1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/jump_label.h> 44 #include <linux/set_memory.h> 45 46 #include <asm/intel-family.h> 47 #include <asm/processor.h> 48 #include <asm/traps.h> 49 #include <asm/tlbflush.h> 50 #include <asm/mce.h> 51 #include <asm/msr.h> 52 #include <asm/reboot.h> 53 54 #include "internal.h" 55 56 static DEFINE_MUTEX(mce_log_mutex); 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 struct mce_bank { 71 u64 ctl; /* subevents to enable */ 72 bool init; /* initialise bank? */ 73 }; 74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 75 76 #define ATTR_LEN 16 77 /* One object for each MCE bank, shared by all CPUs */ 78 struct mce_bank_dev { 79 struct device_attribute attr; /* device attribute */ 80 char attrname[ATTR_LEN]; /* attribute name */ 81 u8 bank; /* bank number */ 82 }; 83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 84 85 struct mce_vendor_flags mce_flags __read_mostly; 86 87 struct mca_config mca_cfg __read_mostly = { 88 .bootlog = -1, 89 /* 90 * Tolerant levels: 91 * 0: always panic on uncorrected errors, log corrected errors 92 * 1: panic or SIGBUS on uncorrected errors, log corrected errors 93 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors 94 * 3: never panic or SIGBUS, log all errors (for testing only) 95 */ 96 .tolerant = 1, 97 .monarch_timeout = -1 98 }; 99 100 static DEFINE_PER_CPU(struct mce, mces_seen); 101 static unsigned long mce_need_notify; 102 static int cpu_missing; 103 104 /* 105 * MCA banks polled by the period polling timer for corrected events. 106 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 107 */ 108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 109 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 110 }; 111 112 /* 113 * MCA banks controlled through firmware first for corrected errors. 114 * This is a global list of banks for which we won't enable CMCI and we 115 * won't poll. Firmware controls these banks and is responsible for 116 * reporting corrected errors through GHES. Uncorrected/recoverable 117 * errors are still notified through a machine check. 118 */ 119 mce_banks_t mce_banks_ce_disabled; 120 121 static struct work_struct mce_work; 122 static struct irq_work mce_irq_work; 123 124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); 125 126 /* 127 * CPU/chipset specific EDAC code can register a notifier call here to print 128 * MCE errors in a human-readable form. 129 */ 130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 131 132 /* Do initial initialization of a struct mce */ 133 void mce_setup(struct mce *m) 134 { 135 memset(m, 0, sizeof(struct mce)); 136 m->cpu = m->extcpu = smp_processor_id(); 137 /* need the internal __ version to avoid deadlocks */ 138 m->time = __ktime_get_real_seconds(); 139 m->cpuvendor = boot_cpu_data.x86_vendor; 140 m->cpuid = cpuid_eax(1); 141 m->socketid = cpu_data(m->extcpu).phys_proc_id; 142 m->apicid = cpu_data(m->extcpu).initial_apicid; 143 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap); 144 145 if (this_cpu_has(X86_FEATURE_INTEL_PPIN)) 146 rdmsrl(MSR_PPIN, m->ppin); 147 148 m->microcode = boot_cpu_data.microcode; 149 } 150 151 DEFINE_PER_CPU(struct mce, injectm); 152 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 153 154 void mce_log(struct mce *m) 155 { 156 if (!mce_gen_pool_add(m)) 157 irq_work_queue(&mce_irq_work); 158 } 159 160 void mce_inject_log(struct mce *m) 161 { 162 mutex_lock(&mce_log_mutex); 163 mce_log(m); 164 mutex_unlock(&mce_log_mutex); 165 } 166 EXPORT_SYMBOL_GPL(mce_inject_log); 167 168 static struct notifier_block mce_srao_nb; 169 170 /* 171 * We run the default notifier if we have only the SRAO, the first and the 172 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS 173 * notifiers registered on the chain. 174 */ 175 #define NUM_DEFAULT_NOTIFIERS 3 176 static atomic_t num_notifiers; 177 178 void mce_register_decode_chain(struct notifier_block *nb) 179 { 180 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC)) 181 return; 182 183 atomic_inc(&num_notifiers); 184 185 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 186 } 187 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 188 189 void mce_unregister_decode_chain(struct notifier_block *nb) 190 { 191 atomic_dec(&num_notifiers); 192 193 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 194 } 195 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 196 197 static inline u32 ctl_reg(int bank) 198 { 199 return MSR_IA32_MCx_CTL(bank); 200 } 201 202 static inline u32 status_reg(int bank) 203 { 204 return MSR_IA32_MCx_STATUS(bank); 205 } 206 207 static inline u32 addr_reg(int bank) 208 { 209 return MSR_IA32_MCx_ADDR(bank); 210 } 211 212 static inline u32 misc_reg(int bank) 213 { 214 return MSR_IA32_MCx_MISC(bank); 215 } 216 217 static inline u32 smca_ctl_reg(int bank) 218 { 219 return MSR_AMD64_SMCA_MCx_CTL(bank); 220 } 221 222 static inline u32 smca_status_reg(int bank) 223 { 224 return MSR_AMD64_SMCA_MCx_STATUS(bank); 225 } 226 227 static inline u32 smca_addr_reg(int bank) 228 { 229 return MSR_AMD64_SMCA_MCx_ADDR(bank); 230 } 231 232 static inline u32 smca_misc_reg(int bank) 233 { 234 return MSR_AMD64_SMCA_MCx_MISC(bank); 235 } 236 237 struct mca_msr_regs msr_ops = { 238 .ctl = ctl_reg, 239 .status = status_reg, 240 .addr = addr_reg, 241 .misc = misc_reg 242 }; 243 244 static void __print_mce(struct mce *m) 245 { 246 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 247 m->extcpu, 248 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 249 m->mcgstatus, m->bank, m->status); 250 251 if (m->ip) { 252 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 253 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 254 m->cs, m->ip); 255 256 if (m->cs == __KERNEL_CS) 257 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 258 pr_cont("\n"); 259 } 260 261 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 262 if (m->addr) 263 pr_cont("ADDR %llx ", m->addr); 264 if (m->misc) 265 pr_cont("MISC %llx ", m->misc); 266 267 if (mce_flags.smca) { 268 if (m->synd) 269 pr_cont("SYND %llx ", m->synd); 270 if (m->ipid) 271 pr_cont("IPID %llx ", m->ipid); 272 } 273 274 pr_cont("\n"); 275 /* 276 * Note this output is parsed by external tools and old fields 277 * should not be changed. 278 */ 279 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 280 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 281 m->microcode); 282 } 283 284 static void print_mce(struct mce *m) 285 { 286 __print_mce(m); 287 288 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 289 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 290 } 291 292 #define PANIC_TIMEOUT 5 /* 5 seconds */ 293 294 static atomic_t mce_panicked; 295 296 static int fake_panic; 297 static atomic_t mce_fake_panicked; 298 299 /* Panic in progress. Enable interrupts and wait for final IPI */ 300 static void wait_for_panic(void) 301 { 302 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 303 304 preempt_disable(); 305 local_irq_enable(); 306 while (timeout-- > 0) 307 udelay(1); 308 if (panic_timeout == 0) 309 panic_timeout = mca_cfg.panic_timeout; 310 panic("Panicing machine check CPU died"); 311 } 312 313 static void mce_panic(const char *msg, struct mce *final, char *exp) 314 { 315 int apei_err = 0; 316 struct llist_node *pending; 317 struct mce_evt_llist *l; 318 319 if (!fake_panic) { 320 /* 321 * Make sure only one CPU runs in machine check panic 322 */ 323 if (atomic_inc_return(&mce_panicked) > 1) 324 wait_for_panic(); 325 barrier(); 326 327 bust_spinlocks(1); 328 console_verbose(); 329 } else { 330 /* Don't log too much for fake panic */ 331 if (atomic_inc_return(&mce_fake_panicked) > 1) 332 return; 333 } 334 pending = mce_gen_pool_prepare_records(); 335 /* First print corrected ones that are still unlogged */ 336 llist_for_each_entry(l, pending, llnode) { 337 struct mce *m = &l->mce; 338 if (!(m->status & MCI_STATUS_UC)) { 339 print_mce(m); 340 if (!apei_err) 341 apei_err = apei_write_mce(m); 342 } 343 } 344 /* Now print uncorrected but with the final one last */ 345 llist_for_each_entry(l, pending, llnode) { 346 struct mce *m = &l->mce; 347 if (!