xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision cb325ddd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 
103 /*
104  * MCA banks polled by the period polling timer for corrected events.
105  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
106  */
107 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
108 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
109 };
110 
111 /*
112  * MCA banks controlled through firmware first for corrected errors.
113  * This is a global list of banks for which we won't enable CMCI and we
114  * won't poll. Firmware controls these banks and is responsible for
115  * reporting corrected errors through GHES. Uncorrected/recoverable
116  * errors are still notified through a machine check.
117  */
118 mce_banks_t mce_banks_ce_disabled;
119 
120 static struct work_struct mce_work;
121 static struct irq_work mce_irq_work;
122 
123 /*
124  * CPU/chipset specific EDAC code can register a notifier call here to print
125  * MCE errors in a human-readable form.
126  */
127 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
128 
129 /* Do initial initialization of a struct mce */
130 void mce_setup(struct mce *m)
131 {
132 	memset(m, 0, sizeof(struct mce));
133 	m->cpu = m->extcpu = smp_processor_id();
134 	/* need the internal __ version to avoid deadlocks */
135 	m->time = __ktime_get_real_seconds();
136 	m->cpuvendor = boot_cpu_data.x86_vendor;
137 	m->cpuid = cpuid_eax(1);
138 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
139 	m->apicid = cpu_data(m->extcpu).initial_apicid;
140 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
141 
142 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
143 		m->ppin = __rdmsr(MSR_PPIN);
144 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
145 		m->ppin = __rdmsr(MSR_AMD_PPIN);
146 
147 	m->microcode = boot_cpu_data.microcode;
148 }
149 
150 DEFINE_PER_CPU(struct mce, injectm);
151 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
152 
153 void mce_log(struct mce *m)
154 {
155 	if (!mce_gen_pool_add(m))
156 		irq_work_queue(&mce_irq_work);
157 }
158 EXPORT_SYMBOL_GPL(mce_log);
159 
160 void mce_register_decode_chain(struct notifier_block *nb)
161 {
162 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
163 		    nb->priority > MCE_PRIO_HIGHEST))
164 		return;
165 
166 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
167 }
168 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
169 
170 void mce_unregister_decode_chain(struct notifier_block *nb)
171 {
172 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
173 }
174 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
175 
176 u32 mca_msr_reg(int bank, enum mca_msr reg)
177 {
178 	if (mce_flags.smca) {
179 		switch (reg) {
180 		case MCA_CTL:	 return MSR_AMD64_SMCA_MCx_CTL(bank);
181 		case MCA_ADDR:	 return MSR_AMD64_SMCA_MCx_ADDR(bank);
182 		case MCA_MISC:	 return MSR_AMD64_SMCA_MCx_MISC(bank);
183 		case MCA_STATUS: return MSR_AMD64_SMCA_MCx_STATUS(bank);
184 		}
185 	}
186 
187 	switch (reg) {
188 	case MCA_CTL:	 return MSR_IA32_MCx_CTL(bank);
189 	case MCA_ADDR:	 return MSR_IA32_MCx_ADDR(bank);
190 	case MCA_MISC:	 return MSR_IA32_MCx_MISC(bank);
191 	case MCA_STATUS: return MSR_IA32_MCx_STATUS(bank);
192 	}
193 
194 	return 0;
195 }
196 
197 static void __print_mce(struct mce *m)
198 {
199 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
200 		 m->extcpu,
201 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
202 		 m->mcgstatus, m->bank, m->status);
203 
204 	if (m->ip) {
205 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
206 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
207 			m->cs, m->ip);
208 
209 		if (m->cs == __KERNEL_CS)
210 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
211 		pr_cont("\n");
212 	}
213 
214 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
215 	if (m->addr)
216 		pr_cont("ADDR %llx ", m->addr);
217 	if (m->misc)
218 		pr_cont("MISC %llx ", m->misc);
219 	if (m->ppin)
220 		pr_cont("PPIN %llx ", m->ppin);
221 
222 	if (mce_flags.smca) {
223 		if (m->synd)
224 			pr_cont("SYND %llx ", m->synd);
225 		if (m->ipid)
226 			pr_cont("IPID %llx ", m->ipid);
227 	}
228 
229 	pr_cont("\n");
230 
231 	/*
232 	 * Note this output is parsed by external tools and old fields
233 	 * should not be changed.
234 	 */
235 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
236 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
237 		m->microcode);
238 }
239 
240 static void print_mce(struct mce *m)
241 {
242 	__print_mce(m);
243 
244 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
245 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
246 }
247 
248 #define PANIC_TIMEOUT 5 /* 5 seconds */
249 
250 static atomic_t mce_panicked;
251 
252 static int fake_panic;
253 static atomic_t mce_fake_panicked;
254 
255 /* Panic in progress. Enable interrupts and wait for final IPI */
256 static void wait_for_panic(void)
257 {
258 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
259 
260 	preempt_disable();
261 	local_irq_enable();
262 	while (timeout-- > 0)
263 		udelay(1);
264 	if (panic_timeout == 0)
265 		panic_timeout = mca_cfg.panic_timeout;
266 	panic("Panicing machine check CPU died");
267 }
268 
269 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
270 {
271 	struct llist_node *pending;
272 	struct mce_evt_llist *l;
273 	int apei_err = 0;
274 
275 	/*
276 	 * Allow instrumentation around external facilities usage. Not that it
277 	 * matters a whole lot since the machine is going to panic anyway.
