xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision efac162a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103 
104 /*
105  * MCA banks polled by the period polling timer for corrected events.
106  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107  */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111 
112 /*
113  * MCA banks controlled through firmware first for corrected errors.
114  * This is a global list of banks for which we won't enable CMCI and we
115  * won't poll. Firmware controls these banks and is responsible for
116  * reporting corrected errors through GHES. Uncorrected/recoverable
117  * errors are still notified through a machine check.
118  */
119 mce_banks_t mce_banks_ce_disabled;
120 
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123 
124 /*
125  * CPU/chipset specific EDAC code can register a notifier call here to print
126  * MCE errors in a human-readable form.
127  */
128 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
129 
130 /* Do initial initialization of a struct mce */
131 noinstr void mce_setup(struct mce *m)
132 {
133 	memset(m, 0, sizeof(struct mce));
134 	m->cpu = m->extcpu = smp_processor_id();
135 	/* need the internal __ version to avoid deadlocks */
136 	m->time = __ktime_get_real_seconds();
137 	m->cpuvendor = boot_cpu_data.x86_vendor;
138 	m->cpuid = cpuid_eax(1);
139 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
140 	m->apicid = cpu_data(m->extcpu).initial_apicid;
141 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
142 
143 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
144 		m->ppin = __rdmsr(MSR_PPIN);
145 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
146 		m->ppin = __rdmsr(MSR_AMD_PPIN);
147 
148 	m->microcode = boot_cpu_data.microcode;
149 }
150 
151 DEFINE_PER_CPU(struct mce, injectm);
152 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
153 
154 void mce_log(struct mce *m)
155 {
156 	if (!mce_gen_pool_add(m))
157 		irq_work_queue(&mce_irq_work);
158 }
159 EXPORT_SYMBOL_GPL(mce_log);
160 
161 void mce_register_decode_chain(struct notifier_block *nb)
162 {
163 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
164 		    nb->priority > MCE_PRIO_HIGHEST))
165 		return;
166 
167 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
168 }
169 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
170 
171 void mce_unregister_decode_chain(struct notifier_block *nb)
172 {
173 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
174 }
175 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
176 
177 u32 mca_msr_reg(int bank, enum mca_msr reg)
178 {
179 	if (mce_flags.smca) {
180 		switch (reg) {
181 		case MCA_CTL:	 return MSR_AMD64_SMCA_MCx_CTL(bank);
182 		case MCA_ADDR:	 return MSR_AMD64_SMCA_MCx_ADDR(bank);
183 		case MCA_MISC:	 return MSR_AMD64_SMCA_MCx_MISC(bank);
184 		case MCA_STATUS: return MSR_AMD64_SMCA_MCx_STATUS(bank);
185 		}
186 	}
187 
188 	switch (reg) {
189 	case MCA_CTL:	 return MSR_IA32_MCx_CTL(bank);
190 	case MCA_ADDR:	 return MSR_IA32_MCx_ADDR(bank);
191 	case MCA_MISC:	 return MSR_IA32_MCx_MISC(bank);
192 	case MCA_STATUS: return MSR_IA32_MCx_STATUS(bank);
193 	}
194 
195 	return 0;
196 }
197 
198 static void __print_mce(struct mce *m)
199 {
200 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
201 		 m->extcpu,
202 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
203 		 m->mcgstatus, m->bank, m->status);
204 
205 	if (m->ip) {
206 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
207 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
208 			m->cs, m->ip);
209 
210 		if (m->cs == __KERNEL_CS)
211 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
212 		pr_cont("\n");
213 	}
214 
215 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
216 	if (m->addr)
217 		pr_cont("ADDR %llx ", m->addr);
218 	if (m->misc)
219 		pr_cont("MISC %llx ", m->misc);
220 	if (m->ppin)
221 		pr_cont("PPIN %llx ", m->ppin);
222 
223 	if (mce_flags.smca) {
224 		if (m->synd)
225 			pr_cont("SYND %llx ", m->synd);
226 		if (m->ipid)
227 			pr_cont("IPID %llx ", m->ipid);
228 	}
229 
230 	pr_cont("\n");
231 
232 	/*
233 	 * Note this output is parsed by external tools and old fields
234 	 * should not be changed.
235 	 */
236 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
237 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
238 		m->microcode);
239 }
240 
241 static void print_mce(struct mce *m)
242 {
243 	__print_mce(m);
244 
245 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
246 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
247 }
248 
249 #define PANIC_TIMEOUT 5 /* 5 seconds */
250 
251 static atomic_t mce_panicked;
252 
253 static int fake_panic;
254 static atomic_t mce_fake_panicked;
255 
256 /* Panic in progress. Enable interrupts and wait for final IPI */
257 static void wait_for_panic(void)
258 {
259 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
260 
261 	preempt_disable();
262 	local_irq_enable();
263 	while (timeout-- > 0)
264 		udelay(1);
265 	if (panic_timeout == 0)
266 		panic_timeout = mca_cfg.panic_timeout;
267 	panic("Panicing machine check CPU died");
268 }
269 
270 static void mce_panic(const char *msg, struct mce *final, char *exp)
271 {
272 	int apei_err = 0;
273 	struct llist_node *pending;
274 	struct mce_evt_llist *l;
275 
276 	if (!fake_panic) {
277 		/*
278 		 * Make sure only one CPU runs in machine check panic
279 		 */
280 		if (atomic_inc_return(&mce_panicked) > 1)
281 			wait_for_panic();
282 		barrier();
283 
284 		bust_spinlocks(1);
285 		console_verbose();
286 	} else {
287 		/* Don't log too much for fake panic */
288 		if (atomic_inc_return(&mce_fake_panicked) > 1)
289 			return;
290 	}
291 	pending = mce_gen_pool_prepare_records();
292 	/* First print corrected ones that are still unlogged */
293 	llist_for_each_entry(l, pending, llnode) {
294 		struct mce *m = &l->mce;
295 		if (!(m->status & MCI_STATUS_UC)) {
296 			print_mce(m);
297 			if (!apei_err)
298 				apei_err = apei_write_mce(m);
299 		}
300 	}
301 	/* Now print uncorrected but with the final one last */
302 	llist_for_each_entry(l, pending, llnode) {
303 		struct mce *m = &l->mce;
304 		if (!(m->status & MCI_STATUS_UC))
305 			continue;
306 		if (!final || mce_cmp(m, final)) {
307 			print_mce(m);
308 			if (!apei_err)
309 				apei_err = apei_write_mce(m);
310 		}
311 	}
312 	if (final) {
313 		print_mce(final);
314 		if (!apei_err)
315 			apei_err = apei_write_mce(final);
316 	}
317 	if (cpu_missing)
318 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
319 	if (exp)
320 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
321 	if (!fake_panic) {
322 		if (panic_timeout == 0)
323 			panic_timeout = mca_cfg.panic_timeout;
324 		panic(msg);
325 	} else
326 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
327 }
328 
329 /* Support code for software error injection */
330 
331 static int msr_to_offset(u32 msr)
332 {
333 	unsigned bank = __this_cpu_read(injectm.bank);
334 
335 	if (msr == mca_cfg.rip_msr)
336 		return offsetof(struct mce, ip);
337 	if (msr == mca_msr_reg(bank, MCA_STATUS))
338 		return offsetof(struct mce, status);
339 	if (msr == mca_msr_reg(bank, MCA_ADDR))
340 		return offsetof(struct mce, addr);
341 	if (msr == mca_msr_reg(bank, MCA_MISC))
342 		return offsetof(struct mce, misc);
343 	if (msr == MSR_IA32_MCG_STATUS)
344 		return offsetof(struct mce, mcgstatus);
345 	return -1;
346 }
347 
348 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
349 {
350 	if (wrmsr) {
351 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
352 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
353 			 regs->ip, (void *)regs->ip);
354 	} else {
355 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
356 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
357 	}
358 
359 	show_stack_regs(regs);
360 
361 	panic("MCA architectural violation!\n");
362 
363 	while (true)
364 		cpu_relax();
365 }
366 
367 /* MSR access wrappers used for error injection */
368 static noinstr u64 mce_rdmsrl(u32 msr)
369 {
370 	DECLARE_ARGS(val, low, high);
371 
372 	if (__this_cpu_read(injectm.finished)) {
373 		int offset;
374 		u64 ret;
375 
376 		instrumentation_begin();
377 
378 		offset = msr_to_offset(msr);
379 		if (offset < 0)
380 			ret = 0;
381 		else
382 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
383 
384 		instrumentation_end();
385 
386 		return ret;
387 	}
388 
389 	/*
390 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
391 	 * architectural violation and needs to be reported to hw vendor. Panic
392 	 * the box to not allow any further progress.
393 	 */
394 	asm volatile("1: rdmsr\n"
395 		     "2:\n"
396 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
397 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
398 
399 
400 	return EAX_EDX_VAL(val, low, high);
401 }
402 
403 static noinstr void mce_wrmsrl(u32 msr, u64 v)
404 {
405 	u32 low, high;
406 
407 	if (__this_cpu_read(injectm.finished)) {
408 		int offset;
409 
410 		instrumentation_begin();
411 
412 		offset = msr_to_offset(msr);
413 		if (offset >= 0)
414 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
415 
416 		instrumentation_end();
417 
418 		return;
419 	}
420 
421 	low  = (u32)v;
422 	high = (u32)(v >> 32);
423 
424 	/* See comment in mce_rdmsrl() */
425 	asm volatile("1: wrmsr\n"
426 		     "2:\n"
427 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
428 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
429 }
430 
431 /*
432  * Collect all global (w.r.t. this processor) status about this machine
433  * check into our "mce" struct so that we can use it later to assess
434  * the severity of the problem as we read per-bank specific details.