(m->status & MCI_STATUS_UC)) 348 continue; 349 if (!final || mce_cmp(m, final)) { 350 print_mce(m); 351 if (!apei_err) 352 apei_err = apei_write_mce(m); 353 } 354 } 355 if (final) { 356 print_mce(final); 357 if (!apei_err) 358 apei_err = apei_write_mce(final); 359 } 360 if (cpu_missing) 361 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); 362 if (exp) 363 pr_emerg(HW_ERR "Machine check: %s\n", exp); 364 if (!fake_panic) { 365 if (panic_timeout == 0) 366 panic_timeout = mca_cfg.panic_timeout; 367 panic(msg); 368 } else 369 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 370 } 371 372 /* Support code for software error injection */ 373 374 static int msr_to_offset(u32 msr) 375 { 376 unsigned bank = __this_cpu_read(injectm.bank); 377 378 if (msr == mca_cfg.rip_msr) 379 return offsetof(struct mce, ip); 380 if (msr == msr_ops.status(bank)) 381 return offsetof(struct mce, status); 382 if (msr == msr_ops.addr(bank)) 383 return offsetof(struct mce, addr); 384 if (msr == msr_ops.misc(bank)) 385 return offsetof(struct mce, misc); 386 if (msr == MSR_IA32_MCG_STATUS) 387 return offsetof(struct mce, mcgstatus); 388 return -1; 389 } 390 391 /* MSR access wrappers used for error injection */ 392 static u64 mce_rdmsrl(u32 msr) 393 { 394 u64 v; 395 396 if (__this_cpu_read(injectm.finished)) { 397 int offset = msr_to_offset(msr); 398 399 if (offset < 0) 400 return 0; 401 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 402 } 403 404 if (rdmsrl_safe(msr, &v)) { 405 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr); 406 /* 407 * Return zero in case the access faulted. This should 408 * not happen normally but can happen if the CPU does 409 * something weird, or if the code is buggy. 410 */ 411 v = 0; 412 } 413 414 return v; 415 } 416 417 static void mce_wrmsrl(u32 msr, u64 v) 418 { 419 if (__this_cpu_read(injectm.finished)) { 420 int offset = msr_to_offset(msr); 421 422 if (offset >= 0) 423 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 424 return; 425 } 426 wrmsrl(msr, v); 427 } 428 429 /* 430 * Collect all global (w.r.t. this processor) status about this machine 431 * check into our "mce" struct so that we can use it later to assess 432 * the severity of the problem as we read per-bank specific details. 433 */ 434 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) 435 { 436 mce_setup(m); 437 438 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 439 if (regs) { 440 /* 441 * Get the address of the instruction at the time of 442 * the machine check error. 443 */ 444 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 445 m->ip = regs->ip; 446 m->cs = regs->cs; 447 448 /* 449 * When in VM86 mode make the cs look like ring 3 450 * always. This is a lie, but it's better than passing 451 * the additional vm86 bit around everywhere. 452 */ 453 if (v8086_mode(regs)) 454 m->cs |= 3; 455 } 456 /* Use accurate RIP reporting if available. */ 457 if (mca_cfg.rip_msr) 458 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 459 } 460 } 461 462 int mce_available(struct cpuinfo_x86 *c) 463 { 464 if (mca_cfg.disabled) 465 return 0; 466 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 467 } 468 469 static void mce_schedule_work(void) 470 { 471 if (!mce_gen_pool_empty()) 472 schedule_work(&mce_work); 473 } 474 475 static void mce_irq_work_cb(struct irq_work *entry) 476 { 477 mce_schedule_work(); 478 } 479 480 /* 481 * Check if the address reported by the CPU is in a format we can parse. 482 * It would be possible to add code for most other cases, but all would 483 * be somewhat complicated (e.g. segment offset would require an instruction 484 * parser). So only support physical addresses up to page granuality for now. 485 */ 486 int mce_usable_address(struct mce *m) 487 { 488 if (!(m->status & MCI_STATUS_ADDRV)) 489 return 0; 490 491 /* Checks after this one are Intel/Zhaoxin-specific: */ 492 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 493 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 494 return 1; 495 496 if (!(m->status & MCI_STATUS_MISCV)) 497 return 0; 498 499 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 500 return 0; 501 502 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 503 return 0; 504 505 return 1; 506 } 507 EXPORT_SYMBOL_GPL(mce_usable_address); 508 509 bool mce_is_memory_error(struct mce *m) 510 { 511 switch (m->cpuvendor) { 512 case X86_VENDOR_AMD: 513 case X86_VENDOR_HYGON: 514 return amd_mce_is_memory_error(m); 515 516 case X86_VENDOR_INTEL: 517 case X86_VENDOR_ZHAOXIN: 518 /* 519 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 520 * 521 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 522 * indicating a memory error. Bit 8 is used for indicating a 523 * cache hierarchy error. The combination of bit 2 and bit 3 524 * is used for indicating a `generic' cache hierarchy error 525 * But we can't just blindly check the above bits, because if 526 * bit 11 is set, then it is a bus/interconnect error - and 527 * either way the above bits just gives more detail on what 528 * bus/interconnect error happened. Note that bit 12 can be 529 * ignored, as it's the "filter" bit. 530 */ 531 return (m->status & 0xef80) == BIT(7) || 532 (m->status & 0xef00) == BIT(8) || 533 (m->status & 0xeffc) == 0xc; 534 535 default: 536 return false; 537 } 538 } 539 EXPORT_SYMBOL_GPL(mce_is_memory_error); 540 541 bool mce_is_correctable(struct mce *m) 542 { 543 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 544 return false; 545 546 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 547 return false; 548 549 if (m->status & MCI_STATUS_UC) 550 return false; 551 552 return true; 553 } 554 EXPORT_SYMBOL_GPL(mce_is_correctable); 555 556 static bool cec_add_mce(struct mce *m) 557 { 558 if (!m) 559 return false; 560 561 /* We eat only correctable DRAM errors with usable addresses. */ 562 if (mce_is_memory_error(m) && 563 mce_is_correctable(m) && 564 mce_usable_address(m)) 565 if (!cec_add_elem(m->addr >> PAGE_SHIFT)) 566 return true; 567 568 return false; 569 } 570 571 static int mce_first_notifier(struct notifier_block *nb, unsigned long val, 572 void *data) 573 { 574 struct mce *m = (struct mce *)data; 575 576 if (!m) 577 return NOTIFY_DONE; 578 579 if (cec_add_mce(m)) 580 return NOTIFY_STOP; 581 582 /* Emit the trace record: */ 583 trace_mce_record(m); 584 585 set_bit(0, &mce_need_notify); 586 587 mce_notify_irq(); 588 589 return NOTIFY_DONE; 590 } 591 592 static struct notifier_block first_nb = { 593 .notifier_call = mce_first_notifier, 594 .priority = MCE_PRIO_FIRST, 595 }; 596 597 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val, 598 void *data) 599 { 600 struct mce *mce = (struct mce *)data; 601 unsigned long pfn; 602 603 if (!mce) 604 return NOTIFY_DONE; 605 606 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) { 607 pfn = mce->addr >> PAGE_SHIFT; 608 if (!memory_failure(pfn, 0)) 609 set_mce_nospec(pfn); 610 } 611 612 return NOTIFY_OK; 613 } 614 static struct notifier_block mce_srao_nb = { 615 .notifier_call = srao_decode_notifier, 616 .priority = MCE_PRIO_SRAO, 617 }; 618 619 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 620 void *data) 621 { 622 struct mce *m = (struct mce *)data; 623 624 if (!m) 625 return NOTIFY_DONE; 626 627 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS) 628 return NOTIFY_DONE; 629 630 __print_mce(m); 631 632 return NOTIFY_DONE; 633 } 634 635 static struct notifier_block mce_default_nb = { 636 .notifier_call = mce_default_notifier, 637 /* lowest prio, we want it to run last. */ 638 .priority = MCE_PRIO_LOWEST, 639 }; 640 641 /* 642 * Read ADDR and MISC registers. 643 */ 644 static void mce_read_aux(struct mce *m, int i) 645 { 646 if (m->status & MCI_STATUS_MISCV) 647 m->misc = mce_rdmsrl(msr_ops.misc(i)); 648 649 if (m->status & MCI_STATUS_ADDRV) { 650 m->addr = mce_rdmsrl(msr_ops.addr(i)); 651 652 /* 653 * Mask the reported address by the reported granularity. 654 */ 655 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 656 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 657 m->addr >>= shift; 658 m->addr <<= shift; 659 } 660 661 /* 662 * Extract [55:<lsb>] where lsb is the least significant 663 * *valid* bit of the address bits. 664 */ 665 if (mce_flags.smca) { 666 u8 lsb = (m->addr >> 56) & 0x3f; 667 668 m->addr &= GENMASK_ULL(55, lsb); 669 } 670 } 671 672 if (mce_flags.smca) { 673 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 674 675 if (m->status & MCI_STATUS_SYNDV) 676 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 677 } 678 } 679 680 DEFINE_PER_CPU(unsigned, mce_poll_count); 681 682 /* 683 * Poll for corrected events or events that happened before reset. 684 * Those are just logged through /dev/mcelog. 685 * 686 * This is executed in standard interrupt context. 