return 0;
1724 }
1725 
1726 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1727 {
1728 	if (c->x86 != 5)
1729 		return 0;
1730 
1731 	switch (c->x86_vendor) {
1732 	case X86_VENDOR_INTEL:
1733 		intel_p5_mcheck_init(c);
1734 		return 1;
1735 		break;
1736 	case X86_VENDOR_CENTAUR:
1737 		winchip_mcheck_init(c);
1738 		return 1;
1739 		break;
1740 	default:
1741 		return 0;
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 /*
1748  * Init basic CPU features needed for early decoding of MCEs.
1749  */
1750 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1751 {
1752 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1753 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1754 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1755 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1756 		mce_flags.amd_threshold	 = 1;
1757 
1758 		if (mce_flags.smca) {
1759 			msr_ops.ctl	= smca_ctl_reg;
1760 			msr_ops.status	= smca_status_reg;
1761 			msr_ops.addr	= smca_addr_reg;
1762 			msr_ops.misc	= smca_misc_reg;
1763 		}
1764 	}
1765 }
1766 
1767 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1768 {
1769 	struct mca_config *cfg = &mca_cfg;
1770 
1771 	 /*
1772 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1773 	  * synchronization with a one second timeout.
1774 	  */
1775 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1776 	     c->x86 > 6) {
1777 		if (cfg->monarch_timeout < 0)
1778 			cfg->monarch_timeout = USEC_PER_SEC;
1779 	}
1780 }
1781 
1782 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1783 {
1784 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1785 
1786 	/*
1787 	 * These CPUs have MCA bank 8 which reports only one error type called
1788 	 * SVAD (System View Address Decoder). The reporting of that error is
1789 	 * controlled by IA32_MC8.CTL.0.
1790 	 *
1791 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1792 	 * virtual machines start and result in a system  panic. Always disable
1793 	 * bank 8 SVAD error by default.
1794 	 */
1795 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1796 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1797 		if (this_cpu_read(mce_num_banks) > 8)
1798 			mce_banks[8].ctl = 0;
1799 	}
1800 
1801 	intel_init_cmci();
1802 	intel_init_lmce();
1803 	mce_adjust_timer = cmci_intel_adjust_timer;
1804 }
1805 
1806 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1807 {
1808 	intel_clear_lmce();
1809 }
1810 
1811 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1812 {
1813 	switch (c->x86_vendor) {
1814 	case X86_VENDOR_INTEL:
1815 		mce_intel_feature_init(c);
1816 		mce_adjust_timer = cmci_intel_adjust_timer;
1817 		break;
1818 
1819 	case X86_VENDOR_AMD: {
1820 		mce_amd_feature_init(c);
1821 		break;
1822 		}
1823 
1824 	case X86_VENDOR_HYGON:
1825 		mce_hygon_feature_init(c);
1826 		break;
1827 
1828 	case X86_VENDOR_CENTAUR:
1829 		mce_centaur_feature_init(c);
1830 		break;
1831 
1832 	case X86_VENDOR_ZHAOXIN:
1833 		mce_zhaoxin_feature_init(c);
1834 		break;
1835 
1836 	default:
1837 		break;
1838 	}
1839 }
1840 
1841 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1842 {
1843 	switch (c->x86_vendor) {
1844 	case X86_VENDOR_INTEL:
1845 		mce_intel_feature_clear(c);
1846 		break;
1847 
1848 	case X86_VENDOR_ZHAOXIN:
1849 		mce_zhaoxin_feature_clear(c);
1850 		break;
1851 
1852 	default:
1853 		break;
1854 	}
1855 }
1856 
1857 static void mce_start_timer(struct timer_list *t)
1858 {
1859 	unsigned long iv = check_interval * HZ;
1860 
1861 	if (mca_cfg.ignore_ce || !iv)
1862 		return;
1863 
1864 	this_cpu_write(mce_next_interval, iv);
1865 	__start_timer(t, iv);
1866 }
1867 
1868 static void __mcheck_cpu_setup_timer(void)
1869 {
1870 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1871 
1872 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1873 }
1874 
1875 static void __mcheck_cpu_init_timer(void)
1876 {
1877 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1878 
1879 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1880 	mce_start_timer(t);
1881 }
1882 
1883 bool filter_mce(struct mce *m)
1884 {
1885 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1886 		return amd_filter_mce(m);
1887 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1888 		return intel_filter_mce(m);
1889 
1890 	return false;
1891 }
1892 
1893 /* Handle unconfigured int18 (should never happen) */
1894 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1895 {
1896 	instrumentation_begin();
1897 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1898 	       smp_processor_id());
1899 	instrumentation_end();
1900 }
1901 
1902 /* Call the installed machine check handler for this CPU setup. */
1903 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
1904 
1905 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
1906 {
1907 	WARN_ON_ONCE(user_mode(regs));
1908 
1909 	/*
1910 	 * Only required when from kernel mode. See
1911 	 * mce_check_crashing_cpu() for details.