435  */
436 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
437 {
438 	mce_setup(m);
439 
440 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
441 	if (regs) {
442 		/*
443 		 * Get the address of the instruction at the time of
444 		 * the machine check error.
445 		 */
446 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
447 			m->ip = regs->ip;
448 			m->cs = regs->cs;
449 
450 			/*
451 			 * When in VM86 mode make the cs look like ring 3
452 			 * always. This is a lie, but it's better than passing
453 			 * the additional vm86 bit around everywhere.
454 			 */
455 			if (v8086_mode(regs))
456 				m->cs |= 3;
457 		}
458 		/* Use accurate RIP reporting if available. */
459 		if (mca_cfg.rip_msr)
460 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
461 	}
462 }
463 
464 int mce_available(struct cpuinfo_x86 *c)
465 {
466 	if (mca_cfg.disabled)
467 		return 0;
468 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
469 }
470 
471 static void mce_schedule_work(void)
472 {
473 	if (!mce_gen_pool_empty())
474 		schedule_work(&mce_work);
475 }
476 
477 static void mce_irq_work_cb(struct irq_work *entry)
478 {
479 	mce_schedule_work();
480 }
481 
482 /*
483  * Check if the address reported by the CPU is in a format we can parse.
484  * It would be possible to add code for most other cases, but all would
485  * be somewhat complicated (e.g. segment offset would require an instruction
486  * parser). So only support physical addresses up to page granularity for now.
487  */
488 int mce_usable_address(struct mce *m)
489 {
490 	if (!(m->status & MCI_STATUS_ADDRV))
491 		return 0;
492 
493 	/* Checks after this one are Intel/Zhaoxin-specific: */
494 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
495 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
496 		return 1;
497 
498 	if (!(m->status & MCI_STATUS_MISCV))
499 		return 0;
500 
501 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
502 		return 0;
503 
504 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
505 		return 0;
506 
507 	return 1;
508 }
509 EXPORT_SYMBOL_GPL(mce_usable_address);
510 
511 bool mce_is_memory_error(struct mce *m)
512 {
513 	switch (m->cpuvendor) {
514 	case X86_VENDOR_AMD:
515 	case X86_VENDOR_HYGON:
516 		return amd_mce_is_memory_error(m);
517 
518 	case X86_VENDOR_INTEL:
519 	case X86_VENDOR_ZHAOXIN:
520 		/*
521 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
522 		 *
523 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
524 		 * indicating a memory error. Bit 8 is used for indicating a
525 		 * cache hierarchy error. The combination of bit 2 and bit 3
526 		 * is used for indicating a `generic' cache hierarchy error
527 		 * But we can't just blindly check the above bits, because if
528 		 * bit 11 is set, then it is a bus/interconnect error - and
529 		 * either way the above bits just gives more detail on what
530 		 * bus/interconnect error happened. Note that bit 12 can be
531 		 * ignored, as it's the "filter" bit.
532 		 */
533 		return (m->status & 0xef80) == BIT(7) ||
534 		       (m->status & 0xef00) == BIT(8) ||
535 		       (m->status & 0xeffc) == 0xc;
536 
537 	default:
538 		return false;
539 	}
540 }
541 EXPORT_SYMBOL_GPL(mce_is_memory_error);
542 
543 static bool whole_page(struct mce *m)
544 {
545 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
546 		return true;
547 
548 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
549 }
550 
551 bool mce_is_correctable(struct mce *m)
552 {
553 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
554 		return false;
555 
556 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
557 		return false;
558 
559 	if (m->status & MCI_STATUS_UC)
560 		return false;
561 
562 	return true;
563 }
564 EXPORT_SYMBOL_GPL(mce_is_correctable);
565 
566 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
567 			      void *data)
568 {
569 	struct mce *m = (struct mce *)data;
570 
571 	if (!m)
572 		return NOTIFY_DONE;
573 
574 	/* Emit the trace record: */
575 	trace_mce_record(m);
576 
577 	set_bit(0, &mce_need_notify);
578 
579 	mce_notify_irq();
580 
581 	return NOTIFY_DONE;
582 }
583 
584 static struct notifier_block early_nb = {
585 	.notifier_call	= mce_early_notifier,
586 	.priority	= MCE_PRIO_EARLY,
587 };
588 
589 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
590 			      void *data)
591 {
592 	struct mce *mce = (struct mce *)data;
593 	unsigned long pfn;
594 
595 	if (!mce || !mce_usable_address(mce))
596 		return NOTIFY_DONE;
597 
598 	if (mce->severity != MCE_AO_SEVERITY &&
599 	    mce->severity != MCE_DEFERRED_SEVERITY)
600 		return NOTIFY_DONE;
601 
602 	pfn = mce->addr >> PAGE_SHIFT;
603 	if (!memory_failure(pfn, 0)) {
604 		set_mce_nospec(pfn, whole_page(mce));
605 		mce->kflags |= MCE_HANDLED_UC;
606 	}
607 
608 	return NOTIFY_OK;
609 }
610 
611 static struct notifier_block mce_uc_nb = {
612 	.notifier_call	= uc_decode_notifier,
613 	.priority	= MCE_PRIO_UC,
614 };
615 
616 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
617 				void *data)
618 {
619 	struct mce *m = (struct mce *)data;
620 
621 	if (!m)
622 		return NOTIFY_DONE;
623 
624 	if (mca_cfg.print_all || !m->kflags)
625 		__print_mce(m);
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static struct notifier_block mce_default_nb = {
631 	.notifier_call	= mce_default_notifier,
632 	/* lowest prio, we want it to run last. */
633 	.priority	= MCE_PRIO_LOWEST,
634 };
635 
636 /*
637  * Read ADDR and MISC registers.
638  */
639 static void mce_read_aux(struct mce *m, int i)
640 {
641 	if (m->status & MCI_STATUS_MISCV)
642 		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
643 
644 	if (m->status & MCI_STATUS_ADDRV) {
645 		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
646 
647 		/*
648 		 * Mask the reported address by the reported granularity.
649 		 */
650 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
651 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
652 			m->addr >>= shift;
653 			m->addr <<= shift;
654 		}
655 
656 		/*
657 		 * Extract [55:<lsb>] where lsb is the least significant
658 		 * *valid* bit of the address bits.
659 		 */
660 		if (mce_flags.smca) {
661 			u8 lsb = (m->addr >> 56) & 0x3f;
662 
663 			m->addr &= GENMASK_ULL(55, lsb);
664 		}
665 	}
666 
667 	if (mce_flags.smca) {
668 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
669 
670 		if (m->status & MCI_STATUS_SYNDV)
671 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
672 	}
673 }
674 
675 DEFINE_PER_CPU(unsigned, mce_poll_count);
676 
677 /*
678  * Poll for corrected events or events that happened before reset.
679  * Those are just logged through /dev/mcelog.
680  *
681  * This is executed in standard interrupt context.
682  *
683  * Note: spec recommends to panic for fatal unsignalled
684  * errors here. However this would be quite problematic --
685  * we would need to reimplement the Monarch handling and
686  * it would mess up the exclusion between exception handler
687  * and poll handler -- * so we skip this for now.
688  * These cases should not happen anyways, or only when the CPU
689  * is already totally * confused. In this case it's likely it will
690  * not fully execute the machine check handler either.
691  */
692 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
693 {
694 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
695 	bool error_seen = false;
696 	struct mce m;
697 	int i;
698 
699 	this_cpu_inc(mce_poll_count);
700 
701 	mce_gather_info(&m, NULL);
702 
703 	if (flags & MCP_TIMESTAMP)
704 		m.tsc = rdtsc();
705 
706 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
707 		if (!mce_banks[i].ctl || !test_bit(i, *b))
708 			continue;
709 
710 		m.misc = 0;
711 		m.addr = 0;
712 		m.bank = i;
713 
714 		barrier();
715 		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
716 
717 		/* If this entry is not valid, ignore it */
718 		if (!(m.status & MCI_STATUS_VAL))
719 			continue;
720 
721 		/*
722 		 * If we are logging everything (at CPU online) or this
723 		 * is a corrected error, then we must log it.
724 		 */
725 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
726 			goto log_it;
727 
728 		/*
729 		 * Newer Intel systems that support software error
730 		 * recovery need to make additional checks. Other
731 		 * CPUs should skip over uncorrected errors, but log
732 		 * everything else.
733 		 */
734 		if (!mca_cfg.ser) {
735 			if (m.status & MCI_STATUS_UC)
736 				continue;
737 			goto log_it;
738 		}
739 
740 		/* Log "not enabled" (speculative) errors */
741 		if (!(m.status & MCI_STATUS_EN))
742 			goto log_it;
743 
744 		/*
745 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
746 		 * UC == 1 && PCC == 0 && S == 0
747 		 */
748 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
749 			goto log_it;
750 
751 		/*
752 		 * Skip anything else. Presumption is that our read of this
753 		 * bank is racing with a machine check. Leave the log alone
754 		 * for do_machine_check() to deal with it.
755 		 */
756 		continue;
757 
758 log_it:
759 		error_seen = true;
760 
761 		if (flags & MCP_DONTLOG)
762 			goto clear_it;
763 
764 		mce_read_aux(&m, i);
765 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
766 		/*
767 		 * Don't get the IP here because it's unlikely to
768 		 * have anything to do with the actual error location.