278 	 */
279 	instrumentation_begin();
280 
281 	if (!fake_panic) {
282 		/*
283 		 * Make sure only one CPU runs in machine check panic
284 		 */
285 		if (atomic_inc_return(&mce_panicked) > 1)
286 			wait_for_panic();
287 		barrier();
288 
289 		bust_spinlocks(1);
290 		console_verbose();
291 	} else {
292 		/* Don't log too much for fake panic */
293 		if (atomic_inc_return(&mce_fake_panicked) > 1)
294 			goto out;
295 	}
296 	pending = mce_gen_pool_prepare_records();
297 	/* First print corrected ones that are still unlogged */
298 	llist_for_each_entry(l, pending, llnode) {
299 		struct mce *m = &l->mce;
300 		if (!(m->status & MCI_STATUS_UC)) {
301 			print_mce(m);
302 			if (!apei_err)
303 				apei_err = apei_write_mce(m);
304 		}
305 	}
306 	/* Now print uncorrected but with the final one last */
307 	llist_for_each_entry(l, pending, llnode) {
308 		struct mce *m = &l->mce;
309 		if (!(m->status & MCI_STATUS_UC))
310 			continue;
311 		if (!final || mce_cmp(m, final)) {
312 			print_mce(m);
313 			if (!apei_err)
314 				apei_err = apei_write_mce(m);
315 		}
316 	}
317 	if (final) {
318 		print_mce(final);
319 		if (!apei_err)
320 			apei_err = apei_write_mce(final);
321 	}
322 	if (exp)
323 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
324 	if (!fake_panic) {
325 		if (panic_timeout == 0)
326 			panic_timeout = mca_cfg.panic_timeout;
327 		panic(msg);
328 	} else
329 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
330 
331 out:
332 	instrumentation_end();
333 }
334 
335 /* Support code for software error injection */
336 
337 static int msr_to_offset(u32 msr)
338 {
339 	unsigned bank = __this_cpu_read(injectm.bank);
340 
341 	if (msr == mca_cfg.rip_msr)
342 		return offsetof(struct mce, ip);
343 	if (msr == mca_msr_reg(bank, MCA_STATUS))
344 		return offsetof(struct mce, status);
345 	if (msr == mca_msr_reg(bank, MCA_ADDR))
346 		return offsetof(struct mce, addr);
347 	if (msr == mca_msr_reg(bank, MCA_MISC))
348 		return offsetof(struct mce, misc);
349 	if (msr == MSR_IA32_MCG_STATUS)
350 		return offsetof(struct mce, mcgstatus);
351 	return -1;
352 }
353 
354 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
355 {
356 	if (wrmsr) {
357 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
358 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
359 			 regs->ip, (void *)regs->ip);
360 	} else {
361 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
362 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
363 	}
364 
365 	show_stack_regs(regs);
366 
367 	panic("MCA architectural violation!\n");
368 
369 	while (true)
370 		cpu_relax();
371 }
372 
373 /* MSR access wrappers used for error injection */
374 noinstr u64 mce_rdmsrl(u32 msr)
375 {
376 	DECLARE_ARGS(val, low, high);
377 
378 	if (__this_cpu_read(injectm.finished)) {
379 		int offset;
380 		u64 ret;
381 
382 		instrumentation_begin();
383 
384 		offset = msr_to_offset(msr);
385 		if (offset < 0)
386 			ret = 0;
387 		else
388 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
389 
390 		instrumentation_end();
391 
392 		return ret;
393 	}
394 
395 	/*
396 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
397 	 * architectural violation and needs to be reported to hw vendor. Panic
398 	 * the box to not allow any further progress.
399 	 */
400 	asm volatile("1: rdmsr\n"
401 		     "2:\n"
402 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
403 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
404 
405 
406 	return EAX_EDX_VAL(val, low, high);
407 }
408 
409 static noinstr void mce_wrmsrl(u32 msr, u64 v)
410 {
411 	u32 low, high;
412 
413 	if (__this_cpu_read(injectm.finished)) {
414 		int offset;
415 
416 		instrumentation_begin();
417 
418 		offset = msr_to_offset(msr);
419 		if (offset >= 0)
420 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
421 
422 		instrumentation_end();
423 
424 		return;
425 	}
426 
427 	low  = (u32)v;
428 	high = (u32)(v >> 32);
429 
430 	/* See comment in mce_rdmsrl() */
431 	asm volatile("1: wrmsr\n"
432 		     "2:\n"
433 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
434 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
435 }
436 
437 /*
438  * Collect all global (w.r.t. this processor) status about this machine
439  * check into our "mce" struct so that we can use it later to assess
440  * the severity of the problem as we read per-bank specific details.
441  */
442 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
443 {
444 	/*
445 	 * Enable instrumentation around mce_setup() which calls external
446 	 * facilities.
447 	 */
448 	instrumentation_begin();
449 	mce_setup(m);
450 	instrumentation_end();
451 
452 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
453 	if (regs) {
454 		/*
455 		 * Get the address of the instruction at the time of
456 		 * the machine check error.
457 		 */
458 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
459 			m->ip = regs->ip;
460 			m->cs = regs->cs;
461 
462 			/*
463 			 * When in VM86 mode make the cs look like ring 3
464 			 * always. This is a lie, but it's better than passing
465 			 * the additional vm86 bit around everywhere.
466 			 */
467 			if (v8086_mode(regs))
468 				m->cs |= 3;
469 		}
470 		/* Use accurate RIP reporting if available. */
471 		if (mca_cfg.rip_msr)
472 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
473 	}
474 }
475 
476 int mce_available(struct cpuinfo_x86 *c)
477 {
478 	if (mca_cfg.disabled)
479 		return 0;
480 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
481 }
482 
483 static void mce_schedule_work(void)
484 {
485 	if (!mce_gen_pool_empty())
486 		schedule_work(&mce_work);
487 }
488 
489 static void mce_irq_work_cb(struct irq_work *entry)
490 {
491 	mce_schedule_work();
492 }
493 
494 /*
495  * Check if the address reported by the CPU is in a format we can parse.