1912 	 */
1913 	if (machine_check_vector == do_machine_check &&
1914 	    mce_check_crashing_cpu())
1915 		return;
1916 
1917 	nmi_enter();
1918 	/*
1919 	 * The call targets are marked noinstr, but objtool can't figure
1920 	 * that out because it's an indirect call. Annotate it.
1921 	 */
1922 	instrumentation_begin();
1923 	trace_hardirqs_off_finish();
1924 	machine_check_vector(regs);
1925 	if (regs->flags & X86_EFLAGS_IF)
1926 		trace_hardirqs_on_prepare();
1927 	instrumentation_end();
1928 	nmi_exit();
1929 }
1930 
1931 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
1932 {
1933 	irqentry_enter_from_user_mode(regs);
1934 	instrumentation_begin();
1935 	machine_check_vector(regs);
1936 	instrumentation_end();
1937 	irqentry_exit_to_user_mode(regs);
1938 }
1939 
1940 #ifdef CONFIG_X86_64
1941 /* MCE hit kernel mode */
1942 DEFINE_IDTENTRY_MCE(exc_machine_check)
1943 {
1944 	unsigned long dr7;
1945 
1946 	dr7 = local_db_save();
1947 	exc_machine_check_kernel(regs);
1948 	local_db_restore(dr7);
1949 }
1950 
1951 /* The user mode variant. */
1952 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
1953 {
1954 	unsigned long dr7;
1955 
1956 	dr7 = local_db_save();
1957 	exc_machine_check_user(regs);
1958 	local_db_restore(dr7);
1959 }
1960 #else
1961 /* 32bit unified entry point */
1962 DEFINE_IDTENTRY_RAW(exc_machine_check)
1963 {
1964 	unsigned long dr7;
1965 
1966 	dr7 = local_db_save();
1967 	if (user_mode(regs))
1968 		exc_machine_check_user(regs);
1969 	else
1970 		exc_machine_check_kernel(regs);
1971 	local_db_restore(dr7);
1972 }
1973 #endif
1974 
1975 /*
1976  * Called for each booted CPU to set up machine checks.