769 		 */
770 
771 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
772 			goto clear_it;
773 
774 		if (flags & MCP_QUEUE_LOG)
775 			mce_gen_pool_add(&m);
776 		else
777 			mce_log(&m);
778 
779 clear_it:
780 		/*
781 		 * Clear state for this bank.
782 		 */
783 		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
784 	}
785 
786 	/*
787 	 * Don't clear MCG_STATUS here because it's only defined for
788 	 * exceptions.
789 	 */
790 
791 	sync_core();
792 
793 	return error_seen;
794 }
795 EXPORT_SYMBOL_GPL(machine_check_poll);
796 
797 /*
798  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
799  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
800  * Vol 3B Table 15-20). But this confuses both the code that determines
801  * whether the machine check occurred in kernel or user mode, and also
802  * the severity assessment code. Pretend that EIPV was set, and take the
803  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
804  */
805 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
806 {
807 	if (bank != 0)
808 		return;
809 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
810 		return;
811 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
812 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
813 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
814 			  MCACOD)) !=
815 			 (MCI_STATUS_UC|MCI_STATUS_EN|
816 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
817 			  MCI_STATUS_AR|MCACOD_INSTR))
818 		return;
819 
820 	m->mcgstatus |= MCG_STATUS_EIPV;
821 	m->ip = regs->ip;
822 	m->cs = regs->cs;
823 }
824 
825 /*
826  * Do a quick check if any of the events requires a panic.
827  * This decides if we keep the events around or clear them.
828  */
829 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
830 			  struct pt_regs *regs)
831 {
832 	char *tmp = *msg;
833 	int i;
834 
835 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
836 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
837 		if (!(m->status & MCI_STATUS_VAL))
838 			continue;
839 
840 		__set_bit(i, validp);
841 		if (mce_flags.snb_ifu_quirk)
842 			quirk_sandybridge_ifu(i, m, regs);
843 
844 		m->bank = i;
845 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
846 			mce_read_aux(m, i);
847 			*msg = tmp;
848 			return 1;
849 		}
850 	}
851 	return 0;
852 }
853 
854 /*
855  * Variable to establish order between CPUs while scanning.
856  * Each CPU spins initially until executing is equal its number.
857  */
858 static atomic_t mce_executing;
859 
860 /*
861  * Defines order of CPUs on entry. First CPU becomes Monarch.
862  */
863 static atomic_t mce_callin;
864 
865 /*
866  * Track which CPUs entered the MCA broadcast synchronization and which not in
867  * order to print holdouts.
868  */
869 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
870 
871 /*
872  * Check if a timeout waiting for other CPUs happened.
873  */
874 static int mce_timed_out(u64 *t, const char *msg)
875 {
876 	/*
877 	 * The others already did panic for some reason.
878 	 * Bail out like in a timeout.
879 	 * rmb() to tell the compiler that system_state
880 	 * might have been modified by someone else.
881 	 */
882 	rmb();
883 	if (atomic_read(&mce_panicked))
884 		wait_for_panic();
885 	if (!mca_cfg.monarch_timeout)
886 		goto out;
887 	if ((s64)*t < SPINUNIT) {
888 		if (mca_cfg.tolerant <= 1) {
889 			if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
890 				pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
891 					 cpumask_pr_args(&mce_missing_cpus));
892 			mce_panic(msg, NULL, NULL);
893 		}
894 		cpu_missing = 1;
895 		return 1;
896 	}
897 	*t -= SPINUNIT;
898 out:
899 	touch_nmi_watchdog();
900 	return 0;
901 }
902 
903 /*
904  * The Monarch's reign.  The Monarch is the CPU who entered
905  * the machine check handler first. It waits for the others to
906  * raise the exception too and then grades them. When any
907  * error is fatal panic. Only then let the others continue.
908  *
909  * The other CPUs entering the MCE handler will be controlled by the
910  * Monarch. They are called Subjects.
911  *
912  * This way we prevent any potential data corruption in a unrecoverable case
913  * and also makes sure always all CPU's errors are examined.
914  *
915  * Also this detects the case of a machine check event coming from outer
916  * space (not detected by any CPUs) In this case some external agent wants
917  * us to shut down, so panic too.
918  *
919  * The other CPUs might still decide to panic if the handler happens
920  * in a unrecoverable place, but in this case the system is in a semi-stable
921  * state and won't corrupt anything by itself. It's ok to let the others
922  * continue for a bit first.
923  *
924  * All the spin loops have timeouts; when a timeout happens a CPU
925  * typically elects itself to be Monarch.
926  */
927 static void mce_reign(void)
928 {
929 	int cpu;
930 	struct mce *m = NULL;
931 	int global_worst = 0;
932 	char *msg = NULL;
933 
934 	/*
935 	 * This CPU is the Monarch and the other CPUs have run
936 	 * through their handlers.
937 	 * Grade the severity of the errors of all the CPUs.
938 	 */
939 	for_each_possible_cpu(cpu) {
940 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
941 
942 		if (mtmp->severity > global_worst) {
943 			global_worst = mtmp->severity;
944 			m = &per_cpu(mces_seen, cpu);
945 		}
946 	}
947 
948 	/*
949 	 * Cannot recover? Panic here then.
950 	 * This dumps all the mces in the log buffer and stops the
951 	 * other CPUs.
952 	 */
953 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
954 		/* call mce_severity() to get "msg" for panic */
955 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
956 		mce_panic("Fatal machine check", m, msg);
957 	}
958 
959 	/*
960 	 * For UC somewhere we let the CPU who detects it handle it.
961 	 * Also must let continue the others, otherwise the handling
962 	 * CPU could deadlock on a lock.
963 	 */
964 
965 	/*
966 	 * No machine check event found. Must be some external
967 	 * source or one CPU is hung. Panic.
968 	 */
969 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
970 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
971 
972 	/*
973 	 * Now clear all the mces_seen so that they don't reappear on
974 	 * the next mce.
975 	 */
976 	for_each_possible_cpu(cpu)
977 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
978 }
979 
980 static atomic_t global_nwo;
981 
982 /*
983  * Start of Monarch synchronization. This waits until all CPUs have
984  * entered the exception handler and then determines if any of them
985  * saw a fatal event that requires panic. Then it executes them
986  * in the entry order.
987  * TBD double check parallel CPU hotunplug
988  */
989 static int mce_start(int *no_way_out)
990 {
991 	int order;
992 	int cpus = num_online_cpus();
993 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
994 
995 	if (!timeout)
996 		return -1;
997 
998 	atomic_add(*no_way_out, &global_nwo);
999 	/*
1000 	 * Rely on the implied barrier below, such that global_nwo
1001 	 * is updated before mce_callin.
1002 	 */
1003 	order = atomic_inc_return(&mce_callin);
1004 	cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1005 
1006 	/*
1007 	 * Wait for everyone.
1008 	 */
1009 	while (atomic_read(&mce_callin) != cpus) {
1010 		if (mce_timed_out(&timeout,
1011 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1012 			atomic_set(&global_nwo, 0);
1013 			return -1;
1014 		}
1015 		ndelay(SPINUNIT);
1016 	}
1017 
1018 	/*
1019 	 * mce_callin should be read before global_nwo
1020 	 */
1021 	smp_rmb();
1022 
1023 	if (order == 1) {
1024 		/*
1025 		 * Monarch: Starts executing now, the others wait.
1026 		 */
1027 		atomic_set(&mce_executing, 1);
1028 	} else {
1029 		/*
1030 		 * Subject: Now start the scanning loop one by one in
1031 		 * the original callin order.
1032 		 * This way when there are any shared banks it will be
1033 		 * only seen by one CPU before cleared, avoiding duplicates.
1034 		 */
1035 		while (atomic_read(&mce_executing) < order) {
1036 			if (mce_timed_out(&timeout,
1037 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1038 				atomic_set(&global_nwo, 0);
1039 				return -1;
1040 			}
1041 			ndelay(SPINUNIT);
1042 		}
1043 	}
1044 
1045 	/*
1046 	 * Cache the global no_way_out state.
1047 	 */
1048 	*no_way_out = atomic_read(&global_nwo);
1049 
1050 	return order;
1051 }
1052 
1053 /*
1054  * Synchronize between CPUs after main scanning loop.
1055  * This invokes the bulk of the Monarch processing.
1056  */
1057 static int mce_end(int order)
1058 {
1059 	int ret = -1;
1060 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1061 
1062 	if (!timeout)
1063 		goto reset;
1064 	if (order < 0)
1065 		goto reset;
1066 
1067 	/*
1068 	 * Allow others to run.
1069 	 */
1070 	atomic_inc(&mce_executing);
1071 
1072 	if (order == 1) {
1073 		/* CHECKME: Can this race with a parallel hotplug? */
1074 		int cpus = num_online_cpus();
1075 
1076 		/*
1077 		 * Monarch: Wait for everyone to go through their scanning
1078 		 * loops.
1079 		 */
1080 		while (atomic_read(&mce_executing) <= cpus) {
1081 			if (mce_timed_out(&timeout,
1082 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1083 				goto reset;
1084 			ndelay(SPINUNIT);
1085 		}
1086 
1087 		mce_reign();
1088 		barrier();
1089 		ret = 0;
1090 	} else {
1091 		/*
1092 		 * Subject: Wait for Monarch to finish.
1093 		 */
1094 		while (atomic_read(&mce_executing) != 0) {
1095 			if (mce_timed_out(&timeout,
1096 					  "Timeout: Monarch CPU did not finish machine check processing"))
1097 				goto reset;
1098 			ndelay(SPINUNIT);
1099 		}
1100 
1101 		/*
1102 		 * Don't reset anything. That's done by the Monarch.