496  * It would be possible to add code for most other cases, but all would
497  * be somewhat complicated (e.g. segment offset would require an instruction
498  * parser). So only support physical addresses up to page granularity for now.
499  */
500 int mce_usable_address(struct mce *m)
501 {
502 	if (!(m->status & MCI_STATUS_ADDRV))
503 		return 0;
504 
505 	/* Checks after this one are Intel/Zhaoxin-specific: */
506 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
507 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
508 		return 1;
509 
510 	if (!(m->status & MCI_STATUS_MISCV))
511 		return 0;
512 
513 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
514 		return 0;
515 
516 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
517 		return 0;
518 
519 	return 1;
520 }
521 EXPORT_SYMBOL_GPL(mce_usable_address);
522 
523 bool mce_is_memory_error(struct mce *m)
524 {
525 	switch (m->cpuvendor) {
526 	case X86_VENDOR_AMD:
527 	case X86_VENDOR_HYGON:
528 		return amd_mce_is_memory_error(m);
529 
530 	case X86_VENDOR_INTEL:
531 	case X86_VENDOR_ZHAOXIN:
532 		/*
533 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
534 		 *
535 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
536 		 * indicating a memory error. Bit 8 is used for indicating a
537 		 * cache hierarchy error. The combination of bit 2 and bit 3
538 		 * is used for indicating a `generic' cache hierarchy error
539 		 * But we can't just blindly check the above bits, because if
540 		 * bit 11 is set, then it is a bus/interconnect error - and
541 		 * either way the above bits just gives more detail on what
542 		 * bus/interconnect error happened. Note that bit 12 can be
543 		 * ignored, as it's the "filter" bit.
544 		 */
545 		return (m->status & 0xef80) == BIT(7) ||
546 		       (m->status & 0xef00) == BIT(8) ||
547 		       (m->status & 0xeffc) == 0xc;
548 
549 	default:
550 		return false;
551 	}
552 }
553 EXPORT_SYMBOL_GPL(mce_is_memory_error);
554 
555 static bool whole_page(struct mce *m)
556 {
557 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
558 		return true;
559 
560 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
561 }
562 
563 bool mce_is_correctable(struct mce *m)
564 {
565 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
566 		return false;
567 
568 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
569 		return false;
570 
571 	if (m->status & MCI_STATUS_UC)
572 		return false;
573 
574 	return true;
575 }
576 EXPORT_SYMBOL_GPL(mce_is_correctable);
577 
578 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
579 			      void *data)
580 {
581 	struct mce *m = (struct mce *)data;
582 
583 	if (!m)
584 		return NOTIFY_DONE;
585 
586 	/* Emit the trace record: */
587 	trace_mce_record(m);
588 
589 	set_bit(0, &mce_need_notify);
590 
591 	mce_notify_irq();
592 
593 	return NOTIFY_DONE;
594 }
595 
596 static struct notifier_block early_nb = {
597 	.notifier_call	= mce_early_notifier,
598 	.priority	= MCE_PRIO_EARLY,
599 };
600 
601 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
602 			      void *data)
603 {
604 	struct mce *mce = (struct mce *)data;
605 	unsigned long pfn;
606 
607 	if (!mce || !mce_usable_address(mce))
608 		return NOTIFY_DONE;
609 
610 	if (mce->severity != MCE_AO_SEVERITY &&
611 	    mce->severity != MCE_DEFERRED_SEVERITY)
612 		return NOTIFY_DONE;
613 
614 	pfn = mce->addr >> PAGE_SHIFT;
615 	if (!memory_failure(pfn, 0)) {
616 		set_mce_nospec(pfn, whole_page(mce));
617 		mce->kflags |= MCE_HANDLED_UC;
618 	}
619 
620 	return NOTIFY_OK;
621 }
622 
623 static struct notifier_block mce_uc_nb = {
624 	.notifier_call	= uc_decode_notifier,
625 	.priority	= MCE_PRIO_UC,
626 };
627 
628 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
629 				void *data)
630 {
631 	struct mce *m = (struct mce *)data;
632 
633 	if (!m)
634 		return NOTIFY_DONE;
635 
636 	if (mca_cfg.print_all || !m->kflags)
637 		__print_mce(m);
638 
639 	return NOTIFY_DONE;
640 }
641 
642 static struct notifier_block mce_default_nb = {
643 	.notifier_call	= mce_default_notifier,
644 	/* lowest prio, we want it to run last. */
645 	.priority	= MCE_PRIO_LOWEST,
646 };
647 
648 /*
649  * Read ADDR and MISC registers.
650  */
651 static noinstr void mce_read_aux(struct mce *m, int i)
652 {
653 	if (m->status & MCI_STATUS_MISCV)
654 		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
655 
656 	if (m->status & MCI_STATUS_ADDRV) {
657 		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
658 
659 		/*
660 		 * Mask the reported address by the reported granularity.
661 		 */
662 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
663 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
664 			m->addr >>= shift;
665 			m->addr <<= shift;
666 		}
667 
668 		/*
669 		 * Extract [55:<lsb>] where lsb is the least significant
670 		 * *valid* bit of the address bits.
671 		 */
672 		if (mce_flags.smca) {
673 			u8 lsb = (m->addr >> 56) & 0x3f;
674 
675 			m->addr &= GENMASK_ULL(55, lsb);
676 		}
677 	}
678 
679 	if (mce_flags.smca) {
680 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
681 
682 		if (m->status & MCI_STATUS_SYNDV)
683 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
684 	}
685 }
686 
687 DEFINE_PER_CPU(unsigned, mce_poll_count);
688 
689 /*
690  * Poll for corrected events or events that happened before reset.
691  * Those are just logged through /dev/mcelog.