687 * 688 * Note: spec recommends to panic for fatal unsignalled 689 * errors here. However this would be quite problematic -- 690 * we would need to reimplement the Monarch handling and 691 * it would mess up the exclusion between exception handler 692 * and poll handler -- * so we skip this for now. 693 * These cases should not happen anyways, or only when the CPU 694 * is already totally * confused. In this case it's likely it will 695 * not fully execute the machine check handler either. 696 */ 697 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 698 { 699 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 700 bool error_seen = false; 701 struct mce m; 702 int i; 703 704 this_cpu_inc(mce_poll_count); 705 706 mce_gather_info(&m, NULL); 707 708 if (flags & MCP_TIMESTAMP) 709 m.tsc = rdtsc(); 710 711 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 712 if (!mce_banks[i].ctl || !test_bit(i, *b)) 713 continue; 714 715 m.misc = 0; 716 m.addr = 0; 717 m.bank = i; 718 719 barrier(); 720 m.status = mce_rdmsrl(msr_ops.status(i)); 721 722 /* If this entry is not valid, ignore it */ 723 if (!(m.status & MCI_STATUS_VAL)) 724 continue; 725 726 /* 727 * If we are logging everything (at CPU online) or this 728 * is a corrected error, then we must log it. 729 */ 730 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 731 goto log_it; 732 733 /* 734 * Newer Intel systems that support software error 735 * recovery need to make additional checks. Other 736 * CPUs should skip over uncorrected errors, but log 737 * everything else. 738 */ 739 if (!mca_cfg.ser) { 740 if (m.status & MCI_STATUS_UC) 741 continue; 742 goto log_it; 743 } 744 745 /* Log "not enabled" (speculative) errors */ 746 if (!(m.status & MCI_STATUS_EN)) 747 goto log_it; 748 749 /* 750 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 751 * UC == 1 && PCC == 0 && S == 0 752 */ 753 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 754 goto log_it; 755 756 /* 757 * Skip anything else. Presumption is that our read of this 758 * bank is racing with a machine check. Leave the log alone 759 * for do_machine_check() to deal with it. 760 */ 761 continue; 762 763 log_it: 764 error_seen = true; 765 766 mce_read_aux(&m, i); 767 768 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false); 769 770 /* 771 * Don't get the IP here because it's unlikely to 772 * have anything to do with the actual error location. 773 */ 774 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce) 775 mce_log(&m); 776 else if (mce_usable_address(&m)) { 777 /* 778 * Although we skipped logging this, we still want 779 * to take action. Add to the pool so the registered 780 * notifiers will see it. 781 */ 782 if (!mce_gen_pool_add(&m)) 783 mce_schedule_work(); 784 } 785 786 /* 787 * Clear state for this bank. 788 */ 789 mce_wrmsrl(msr_ops.status(i), 0); 790 } 791 792 /* 793 * Don't clear MCG_STATUS here because it's only defined for 794 * exceptions. 795 */ 796 797 sync_core(); 798 799 return error_seen; 800 } 801 EXPORT_SYMBOL_GPL(machine_check_poll); 802 803 /* 804 * Do a quick check if any of the events requires a panic. 805 * This decides if we keep the events around or clear them. 806 */ 807 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 808 struct pt_regs *regs) 809 { 810 char *tmp; 811 int i; 812 813 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 814 m->status = mce_rdmsrl(msr_ops.status(i)); 815 if (!(m->status & MCI_STATUS_VAL)) 816 continue; 817 818 __set_bit(i, validp); 819 if (quirk_no_way_out) 820 quirk_no_way_out(i, m, regs); 821 822 m->bank = i; 823 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) { 824 mce_read_aux(m, i); 825 *msg = tmp; 826 return 1; 827 } 828 } 829 return 0; 830 } 831 832 /* 833 * Variable to establish order between CPUs while scanning. 834 * Each CPU spins initially until executing is equal its number. 835 */ 836 static atomic_t mce_executing; 837 838 /* 839 * Defines order of CPUs on entry. First CPU becomes Monarch. 840 */ 841 static atomic_t mce_callin; 842 843 /* 844 * Check if a timeout waiting for other CPUs happened. 845 */ 846 static int mce_timed_out(u64 *t, const char *msg) 847 { 848 /* 849 * The others already did panic for some reason. 850 * Bail out like in a timeout. 851 * rmb() to tell the compiler that system_state 852 * might have been modified by someone else. 853 */ 854 rmb(); 855 if (atomic_read(&mce_panicked)) 856 wait_for_panic(); 857 if (!mca_cfg.monarch_timeout) 858 goto out; 859 if ((s64)*t < SPINUNIT) { 860 if (mca_cfg.tolerant <= 1) 861 mce_panic(msg, NULL, NULL); 862 cpu_missing = 1; 863 return 1; 864 } 865 *t -= SPINUNIT; 866 out: 867 touch_nmi_watchdog(); 868 return 0; 869 } 870 871 /* 872 * The Monarch's reign. The Monarch is the CPU who entered 873 * the machine check handler first. It waits for the others to 874 * raise the exception too and then grades them. When any 875 * error is fatal panic. Only then let the others continue. 876 * 877 * The other CPUs entering the MCE handler will be controlled by the 878 * Monarch. They are called Subjects. 879 * 880 * This way we prevent any potential data corruption in a unrecoverable case 881 * and also makes sure always all CPU's errors are examined. 882 * 883 * Also this detects the case of a machine check event coming from outer 884 * space (not detected by any CPUs) In this case some external agent wants 885 * us to shut down, so panic too. 886 * 887 * The other CPUs might still decide to panic if the handler happens 888 * in a unrecoverable place, but in this case the system is in a semi-stable 889 * state and won't corrupt anything by itself. It's ok to let the others 890 * continue for a bit first. 891 * 892 * All the spin loops have timeouts; when a timeout happens a CPU 893 * typically elects itself to be Monarch. 894 */ 895 static void mce_reign(void) 896 { 897 int cpu; 898 struct mce *m = NULL; 899 int global_worst = 0; 900 char *msg = NULL; 901 char *nmsg = NULL; 902 903 /* 904 * This CPU is the Monarch and the other CPUs have run 905 * through their handlers. 906 * Grade the severity of the errors of all the CPUs. 907 */ 908 for_each_possible_cpu(cpu) { 909 int severity = mce_severity(&per_cpu(mces_seen, cpu), 910 mca_cfg.tolerant, 911 &nmsg, true); 912 if (severity > global_worst) { 913 msg = nmsg; 914 global_worst = severity; 915 m = &per_cpu(mces_seen, cpu); 916 } 917 } 918 919 /* 920 * Cannot recover? Panic here then. 921 * This dumps all the mces in the log buffer and stops the 922 * other CPUs. 923 */ 924 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) 925 mce_panic("Fatal machine check", m, msg); 926 927 /* 928 * For UC somewhere we let the CPU who detects it handle it. 929 * Also must let continue the others, otherwise the handling 930 * CPU could deadlock on a lock. 931 */ 932 933 /* 934 * No machine check event found. Must be some external 935 * source or one CPU is hung. Panic. 936 */ 937 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) 938 mce_panic("Fatal machine check from unknown source", NULL, NULL); 939 940 /* 941 * Now clear all the mces_seen so that they don't reappear on 942 * the next mce. 943 */ 944 for_each_possible_cpu(cpu) 945 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 946 } 947 948 static atomic_t global_nwo; 949 950 /* 951 * Start of Monarch synchronization. This waits until all CPUs have 952 * entered the exception handler and then determines if any of them 953 * saw a fatal event that requires panic. Then it executes them 954 * in the entry order. 955 * TBD double check parallel CPU hotunplug 956 */ 957 static int mce_start(int *no_way_out) 958 { 959 int order; 960 int cpus = num_online_cpus(); 961 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 962 963 if (!timeout) 964 return -1; 965 966 atomic_add(*no_way_out, &global_nwo); 967 /* 968 * Rely on the implied barrier below, such that global_nwo 969 * is updated before mce_callin. 970 */ 971 order = atomic_inc_return(&mce_callin); 972 973 /* 974 * Wait for everyone. 975 */ 976 while (atomic_read(&mce_callin) != cpus) { 977 if (mce_timed_out(&timeout, 978 "Timeout: Not all CPUs entered broadcast exception handler")) { 979 atomic_set(&global_nwo, 0); 980 return -1; 981 } 982 ndelay(SPINUNIT); 983 } 984 985 /* 986 * mce_callin should be read before global_nwo 987 */ 988 smp_rmb(); 989 990 if (order == 1) { 991 /* 992 * Monarch: Starts executing now, the others wait. 993 */ 994 atomic_set(&mce_executing, 1); 995 } else { 996 /* 997 * Subject: Now start the scanning loop one by one in 998 * the original callin order. 