1103 		 */
1104 		return 0;
1105 	}
1106 
1107 	/*
1108 	 * Reset all global state.
1109 	 */
1110 reset:
1111 	atomic_set(&global_nwo, 0);
1112 	atomic_set(&mce_callin, 0);
1113 	cpumask_setall(&mce_missing_cpus);
1114 	barrier();
1115 
1116 	/*
1117 	 * Let others run again.
1118 	 */
1119 	atomic_set(&mce_executing, 0);
1120 	return ret;
1121 }
1122 
1123 static void mce_clear_state(unsigned long *toclear)
1124 {
1125 	int i;
1126 
1127 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1128 		if (test_bit(i, toclear))
1129 			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1130 	}
1131 }
1132 
1133 /*
1134  * Cases where we avoid rendezvous handler timeout:
1135  * 1) If this CPU is offline.
1136  *
1137  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1138  *  skip those CPUs which remain looping in the 1st kernel - see
1139  *  crash_nmi_callback().
1140  *
1141  * Note: there still is a small window between kexec-ing and the new,
1142  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1143  * might not get handled properly.
1144  */
1145 static noinstr bool mce_check_crashing_cpu(void)
1146 {
1147 	unsigned int cpu = smp_processor_id();
1148 
1149 	if (arch_cpu_is_offline(cpu) ||
1150 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1151 		u64 mcgstatus;
1152 
1153 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1154 
1155 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1156 			if (mcgstatus & MCG_STATUS_LMCES)
1157 				return false;
1158 		}
1159 
1160 		if (mcgstatus & MCG_STATUS_RIPV) {
1161 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1162 			return true;
1163 		}
1164 	}
1165 	return false;
1166 }
1167 
1168 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1169 			    unsigned long *toclear, unsigned long *valid_banks,
1170 			    int no_way_out, int *worst)
1171 {
1172 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1173 	struct mca_config *cfg = &mca_cfg;
1174 	int severity, i;
1175 
1176 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1177 		__clear_bit(i, toclear);
1178 		if (!test_bit(i, valid_banks))
1179 			continue;
1180 
1181 		if (!mce_banks[i].ctl)
1182 			continue;
1183 
1184 		m->misc = 0;
1185 		m->addr = 0;
1186 		m->bank = i;
1187 
1188 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1189 		if (!(m->status & MCI_STATUS_VAL))
1190 			continue;
1191 
1192 		/*
1193 		 * Corrected or non-signaled errors are handled by
1194 		 * machine_check_poll(). Leave them alone, unless this panics.
1195 		 */
1196 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1197 			!no_way_out)
1198 			continue;
1199 
1200 		/* Set taint even when machine check was not enabled. */
1201 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1202 
1203 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1204 
1205 		/*
1206 		 * When machine check was for corrected/deferred handler don't
1207 		 * touch, unless we're panicking.
1208 		 */
1209 		if ((severity == MCE_KEEP_SEVERITY ||
1210 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1211 			continue;
1212 
1213 		__set_bit(i, toclear);
1214 
1215 		/* Machine check event was not enabled. Clear, but ignore. */
1216 		if (severity == MCE_NO_SEVERITY)
1217 			continue;
1218 
1219 		mce_read_aux(m, i);
1220 
1221 		/* assuming valid severity level != 0 */
1222 		m->severity = severity;
1223 
1224 		mce_log(m);
1225 
1226 		if (severity > *worst) {
1227 			*final = *m;
1228 			*worst = severity;
1229 		}
1230 	}
1231 
1232 	/* mce_clear_state will clear *final, save locally for use later */
1233 	*m = *final;
1234 }
1235 
1236 static void kill_me_now(struct callback_head *ch)
1237 {
1238 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1239 
1240 	p->mce_count = 0;
1241 	force_sig(SIGBUS);
1242 }
1243 
1244 static void kill_me_maybe(struct callback_head *cb)
1245 {
1246 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1247 	int flags = MF_ACTION_REQUIRED;
1248 	int ret;
1249 
1250 	p->mce_count = 0;
1251 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1252 
1253 	if (!p->mce_ripv)
1254 		flags |= MF_MUST_KILL;
1255 
1256 	ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1257 	if (!ret) {
1258 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1259 		sync_core();
1260 		return;
1261 	}
1262 
1263 	/*
1264 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1265 	 * to the current process with the proper error info, so no need to
1266 	 * send SIGBUS here again.
1267 	 */
1268 	if (ret == -EHWPOISON)
1269 		return;
1270 
1271 	pr_err("Memory error not recovered");
1272 	kill_me_now(cb);
1273 }
1274 
1275 static void kill_me_never(struct callback_head *cb)
1276 {
1277 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1278 
1279 	p->mce_count = 0;
1280 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1281 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0))
1282 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1283 }
1284 
1285 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1286 {
1287 	int count = ++current->mce_count;
1288 
1289 	/* First call, save all the details */
1290 	if (count == 1) {
1291 		current->mce_addr = m->addr;
1292 		current->mce_kflags = m->kflags;
1293 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1294 		current->mce_whole_page = whole_page(m);
1295 		current->mce_kill_me.func = func;
1296 	}
1297 
1298 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1299 	if (count > 10)
1300 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1301 
1302 	/* Second or later call, make sure page address matches the one from first call */
1303 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1304 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1305 
1306 	/* Do not call task_work_add() more than once */
1307 	if (count > 1)
1308 		return;
1309 
1310 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1311 }
1312 
1313 /* Handle unconfigured int18 (should never happen) */
1314 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1315 {
1316 	instrumentation_begin();
1317 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1318 	       smp_processor_id());
1319 	instrumentation_end();
1320 }
1321 
1322 /*
1323  * The actual machine check handler. This only handles real
1324  * exceptions when something got corrupted coming in through int 18.
1325  *
1326  * This is executed in NMI context not subject to normal locking rules. This
1327  * implies that most kernel services cannot be safely used. Don't even
1328  * think about putting a printk in there!
1329  *
1330  * On Intel systems this is entered on all CPUs in parallel through
1331  * MCE broadcast. However some CPUs might be broken beyond repair,
1332  * so be always careful when synchronizing with others.
1333  *
1334  * Tracing and kprobes are disabled: if we interrupted a kernel context
1335  * with IF=1, we need to minimize stack usage.  There are also recursion
1336  * issues: if the machine check was due to a failure of the memory
1337  * backing the user stack, tracing that reads the user stack will cause
1338  * potentially infinite recursion.
1339  */
1340 noinstr void do_machine_check(struct pt_regs *regs)
1341 {
1342 	int worst = 0, order, no_way_out, kill_current_task, lmce;
1343 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1344 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1345 	struct mca_config *cfg = &mca_cfg;
1346 	struct mce m, *final;
1347 	char *msg = NULL;
1348 
1349 	if (unlikely(mce_flags.p5))
1350 		return pentium_machine_check(regs);
1351 	else if (unlikely(mce_flags.winchip))
1352 		return winchip_machine_check(regs);
1353 	else if (unlikely(!mca_cfg.initialized))
1354 		return unexpected_machine_check(regs);
1355 
1356 	/*
1357 	 * Establish sequential order between the CPUs entering the machine
1358 	 * check handler.
1359 	 */
1360 	order = -1;
1361 
1362 	/*
1363 	 * If no_way_out gets set, there is no safe way to recover from this
1364 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1365 	 */
1366 	no_way_out = 0;
1367 
1368 	/*
1369 	 * If kill_current_task is not set, there might be a way to recover from this
1370 	 * error.
1371 	 */
1372 	kill_current_task = 0;
1373 
1374 	/*
1375 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1376 	 * on Intel.
1377 	 */
1378 	lmce = 1;
1379 
1380 	this_cpu_inc(mce_exception_count);
1381 
1382 	mce_gather_info(&m, regs);
1383 	m.tsc = rdtsc();
1384 
1385 	final = this_cpu_ptr(&mces_seen);
1386 	*final = m;
1387 
1388 	memset(valid_banks, 0, sizeof(valid_banks));
1389 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1390 
1391 	barrier();
1392 
1393 	/*
1394 	 * When no restart IP might need to kill or panic.
1395 	 * Assume the worst for now, but if we find the
1396 	 * severity is MCE_AR_SEVERITY we have other options.
1397 	 */
1398 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1399 		kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1400 	/*
1401 	 * Check if this MCE is signaled to only this logical processor,
1402 	 * on Intel, Zhaoxin only.
1403 	 */
1404 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1405 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1406 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1407 
1408 	/*
1409 	 * Local machine check may already know that we have to panic.
1410 	 * Broadcast machine check begins rendezvous in mce_start()
1411 	 * Go through all banks in exclusion of the other CPUs. This way we
1412 	 * don't report duplicated events on shared banks because the first one
1413 	 * to see it will clear it.
1414 	 */
1415 	if (lmce) {
1416 		if (no_way_out && cfg->tolerant < 3)
1417 			mce_panic("Fatal local machine check", &m, msg);
1418 	} else {
1419 		order = mce_start(&no_way_out);
1420 	}
1421 
1422 	__mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1423 
1424 	if (!no_way_out)
1425 		mce_clear_state(toclear);
1426 
1427 	/*
1428 	 * Do most of the synchronization with other CPUs.
1429 	 * When there's any problem use only local no_way_out state.
1430 	 */
1431 	if (!lmce) {
1432 		if (mce_end(order) < 0) {
1433 			if (!no_way_out)
1434 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1435 
1436 			if (no_way_out && cfg->tolerant < 3)
1437 				mce_panic("Fatal machine check on current CPU", &m, msg);
1438 		}
1439 	} else {
1440 		/*
1441 		 * If there was a fatal machine check we should have
1442 		 * already called mce_panic earlier in this function.