692  *
693  * This is executed in standard interrupt context.
694  *
695  * Note: spec recommends to panic for fatal unsignalled
696  * errors here. However this would be quite problematic --
697  * we would need to reimplement the Monarch handling and
698  * it would mess up the exclusion between exception handler
699  * and poll handler -- * so we skip this for now.
700  * These cases should not happen anyways, or only when the CPU
701  * is already totally * confused. In this case it's likely it will
702  * not fully execute the machine check handler either.
703  */
704 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
705 {
706 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
707 	bool error_seen = false;
708 	struct mce m;
709 	int i;
710 
711 	this_cpu_inc(mce_poll_count);
712 
713 	mce_gather_info(&m, NULL);
714 
715 	if (flags & MCP_TIMESTAMP)
716 		m.tsc = rdtsc();
717 
718 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
719 		if (!mce_banks[i].ctl || !test_bit(i, *b))
720 			continue;
721 
722 		m.misc = 0;
723 		m.addr = 0;
724 		m.bank = i;
725 
726 		barrier();
727 		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
728 
729 		/* If this entry is not valid, ignore it */
730 		if (!(m.status & MCI_STATUS_VAL))
731 			continue;
732 
733 		/*
734 		 * If we are logging everything (at CPU online) or this
735 		 * is a corrected error, then we must log it.
736 		 */
737 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
738 			goto log_it;
739 
740 		/*
741 		 * Newer Intel systems that support software error
742 		 * recovery need to make additional checks. Other
743 		 * CPUs should skip over uncorrected errors, but log
744 		 * everything else.
745 		 */
746 		if (!mca_cfg.ser) {
747 			if (m.status & MCI_STATUS_UC)
748 				continue;
749 			goto log_it;
750 		}
751 
752 		/* Log "not enabled" (speculative) errors */
753 		if (!(m.status & MCI_STATUS_EN))
754 			goto log_it;
755 
756 		/*
757 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
758 		 * UC == 1 && PCC == 0 && S == 0
759 		 */
760 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
761 			goto log_it;
762 
763 		/*
764 		 * Skip anything else. Presumption is that our read of this
765 		 * bank is racing with a machine check. Leave the log alone
766 		 * for do_machine_check() to deal with it.
767 		 */
768 		continue;
769 
770 log_it:
771 		error_seen = true;
772 
773 		if (flags & MCP_DONTLOG)
774 			goto clear_it;
775 
776 		mce_read_aux(&m, i);
777 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
778 		/*
779 		 * Don't get the IP here because it's unlikely to
780 		 * have anything to do with the actual error location.
781 		 */
782 
783 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
784 			goto clear_it;
785 
786 		if (flags & MCP_QUEUE_LOG)
787 			mce_gen_pool_add(&m);
788 		else
789 			mce_log(&m);
790 
791 clear_it:
792 		/*
793 		 * Clear state for this bank.
794 		 */
795 		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
796 	}
797 
798 	/*
799 	 * Don't clear MCG_STATUS here because it's only defined for
800 	 * exceptions.
801 	 */
802 
803 	sync_core();
804 
805 	return error_seen;
806 }
807 EXPORT_SYMBOL_GPL(machine_check_poll);
808 
809 /*
810  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
811  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
812  * Vol 3B Table 15-20). But this confuses both the code that determines
813  * whether the machine check occurred in kernel or user mode, and also
814  * the severity assessment code. Pretend that EIPV was set, and take the
815  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
816  */
817 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
818 {
819 	if (bank != 0)
820 		return;
821 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
822 		return;
823 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
824 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
825 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
826 			  MCACOD)) !=
827 			 (MCI_STATUS_UC|MCI_STATUS_EN|
828 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
829 			  MCI_STATUS_AR|MCACOD_INSTR))
830 		return;
831 
832 	m->mcgstatus |= MCG_STATUS_EIPV;
833 	m->ip = regs->ip;
834 	m->cs = regs->cs;
835 }
836 
837 /*
838  * Do a quick check if any of the events requires a panic.
839  * This decides if we keep the events around or clear them.
840  */
841 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
842 			  struct pt_regs *regs)
843 {
844 	char *tmp = *msg;
845 	int i;
846 
847 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
848 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
849 		if (!(m->status & MCI_STATUS_VAL))
850 			continue;
851 
852 		__set_bit(i, validp);
853 		if (mce_flags.snb_ifu_quirk)
854 			quirk_sandybridge_ifu(i, m, regs);
855 
856 		m->bank = i;
857 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
858 			mce_read_aux(m, i);
859 			*msg = tmp;
860 			return 1;
861 		}
862 	}
863 	return 0;
864 }
865 
866 /*
867  * Variable to establish order between CPUs while scanning.
868  * Each CPU spins initially until executing is equal its number.
869  */
870 static atomic_t mce_executing;
871 
872 /*
873  * Defines order of CPUs on entry. First CPU becomes Monarch.
874  */
875 static atomic_t mce_callin;
876 
877 /*
878  * Track which CPUs entered the MCA broadcast synchronization and which not in
879  * order to print holdouts.
880  */
881 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
882 
883 /*
884  * Check if a timeout waiting for other CPUs happened.
885  */
886 static noinstr int mce_timed_out(u64 *t, const char *msg)
887 {
888 	int ret = 0;
889 
890 	/* Enable instrumentation around calls to external facilities */
891 	instrumentation_begin();
892 
893 	/*
894 	 * The others already did panic for some reason.
895 	 * Bail out like in a timeout.
896 	 * rmb() to tell the compiler that system_state
897 	 * might have been modified by someone else.