999 * This way when there are any shared banks it will be 1000 * only seen by one CPU before cleared, avoiding duplicates. 1001 */ 1002 while (atomic_read(&mce_executing) < order) { 1003 if (mce_timed_out(&timeout, 1004 "Timeout: Subject CPUs unable to finish machine check processing")) { 1005 atomic_set(&global_nwo, 0); 1006 return -1; 1007 } 1008 ndelay(SPINUNIT); 1009 } 1010 } 1011 1012 /* 1013 * Cache the global no_way_out state. 1014 */ 1015 *no_way_out = atomic_read(&global_nwo); 1016 1017 return order; 1018 } 1019 1020 /* 1021 * Synchronize between CPUs after main scanning loop. 1022 * This invokes the bulk of the Monarch processing. 1023 */ 1024 static int mce_end(int order) 1025 { 1026 int ret = -1; 1027 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1028 1029 if (!timeout) 1030 goto reset; 1031 if (order < 0) 1032 goto reset; 1033 1034 /* 1035 * Allow others to run. 1036 */ 1037 atomic_inc(&mce_executing); 1038 1039 if (order == 1) { 1040 /* CHECKME: Can this race with a parallel hotplug? */ 1041 int cpus = num_online_cpus(); 1042 1043 /* 1044 * Monarch: Wait for everyone to go through their scanning 1045 * loops. 1046 */ 1047 while (atomic_read(&mce_executing) <= cpus) { 1048 if (mce_timed_out(&timeout, 1049 "Timeout: Monarch CPU unable to finish machine check processing")) 1050 goto reset; 1051 ndelay(SPINUNIT); 1052 } 1053 1054 mce_reign(); 1055 barrier(); 1056 ret = 0; 1057 } else { 1058 /* 1059 * Subject: Wait for Monarch to finish. 1060 */ 1061 while (atomic_read(&mce_executing) != 0) { 1062 if (mce_timed_out(&timeout, 1063 "Timeout: Monarch CPU did not finish machine check processing")) 1064 goto reset; 1065 ndelay(SPINUNIT); 1066 } 1067 1068 /* 1069 * Don't reset anything. That's done by the Monarch. 1070 */ 1071 return 0; 1072 } 1073 1074 /* 1075 * Reset all global state. 1076 */ 1077 reset: 1078 atomic_set(&global_nwo, 0); 1079 atomic_set(&mce_callin, 0); 1080 barrier(); 1081 1082 /* 1083 * Let others run again. 1084 */ 1085 atomic_set(&mce_executing, 0); 1086 return ret; 1087 } 1088 1089 static void mce_clear_state(unsigned long *toclear) 1090 { 1091 int i; 1092 1093 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1094 if (test_bit(i, toclear)) 1095 mce_wrmsrl(msr_ops.status(i), 0); 1096 } 1097 } 1098 1099 static int do_memory_failure(struct mce *m) 1100 { 1101 int flags = MF_ACTION_REQUIRED; 1102 int ret; 1103 1104 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr); 1105 if (!(m->mcgstatus & MCG_STATUS_RIPV)) 1106 flags |= MF_MUST_KILL; 1107 ret = memory_failure(m->addr >> PAGE_SHIFT, flags); 1108 if (ret) 1109 pr_err("Memory error not recovered"); 1110 else 1111 set_mce_nospec(m->addr >> PAGE_SHIFT); 1112 return ret; 1113 } 1114 1115 1116 /* 1117 * Cases where we avoid rendezvous handler timeout: 1118 * 1) If this CPU is offline. 1119 * 1120 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1121 * skip those CPUs which remain looping in the 1st kernel - see 1122 * crash_nmi_callback(). 1123 * 1124 * Note: there still is a small window between kexec-ing and the new, 1125 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1126 * might not get handled properly. 1127 */ 1128 static bool __mc_check_crashing_cpu(int cpu) 1129 { 1130 if (cpu_is_offline(cpu) || 1131 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1132 u64 mcgstatus; 1133 1134 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 1135 1136 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1137 if (mcgstatus & MCG_STATUS_LMCES) 1138 return false; 1139 } 1140 1141 if (mcgstatus & MCG_STATUS_RIPV) { 1142 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1143 return true; 1144 } 1145 } 1146 return false; 1147 } 1148 1149 static void __mc_scan_banks(struct mce *m, struct mce *final, 1150 unsigned long *toclear, unsigned long *valid_banks, 1151 int no_way_out, int *worst) 1152 { 1153 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1154 struct mca_config *cfg = &mca_cfg; 1155 int severity, i; 1156 1157 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1158 __clear_bit(i, toclear); 1159 if (!test_bit(i, valid_banks)) 1160 continue; 1161 1162 if (!mce_banks[i].ctl) 1163 continue; 1164 1165 m->misc = 0; 1166 m->addr = 0; 1167 m->bank = i; 1168 1169 m->status = mce_rdmsrl(msr_ops.status(i)); 1170 if (!(m->status & MCI_STATUS_VAL)) 1171 continue; 1172 1173 /* 1174 * Corrected or non-signaled errors are handled by 1175 * machine_check_poll(). Leave them alone, unless this panics. 1176 */ 1177 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1178 !no_way_out) 1179 continue; 1180 1181 /* Set taint even when machine check was not enabled. */ 1182 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1183 1184 severity = mce_severity(m, cfg->tolerant, NULL, true); 1185 1186 /* 1187 * When machine check was for corrected/deferred handler don't 1188 * touch, unless we're panicking. 1189 */ 1190 if ((severity == MCE_KEEP_SEVERITY || 1191 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1192 continue; 1193 1194 __set_bit(i, toclear); 1195 1196 /* Machine check event was not enabled. Clear, but ignore. */ 1197 if (severity == MCE_NO_SEVERITY) 1198 continue; 1199 1200 mce_read_aux(m, i); 1201 1202 /* assuming valid severity level != 0 */ 1203 m->severity = severity; 1204 1205 mce_log(m); 1206 1207 if (severity > *worst) { 1208 *final = *m; 1209 *worst = severity; 1210 } 1211 } 1212 1213 /* mce_clear_state will clear *final, save locally for use later */ 1214 *m = *final; 1215 } 1216 1217 /* 1218 * The actual machine check handler. This only handles real 1219 * exceptions when something got corrupted coming in through int 18. 1220 * 1221 * This is executed in NMI context not subject to normal locking rules. This 1222 * implies that most kernel services cannot be safely used. Don't even 1223 * think about putting a printk in there! 1224 * 1225 * On Intel systems this is entered on all CPUs in parallel through 1226 * MCE broadcast. However some CPUs might be broken beyond repair, 1227 * so be always careful when synchronizing with others. 1228 */ 1229 void do_machine_check(struct pt_regs *regs, long error_code) 1230 { 1231 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); 1232 DECLARE_BITMAP(toclear, MAX_NR_BANKS); 1233 struct mca_config *cfg = &mca_cfg; 1234 int cpu = smp_processor_id(); 1235 char *msg = "Unknown"; 1236 struct mce m, *final; 1237 int worst = 0; 1238 1239 /* 1240 * Establish sequential order between the CPUs entering the machine 1241 * check handler. 1242 */ 1243 int order = -1; 1244 1245 /* 1246 * If no_way_out gets set, there is no safe way to recover from this 1247 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. 1248 */ 1249 int no_way_out = 0; 1250 1251 /* 1252 * If kill_it gets set, there might be a way to recover from this 1253 * error. 1254 */ 1255 int kill_it = 0; 1256 1257 /* 1258 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1259 * on Intel. 1260 */ 1261 int lmce = 1; 1262 1263 if (__mc_check_crashing_cpu(cpu)) 1264 return; 1265 1266 ist_enter(regs); 1267 1268 this_cpu_inc(mce_exception_count); 1269 1270 mce_gather_info(&m, regs); 1271 m.tsc = rdtsc(); 1272 1273 final = this_cpu_ptr(&mces_seen); 1274 *final = m; 1275 1276 memset(valid_banks, 0, sizeof(valid_banks)); 1277 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1278 1279 barrier(); 1280 1281 /* 1282 * When no restart IP might need to kill or panic. 1283 * Assume the worst for now, but if we find the 1284 * severity is MCE_AR_SEVERITY we have other options. 1285 */ 1286 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1287 kill_it = 1; 1288 1289 /* 1290 * Check if this MCE is signaled to only this logical processor, 1291 * on Intel, Zhaoxin only. 1292 */ 1293 if (m.cpuvendor == X86_VENDOR_INTEL || 1294 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1295 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1296 1297 /* 1298 * Local machine check may already know that we have to panic. 1299 * Broadcast machine check begins rendezvous in mce_start() 1300 * Go through all banks in exclusion of the other CPUs. This way we 1301 * don't report duplicated events on shared banks because the first one 1302 * to see it will clear it. 1303 */ 1304 if (lmce) { 1305 if (no_way_out) 1306 mce_panic("Fatal local machine check", &m, msg); 1307 } else { 1308 order = mce_start(&no_way_out); 1309 } 1310 1311 __mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst); 1312 1313 if (!no_way_out) 1314 mce_clear_state(toclear); 1315 1316 /* 1317 * Do most of the synchronization with other CPUs. 1318 * When there's any problem use only local no_way_out state. 