1977  * Must be called with preempt off:
1978  */
1979 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1980 {
1981 	if (mca_cfg.disabled)
1982 		return;
1983 
1984 	if (__mcheck_cpu_ancient_init(c))
1985 		return;
1986 
1987 	if (!mce_available(c))
1988 		return;
1989 
1990 	__mcheck_cpu_cap_init();
1991 
1992 	if (__mcheck_cpu_apply_quirks(c) < 0) {
1993 		mca_cfg.disabled = 1;
1994 		return;
1995 	}
1996 
1997 	if (mce_gen_pool_init()) {
1998 		mca_cfg.disabled = 1;
1999 		pr_emerg("Couldn't allocate MCE records pool!\n");
2000 		return;
2001 	}
2002 
2003 	machine_check_vector = do_machine_check;
2004 
2005 	__mcheck_cpu_init_early(c);
2006 	__mcheck_cpu_init_generic();
2007 	__mcheck_cpu_init_vendor(c);
2008 	__mcheck_cpu_init_clear_banks();
2009 	__mcheck_cpu_check_banks();
2010 	__mcheck_cpu_setup_timer();
2011 }
2012 
2013 /*
2014  * Called for each booted CPU to clear some machine checks opt-ins
2015  */
2016 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2017 {
2018 	if (mca_cfg.disabled)
2019 		return;
2020 
2021 	if (!mce_available(c))
2022 		return;
2023 
2024 	/*
2025 	 * Possibly to clear general settings generic to x86
2026 	 * __mcheck_cpu_clear_generic(c);
2027 	 */
2028 	__mcheck_cpu_clear_vendor(c);
2029 
2030 }
2031 
2032 static void __mce_disable_bank(void *arg)
2033 {
2034 	int bank = *((int *)arg);
2035 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2036 	cmci_disable_bank(bank);
2037 }
2038 
2039 void mce_disable_bank(int bank)
2040 {
2041 	if (bank >= this_cpu_read(mce_num_banks)) {
2042 		pr_warn(FW_BUG
2043 			"Ignoring request to disable invalid MCA bank %d.\n",
2044 			bank);
2045 		return;
2046 	}
2047 	set_bit(bank, mce_banks_ce_disabled);
2048 	on_each_cpu(__mce_disable_bank, &bank, 1);
2049 }
2050 
2051 /*
2052  * mce=off Disables machine check
2053  * mce=no_cmci Disables CMCI
2054  * mce=no_lmce Disables LMCE
2055  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2056  * mce=print_all Print all machine check logs to console
2057  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2058  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2059  *	monarchtimeout is how long to wait for other CPUs on machine
2060  *	check, or 0 to not wait
2061  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2062 	and older.
2063  * mce=nobootlog Don't log MCEs from before booting.
2064  * mce=bios_cmci_threshold Don't program the CMCI threshold
2065  * mce=recovery force enable memcpy_mcsafe()
2066  */
2067 static int __init mcheck_enable(char *str)
2068 {
2069 	struct mca_config *cfg = &mca_cfg;
2070 
2071 	if (*str == 0) {
2072 		enable_p5_mce();
2073 		return 1;
2074 	}
2075 	if (*str == '=')
2076 		str++;
2077 	if (!strcmp(str, "off"))
2078 		cfg->disabled = 1;
2079 	else if (!strcmp(str, "no_cmci"))
2080 		cfg->cmci_disabled = true;
2081 	else if (!strcmp(str, "no_lmce"))
2082 		cfg->lmce_disabled = 1;
2083 	else if (!strcmp(str, "dont_log_ce"))
2084 		cfg->dont_log_ce = true;
2085 	else if (!strcmp(str, "print_all"))
2086 		cfg->print_all = true;
2087 	else if (!strcmp(str, "ignore_ce"))
2088 		cfg->ignore_ce = true;
2089 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2090 		cfg->bootlog = (str[0] == 'b');
2091 	else if (!strcmp(str, "bios_cmci_threshold"))
2092 		cfg->bios_cmci_threshold = 1;
2093 	else if (!strcmp(str, "recovery"))
2094 		cfg->recovery = 1;
2095 	else if (isdigit(str[0])) {
2096 		if (get_option(&str, &cfg->tolerant) == 2)
2097 			get_option(&str, &(cfg->monarch_timeout));
2098 	} else {
2099 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2100 		return 0;
2101 	}
2102 	return 1;
2103 }
2104 __setup("mce", mcheck_enable);
2105 
2106 int __init mcheck_init(void)
2107 {
2108 	mcheck_intel_therm_init();
2109 	mce_register_decode_chain(&early_nb);
2110 	mce_register_decode_chain(&mce_uc_nb);
2111 	mce_register_decode_chain(&mce_default_nb);
2112 	mcheck_vendor_init_severity();
2113 
2114 	INIT_WORK(&mce_work, mce_gen_pool_process);
2115 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2116 
2117 	return 0;
2118 }
2119 
2120 /*
2121  * mce_syscore: PM support
2122  */
2123 
2124 /*
2125  * Disable machine checks on suspend and shutdown. We can't really handle
2126  * them later.