898 	 */
899 	rmb();
900 	if (atomic_read(&mce_panicked))
901 		wait_for_panic();
902 	if (!mca_cfg.monarch_timeout)
903 		goto out;
904 	if ((s64)*t < SPINUNIT) {
905 		if (mca_cfg.tolerant <= 1) {
906 			if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
907 				pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
908 					 cpumask_pr_args(&mce_missing_cpus));
909 			mce_panic(msg, NULL, NULL);
910 		}
911 		ret = 1;
912 		goto out;
913 	}
914 	*t -= SPINUNIT;
915 
916 out:
917 	touch_nmi_watchdog();
918 
919 	instrumentation_end();
920 
921 	return ret;
922 }
923 
924 /*
925  * The Monarch's reign.  The Monarch is the CPU who entered
926  * the machine check handler first. It waits for the others to
927  * raise the exception too and then grades them. When any
928  * error is fatal panic. Only then let the others continue.
929  *
930  * The other CPUs entering the MCE handler will be controlled by the
931  * Monarch. They are called Subjects.
932  *
933  * This way we prevent any potential data corruption in a unrecoverable case
934  * and also makes sure always all CPU's errors are examined.
935  *
936  * Also this detects the case of a machine check event coming from outer
937  * space (not detected by any CPUs) In this case some external agent wants
938  * us to shut down, so panic too.
939  *
940  * The other CPUs might still decide to panic if the handler happens
941  * in a unrecoverable place, but in this case the system is in a semi-stable
942  * state and won't corrupt anything by itself. It's ok to let the others
943  * continue for a bit first.
944  *
945  * All the spin loops have timeouts; when a timeout happens a CPU
946  * typically elects itself to be Monarch.
947  */
948 static void mce_reign(void)
949 {
950 	int cpu;
951 	struct mce *m = NULL;
952 	int global_worst = 0;
953 	char *msg = NULL;
954 
955 	/*
956 	 * This CPU is the Monarch and the other CPUs have run
957 	 * through their handlers.
958 	 * Grade the severity of the errors of all the CPUs.
959 	 */
960 	for_each_possible_cpu(cpu) {
961 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
962 
963 		if (mtmp->severity > global_worst) {
964 			global_worst = mtmp->severity;
965 			m = &per_cpu(mces_seen, cpu);
966 		}
967 	}
968 
969 	/*
970 	 * Cannot recover? Panic here then.
971 	 * This dumps all the mces in the log buffer and stops the
972 	 * other CPUs.
973 	 */
974 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
975 		/* call mce_severity() to get "msg" for panic */
976 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
977 		mce_panic("Fatal machine check", m, msg);
978 	}
979 
980 	/*
981 	 * For UC somewhere we let the CPU who detects it handle it.
982 	 * Also must let continue the others, otherwise the handling
983 	 * CPU could deadlock on a lock.
984 	 */
985 
986 	/*
987 	 * No machine check event found. Must be some external
988 	 * source or one CPU is hung. Panic.
989 	 */
990 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
991 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
992 
993 	/*
994 	 * Now clear all the mces_seen so that they don't reappear on
995 	 * the next mce.
996 	 */
997 	for_each_possible_cpu(cpu)
998 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
999 }
1000 
1001 static atomic_t global_nwo;
1002 
1003 /*
1004  * Start of Monarch synchronization. This waits until all CPUs have
1005  * entered the exception handler and then determines if any of them
1006  * saw a fatal event that requires panic. Then it executes them
1007  * in the entry order.
1008  * TBD double check parallel CPU hotunplug
1009  */
1010 static noinstr int mce_start(int *no_way_out)
1011 {
1012 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1013 	int order, ret = -1;
1014 
1015 	if (!timeout)
1016 		return ret;
1017 
1018 	atomic_add(*no_way_out, &global_nwo);
1019 	/*
1020 	 * Rely on the implied barrier below, such that global_nwo
1021 	 * is updated before mce_callin.
1022 	 */
1023 	order = atomic_inc_return(&mce_callin);
1024 	cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1025 
1026 	/* Enable instrumentation around calls to external facilities */
1027 	instrumentation_begin();
1028 
1029 	/*
1030 	 * Wait for everyone.
1031 	 */
1032 	while (atomic_read(&mce_callin) != num_online_cpus()) {
1033 		if (mce_timed_out(&timeout,
1034 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1035 			atomic_set(&global_nwo, 0);
1036 			goto out;
1037 		}
1038 		ndelay(SPINUNIT);
1039 	}
1040 
1041 	/*
1042 	 * mce_callin should be read before global_nwo
1043 	 */
1044 	smp_rmb();
1045 
1046 	if (order == 1) {
1047 		/*
1048 		 * Monarch: Starts executing now, the others wait.
1049 		 */
1050 		atomic_set(&mce_executing, 1);
1051 	} else {
1052 		/*
1053 		 * Subject: Now start the scanning loop one by one in
1054 		 * the original callin order.
1055 		 * This way when there are any shared banks it will be
1056 		 * only seen by one CPU before cleared, avoiding duplicates.
1057 		 */
1058 		while (atomic_read(&mce_executing) < order) {
1059 			if (mce_timed_out(&timeout,
1060 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1061 				atomic_set(&global_nwo, 0);
1062 				goto out;
1063 			}
1064 			ndelay(SPINUNIT);
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * Cache the global no_way_out state.
1070 	 */
1071 	*no_way_out = atomic_read(&global_nwo);
1072 
1073 	ret = order;
1074 
1075 out:
1076 	instrumentation_end();
1077 
1078 	return ret;
1079 }
1080 
1081 /*
1082  * Synchronize between CPUs after main scanning loop.
1083  * This invokes the bulk of the Monarch processing.