1319 */ 1320 if (!lmce) { 1321 if (mce_end(order) < 0) 1322 no_way_out = worst >= MCE_PANIC_SEVERITY; 1323 } else { 1324 /* 1325 * If there was a fatal machine check we should have 1326 * already called mce_panic earlier in this function. 1327 * Since we re-read the banks, we might have found 1328 * something new. Check again to see if we found a 1329 * fatal error. We call "mce_severity()" again to 1330 * make sure we have the right "msg". 1331 */ 1332 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 1333 mce_severity(&m, cfg->tolerant, &msg, true); 1334 mce_panic("Local fatal machine check!", &m, msg); 1335 } 1336 } 1337 1338 /* 1339 * If tolerant is at an insane level we drop requests to kill 1340 * processes and continue even when there is no way out. 1341 */ 1342 if (cfg->tolerant == 3) 1343 kill_it = 0; 1344 else if (no_way_out) 1345 mce_panic("Fatal machine check on current CPU", &m, msg); 1346 1347 if (worst > 0) 1348 irq_work_queue(&mce_irq_work); 1349 1350 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1351 1352 sync_core(); 1353 1354 if (worst != MCE_AR_SEVERITY && !kill_it) 1355 goto out_ist; 1356 1357 /* Fault was in user mode and we need to take some action */ 1358 if ((m.cs & 3) == 3) { 1359 ist_begin_non_atomic(regs); 1360 local_irq_enable(); 1361 1362 if (kill_it || do_memory_failure(&m)) 1363 force_sig(SIGBUS); 1364 local_irq_disable(); 1365 ist_end_non_atomic(); 1366 } else { 1367 if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0)) 1368 mce_panic("Failed kernel mode recovery", &m, NULL); 1369 } 1370 1371 out_ist: 1372 ist_exit(regs); 1373 } 1374 EXPORT_SYMBOL_GPL(do_machine_check); 1375 1376 #ifndef CONFIG_MEMORY_FAILURE 1377 int memory_failure(unsigned long pfn, int flags) 1378 { 1379 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1380 BUG_ON(flags & MF_ACTION_REQUIRED); 1381 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1382 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1383 pfn); 1384 1385 return 0; 1386 } 1387 #endif 1388 1389 /* 1390 * Periodic polling timer for "silent" machine check errors. If the 1391 * poller finds an MCE, poll 2x faster. When the poller finds no more 1392 * errors, poll 2x slower (up to check_interval seconds). 1393 */ 1394 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1395 1396 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1397 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1398 1399 static unsigned long mce_adjust_timer_default(unsigned long interval) 1400 { 1401 return interval; 1402 } 1403 1404 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1405 1406 static void __start_timer(struct timer_list *t, unsigned long interval) 1407 { 1408 unsigned long when = jiffies + interval; 1409 unsigned long flags; 1410 1411 local_irq_save(flags); 1412 1413 if (!timer_pending(t) || time_before(when, t->expires)) 1414 mod_timer(t, round_jiffies(when)); 1415 1416 local_irq_restore(flags); 1417 } 1418 1419 static void mce_timer_fn(struct timer_list *t) 1420 { 1421 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1422 unsigned long iv; 1423 1424 WARN_ON(cpu_t != t); 1425 1426 iv = __this_cpu_read(mce_next_interval); 1427 1428 if (mce_available(this_cpu_ptr(&cpu_info))) { 1429 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1430 1431 if (mce_intel_cmci_poll()) { 1432 iv = mce_adjust_timer(iv); 1433 goto done; 1434 } 1435 } 1436 1437 /* 1438 * Alert userspace if needed. If we logged an MCE, reduce the polling 1439 * interval, otherwise increase the polling interval. 1440 */ 1441 if (mce_notify_irq()) 1442 iv = max(iv / 2, (unsigned long) HZ/100); 1443 else 1444 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1445 1446 done: 1447 __this_cpu_write(mce_next_interval, iv); 1448 __start_timer(t, iv); 1449 } 1450 1451 /* 1452 * Ensure that the timer is firing in @interval from now. 1453 */ 1454 void mce_timer_kick(unsigned long interval) 1455 { 1456 struct timer_list *t = this_cpu_ptr(&mce_timer); 1457 unsigned long iv = __this_cpu_read(mce_next_interval); 1458 1459 __start_timer(t, interval); 1460 1461 if (interval < iv) 1462 __this_cpu_write(mce_next_interval, interval); 1463 } 1464 1465 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1466 static void mce_timer_delete_all(void) 1467 { 1468 int cpu; 1469 1470 for_each_online_cpu(cpu) 1471 del_timer_sync(&per_cpu(mce_timer, cpu)); 1472 } 1473 1474 /* 1475 * Notify the user(s) about new machine check events. 1476 * Can be called from interrupt context, but not from machine check/NMI 1477 * context. 1478 */ 1479 int mce_notify_irq(void) 1480 { 1481 /* Not more than two messages every minute */ 1482 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1483 1484 if (test_and_clear_bit(0, &mce_need_notify)) { 1485 mce_work_trigger(); 1486 1487 if (__ratelimit(&ratelimit)) 1488 pr_info(HW_ERR "Machine check events logged\n"); 1489 1490 return 1; 1491 } 1492 return 0; 1493 } 1494 EXPORT_SYMBOL_GPL(mce_notify_irq); 1495 1496 static void __mcheck_cpu_mce_banks_init(void) 1497 { 1498 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1499 u8 n_banks = this_cpu_read(mce_num_banks); 1500 int i; 1501 1502 for (i = 0; i < n_banks; i++) { 1503 struct mce_bank *b = &mce_banks[i]; 1504 1505 /* 1506 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1507 * the required vendor quirks before 1508 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1509 */ 1510 b->ctl = -1ULL; 1511 b->init = 1; 1512 } 1513 } 1514 1515 /* 1516 * Initialize Machine Checks for a CPU. 1517 */ 1518 static void __mcheck_cpu_cap_init(void) 1519 { 1520 u64 cap; 1521 u8 b; 1522 1523 rdmsrl(MSR_IA32_MCG_CAP, cap); 1524 1525 b = cap & MCG_BANKCNT_MASK; 1526 1527 if (b > MAX_NR_BANKS) { 1528 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1529 smp_processor_id(), MAX_NR_BANKS, b); 1530 b = MAX_NR_BANKS; 1531 } 1532 1533 this_cpu_write(mce_num_banks, b); 1534 1535 __mcheck_cpu_mce_banks_init(); 1536 1537 /* Use accurate RIP reporting if available. */ 1538 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1539 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1540 1541 if (cap & MCG_SER_P) 1542 mca_cfg.ser = 1; 1543 } 1544 1545 static void __mcheck_cpu_init_generic(void) 1546 { 1547 enum mcp_flags m_fl = 0; 1548 mce_banks_t all_banks; 1549 u64 cap; 1550 1551 if (!mca_cfg.bootlog) 1552 m_fl = MCP_DONTLOG; 1553 1554 /* 1555 * Log the machine checks left over from the previous reset. 1556 */ 1557 bitmap_fill(all_banks, MAX_NR_BANKS); 1558 machine_check_poll(MCP_UC | m_fl, &all_banks); 1559 1560 cr4_set_bits(X86_CR4_MCE); 1561 1562 rdmsrl(MSR_IA32_MCG_CAP, cap); 1563 if (cap & MCG_CTL_P) 1564 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1565 } 1566 1567 static void __mcheck_cpu_init_clear_banks(void) 1568 { 1569 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1570 int i; 1571 1572 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1573 struct mce_bank *b = &mce_banks[i]; 1574 1575 if (!b->init) 1576 continue; 1577 wrmsrl(msr_ops.ctl(i), b->ctl); 1578 wrmsrl(msr_ops.status(i), 0); 1579 } 1580 } 1581 1582 /* 1583 * Do a final check to see if there are any unused/RAZ banks. 1584 * 1585 * This must be done after the banks have been initialized and any quirks have 1586 * been applied. 1587 * 1588 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1589 * Otherwise, a user who disables a bank will not be able to re-enable it 1590 * without a system reboot. 