1443 		 * Since we re-read the banks, we might have found
1444 		 * something new. Check again to see if we found a
1445 		 * fatal error. We call "mce_severity()" again to
1446 		 * make sure we have the right "msg".
1447 		 */
1448 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1449 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1450 			mce_panic("Local fatal machine check!", &m, msg);
1451 		}
1452 	}
1453 
1454 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1455 		goto out;
1456 
1457 	/* Fault was in user mode and we need to take some action */
1458 	if ((m.cs & 3) == 3) {
1459 		/* If this triggers there is no way to recover. Die hard. */
1460 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1461 
1462 		if (kill_current_task)
1463 			queue_task_work(&m, msg, kill_me_now);
1464 		else
1465 			queue_task_work(&m, msg, kill_me_maybe);
1466 
1467 	} else {
1468 		/*
1469 		 * Handle an MCE which has happened in kernel space but from
1470 		 * which the kernel can recover: ex_has_fault_handler() has
1471 		 * already verified that the rIP at which the error happened is
1472 		 * a rIP from which the kernel can recover (by jumping to
1473 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1474 		 * corresponding exception handler which would do that is the
1475 		 * proper one.
1476 		 */
1477 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1478 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1479 				mce_panic("Failed kernel mode recovery", &m, msg);
1480 		}
1481 
1482 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1483 			queue_task_work(&m, msg, kill_me_never);
1484 	}
1485 out:
1486 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1487 }
1488 EXPORT_SYMBOL_GPL(do_machine_check);
1489 
1490 #ifndef CONFIG_MEMORY_FAILURE
1491 int memory_failure(unsigned long pfn, int flags)
1492 {
1493 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1494 	BUG_ON(flags & MF_ACTION_REQUIRED);
1495 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1496 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1497 	       pfn);
1498 
1499 	return 0;
1500 }
1501 #endif
1502 
1503 /*
1504  * Periodic polling timer for "silent" machine check errors.  If the
1505  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1506  * errors, poll 2x slower (up to check_interval seconds).
1507  */
1508 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1509 
1510 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1511 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1512 
1513 static unsigned long mce_adjust_timer_default(unsigned long interval)
1514 {
1515 	return interval;
1516 }
1517 
1518 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1519 
1520 static void __start_timer(struct timer_list *t, unsigned long interval)
1521 {
1522 	unsigned long when = jiffies + interval;
1523 	unsigned long flags;
1524 
1525 	local_irq_save(flags);
1526 
1527 	if (!timer_pending(t) || time_before(when, t->expires))
1528 		mod_timer(t, round_jiffies(when));
1529 
1530 	local_irq_restore(flags);
1531 }
1532 
1533 static void mce_timer_fn(struct timer_list *t)
1534 {
1535 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1536 	unsigned long iv;
1537 
1538 	WARN_ON(cpu_t != t);
1539 
1540 	iv = __this_cpu_read(mce_next_interval);
1541 
1542 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1543 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1544 
1545 		if (mce_intel_cmci_poll()) {
1546 			iv = mce_adjust_timer(iv);
1547 			goto done;
1548 		}
1549 	}
1550 
1551 	/*
1552 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1553 	 * interval, otherwise increase the polling interval.
1554 	 */
1555 	if (mce_notify_irq())
1556 		iv = max(iv / 2, (unsigned long) HZ/100);
1557 	else
1558 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1559 
1560 done:
1561 	__this_cpu_write(mce_next_interval, iv);
1562 	__start_timer(t, iv);
1563 }
1564 
1565 /*
1566  * Ensure that the timer is firing in @interval from now.
1567  */
1568 void mce_timer_kick(unsigned long interval)
1569 {
1570 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1571 	unsigned long iv = __this_cpu_read(mce_next_interval);
1572 
1573 	__start_timer(t, interval);
1574 
1575 	if (interval < iv)
1576 		__this_cpu_write(mce_next_interval, interval);
1577 }
1578 
1579 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1580 static void mce_timer_delete_all(void)
1581 {
1582 	int cpu;
1583 
1584 	for_each_online_cpu(cpu)
1585 		del_timer_sync(&per_cpu(mce_timer, cpu));
1586 }
1587 
1588 /*
1589  * Notify the user(s) about new machine check events.
1590  * Can be called from interrupt context, but not from machine check/NMI
1591  * context.
1592  */
1593 int mce_notify_irq(void)
1594 {
1595 	/* Not more than two messages every minute */
1596 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1597 
1598 	if (test_and_clear_bit(0, &mce_need_notify)) {
1599 		mce_work_trigger();
1600 
1601 		if (__ratelimit(&ratelimit))
1602 			pr_info(HW_ERR "Machine check events logged\n");
1603 
1604 		return 1;
1605 	}
1606 	return 0;
1607 }
1608 EXPORT_SYMBOL_GPL(mce_notify_irq);
1609 
1610 static void __mcheck_cpu_mce_banks_init(void)
1611 {
1612 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1613 	u8 n_banks = this_cpu_read(mce_num_banks);
1614 	int i;
1615 
1616 	for (i = 0; i < n_banks; i++) {
1617 		struct mce_bank *b = &mce_banks[i];
1618 
1619 		/*
1620 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1621 		 * the required vendor quirks before
1622 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1623 		 */
1624 		b->ctl = -1ULL;
1625 		b->init = true;
1626 	}
1627 }
1628 
1629 /*
1630  * Initialize Machine Checks for a CPU.
1631  */
1632 static void __mcheck_cpu_cap_init(void)
1633 {
1634 	u64 cap;
1635 	u8 b;
1636 
1637 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1638 
1639 	b = cap & MCG_BANKCNT_MASK;
1640 
1641 	if (b > MAX_NR_BANKS) {
1642 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1643 			smp_processor_id(), MAX_NR_BANKS, b);
1644 		b = MAX_NR_BANKS;
1645 	}
1646 
1647 	this_cpu_write(mce_num_banks, b);
1648 
1649 	__mcheck_cpu_mce_banks_init();
1650 
1651 	/* Use accurate RIP reporting if available. */
1652 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1653 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1654 
1655 	if (cap & MCG_SER_P)
1656 		mca_cfg.ser = 1;
1657 }
1658 
1659 static void __mcheck_cpu_init_generic(void)
1660 {
1661 	enum mcp_flags m_fl = 0;
1662 	mce_banks_t all_banks;
1663 	u64 cap;
1664 
1665 	if (!mca_cfg.bootlog)
1666 		m_fl = MCP_DONTLOG;
1667 
1668 	/*
1669 	 * Log the machine checks left over from the previous reset. Log them
1670 	 * only, do not start processing them. That will happen in mcheck_late_init()
1671 	 * when all consumers have been registered on the notifier chain.
1672 	 */
1673 	bitmap_fill(all_banks, MAX_NR_BANKS);
1674 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1675 
1676 	cr4_set_bits(X86_CR4_MCE);
1677 
1678 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1679 	if (cap & MCG_CTL_P)
1680 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1681 }
1682 
1683 static void __mcheck_cpu_init_clear_banks(void)
1684 {
1685 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1686 	int i;
1687 
1688 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1689 		struct mce_bank *b = &mce_banks[i];
1690 
1691 		if (!b->init)
1692 			continue;
1693 		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1694 		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1695 	}
1696 }
1697 
1698 /*
1699  * Do a final check to see if there are any unused/RAZ banks.
1700  *
1701  * This must be done after the banks have been initialized and any quirks have
1702  * been applied.
1703  *
1704  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1705  * Otherwise, a user who disables a bank will not be able to re-enable it
1706  * without a system reboot.
1707  */
1708 static void __mcheck_cpu_check_banks(void)
1709 {
1710 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1711 	u64 msrval;
1712 	int i;
1713 
1714 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1715 		struct mce_bank *b = &mce_banks[i];
1716 
1717 		if (!b->init)
1718 			continue;
1719 
1720 		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1721 		b->init = !!msrval;
1722 	}
1723 }
1724 
1725 /* Add per CPU specific workarounds here */
1726 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1727 {
1728 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1729 	struct mca_config *cfg = &mca_cfg;
1730 
1731 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1732 		pr_info("unknown CPU type - not enabling MCE support\n");
1733 		return -EOPNOTSUPP;
1734 	}
1735 
1736 	/* This should be disabled by the BIOS, but isn't always */
1737 	if (c->x86_vendor == X86_VENDOR_AMD) {
1738 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1739 			/*
1740 			 * disable GART TBL walk error reporting, which
1741 			 * trips off incorrectly with the IOMMU & 3ware
1742 			 * & Cerberus:
1743 			 */
1744 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1745 		}
1746 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1747 			/*
1748 			 * Lots of broken BIOS around that don't clear them
1749 			 * by default and leave crap in there. Don't log:
1750 			 */
1751 			cfg->bootlog = 0;
1752 		}
1753 		/*
1754 		 * Various K7s with broken bank 0 around. Always disable
1755 		 * by default.
1756 		 */
1757 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1758 			mce_banks[0].ctl = 0;
1759 
1760 		/*
1761 		 * overflow_recov is supported for F15h Models 00h-0fh
1762 		 * even though we don't have a CPUID bit for it.
1763 		 */
1764 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1765 			mce_flags.overflow_recov = 1;
1766 
1767 	}
1768 
1769 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1770 		/*
1771 		 * SDM documents that on family 6 bank 0 should not be written
1772 		 * because it aliases to another special BIOS controlled
1773 		 * register.