1084  */
1085 static noinstr int mce_end(int order)
1086 {
1087 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1088 	int ret = -1;
1089 
1090 	/* Allow instrumentation around external facilities. */
1091 	instrumentation_begin();
1092 
1093 	if (!timeout)
1094 		goto reset;
1095 	if (order < 0)
1096 		goto reset;
1097 
1098 	/*
1099 	 * Allow others to run.
1100 	 */
1101 	atomic_inc(&mce_executing);
1102 
1103 	if (order == 1) {
1104 		/*
1105 		 * Monarch: Wait for everyone to go through their scanning
1106 		 * loops.
1107 		 */
1108 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1109 			if (mce_timed_out(&timeout,
1110 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1111 				goto reset;
1112 			ndelay(SPINUNIT);
1113 		}
1114 
1115 		mce_reign();
1116 		barrier();
1117 		ret = 0;
1118 	} else {
1119 		/*
1120 		 * Subject: Wait for Monarch to finish.
1121 		 */
1122 		while (atomic_read(&mce_executing) != 0) {
1123 			if (mce_timed_out(&timeout,
1124 					  "Timeout: Monarch CPU did not finish machine check processing"))
1125 				goto reset;
1126 			ndelay(SPINUNIT);
1127 		}
1128 
1129 		/*
1130 		 * Don't reset anything. That's done by the Monarch.
1131 		 */
1132 		ret = 0;
1133 		goto out;
1134 	}
1135 
1136 	/*
1137 	 * Reset all global state.
1138 	 */
1139 reset:
1140 	atomic_set(&global_nwo, 0);
1141 	atomic_set(&mce_callin, 0);
1142 	cpumask_setall(&mce_missing_cpus);
1143 	barrier();
1144 
1145 	/*
1146 	 * Let others run again.
1147 	 */
1148 	atomic_set(&mce_executing, 0);
1149 
1150 out:
1151 	instrumentation_end();
1152 
1153 	return ret;
1154 }
1155 
1156 static void mce_clear_state(unsigned long *toclear)
1157 {
1158 	int i;
1159 
1160 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1161 		if (test_bit(i, toclear))
1162 			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1163 	}
1164 }
1165 
1166 /*
1167  * Cases where we avoid rendezvous handler timeout:
1168  * 1) If this CPU is offline.
1169  *
1170  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1171  *  skip those CPUs which remain looping in the 1st kernel - see
1172  *  crash_nmi_callback().
1173  *
1174  * Note: there still is a small window between kexec-ing and the new,
1175  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1176  * might not get handled properly.
1177  */
1178 static noinstr bool mce_check_crashing_cpu(void)
1179 {
1180 	unsigned int cpu = smp_processor_id();
1181 
1182 	if (arch_cpu_is_offline(cpu) ||
1183 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1184 		u64 mcgstatus;
1185 
1186 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1187 
1188 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1189 			if (mcgstatus & MCG_STATUS_LMCES)
1190 				return false;
1191 		}
1192 
1193 		if (mcgstatus & MCG_STATUS_RIPV) {
1194 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1195 			return true;
1196 		}
1197 	}
1198 	return false;
1199 }
1200 
1201 static __always_inline int
1202 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1203 		unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1204 		int *worst)
1205 {
1206 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1207 	struct mca_config *cfg = &mca_cfg;
1208 	int severity, i, taint = 0;
1209 
1210 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1211 		__clear_bit(i, toclear);
1212 		if (!test_bit(i, valid_banks))
1213 			continue;
1214 
1215 		if (!mce_banks[i].ctl)
1216 			continue;
1217 
1218 		m->misc = 0;
1219 		m->addr = 0;
1220 		m->bank = i;
1221 
1222 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1223 		if (!(m->status & MCI_STATUS_VAL))
1224 			continue;
1225 
1226 		/*
1227 		 * Corrected or non-signaled errors are handled by
1228 		 * machine_check_poll(). Leave them alone, unless this panics.
1229 		 */
1230 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1231 			!no_way_out)
1232 			continue;
1233 
1234 		/* Set taint even when machine check was not enabled. */
1235 		taint++;
1236 
1237 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1238 
1239 		/*
1240 		 * When machine check was for corrected/deferred handler don't
1241 		 * touch, unless we're panicking.
1242 		 */
1243 		if ((severity == MCE_KEEP_SEVERITY ||
1244 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1245 			continue;
1246 
1247 		__set_bit(i, toclear);
1248 
1249 		/* Machine check event was not enabled. Clear, but ignore. */
1250 		if (severity == MCE_NO_SEVERITY)
1251 			continue;
1252 
1253 		mce_read_aux(m, i);
1254 
1255 		/* assuming valid severity level != 0 */
1256 		m->severity = severity;
1257 
1258 		/*
1259 		 * Enable instrumentation around the mce_log() call which is
1260 		 * done in #MC context, where instrumentation is disabled.
1261 		 */
1262 		instrumentation_begin();
1263 		mce_log(m);
1264 		instrumentation_end();
1265 
1266 		if (severity > *worst) {
1267 			*final = *m;
1268 			*worst = severity;
1269 		}
1270 	}
1271 
1272 	/* mce_clear_state will clear *final, save locally for use later */
1273 	*m = *final;
1274 
1275 	return taint;
1276 }
1277 
1278 static void kill_me_now(struct callback_head *ch)
1279 {
1280 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1281 
1282 	p->mce_count = 0;
1283 	force_sig(SIGBUS);
1284 }
1285 
1286 static void kill_me_maybe(struct callback_head *cb)
1287 {
1288 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1289 	int flags = MF_ACTION_REQUIRED;
1290 	int ret;
1291 
1292 	p->mce_count = 0;
1293 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1294 
1295 	if (!p->mce_ripv)
1296 		flags |= MF_MUST_KILL;
1297 
1298 	ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1299 	if (!ret) {
1300 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1301 		sync_core();
1302 		return;
1303 	}
1304 
1305 	/*
1306 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1307 	 * to the current process with the proper error info,
1308 	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1309 	 *
1310 	 * In both cases, no further processing is required.