2127  */
2128 static void mce_disable_error_reporting(void)
2129 {
2130 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2131 	int i;
2132 
2133 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2134 		struct mce_bank *b = &mce_banks[i];
2135 
2136 		if (b->init)
2137 			wrmsrl(msr_ops.ctl(i), 0);
2138 	}
2139 	return;
2140 }
2141 
2142 static void vendor_disable_error_reporting(void)
2143 {
2144 	/*
2145 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2146 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2147 	 * is bad, since it will inhibit reporting for all shared resources on
2148 	 * the socket like the last level cache (LLC), the integrated memory
2149 	 * controller (iMC), etc.
2150 	 */
2151 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2152 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2153 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2154 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2155 		return;
2156 
2157 	mce_disable_error_reporting();
2158 }
2159 
2160 static int mce_syscore_suspend(void)
2161 {
2162 	vendor_disable_error_reporting();
2163 	return 0;
2164 }
2165 
2166 static void mce_syscore_shutdown(void)
2167 {
2168 	vendor_disable_error_reporting();
2169 }
2170 
2171 /*
2172  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2173  * Only one CPU is active at this time, the others get re-added later using
2174  * CPU hotplug:
2175  */
2176 static void mce_syscore_resume(void)
2177 {
2178 	__mcheck_cpu_init_generic();
2179 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2180 	__mcheck_cpu_init_clear_banks();
2181 }
2182 
2183 static struct syscore_ops mce_syscore_ops = {
2184 	.suspend	= mce_syscore_suspend,
2185 	.shutdown	= mce_syscore_shutdown,
2186 	.resume		= mce_syscore_resume,
2187 };
2188 
2189 /*
2190  * mce_device: Sysfs support
2191  */
2192 
2193 static void mce_cpu_restart(void *data)
2194 {
2195 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2196 		return;
2197 	__mcheck_cpu_init_generic();
2198 	__mcheck_cpu_init_clear_banks();
2199 	__mcheck_cpu_init_timer();
2200 }
2201 
2202 /* Reinit MCEs after user configuration changes */
2203 static void mce_restart(void)
2204 {
2205 	mce_timer_delete_all();
2206 	on_each_cpu(mce_cpu_restart, NULL, 1);
2207 }
2208 
2209 /* Toggle features for corrected errors */
2210 static void mce_disable_cmci(void *data)
2211 {
2212 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2213 		return;
2214 	cmci_clear();
2215 }
2216 
2217 static void mce_enable_ce(void *all)
2218 {
2219 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2220 		return;
2221 	cmci_reenable();
2222 	cmci_recheck();
2223 	if (all)
2224 		__mcheck_cpu_init_timer();
2225 }
2226 
2227 static struct bus_type mce_subsys = {
2228 	.name		= "machinecheck",
2229 	.dev_name	= "machinecheck",
2230 };
2231 
2232 DEFINE_PER_CPU(struct device *, mce_device);
2233 
2234 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2235 {
2236 	return container_of(attr, struct mce_bank_dev, attr);
2237 }
2238 
2239 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2240 			 char *buf)
2241 {
2242 	u8 bank = attr_to_bank(attr)->bank;
2243 	struct mce_bank *b;
2244 
2245 	if (bank >= per_cpu(mce_num_banks, s->id))
2246 		return -EINVAL;
2247 
2248 	b = &per_cpu(mce_banks_array, s->id)[bank];
2249 
2250 	if (!b->init)
2251 		return -ENODEV;
2252 
2253 	return sprintf(buf, "%llx\n", b->ctl);
2254 }
2255 
2256 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2257 			const char *buf, size_t size)
2258 {
2259 	u8 bank = attr_to_bank(attr)->bank;
2260 	struct mce_bank *b;
2261 	u64 new;
2262 
2263 	if (kstrtou64(buf, 0, &new) < 0)
2264 		return -EINVAL;
2265 
2266 	if (bank >= per_cpu(mce_num_banks, s->id))
2267 		return -EINVAL;
2268 
2269 	b = &per_cpu(mce_banks_array, s->id)[bank];
2270 