1774 		 * But it's not aliased anymore on model 0x1a+
1775 		 * Don't ignore bank 0 completely because there could be a
1776 		 * valid event later, merely don't write CTL0.
1777 		 */
1778 
1779 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1780 			mce_banks[0].init = false;
1781 
1782 		/*
1783 		 * All newer Intel systems support MCE broadcasting. Enable
1784 		 * synchronization with a one second timeout.
1785 		 */
1786 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1787 			cfg->monarch_timeout < 0)
1788 			cfg->monarch_timeout = USEC_PER_SEC;
1789 
1790 		/*
1791 		 * There are also broken BIOSes on some Pentium M and
1792 		 * earlier systems:
1793 		 */
1794 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1795 			cfg->bootlog = 0;
1796 
1797 		if (c->x86 == 6 && c->x86_model == 45)
1798 			mce_flags.snb_ifu_quirk = 1;
1799 	}
1800 
1801 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1802 		/*
1803 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1804 		 * synchronization with a one second timeout.
1805 		 */
1806 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1807 			if (cfg->monarch_timeout < 0)
1808 				cfg->monarch_timeout = USEC_PER_SEC;
1809 		}
1810 	}
1811 
1812 	if (cfg->monarch_timeout < 0)
1813 		cfg->monarch_timeout = 0;
1814 	if (cfg->bootlog != 0)
1815 		cfg->panic_timeout = 30;
1816 
1817 	return 0;
1818 }
1819 
1820 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1821 {
1822 	if (c->x86 != 5)
1823 		return 0;
1824 
1825 	switch (c->x86_vendor) {
1826 	case X86_VENDOR_INTEL:
1827 		intel_p5_mcheck_init(c);
1828 		mce_flags.p5 = 1;
1829 		return 1;
1830 	case X86_VENDOR_CENTAUR:
1831 		winchip_mcheck_init(c);
1832 		mce_flags.winchip = 1;
1833 		return 1;
1834 	default:
1835 		return 0;
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 /*
1842  * Init basic CPU features needed for early decoding of MCEs.
1843  */
1844 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1845 {
1846 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1847 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1848 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1849 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1850 		mce_flags.amd_threshold	 = 1;
1851 	}
1852 }
1853 
1854 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1855 {
1856 	struct mca_config *cfg = &mca_cfg;
1857 
1858 	 /*
1859 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1860 	  * synchronization with a one second timeout.
1861 	  */
1862 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1863 	     c->x86 > 6) {
1864 		if (cfg->monarch_timeout < 0)
1865 			cfg->monarch_timeout = USEC_PER_SEC;
1866 	}
1867 }
1868 
1869 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1870 {
1871 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1872 
1873 	/*
1874 	 * These CPUs have MCA bank 8 which reports only one error type called
1875 	 * SVAD (System View Address Decoder). The reporting of that error is
1876 	 * controlled by IA32_MC8.CTL.0.
1877 	 *
1878 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1879 	 * virtual machines start and result in a system  panic. Always disable
1880 	 * bank 8 SVAD error by default.
1881 	 */
1882 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1883 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1884 		if (this_cpu_read(mce_num_banks) > 8)
1885 			mce_banks[8].ctl = 0;
1886 	}
1887 
1888 	intel_init_cmci();
1889 	intel_init_lmce();
1890 	mce_adjust_timer = cmci_intel_adjust_timer;
1891 }
1892 
1893 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1894 {
1895 	intel_clear_lmce();
1896 }
1897 
1898 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1899 {
1900 	switch (c->x86_vendor) {
1901 	case X86_VENDOR_INTEL:
1902 		mce_intel_feature_init(c);
1903 		mce_adjust_timer = cmci_intel_adjust_timer;
1904 		break;
1905 
1906 	case X86_VENDOR_AMD: {
1907 		mce_amd_feature_init(c);
1908 		break;
1909 		}
1910 
1911 	case X86_VENDOR_HYGON:
1912 		mce_hygon_feature_init(c);
1913 		break;
1914 
1915 	case X86_VENDOR_CENTAUR:
1916 		mce_centaur_feature_init(c);
1917 		break;
1918 
1919 	case X86_VENDOR_ZHAOXIN:
1920 		mce_zhaoxin_feature_init(c);
1921 		break;
1922 
1923 	default:
1924 		break;
1925 	}
1926 }
1927 
1928 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1929 {
1930 	switch (c->x86_vendor) {
1931 	case X86_VENDOR_INTEL:
1932 		mce_intel_feature_clear(c);
1933 		break;
1934 
1935 	case X86_VENDOR_ZHAOXIN:
1936 		mce_zhaoxin_feature_clear(c);
1937 		break;
1938 
1939 	default:
1940 		break;
1941 	}
1942 }
1943 
1944 static void mce_start_timer(struct timer_list *t)
1945 {
1946 	unsigned long iv = check_interval * HZ;
1947 
1948 	if (mca_cfg.ignore_ce || !iv)
1949 		return;
1950 
1951 	this_cpu_write(mce_next_interval, iv);
1952 	__start_timer(t, iv);
1953 }
1954 
1955 static void __mcheck_cpu_setup_timer(void)
1956 {
1957 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1958 
1959 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1960 }
1961 
1962 static void __mcheck_cpu_init_timer(void)
1963 {
1964 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1965 
1966 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1967 	mce_start_timer(t);
1968 }
1969 
1970 bool filter_mce(struct mce *m)
1971 {
1972 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1973 		return amd_filter_mce(m);
1974 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1975 		return intel_filter_mce(m);
1976 
1977 	return false;
1978 }
1979 
1980 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
1981 {
1982 	irqentry_state_t irq_state;
1983 
1984 	WARN_ON_ONCE(user_mode(regs));
1985 
1986 	/*
1987 	 * Only required when from kernel mode. See
1988 	 * mce_check_crashing_cpu() for details.
1989 	 */
1990 	if (mca_cfg.initialized && mce_check_crashing_cpu())
1991 		return;
1992 
1993 	irq_state = irqentry_nmi_enter(regs);
1994 
1995 	do_machine_check(regs);
1996 
1997 	irqentry_nmi_exit(regs, irq_state);
1998 }
1999 
2000 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2001 {
2002 	irqentry_enter_from_user_mode(regs);
2003 
2004 	do_machine_check(regs);
2005 
2006 	irqentry_exit_to_user_mode(regs);
2007 }
2008 
2009 #ifdef CONFIG_X86_64
2010 /* MCE hit kernel mode */
2011 DEFINE_IDTENTRY_MCE(exc_machine_check)
2012 {
2013 	unsigned long dr7;
2014 
2015 	dr7 = local_db_save();
2016 	exc_machine_check_kernel(regs);
2017 	local_db_restore(dr7);
2018 }
2019 
2020 /* The user mode variant. */
2021 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2022 {
2023 	unsigned long dr7;
2024 
2025 	dr7 = local_db_save();
2026 	exc_machine_check_user(regs);
2027 	local_db_restore(dr7);
2028 }
2029 #else
2030 /* 32bit unified entry point */
2031 DEFINE_IDTENTRY_RAW(exc_machine_check)
2032 {
2033 	unsigned long dr7;
2034 
2035 	dr7 = local_db_save();
2036 	if (user_mode(regs))
2037 		exc_machine_check_user(regs);
2038 	else
2039 		exc_machine_check_kernel(regs);
2040 	local_db_restore(dr7);
2041 }
2042 #endif
2043 
2044 /*
2045  * Called for each booted CPU to set up machine checks.
2046  * Must be called with preempt off:
2047  */
2048 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2049 {
2050 	if (mca_cfg.disabled)
2051 		return;
2052 
2053 	if (__mcheck_cpu_ancient_init(c))
2054 		return;
2055 
2056 	if (!mce_available(c))
2057 		return;
2058 
2059 	__mcheck_cpu_cap_init();
2060 
2061 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2062 		mca_cfg.disabled = 1;
2063 		return;
2064 	}
2065 
2066 	if (mce_gen_pool_init()) {
2067 		mca_cfg.disabled = 1;
2068 		pr_emerg("Couldn't allocate MCE records pool!\n");
2069 		return;
2070 	}
2071 
2072 	mca_cfg.initialized = 1;
2073 
2074 	__mcheck_cpu_init_early(c);
2075 	__mcheck_cpu_init_generic();
2076 	__mcheck_cpu_init_vendor(c);
2077 	__mcheck_cpu_init_clear_banks();
2078 	__mcheck_cpu_check_banks();
2079 	__mcheck_cpu_setup_timer();
2080 }
2081 
2082 /*
2083  * Called for each booted CPU to clear some machine checks opt-ins
2084  */
2085 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2086 {
2087 	if (mca_cfg.disabled)
2088 		return;
2089 
2090 	if (!mce_available(c))
2091 		return;
2092 
2093 	/*
2094 	 * Possibly to clear general settings generic to x86
2095 	 * __mcheck_cpu_clear_generic(c);
2096 	 */
2097 	__mcheck_cpu_clear_vendor(c);
2098 
2099 }
2100 
2101 static void __mce_disable_bank(void *arg)
2102 {
2103 	int bank = *((int *)arg);
2104 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2105 	cmci_disable_bank(bank);
2106 }
2107 
2108 void mce_disable_bank(int bank)
2109 {
2110 	if (bank >= this_cpu_read(mce_num_banks)) {
2111 		pr_warn(FW_BUG
2112 			"Ignoring request to disable invalid MCA bank %d.\n",
2113 			bank);
2114 		return;
2115 	}
2116 	set_bit(bank, mce_banks_ce_disabled);
2117 	on_each_cpu(__mce_disable_bank, &bank, 1);
2118 }
2119 
2120 /*
2121  * mce=off Disables machine check
2122  * mce=no_cmci Disables CMCI
2123  * mce=no_lmce Disables LMCE
2124  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2125  * mce=print_all Print all machine check logs to console
2126  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2127  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2128  *	monarchtimeout is how long to wait for other CPUs on machine
2129  *	check, or 0 to not wait
2130  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2131 	and older.