1591 */ 1592 static void __mcheck_cpu_check_banks(void) 1593 { 1594 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1595 u64 msrval; 1596 int i; 1597 1598 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1599 struct mce_bank *b = &mce_banks[i]; 1600 1601 if (!b->init) 1602 continue; 1603 1604 rdmsrl(msr_ops.ctl(i), msrval); 1605 b->init = !!msrval; 1606 } 1607 } 1608 1609 /* 1610 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 1611 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 1612 * Vol 3B Table 15-20). But this confuses both the code that determines 1613 * whether the machine check occurred in kernel or user mode, and also 1614 * the severity assessment code. Pretend that EIPV was set, and take the 1615 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 1616 */ 1617 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 1618 { 1619 if (bank != 0) 1620 return; 1621 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 1622 return; 1623 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 1624 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 1625 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 1626 MCACOD)) != 1627 (MCI_STATUS_UC|MCI_STATUS_EN| 1628 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 1629 MCI_STATUS_AR|MCACOD_INSTR)) 1630 return; 1631 1632 m->mcgstatus |= MCG_STATUS_EIPV; 1633 m->ip = regs->ip; 1634 m->cs = regs->cs; 1635 } 1636 1637 /* Add per CPU specific workarounds here */ 1638 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1639 { 1640 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1641 struct mca_config *cfg = &mca_cfg; 1642 1643 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1644 pr_info("unknown CPU type - not enabling MCE support\n"); 1645 return -EOPNOTSUPP; 1646 } 1647 1648 /* This should be disabled by the BIOS, but isn't always */ 1649 if (c->x86_vendor == X86_VENDOR_AMD) { 1650 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1651 /* 1652 * disable GART TBL walk error reporting, which 1653 * trips off incorrectly with the IOMMU & 3ware 1654 * & Cerberus: 1655 */ 1656 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1657 } 1658 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1659 /* 1660 * Lots of broken BIOS around that don't clear them 1661 * by default and leave crap in there. Don't log: 1662 */ 1663 cfg->bootlog = 0; 1664 } 1665 /* 1666 * Various K7s with broken bank 0 around. Always disable 1667 * by default. 1668 */ 1669 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1670 mce_banks[0].ctl = 0; 1671 1672 /* 1673 * overflow_recov is supported for F15h Models 00h-0fh 1674 * even though we don't have a CPUID bit for it. 1675 */ 1676 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1677 mce_flags.overflow_recov = 1; 1678 1679 } 1680 1681 if (c->x86_vendor == X86_VENDOR_INTEL) { 1682 /* 1683 * SDM documents that on family 6 bank 0 should not be written 1684 * because it aliases to another special BIOS controlled 1685 * register. 1686 * But it's not aliased anymore on model 0x1a+ 1687 * Don't ignore bank 0 completely because there could be a 1688 * valid event later, merely don't write CTL0. 1689 */ 1690 1691 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1692 mce_banks[0].init = 0; 1693 1694 /* 1695 * All newer Intel systems support MCE broadcasting. Enable 1696 * synchronization with a one second timeout. 1697 */ 1698 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1699 cfg->monarch_timeout < 0) 1700 cfg->monarch_timeout = USEC_PER_SEC; 1701 1702 /* 1703 * There are also broken BIOSes on some Pentium M and 1704 * earlier systems: 1705 */ 1706 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1707 cfg->bootlog = 0; 1708 1709 if (c->x86 == 6 && c->x86_model == 45) 1710 quirk_no_way_out = quirk_sandybridge_ifu; 1711 } 1712 1713 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1714 /* 1715 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1716 * synchronization with a one second timeout. 1717 */ 1718 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1719 if (cfg->monarch_timeout < 0) 1720 cfg->monarch_timeout = USEC_PER_SEC; 1721 } 1722 } 1723 1724 if (cfg->monarch_timeout < 0) 1725 cfg->monarch_timeout = 0; 1726 if (cfg->bootlog != 0) 1727 cfg->panic_timeout = 30; 1728 1729 return 0; 1730 } 1731 1732 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1733 { 1734 if (c->x86 != 5) 1735 return 0; 1736 1737 switch (c->x86_vendor) { 1738 case X86_VENDOR_INTEL: 1739 intel_p5_mcheck_init(c); 1740 return 1; 1741 break; 1742 case X86_VENDOR_CENTAUR: 1743 winchip_mcheck_init(c); 1744 return 1; 1745 break; 1746 default: 1747 return 0; 1748 } 1749 1750 return 0; 1751 } 1752 1753 /* 1754 * Init basic CPU features needed for early decoding of MCEs. 1755 */ 1756 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1757 { 1758 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1759 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1760 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1761 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1762 1763 if (mce_flags.smca) { 1764 msr_ops.ctl = smca_ctl_reg; 1765 msr_ops.status = smca_status_reg; 1766 msr_ops.addr = smca_addr_reg; 1767 msr_ops.misc = smca_misc_reg; 1768 } 1769 } 1770 } 1771 1772 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1773 { 1774 struct mca_config *cfg = &mca_cfg; 1775 1776 /* 1777 * All newer Centaur CPUs support MCE broadcasting. Enable 1778 * synchronization with a one second timeout. 1779 */ 1780 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1781 c->x86 > 6) { 1782 if (cfg->monarch_timeout < 0) 1783 cfg->monarch_timeout = USEC_PER_SEC; 1784 } 1785 } 1786 1787 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1788 { 1789 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1790 1791 /* 1792 * These CPUs have MCA bank 8 which reports only one error type called 1793 * SVAD (System View Address Decoder). The reporting of that error is 1794 * controlled by IA32_MC8.CTL.0. 1795 * 1796 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1797 * virtual machines start and result in a system panic. Always disable 1798 * bank 8 SVAD error by default. 1799 */ 1800 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1801 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1802 if (this_cpu_read(mce_num_banks) > 8) 1803 mce_banks[8].ctl = 0; 1804 } 1805 1806 intel_init_cmci(); 1807 intel_init_lmce(); 1808 mce_adjust_timer = cmci_intel_adjust_timer; 1809 } 1810 1811 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 1812 { 1813 intel_clear_lmce(); 1814 } 1815 1816 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1817 { 1818 switch (c->x86_vendor) { 1819 case X86_VENDOR_INTEL: 1820 mce_intel_feature_init(c); 1821 mce_adjust_timer = cmci_intel_adjust_timer; 1822 break; 1823 1824 case X86_VENDOR_AMD: { 1825 mce_amd_feature_init(c); 1826 break; 1827 } 1828 1829 case X86_VENDOR_HYGON: 1830 mce_hygon_feature_init(c); 1831 break; 1832 1833 case X86_VENDOR_CENTAUR: 1834 mce_centaur_feature_init(c); 1835 break; 1836 1837 case X86_VENDOR_ZHAOXIN: 1838 mce_zhaoxin_feature_init(c); 1839 break; 1840 1841 default: 1842 break; 1843 } 1844 } 1845 1846 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 1847 { 1848 switch (c->x86_vendor) { 1849 case X86_VENDOR_INTEL: 1850 mce_intel_feature_clear(c); 1851 break; 1852 1853 case X86_VENDOR_ZHAOXIN: 1854 mce_zhaoxin_feature_clear(c); 1855 break; 1856 1857 default: 1858 break; 1859 } 1860 } 1861 1862 static void mce_start_timer(struct timer_list *t) 1863 { 1864 unsigned long iv = check_interval * HZ; 1865 1866 if (mca_cfg.ignore_ce || !iv) 1867 return; 1868 1869 this_cpu_write(mce_next_interval, iv); 1870 __start_timer(t, iv); 1871 } 1872 1873 static void __mcheck_cpu_setup_timer(void) 1874 { 1875 struct timer_list *t = this_cpu_ptr(&mce_timer); 1876 1877 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1878 } 1879 1880 static void __mcheck_cpu_init_timer(void) 1881 { 1882 struct timer_list *t = this_cpu_ptr(&mce_timer); 1883 1884 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1885 mce_start_timer(t); 1886 } 1887 1888 bool filter_mce(struct mce *m) 1889 { 1890 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1891 return amd_filter_mce(m); 1892 1893 return false; 1894 } 1895 1896 /* Handle unconfigured int18 (should never happen) */ 1897 static void unexpected_machine_check(struct pt_regs *regs, long error_code) 1898 { 1899 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1900 smp_processor_id()); 1901 } 1902 1903 /* Call the installed machine check handler for this CPU setup. */ 1904 void (*machine_check_vector)(struct pt_regs *, long error_code) = 1905 unexpected_machine_check; 1906 1907 dotraplinkage void do_mce(struct pt_regs *regs, long error_code) 1908 { 1909 machine_check_vector(regs, error_code); 1910 } 1911 1912 /* 1913 * Called for each booted CPU to set up machine checks. 1914 * Must be called with preempt off: 1915 */ 1916 void mcheck_cpu_init(struct cpuinfo_x86 *c) 1917 { 1918 if (mca_cfg.disabled) 1919 return; 1920 1921 if (__mcheck_cpu_ancient_init(c)) 1922 return; 1923 1924 if (!mce_available(c)) 1925 return; 1926 1927 __mcheck_cpu_cap_init(); 1928 1929 if (__mcheck_cpu_apply_quirks(c) < 0) { 1930 mca_cfg.disabled = 1; 1931 return; 1932 } 1933 1934 if (mce_gen_pool_init()) { 1935 mca_cfg.disabled = 1; 1936 pr_emerg("Couldn't allocate MCE records pool!