2271 	if (!b->init)
2272 		return -ENODEV;
2273 
2274 	b->ctl = new;
2275 	mce_restart();
2276 
2277 	return size;
2278 }
2279 
2280 static ssize_t set_ignore_ce(struct device *s,
2281 			     struct device_attribute *attr,
2282 			     const char *buf, size_t size)
2283 {
2284 	u64 new;
2285 
2286 	if (kstrtou64(buf, 0, &new) < 0)
2287 		return -EINVAL;
2288 
2289 	mutex_lock(&mce_sysfs_mutex);
2290 	if (mca_cfg.ignore_ce ^ !!new) {
2291 		if (new) {
2292 			/* disable ce features */
2293 			mce_timer_delete_all();
2294 			on_each_cpu(mce_disable_cmci, NULL, 1);
2295 			mca_cfg.ignore_ce = true;
2296 		} else {
2297 			/* enable ce features */
2298 			mca_cfg.ignore_ce = false;
2299 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2300 		}
2301 	}
2302 	mutex_unlock(&mce_sysfs_mutex);
2303 
2304 	return size;
2305 }
2306 
2307 static ssize_t set_cmci_disabled(struct device *s,
2308 				 struct device_attribute *attr,
2309 				 const char *buf, size_t size)
2310 {
2311 	u64 new;
2312 
2313 	if (kstrtou64(buf, 0, &new) < 0)
2314 		return -EINVAL;
2315 
2316 	mutex_lock(&mce_sysfs_mutex);
2317 	if (mca_cfg.cmci_disabled ^ !!new) {
2318 		if (new) {
2319 			/* disable cmci */
2320 			on_each_cpu(mce_disable_cmci, NULL, 1);
2321 			mca_cfg.cmci_disabled = true;
2322 		} else {
2323 			/* enable cmci */
2324 			mca_cfg.cmci_disabled = false;
2325 			on_each_cpu(mce_enable_ce, NULL, 1);
2326 		}
2327 	}
2328 	mutex_unlock(&mce_sysfs_mutex);
2329 
2330 	return size;
2331 }
2332 
2333 static ssize_t store_int_with_restart(struct device *s,
2334 				      struct device_attribute *attr,
2335 				      const char *buf, size_t size)
2336 {
2337 	unsigned long old_check_interval = check_interval;
2338 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2339 
2340 	if (check_interval == old_check_interval)
2341 		return ret;
2342 
2343 	mutex_lock(&mce_sysfs_mutex);
2344 	mce_restart();
2345 	mutex_unlock(&mce_sysfs_mutex);
2346 
2347 	return ret;
2348 }
2349 
2350 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2351 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2352 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2353 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2354 
2355 static struct dev_ext_attribute dev_attr_check_interval = {
2356 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2357 	&check_interval
2358 };
2359 
2360 static struct dev_ext_attribute dev_attr_ignore_ce = {
2361 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2362 	&mca_cfg.ignore_ce
2363 };
2364 
2365 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2366 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2367 	&mca_cfg.cmci_disabled
2368 };
2369 
2370 static struct device_attribute *mce_device_attrs[] = {
2371 	&dev_attr_tolerant.attr,
2372 	&dev_attr_check_interval.attr,
2373 #ifdef CONFIG_X86_MCELOG_LEGACY
2374 	&dev_attr_trigger,
2375 #endif
2376 	&dev_attr_monarch_timeout.attr,
2377 	&dev_attr_dont_log_ce.attr,
2378 	&dev_attr_print_all.attr,
2379 	&dev_attr_ignore_ce.attr,
2380 	&dev_attr_cmci_disabled.attr,
2381 	NULL
2382 };
2383 
2384 static cpumask_var_t mce_device_initialized;
2385 
2386 static void mce_device_release(struct device *dev)
2387 {
2388 	kfree(dev);
2389 }
2390 
2391 /* Per CPU device init. All of the CPUs still share the same bank device: */
2392 static int mce_device_create(unsigned int cpu)
2393 {
2394 	struct device *dev;
2395 	int err;
2396 	int i, j;
2397 
2398 	if (!mce_available(&boot_cpu_data))
2399 		return -EIO;
2400 
2401 	dev = per_cpu(mce_device, cpu);
2402 	if (dev)
2403 		return 0;
2404 
2405 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2406 	if (!dev)
2407 		return -ENOMEM;
2408 	dev->id  = cpu;
2409 	dev->bus = &mce_subsys;
2410 	dev->release = &mce_device_release;
2411 
2412 	err = device_register(dev);
2413 	if (err) {