2132  * mce=nobootlog Don't log MCEs from before booting.
2133  * mce=bios_cmci_threshold Don't program the CMCI threshold
2134  * mce=recovery force enable copy_mc_fragile()
2135  */
2136 static int __init mcheck_enable(char *str)
2137 {
2138 	struct mca_config *cfg = &mca_cfg;
2139 
2140 	if (*str == 0) {
2141 		enable_p5_mce();
2142 		return 1;
2143 	}
2144 	if (*str == '=')
2145 		str++;
2146 	if (!strcmp(str, "off"))
2147 		cfg->disabled = 1;
2148 	else if (!strcmp(str, "no_cmci"))
2149 		cfg->cmci_disabled = true;
2150 	else if (!strcmp(str, "no_lmce"))
2151 		cfg->lmce_disabled = 1;
2152 	else if (!strcmp(str, "dont_log_ce"))
2153 		cfg->dont_log_ce = true;
2154 	else if (!strcmp(str, "print_all"))
2155 		cfg->print_all = true;
2156 	else if (!strcmp(str, "ignore_ce"))
2157 		cfg->ignore_ce = true;
2158 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2159 		cfg->bootlog = (str[0] == 'b');
2160 	else if (!strcmp(str, "bios_cmci_threshold"))
2161 		cfg->bios_cmci_threshold = 1;
2162 	else if (!strcmp(str, "recovery"))
2163 		cfg->recovery = 1;
2164 	else if (isdigit(str[0])) {
2165 		if (get_option(&str, &cfg->tolerant) == 2)
2166 			get_option(&str, &(cfg->monarch_timeout));
2167 	} else {
2168 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2169 		return 0;
2170 	}
2171 	return 1;
2172 }
2173 __setup("mce", mcheck_enable);
2174 
2175 int __init mcheck_init(void)
2176 {
2177 	mce_register_decode_chain(&early_nb);
2178 	mce_register_decode_chain(&mce_uc_nb);
2179 	mce_register_decode_chain(&mce_default_nb);
2180 
2181 	INIT_WORK(&mce_work, mce_gen_pool_process);
2182 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2183 
2184 	return 0;
2185 }
2186 
2187 /*
2188  * mce_syscore: PM support
2189  */
2190 
2191 /*
2192  * Disable machine checks on suspend and shutdown. We can't really handle
2193  * them later.
2194  */
2195 static void mce_disable_error_reporting(void)
2196 {
2197 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2198 	int i;
2199 
2200 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2201 		struct mce_bank *b = &mce_banks[i];
2202 
2203 		if (b->init)
2204 			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2205 	}
2206 	return;
2207 }
2208 
2209 static void vendor_disable_error_reporting(void)
2210 {
2211 	/*
2212 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2213 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2214 	 * is bad, since it will inhibit reporting for all shared resources on
2215 	 * the socket like the last level cache (LLC), the integrated memory
2216 	 * controller (iMC), etc.
2217 	 */
2218 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2219 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2220 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2221 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2222 		return;
2223 
2224 	mce_disable_error_reporting();
2225 }
2226 
2227 static int mce_syscore_suspend(void)
2228 {
2229 	vendor_disable_error_reporting();
2230 	return 0;
2231 }
2232 
2233 static void mce_syscore_shutdown(void)
2234 {
2235 	vendor_disable_error_reporting();
2236 }
2237 
2238 /*
2239  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2240  * Only one CPU is active at this time, the others get re-added later using
2241  * CPU hotplug:
2242  */
2243 static void mce_syscore_resume(void)
2244 {
2245 	__mcheck_cpu_init_generic();
2246 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2247 	__mcheck_cpu_init_clear_banks();
2248 }
2249 
2250 static struct syscore_ops mce_syscore_ops = {
2251 	.suspend	= mce_syscore_suspend,
2252 	.shutdown	= mce_syscore_shutdown,
2253 	.resume		= mce_syscore_resume,
2254 };
2255 
2256 /*
2257  * mce_device: Sysfs support
2258  */
2259 
2260 static void mce_cpu_restart(void *data)
2261 {
2262 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2263 		return;
2264 	__mcheck_cpu_init_generic();
2265 	__mcheck_cpu_init_clear_banks();
2266 	__mcheck_cpu_init_timer();
2267 }
2268 
2269 /* Reinit MCEs after user configuration changes */
2270 static void mce_restart(void)
2271 {
2272 	mce_timer_delete_all();
2273 	on_each_cpu(mce_cpu_restart, NULL, 1);
2274 }
2275 
2276 /* Toggle features for corrected errors */
2277 static void mce_disable_cmci(void *data)
2278 {
2279 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2280 		return;
2281 	cmci_clear();
2282 }
2283 
2284 static void mce_enable_ce(void *all)
2285 {
2286 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2287 		return;
2288 	cmci_reenable();
2289 	cmci_recheck();
2290 	if (all)
2291 		__mcheck_cpu_init_timer();
2292 }
2293 
2294 static struct bus_type mce_subsys = {
2295 	.name		= "machinecheck",
2296 	.dev_name	= "machinecheck",
2297 };
2298 
2299 DEFINE_PER_CPU(struct device *, mce_device);
2300 
2301 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2302 {
2303 	return container_of(attr, struct mce_bank_dev, attr);
2304 }
2305 
2306 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2307 			 char *buf)
2308 {
2309 	u8 bank = attr_to_bank(attr)->bank;
2310 	struct mce_bank *b;
2311 
2312 	if (bank >= per_cpu(mce_num_banks, s->id))
2313 		return -EINVAL;
2314 
2315 	b = &per_cpu(mce_banks_array, s->id)[bank];
2316 
2317 	if (!b->init)
2318 		return -ENODEV;
2319 
2320 	return sprintf(buf, "%llx\n", b->ctl);
2321 }
2322 
2323 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2324 			const char *buf, size_t size)
2325 {
2326 	u8 bank = attr_to_bank(attr)->bank;
2327 	struct mce_bank *b;
2328 	u64 new;
2329 
2330 	if (kstrtou64(buf, 0, &new) < 0)
2331 		return -EINVAL;
2332 
2333 	if (bank >= per_cpu(mce_num_banks, s->id))
2334 		return -EINVAL;
2335 
2336 	b = &per_cpu(mce_banks_array, s->id)[bank];
2337 
2338 	if (!b->init)
2339 		return -ENODEV;
2340 
2341 	b->ctl = new;
2342 	mce_restart();
2343 
2344 	return size;
2345 }
2346 
2347 static ssize_t set_ignore_ce(struct device *s,
2348 			     struct device_attribute *attr,
2349 			     const char *buf, size_t size)
2350 {
2351 	u64 new;
2352 
2353 	if (kstrtou64(buf, 0, &new) < 0)
2354 		return -EINVAL;
2355 
2356 	mutex_lock(&mce_sysfs_mutex);
2357 	if (mca_cfg.ignore_ce ^ !!new) {
2358 		if (new) {
2359 			/* disable ce features */
2360 			mce_timer_delete_all();
2361 			on_each_cpu(mce_disable_cmci, NULL, 1);
2362 			mca_cfg.ignore_ce = true;
2363 		} else {
2364 			/* enable ce features */
2365 			mca_cfg.ignore_ce = false;
2366 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2367 		}
2368 	}
2369 	mutex_unlock(&mce_sysfs_mutex);
2370 
2371 	return size;
2372 }
2373 
2374 static ssize_t set_cmci_disabled(struct device *s,
2375 				 struct device_attribute *attr,
2376 				 const char *buf, size_t size)
2377 {
2378 	u64 new;
2379 
2380 	if (kstrtou64(buf, 0, &new) < 0)
2381 		return -EINVAL;
2382 
2383 	mutex_lock(&mce_sysfs_mutex);
2384 	if (mca_cfg.cmci_disabled ^ !!new) {
2385 		if (new) {
2386 			/* disable cmci */
2387 			on_each_cpu(mce_disable_cmci, NULL, 1);
2388 			mca_cfg.cmci_disabled = true;
2389 		} else {
2390 			/* enable cmci */
2391 			mca_cfg.cmci_disabled = false;
2392 			on_each_cpu(mce_enable_ce, NULL, 1);
2393 		}
2394 	}
2395 	mutex_unlock(&mce_sysfs_mutex);
2396 
2397 	return size;
2398 }
2399 
2400 static ssize_t store_int_with_restart(struct device *s,
2401 				      struct device_attribute *attr,
2402 				      const char *buf, size_t size)
2403 {
2404 	unsigned long old_check_interval = check_interval;
2405 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2406 
2407 	if (check_interval == old_check_interval)
2408 		return ret;
2409 
2410 	mutex_lock(&mce_sysfs_mutex);
2411 	mce_restart();
2412 	mutex_unlock(&mce_sysfs_mutex);
2413 
2414 	return ret;
2415 }
2416 
2417 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2418 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2419 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2420 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2421 
2422 static struct dev_ext_attribute dev_attr_check_interval = {
2423 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2424 	&check_interval
2425 };
2426 
2427 static struct dev_ext_attribute dev_attr_ignore_ce = {
2428 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2429 	&mca_cfg.ignore_ce