\n"); 1937 return; 1938 } 1939 1940 machine_check_vector = do_machine_check; 1941 1942 __mcheck_cpu_init_early(c); 1943 __mcheck_cpu_init_generic(); 1944 __mcheck_cpu_init_vendor(c); 1945 __mcheck_cpu_init_clear_banks(); 1946 __mcheck_cpu_check_banks(); 1947 __mcheck_cpu_setup_timer(); 1948 } 1949 1950 /* 1951 * Called for each booted CPU to clear some machine checks opt-ins 1952 */ 1953 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 1954 { 1955 if (mca_cfg.disabled) 1956 return; 1957 1958 if (!mce_available(c)) 1959 return; 1960 1961 /* 1962 * Possibly to clear general settings generic to x86 1963 * __mcheck_cpu_clear_generic(c); 1964 */ 1965 __mcheck_cpu_clear_vendor(c); 1966 1967 } 1968 1969 static void __mce_disable_bank(void *arg) 1970 { 1971 int bank = *((int *)arg); 1972 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 1973 cmci_disable_bank(bank); 1974 } 1975 1976 void mce_disable_bank(int bank) 1977 { 1978 if (bank >= this_cpu_read(mce_num_banks)) { 1979 pr_warn(FW_BUG 1980 "Ignoring request to disable invalid MCA bank %d.\n", 1981 bank); 1982 return; 1983 } 1984 set_bit(bank, mce_banks_ce_disabled); 1985 on_each_cpu(__mce_disable_bank, &bank, 1); 1986 } 1987 1988 /* 1989 * mce=off Disables machine check 1990 * mce=no_cmci Disables CMCI 1991 * mce=no_lmce Disables LMCE 1992 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 1993 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 1994 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 1995 * monarchtimeout is how long to wait for other CPUs on machine 1996 * check, or 0 to not wait 1997 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 1998 and older. 1999 * mce=nobootlog Don't log MCEs from before booting. 2000 * mce=bios_cmci_threshold Don't program the CMCI threshold 2001 * mce=recovery force enable memcpy_mcsafe() 2002 */ 2003 static int __init mcheck_enable(char *str) 2004 { 2005 struct mca_config *cfg = &mca_cfg; 2006 2007 if (*str == 0) { 2008 enable_p5_mce(); 2009 return 1; 2010 } 2011 if (*str == '=') 2012 str++; 2013 if (!strcmp(str, "off")) 2014 cfg->disabled = 1; 2015 else if (!strcmp(str, "no_cmci")) 2016 cfg->cmci_disabled = true; 2017 else if (!strcmp(str, "no_lmce")) 2018 cfg->lmce_disabled = 1; 2019 else if (!strcmp(str, "dont_log_ce")) 2020 cfg->dont_log_ce = true; 2021 else if (!strcmp(str, "ignore_ce")) 2022 cfg->ignore_ce = true; 2023 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2024 cfg->bootlog = (str[0] == 'b'); 2025 else if (!strcmp(str, "bios_cmci_threshold")) 2026 cfg->bios_cmci_threshold = 1; 2027 else if (!strcmp(str, "recovery")) 2028 cfg->recovery = 1; 2029 else if (isdigit(str[0])) { 2030 if (get_option(&str, &cfg->tolerant) == 2) 2031 get_option(&str, &(cfg->monarch_timeout)); 2032 } else { 2033 pr_info("mce argument %s ignored. Please use /sys\n", str); 2034 return 0; 2035 } 2036 return 1; 2037 } 2038 __setup("mce", mcheck_enable); 2039 2040 int __init mcheck_init(void) 2041 { 2042 mcheck_intel_therm_init(); 2043 mce_register_decode_chain(&first_nb); 2044 mce_register_decode_chain(&mce_srao_nb); 2045 mce_register_decode_chain(&mce_default_nb); 2046 mcheck_vendor_init_severity(); 2047 2048 INIT_WORK(&mce_work, mce_gen_pool_process); 2049 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2050 2051 return 0; 2052 } 2053 2054 /* 2055 * mce_syscore: PM support 2056 */ 2057 2058 /* 2059 * Disable machine checks on suspend and shutdown. We can't really handle 2060 * them later. 2061 */ 2062 static void mce_disable_error_reporting(void) 2063 { 2064 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2065 int i; 2066 2067 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2068 struct mce_bank *b = &mce_banks[i]; 2069 2070 if (b->init) 2071 wrmsrl(msr_ops.ctl(i), 0); 2072 } 2073 return; 2074 } 2075 2076 static void vendor_disable_error_reporting(void) 2077 { 2078 /* 2079 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2080 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2081 * is bad, since it will inhibit reporting for all shared resources on 2082 * the socket like the last level cache (LLC), the integrated memory 2083 * controller (iMC), etc. 2084 */ 2085 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2086 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2087 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2088 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2089 return; 2090 2091 mce_disable_error_reporting(); 2092 } 2093 2094 static int mce_syscore_suspend(void) 2095 { 2096 vendor_disable_error_reporting(); 2097 return 0; 2098 } 2099 2100 static void mce_syscore_shutdown(void) 2101 { 2102 vendor_disable_error_reporting(); 2103 } 2104 2105 /* 2106 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2107 * Only one CPU is active at this time, the others get re-added later using 2108 * CPU hotplug: 2109 */ 2110 static void mce_syscore_resume(void) 2111 { 2112 __mcheck_cpu_init_generic(); 2113 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2114 __mcheck_cpu_init_clear_banks(); 2115 } 2116 2117 static struct syscore_ops mce_syscore_ops = { 2118 .suspend = mce_syscore_suspend, 2119 .shutdown = mce_syscore_shutdown, 2120 .resume = mce_syscore_resume, 2121 }; 2122 2123 /* 2124 * mce_device: Sysfs support 2125 */ 2126 2127 static void mce_cpu_restart(void *data) 2128 { 2129 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2130 return; 2131 __mcheck_cpu_init_generic(); 2132 __mcheck_cpu_init_clear_banks(); 2133 __mcheck_cpu_init_timer(); 2134 } 2135 2136 /* Reinit MCEs after user configuration changes */ 2137 static void mce_restart(void) 2138 { 2139 mce_timer_delete_all(); 2140 on_each_cpu(mce_cpu_restart, NULL, 1); 2141 } 2142 2143 /* Toggle features for corrected errors */ 2144 static void mce_disable_cmci(void *data) 2145 { 2146 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2147 return; 2148 cmci_clear(); 2149 } 2150 2151 static void mce_enable_ce(void *all) 2152 { 2153 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2154 return; 2155 cmci_reenable(); 2156 cmci_recheck(); 2157 if (all) 2158 __mcheck_cpu_init_timer(); 2159 } 2160 2161 static struct bus_type mce_subsys = { 2162 .name = "machinecheck", 2163 .dev_name = "machinecheck", 2164 }; 2165 2166 DEFINE_PER_CPU(struct device *, mce_device); 2167 2168 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2169 { 2170 return container_of(attr, struct mce_bank_dev, attr); 2171 } 2172 2173 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2174 char *buf) 2175 { 2176 u8 bank = attr_to_bank(attr)->bank; 2177 struct mce_bank *b; 2178 2179 if (bank >= per_cpu(mce_num_banks, s->id)) 2180 return -EINVAL; 2181 2182 b = &per_cpu(mce_banks_array, s->id)[bank]; 2183 2184 if (!b->init) 2185 return -ENODEV; 2186 2187 return sprintf(buf, "%llx\n", b->ctl); 2188 } 2189 2190 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2191 const char *buf, size_t size) 2192 { 2193 u8 bank = attr_to_bank(attr)->bank; 2194 struct mce_bank *b; 2195 u64 new; 2196 2197 if (kstrtou64(buf, 0, &new) < 0) 2198 return -EINVAL; 2199 2200 if (bank >= per_cpu(mce_num_banks, s->id)) 2201 return -EINVAL; 2202 2203 b = &per_cpu(mce_banks_array, s->id)[bank]; 2204 2205 if (!b->init) 2206 return -ENODEV; 2207 2208 b->ctl = new; 2209 mce_restart(); 2210 2211 return size; 2212 } 2213 2214 static ssize_t set_ignore_ce(struct device *s, 2215 struct device_attribute *attr, 2216 const char *buf, size_t size) 2217 { 2218 u64 new; 2219 2220 if (kstrtou64(buf, 0, &new) < 0) 2221 return -EINVAL; 2222 2223 mutex_lock(&mce_sysfs_mutex); 2224 if (mca_cfg.ignore_ce ^ !!new) { 2225 if (new) { 2226 /* disable ce features */ 2227 mce_timer_delete_all(); 2228 on_each_cpu(mce_disable_cmci, NULL, 1); 2229 mca_cfg.ignore_ce = true; 2230 } else { 2231 /* enable ce features */ 2232 mca_cfg.ignore_ce = false; 2233 on_each_cpu(mce_enable_ce, (void *)1, 1); 2234 } 2235 } 2236 mutex_unlock(&mce_sysfs_mutex); 2237 2238 return size; 2239 } 2240 2241 static ssize_t set_cmci_disabled(struct device *s, 2242 struct device_attribute *attr, 2243 const char *buf, size_t size) 2244 { 2245 u64 new; 2246 2247 if (kstrtou64(buf, 0, &new) < 0) 2248 return -EINVAL; 2249 2250 mutex_lock(&mce_sysfs_mutex); 2251 if (mca_cfg.cmci_disabled ^ !!new) { 2252 if (new) { 2253 /* disable cmci */ 2254 on_each_cpu(mce_disable_cmci, NULL, 1); 2255 mca_cfg.cmci_disabled = true; 2256 } else { 2257 /* enable cmci */ 2258 mca_cfg.cmci_disabled = false; 2259 on_each_cpu(mce_enable_ce, NULL, 1); 2260 } 2261 } 2262 mutex_unlock(&mce_sysfs_mutex); 