2414 		put_device(dev);
2415 		return err;
2416 	}
2417 
2418 	for (i = 0; mce_device_attrs[i]; i++) {
2419 		err = device_create_file(dev, mce_device_attrs[i]);
2420 		if (err)
2421 			goto error;
2422 	}
2423 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2424 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2425 		if (err)
2426 			goto error2;
2427 	}
2428 	cpumask_set_cpu(cpu, mce_device_initialized);
2429 	per_cpu(mce_device, cpu) = dev;
2430 
2431 	return 0;
2432 error2:
2433 	while (--j >= 0)
2434 		device_remove_file(dev, &mce_bank_devs[j].attr);
2435 error:
2436 	while (--i >= 0)
2437 		device_remove_file(dev, mce_device_attrs[i]);
2438 
2439 	device_unregister(dev);
2440 
2441 	return err;
2442 }
2443 
2444 static void mce_device_remove(unsigned int cpu)
2445 {
2446 	struct device *dev = per_cpu(mce_device, cpu);
2447 	int i;
2448 
2449 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2450 		return;
2451 
2452 	for (i = 0; mce_device_attrs[i]; i++)
2453 		device_remove_file(dev, mce_device_attrs[i]);
2454 
2455 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2456 		device_remove_file(dev, &mce_bank_devs[i].attr);
2457 
2458 	device_unregister(dev);
2459 	cpumask_clear_cpu(cpu, mce_device_initialized);
2460 	per_cpu(mce_device, cpu) = NULL;
2461 }
2462 
2463 /* Make sure there are no machine checks on offlined CPUs. */
2464 static void mce_disable_cpu(void)
2465 {
2466 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2467 		return;
2468 
2469 	if (!cpuhp_tasks_frozen)
2470 		cmci_clear();
2471 
2472 	vendor_disable_error_reporting();
2473 }
2474 
2475 static void mce_reenable_cpu(void)
2476 {
2477 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2478 	int i;
2479 
2480 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2481 		return;
2482 
2483 	if (!cpuhp_tasks_frozen)
2484 		cmci_reenable();
2485 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2486 		struct mce_bank *b = &mce_banks[i];
2487 
2488 		if (b->init)
2489 			wrmsrl(msr_ops.ctl(i), b->ctl);
2490 	}
2491 }
2492 
2493 static int mce_cpu_dead(unsigned int cpu)
2494 {
2495 	mce_intel_hcpu_update(cpu);
2496 
2497 	/* intentionally ignoring frozen here */
2498 	if (!cpuhp_tasks_frozen)
2499 		cmci_rediscover();
2500 	return 0;
2501 }
2502 
2503 static int mce_cpu_online(unsigned int cpu)
2504 {
2505 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2506 	int ret;
2507 
2508 	mce_device_create(cpu);
2509 
2510 	ret = mce_threshold_create_device(cpu);
2511 	if (ret) {
2512 		mce_device_remove(cpu);
2513 		return ret;
2514 	}
2515 	mce_reenable_cpu();
2516 	mce_start_timer(t);
2517 	return 0;
2518 }
2519 
2520 static int mce_cpu_pre_down(unsigned int cpu)
2521 {
2522 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2523 
2524 	mce_disable_cpu();
2525 	del_timer_sync(t);
2526 	mce_threshold_remove_device(cpu);
2527 	mce_device_remove(cpu);
2528 	return 0;
2529 }
2530 
2531 static __init void mce_init_banks(void)
2532 {
2533 	int i;
2534 
2535 	for (i = 0; i < MAX_NR_BANKS; i++) {
2536 		struct mce_bank_dev *b = &mce_bank_devs[i];
2537 		struct device_attribute *a = &b->attr;
2538 
2539 		b->bank = i;
2540 
2541 		sysfs_attr_init(&a->attr);
2542 		a->attr.name	= b->attrname;
2543 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2544 
2545 		a->attr.mode	= 0644;
2546 		a->show		= show_bank;
2547 		a->store	= set_bank;
2548 	}
2549 }
2550 
2551 /*
2552  * When running on XEN, this initcall is ordered against the XEN mcelog
2553  * initcall:
2554  *
2555  *   device_initcall(xen_late_init_mcelog);
2556  *   device_initcall_sync(mcheck_init_device);
2557  */
2558 static __init int mcheck_init_device(void)
2559 {
2560 	int err;
2561 
2562 	/*
2563 	 * Check if we have a spare virtual bit. This will only become
2564 	 * a problem if/when we move beyond 5-level page tables.