2430 };
2431 
2432 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2433 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2434 	&mca_cfg.cmci_disabled
2435 };
2436 
2437 static struct device_attribute *mce_device_attrs[] = {
2438 	&dev_attr_tolerant.attr,
2439 	&dev_attr_check_interval.attr,
2440 #ifdef CONFIG_X86_MCELOG_LEGACY
2441 	&dev_attr_trigger,
2442 #endif
2443 	&dev_attr_monarch_timeout.attr,
2444 	&dev_attr_dont_log_ce.attr,
2445 	&dev_attr_print_all.attr,
2446 	&dev_attr_ignore_ce.attr,
2447 	&dev_attr_cmci_disabled.attr,
2448 	NULL
2449 };
2450 
2451 static cpumask_var_t mce_device_initialized;
2452 
2453 static void mce_device_release(struct device *dev)
2454 {
2455 	kfree(dev);
2456 }
2457 
2458 /* Per CPU device init. All of the CPUs still share the same bank device: */
2459 static int mce_device_create(unsigned int cpu)
2460 {
2461 	struct device *dev;
2462 	int err;
2463 	int i, j;
2464 
2465 	if (!mce_available(&boot_cpu_data))
2466 		return -EIO;
2467 
2468 	dev = per_cpu(mce_device, cpu);
2469 	if (dev)
2470 		return 0;
2471 
2472 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2473 	if (!dev)
2474 		return -ENOMEM;
2475 	dev->id  = cpu;
2476 	dev->bus = &mce_subsys;
2477 	dev->release = &mce_device_release;
2478 
2479 	err = device_register(dev);
2480 	if (err) {
2481 		put_device(dev);
2482 		return err;
2483 	}
2484 
2485 	for (i = 0; mce_device_attrs[i]; i++) {
2486 		err = device_create_file(dev, mce_device_attrs[i]);
2487 		if (err)
2488 			goto error;
2489 	}
2490 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2491 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2492 		if (err)
2493 			goto error2;
2494 	}
2495 	cpumask_set_cpu(cpu, mce_device_initialized);
2496 	per_cpu(mce_device, cpu) = dev;
2497 
2498 	return 0;
2499 error2:
2500 	while (--j >= 0)
2501 		device_remove_file(dev, &mce_bank_devs[j].attr);
2502 error:
2503 	while (--i >= 0)
2504 		device_remove_file(dev, mce_device_attrs[i]);
2505 
2506 	device_unregister(dev);
2507 
2508 	return err;
2509 }
2510 
2511 static void mce_device_remove(unsigned int cpu)
2512 {
2513 	struct device *dev = per_cpu(mce_device, cpu);
2514 	int i;
2515 
2516 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2517 		return;
2518 
2519 	for (i = 0; mce_device_attrs[i]; i++)
2520 		device_remove_file(dev, mce_device_attrs[i]);
2521 
2522 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2523 		device_remove_file(dev, &mce_bank_devs[i].attr);
2524 
2525 	device_unregister(dev);
2526 	cpumask_clear_cpu(cpu, mce_device_initialized);
2527 	per_cpu(mce_device, cpu) = NULL;
2528 }
2529 
2530 /* Make sure there are no machine checks on offlined CPUs. */
2531 static void mce_disable_cpu(void)
2532 {
2533 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2534 		return;
2535 
2536 	if (!cpuhp_tasks_frozen)
2537 		cmci_clear();
2538 
2539 	vendor_disable_error_reporting();
2540 }
2541 
2542 static void mce_reenable_cpu(void)
2543 {
2544 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2545 	int i;
2546 
2547 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2548 		return;
2549 
2550 	if (!cpuhp_tasks_frozen)
2551 		cmci_reenable();
2552 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2553 		struct mce_bank *b = &mce_banks[i];
2554 
2555 		if (b->init)
2556 			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2557 	}
2558 }
2559 
2560 static int mce_cpu_dead(unsigned int cpu)
2561 {
2562 	mce_intel_hcpu_update(cpu);
2563 
2564 	/* intentionally ignoring frozen here */
2565 	if (!cpuhp_tasks_frozen)
2566 		cmci_rediscover();
2567 	return 0;
2568 }
2569 
2570 static int mce_cpu_online(unsigned int cpu)
2571 {
2572 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2573 	int ret;
2574 
2575 	mce_device_create(cpu);
2576 
2577 	ret = mce_threshold_create_device(cpu);
2578 	if (ret) {
2579 		mce_device_remove(cpu);
2580 		return ret;
2581 	}
2582 	mce_reenable_cpu();
2583 	mce_start_timer(t);
2584 	return 0;
2585 }
2586 
2587 static int mce_cpu_pre_down(unsigned int cpu)
2588 {
2589 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2590 
2591 	mce_disable_cpu();
2592 	del_timer_sync(t);
2593 	mce_threshold_remove_device(cpu);
2594 	mce_device_remove(cpu);
2595 	return 0;
2596 }
2597 
2598 static __init void mce_init_banks(void)
2599 {
2600 	int i;
2601 
2602 	for (i = 0; i < MAX_NR_BANKS; i++) {
2603 		struct mce_bank_dev *b = &mce_bank_devs[i];
2604 		struct device_attribute *a = &b->attr;
2605 
2606 		b->bank = i;
2607 
2608 		sysfs_attr_init(&a->attr);
2609 		a->attr.name	= b->attrname;
2610 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2611 
2612 		a->attr.mode	= 0644;
2613 		a->show		= show_bank;
2614 		a->store	= set_bank;
2615 	}
2616 }
2617 
2618 /*
2619  * When running on XEN, this initcall is ordered against the XEN mcelog
2620  * initcall:
2621  *
2622  *   device_initcall(xen_late_init_mcelog);
2623  *   device_initcall_sync(mcheck_init_device);
2624  */
2625 static __init int mcheck_init_device(void)
2626 {
2627 	int err;
2628 
2629 	/*
2630 	 * Check if we have a spare virtual bit. This will only become
2631 	 * a problem if/when we move beyond 5-level page tables.
2632 	 */
2633 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2634 
2635 	if (!mce_available(&boot_cpu_data)) {
2636 		err = -EIO;
2637 		goto err_out;
2638 	}
2639 
2640 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2641 		err = -ENOMEM;
2642 		goto err_out;
2643 	}
2644 
2645 	mce_init_banks();
2646 
2647 	err = subsys_system_register(&mce_subsys, NULL);
2648 	if (err)
2649 		goto err_out_mem;
2650 
2651 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2652 				mce_cpu_dead);
2653 	if (err)
2654 		goto err_out_mem;
2655 
2656 	/*
2657 	 * Invokes mce_cpu_online() on all CPUs which are online when
2658 	 * the state is installed.
2659 	 */
2660 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2661 				mce_cpu_online, mce_cpu_pre_down);
2662 	if (err < 0)
2663 		goto err_out_online;
2664 
2665 	register_syscore_ops(&mce_syscore_ops);
2666 
2667 	return 0;
2668 
2669 err_out_online:
2670 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2671 
2672 err_out_mem:
2673 	free_cpumask_var(mce_device_initialized);
2674 
2675 err_out:
2676 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2677 
2678 	return err;
2679 }
2680 device_initcall_sync(mcheck_init_device);
2681 
2682 /*
2683  * Old style boot options parsing. Only for compatibility.
2684  */
2685 static int __init mcheck_disable(char *str)
2686 {
2687 	mca_cfg.disabled = 1;
2688 	return 1;
2689 }
2690 __setup("nomce", mcheck_disable);
2691 
2692 #ifdef CONFIG_DEBUG_FS
2693 struct dentry *mce_get_debugfs_dir(void)
2694 {
2695 	static struct dentry *dmce;
2696 
2697 	if (!dmce)
2698 		dmce = debugfs_create_dir("mce", NULL);
2699 
2700 	return dmce;
2701 }
2702 
2703 static void mce_reset(void)
2704 {
2705 	cpu_missing = 0;
2706 	atomic_set(&mce_fake_panicked, 0);
2707 	atomic_set(&mce_executing, 0);
2708 	atomic_set(&mce_callin, 0);
2709 	atomic_set(&global_nwo, 0);
2710 	cpumask_setall(&mce_missing_cpus);
2711 }
2712 
2713 static int fake_panic_get(void *data, u64 *val)
2714 {
2715 	*val = fake_panic;
2716 	return 0;
2717 }
2718 
2719 static int fake_panic_set(void *data, u64 val)
2720 {
2721 	mce_reset();
2722 	fake_panic = val;
2723 	return 0;
2724 }
2725 
2726 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2727 			 "%llu\n");
2728 
2729 static void __init mcheck_debugfs_init(void)
2730 {
2731 	struct dentry *dmce;
2732 
2733 	dmce = mce_get_debugfs_dir();
2734 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2735 				   &fake_panic_fops);
2736 }
2737 #else
2738 static void __init mcheck_debugfs_init(void) { }
2739 #endif
2740 
2741 static int __init mcheck_late_init(void)
2742 {
2743 	if (mca_cfg.recovery)
2744 		enable_copy_mc_fragile();
2745 
2746 	mcheck_debugfs_init();
2747 
2748 	/*
2749 	 * Flush out everything that has been logged during early boot, now that
2750 	 * everything has been initialized (workqueues, decoders, ...).
2751 	 */
2752 	mce_schedule_work();
2753 
2754 	return 0;
2755 }
2756 late_initcall(mcheck_late_init);
2757