1311 	 */
1312 	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1313 		return;
1314 
1315 	pr_err("Memory error not recovered");
1316 	kill_me_now(cb);
1317 }
1318 
1319 static void kill_me_never(struct callback_head *cb)
1320 {
1321 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1322 
1323 	p->mce_count = 0;
1324 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1325 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0))
1326 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1327 }
1328 
1329 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1330 {
1331 	int count = ++current->mce_count;
1332 
1333 	/* First call, save all the details */
1334 	if (count == 1) {
1335 		current->mce_addr = m->addr;
1336 		current->mce_kflags = m->kflags;
1337 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1338 		current->mce_whole_page = whole_page(m);
1339 		current->mce_kill_me.func = func;
1340 	}
1341 
1342 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1343 	if (count > 10)
1344 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1345 
1346 	/* Second or later call, make sure page address matches the one from first call */
1347 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1348 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1349 
1350 	/* Do not call task_work_add() more than once */
1351 	if (count > 1)
1352 		return;
1353 
1354 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1355 }
1356 
1357 /* Handle unconfigured int18 (should never happen) */
1358 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1359 {
1360 	instrumentation_begin();
1361 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1362 	       smp_processor_id());
1363 	instrumentation_end();
1364 }
1365 
1366 /*
1367  * The actual machine check handler. This only handles real exceptions when
1368  * something got corrupted coming in through int 18.
1369  *
1370  * This is executed in #MC context not subject to normal locking rules.
1371  * This implies that most kernel services cannot be safely used. Don't even
1372  * think about putting a printk in there!
1373  *
1374  * On Intel systems this is entered on all CPUs in parallel through
1375  * MCE broadcast. However some CPUs might be broken beyond repair,
1376  * so be always careful when synchronizing with others.
1377  *
1378  * Tracing and kprobes are disabled: if we interrupted a kernel context
1379  * with IF=1, we need to minimize stack usage.  There are also recursion
1380  * issues: if the machine check was due to a failure of the memory
1381  * backing the user stack, tracing that reads the user stack will cause
1382  * potentially infinite recursion.
1383  *
1384  * Currently, the #MC handler calls out to a number of external facilities
1385  * and, therefore, allows instrumentation around them. The optimal thing to
1386  * have would be to do the absolutely minimal work required in #MC context
1387  * and have instrumentation disabled only around that. Further processing can
1388  * then happen in process context where instrumentation is allowed. Achieving
1389  * that requires careful auditing and modifications. Until then, the code
1390  * allows instrumentation temporarily, where required. *
1391  */
1392 noinstr void do_machine_check(struct pt_regs *regs)
1393 {
1394 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1395 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1396 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1397 	struct mca_config *cfg = &mca_cfg;
1398 	struct mce m, *final;
1399 	char *msg = NULL;
1400 
1401 	if (unlikely(mce_flags.p5))
1402 		return pentium_machine_check(regs);
1403 	else if (unlikely(mce_flags.winchip))
1404 		return winchip_machine_check(regs);
1405 	else if (unlikely(!mca_cfg.initialized))
1406 		return unexpected_machine_check(regs);
1407 
1408 	/*
1409 	 * Establish sequential order between the CPUs entering the machine
1410 	 * check handler.
1411 	 */
1412 	order = -1;
1413 
1414 	/*
1415 	 * If no_way_out gets set, there is no safe way to recover from this
1416 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1417 	 */
1418 	no_way_out = 0;
1419 
1420 	/*
1421 	 * If kill_current_task is not set, there might be a way to recover from this
1422 	 * error.
1423 	 */
1424 	kill_current_task = 0;
1425 
1426 	/*
1427 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1428 	 * on Intel.
1429 	 */
1430 	lmce = 1;
1431 
1432 	this_cpu_inc(mce_exception_count);
1433 
1434 	mce_gather_info(&m, regs);
1435 	m.tsc = rdtsc();
1436 
1437 	final = this_cpu_ptr(&mces_seen);
1438 	*final = m;
1439 
1440 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1441 
1442 	barrier();
1443 
1444 	/*
1445 	 * When no restart IP might need to kill or panic.
1446 	 * Assume the worst for now, but if we find the
1447 	 * severity is MCE_AR_SEVERITY we have other options.
1448 	 */
1449 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1450 		kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1451 	/*
1452 	 * Check if this MCE is signaled to only this logical processor,
1453 	 * on Intel, Zhaoxin only.
1454 	 */
1455 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1456 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1457 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1458 
1459 	/*
1460 	 * Local machine check may already know that we have to panic.
1461 	 * Broadcast machine check begins rendezvous in mce_start()
1462 	 * Go through all banks in exclusion of the other CPUs. This way we
1463 	 * don't report duplicated events on shared banks because the first one
1464 	 * to see it will clear it.
1465 	 */
1466 	if (lmce) {
1467 		if (no_way_out && cfg->tolerant < 3)
1468 			mce_panic("Fatal local machine check", &m, msg);
1469 	} else {
1470 		order = mce_start(&no_way_out);
1471 	}
1472 
1473 	taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1474 
1475 	if (!no_way_out)
1476 		mce_clear_state(toclear);
1477 
1478 	/*
1479 	 * Do most of the synchronization with other CPUs.
1480 	 * When there's any problem use only local no_way_out state.
1481 	 */
1482 	if (!lmce) {
1483 		if (mce_end(order) < 0) {
1484 			if (!no_way_out)
1485 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1486 
1487 			if (no_way_out && cfg->tolerant < 3)
1488 				mce_panic("Fatal machine check on current CPU", &m, msg);
1489 		}
1490 	} else {
1491 		/*
1492 		 * If there was a fatal machine check we should have
1493 		 * already called mce_panic earlier in this function.