2263 2264 return size; 2265 } 2266 2267 static ssize_t store_int_with_restart(struct device *s, 2268 struct device_attribute *attr, 2269 const char *buf, size_t size) 2270 { 2271 unsigned long old_check_interval = check_interval; 2272 ssize_t ret = device_store_ulong(s, attr, buf, size); 2273 2274 if (check_interval == old_check_interval) 2275 return ret; 2276 2277 mutex_lock(&mce_sysfs_mutex); 2278 mce_restart(); 2279 mutex_unlock(&mce_sysfs_mutex); 2280 2281 return ret; 2282 } 2283 2284 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); 2285 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2286 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2287 2288 static struct dev_ext_attribute dev_attr_check_interval = { 2289 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2290 &check_interval 2291 }; 2292 2293 static struct dev_ext_attribute dev_attr_ignore_ce = { 2294 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2295 &mca_cfg.ignore_ce 2296 }; 2297 2298 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2299 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2300 &mca_cfg.cmci_disabled 2301 }; 2302 2303 static struct device_attribute *mce_device_attrs[] = { 2304 &dev_attr_tolerant.attr, 2305 &dev_attr_check_interval.attr, 2306 #ifdef CONFIG_X86_MCELOG_LEGACY 2307 &dev_attr_trigger, 2308 #endif 2309 &dev_attr_monarch_timeout.attr, 2310 &dev_attr_dont_log_ce.attr, 2311 &dev_attr_ignore_ce.attr, 2312 &dev_attr_cmci_disabled.attr, 2313 NULL 2314 }; 2315 2316 static cpumask_var_t mce_device_initialized; 2317 2318 static void mce_device_release(struct device *dev) 2319 { 2320 kfree(dev); 2321 } 2322 2323 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2324 static int mce_device_create(unsigned int cpu) 2325 { 2326 struct device *dev; 2327 int err; 2328 int i, j; 2329 2330 if (!mce_available(&boot_cpu_data)) 2331 return -EIO; 2332 2333 dev = per_cpu(mce_device, cpu); 2334 if (dev) 2335 return 0; 2336 2337 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2338 if (!dev) 2339 return -ENOMEM; 2340 dev->id = cpu; 2341 dev->bus = &mce_subsys; 2342 dev->release = &mce_device_release; 2343 2344 err = device_register(dev); 2345 if (err) { 2346 put_device(dev); 2347 return err; 2348 } 2349 2350 for (i = 0; mce_device_attrs[i]; i++) { 2351 err = device_create_file(dev, mce_device_attrs[i]); 2352 if (err) 2353 goto error; 2354 } 2355 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2356 err = device_create_file(dev, &mce_bank_devs[j].attr); 2357 if (err) 2358 goto error2; 2359 } 2360 cpumask_set_cpu(cpu, mce_device_initialized); 2361 per_cpu(mce_device, cpu) = dev; 2362 2363 return 0; 2364 error2: 2365 while (--j >= 0) 2366 device_remove_file(dev, &mce_bank_devs[j].attr); 2367 error: 2368 while (--i >= 0) 2369 device_remove_file(dev, mce_device_attrs[i]); 2370 2371 device_unregister(dev); 2372 2373 return err; 2374 } 2375 2376 static void mce_device_remove(unsigned int cpu) 2377 { 2378 struct device *dev = per_cpu(mce_device, cpu); 2379 int i; 2380 2381 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2382 return; 2383 2384 for (i = 0; mce_device_attrs[i]; i++) 2385 device_remove_file(dev, mce_device_attrs[i]); 2386 2387 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2388 device_remove_file(dev, &mce_bank_devs[i].attr); 2389 2390 device_unregister(dev); 2391 cpumask_clear_cpu(cpu, mce_device_initialized); 2392 per_cpu(mce_device, cpu) = NULL; 2393 } 2394 2395 /* Make sure there are no machine checks on offlined CPUs. */ 2396 static void mce_disable_cpu(void) 2397 { 2398 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2399 return; 2400 2401 if (!cpuhp_tasks_frozen) 2402 cmci_clear(); 2403 2404 vendor_disable_error_reporting(); 2405 } 2406 2407 static void mce_reenable_cpu(void) 2408 { 2409 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2410 int i; 2411 2412 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2413 return; 2414 2415 if (!cpuhp_tasks_frozen) 2416 cmci_reenable(); 2417 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2418 struct mce_bank *b = &mce_banks[i]; 2419 2420 if (b->init) 2421 wrmsrl(msr_ops.ctl(i), b->ctl); 2422 } 2423 } 2424 2425 static int mce_cpu_dead(unsigned int cpu) 2426 { 2427 mce_intel_hcpu_update(cpu); 2428 2429 /* intentionally ignoring frozen here */ 2430 if (!cpuhp_tasks_frozen) 2431 cmci_rediscover(); 2432 return 0; 2433 } 2434 2435 static int mce_cpu_online(unsigned int cpu) 2436 { 2437 struct timer_list *t = this_cpu_ptr(&mce_timer); 2438 int ret; 2439 2440 mce_device_create(cpu); 2441 2442 ret = mce_threshold_create_device(cpu); 2443 if (ret) { 2444 mce_device_remove(cpu); 2445 return ret; 2446 } 2447 mce_reenable_cpu(); 2448 mce_start_timer(t); 2449 return 0; 2450 } 2451 2452 static int mce_cpu_pre_down(unsigned int cpu) 2453 { 2454 struct timer_list *t = this_cpu_ptr(&mce_timer); 2455 2456 mce_disable_cpu(); 2457 del_timer_sync(t); 2458 mce_threshold_remove_device(cpu); 2459 mce_device_remove(cpu); 2460 return 0; 2461 } 2462 2463 static __init void mce_init_banks(void) 2464 { 2465 int i; 2466 2467 for (i = 0; i < MAX_NR_BANKS; i++) { 2468 struct mce_bank_dev *b = &mce_bank_devs[i]; 2469 struct device_attribute *a = &b->attr; 2470 2471 b->bank = i; 2472 2473 sysfs_attr_init(&a->attr); 2474 a->attr.name = b->attrname; 2475 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2476 2477 a->attr.mode = 0644; 2478 a->show = show_bank; 2479 a->store = set_bank; 2480 } 2481 } 2482 2483 static __init int mcheck_init_device(void) 2484 { 2485 int err; 2486 2487 /* 2488 * Check if we have a spare virtual bit. This will only become 2489 * a problem if/when we move beyond 5-level page tables. 2490 */ 2491 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2492 2493 if (!mce_available(&boot_cpu_data)) { 2494 err = -EIO; 2495 goto err_out; 2496 } 2497 2498 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2499 err = -ENOMEM; 2500 goto err_out; 2501 } 2502 2503 mce_init_banks(); 2504 2505 err = subsys_system_register(&mce_subsys, NULL); 2506 if (err) 2507 goto err_out_mem; 2508 2509 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2510 mce_cpu_dead); 2511 if (err) 2512 goto err_out_mem; 2513 2514 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2515 mce_cpu_online, mce_cpu_pre_down); 2516 if (err < 0) 2517 goto err_out_online; 2518 2519 register_syscore_ops(&mce_syscore_ops); 2520 2521 return 0; 2522 2523 err_out_online: 2524 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2525 2526 err_out_mem: 2527 free_cpumask_var(mce_device_initialized); 2528 2529 err_out: 2530 pr_err("Unable to init MCE device (rc: %d)\n", err); 2531 2532 return err; 2533 } 2534 device_initcall_sync(mcheck_init_device); 2535 2536 /* 2537 * Old style boot options parsing. Only for compatibility. 2538 */ 2539 static int __init mcheck_disable(char *str) 2540 { 2541 mca_cfg.disabled = 1; 2542 return 1; 2543 } 2544 __setup("nomce", mcheck_disable); 2545 2546 #ifdef CONFIG_DEBUG_FS 2547 struct dentry *mce_get_debugfs_dir(void) 2548 { 2549 static struct dentry *dmce; 2550 2551 if (!dmce) 2552 dmce = debugfs_create_dir("mce", NULL); 2553 2554 return dmce; 2555 } 2556 2557 static void mce_reset(void) 2558 { 2559 cpu_missing = 0; 2560 atomic_set(&mce_fake_panicked, 0); 2561 atomic_set(&mce_executing, 0); 2562 atomic_set(&mce_callin, 0); 2563 atomic_set(&global_nwo, 0); 2564 } 2565 2566 static int fake_panic_get(void *data, u64 *val) 2567 { 2568 *val = fake_panic; 2569 return 0; 2570 } 2571 2572 static int fake_panic_set(void *data, u64 val) 2573 { 2574 mce_reset(); 2575 fake_panic = val; 2576 return 0; 2577 } 2578 2579 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2580 "%llu\n"); 2581 2582 static void __init mcheck_debugfs_init(void) 2583 { 2584 struct dentry *dmce; 2585 2586 dmce = mce_get_debugfs_dir(); 2587 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2588 &fake_panic_fops); 2589 } 2590 #else 2591 static void __init mcheck_debugfs_init(void) { } 2592 #endif 2593 2594 DEFINE_STATIC_KEY_FALSE(mcsafe_key); 2595 EXPORT_SYMBOL_GPL(mcsafe_key); 2596 2597 static int __init mcheck_late_init(void) 2598 { 2599 if (mca_cfg.recovery) 2600 static_branch_inc(&mcsafe_key); 2601 2602 mcheck_debugfs_init(); 2603 cec_init(); 2604 2605 /* 2606 * Flush out everything that has been logged during early boot, now that 2607 * everything has been initialized (workqueues, decoders, ...). 2608 */ 2609 mce_schedule_work(); 2610 2611 return 0; 2612 } 2613 late_initcall(mcheck_late_init); 2614