2565 	 */
2566 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2567 
2568 	if (!mce_available(&boot_cpu_data)) {
2569 		err = -EIO;
2570 		goto err_out;
2571 	}
2572 
2573 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2574 		err = -ENOMEM;
2575 		goto err_out;
2576 	}
2577 
2578 	mce_init_banks();
2579 
2580 	err = subsys_system_register(&mce_subsys, NULL);
2581 	if (err)
2582 		goto err_out_mem;
2583 
2584 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2585 				mce_cpu_dead);
2586 	if (err)
2587 		goto err_out_mem;
2588 
2589 	/*
2590 	 * Invokes mce_cpu_online() on all CPUs which are online when
2591 	 * the state is installed.
2592 	 */
2593 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2594 				mce_cpu_online, mce_cpu_pre_down);
2595 	if (err < 0)
2596 		goto err_out_online;
2597 
2598 	register_syscore_ops(&mce_syscore_ops);
2599 
2600 	return 0;
2601 
2602 err_out_online:
2603 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2604 
2605 err_out_mem:
2606 	free_cpumask_var(mce_device_initialized);
2607 
2608 err_out:
2609 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2610 
2611 	return err;
2612 }
2613 device_initcall_sync(mcheck_init_device);
2614 
2615 /*
2616  * Old style boot options parsing. Only for compatibility.
2617  */
2618 static int __init mcheck_disable(char *str)
2619 {
2620 	mca_cfg.disabled = 1;
2621 	return 1;
2622 }
2623 __setup("nomce", mcheck_disable);
2624 
2625 #ifdef CONFIG_DEBUG_FS
2626 struct dentry *mce_get_debugfs_dir(void)
2627 {
2628 	static struct dentry *dmce;
2629 
2630 	if (!dmce)
2631 		dmce = debugfs_create_dir("mce", NULL);
2632 
2633 	return dmce;
2634 }
2635 
2636 static void mce_reset(void)
2637 {
2638 	cpu_missing = 0;
2639 	atomic_set(&mce_fake_panicked, 0);
2640 	atomic_set(&mce_executing, 0);
2641 	atomic_set(&mce_callin, 0);
2642 	atomic_set(&global_nwo, 0);
2643 }
2644 
2645 static int fake_panic_get(void *data, u64 *val)
2646 {
2647 	*val = fake_panic;
2648 	return 0;
2649 }
2650 
2651 static int fake_panic_set(void *data, u64 val)
2652 {
2653 	mce_reset();
2654 	fake_panic = val;
2655 	return 0;
2656 }
2657 
2658 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2659 			 "%llu\n");
2660 
2661 static void __init mcheck_debugfs_init(void)
2662 {
2663 	struct dentry *dmce;
2664 
2665 	dmce = mce_get_debugfs_dir();
2666 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2667 				   &fake_panic_fops);
2668 }
2669 #else
2670 static void __init mcheck_debugfs_init(void) { }
2671 #endif
2672 
2673 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2674 EXPORT_SYMBOL_GPL(mcsafe_key);
2675 
2676 static int __init mcheck_late_init(void)
2677 {
2678 	if (mca_cfg.recovery)
2679 		static_branch_inc(&mcsafe_key);
2680 
2681 	mcheck_debugfs_init();
2682 
2683 	/*
2684 	 * Flush out everything that has been logged during early boot, now that
2685 	 * everything has been initialized (workqueues, decoders, ...).
2686 	 */
2687 	mce_schedule_work();
2688 
2689 	return 0;
2690 }
2691 late_initcall(mcheck_late_init);
2692