1494 		 * Since we re-read the banks, we might have found
1495 		 * something new. Check again to see if we found a
1496 		 * fatal error. We call "mce_severity()" again to
1497 		 * make sure we have the right "msg".
1498 		 */
1499 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1500 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1501 			mce_panic("Local fatal machine check!", &m, msg);
1502 		}
1503 	}
1504 
1505 	/*
1506 	 * Enable instrumentation around the external facilities like task_work_add()
1507 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1508 	 * properly would need a lot more involved reorganization.
1509 	 */
1510 	instrumentation_begin();
1511 
1512 	if (taint)
1513 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1514 
1515 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1516 		goto out;
1517 
1518 	/* Fault was in user mode and we need to take some action */
1519 	if ((m.cs & 3) == 3) {
1520 		/* If this triggers there is no way to recover. Die hard. */
1521 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1522 
1523 		if (kill_current_task)
1524 			queue_task_work(&m, msg, kill_me_now);
1525 		else
1526 			queue_task_work(&m, msg, kill_me_maybe);
1527 
1528 	} else {
1529 		/*
1530 		 * Handle an MCE which has happened in kernel space but from
1531 		 * which the kernel can recover: ex_has_fault_handler() has
1532 		 * already verified that the rIP at which the error happened is
1533 		 * a rIP from which the kernel can recover (by jumping to
1534 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1535 		 * corresponding exception handler which would do that is the
1536 		 * proper one.
1537 		 */
1538 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1539 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1540 				mce_panic("Failed kernel mode recovery", &m, msg);
1541 		}
1542 
1543 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1544 			queue_task_work(&m, msg, kill_me_never);
1545 	}
1546 
1547 out:
1548 	instrumentation_end();
1549 
1550 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1551 }
1552 EXPORT_SYMBOL_GPL(do_machine_check);
1553 
1554 #ifndef CONFIG_MEMORY_FAILURE
1555 int memory_failure(unsigned long pfn, int flags)
1556 {
1557 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1558 	BUG_ON(flags & MF_ACTION_REQUIRED);
1559 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1560 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1561 	       pfn);
1562 
1563 	return 0;
1564 }
1565 #endif
1566 
1567 /*
1568  * Periodic polling timer for "silent" machine check errors.  If the
1569  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1570  * errors, poll 2x slower (up to check_interval seconds).
1571  */
1572 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1573 
1574 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1575 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1576 
1577 static unsigned long mce_adjust_timer_default(unsigned long interval)
1578 {
1579 	return interval;
1580 }
1581 
1582 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1583 
1584 static void __start_timer(struct timer_list *t, unsigned long interval)
1585 {
1586 	unsigned long when = jiffies + interval;
1587 	unsigned long flags;
1588 
1589 	local_irq_save(flags);
1590 
1591 	if (!timer_pending(t) || time_before(when, t->expires))
1592 		mod_timer(t, round_jiffies(when));
1593 
1594 	local_irq_restore(flags);
1595 }
1596 
1597 static void mce_timer_fn(struct timer_list *t)
1598 {
1599 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1600 	unsigned long iv;
1601 
1602 	WARN_ON(cpu_t != t);
1603 
1604 	iv = __this_cpu_read(mce_next_interval);
1605 
1606 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1607 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1608 
1609 		if (mce_intel_cmci_poll()) {
1610 			iv = mce_adjust_timer(iv);
1611 			goto done;
1612 		}
1613 	}
1614 
1615 	/*
1616 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1617 	 * interval, otherwise increase the polling interval.
1618 	 */
1619 	if (mce_notify_irq())
1620 		iv = max(iv / 2, (unsigned long) HZ/100);
1621 	else
1622 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1623 
1624 done:
1625 	__this_cpu_write(mce_next_interval, iv);
1626 	__start_timer(t, iv);
1627 }
1628 
1629 /*
1630  * Ensure that the timer is firing in @interval from now.
1631  */
1632 void mce_timer_kick(unsigned long interval)
1633 {
1634 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1635 	unsigned long iv = __this_cpu_read(mce_next_interval);
1636 
1637 	__start_timer(t, interval);
1638 
1639 	if (interval < iv)
1640 		__this_cpu_write(mce_next_interval, interval);
1641 }
1642 
1643 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1644 static void mce_timer_delete_all(void)
1645 {
1646 	int cpu;
1647 
1648 	for_each_online_cpu(cpu)
1649 		del_timer_sync(&per_cpu(mce_timer, cpu));
1650 }
1651 
1652 /*
1653  * Notify the user(s) about new machine check events.
1654  * Can be called from interrupt context, but not from machine check/NMI
1655  * context.
1656  */
1657 int mce_notify_irq(void)
1658 {
1659 	/* Not more than two messages every minute */
1660 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1661 
1662 	if (test_and_clear_bit(0, &mce_need_notify)) {
1663 		mce_work_trigger();
1664 
1665 		if (__ratelimit(&ratelimit))
1666 			pr_info(HW_ERR "Machine check events logged\n");
1667 
1668 		return 1;
1669 	}
1670 	return 0;
1671 }
1672 EXPORT_SYMBOL_GPL(mce_notify_irq);
1673 
1674 static void __mcheck_cpu_mce_banks_init(void)
1675 {
1676 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1677 	u8 n_banks = this_cpu_read(mce_num_banks);
1678 	int i;
1679 
1680 	for (i = 0; i < n_banks; i++) {
1681 		struct mce_bank *b = &mce_banks[i];
1682 
1683 		/*
1684 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1685 		 * the required vendor quirks before
1686 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1687 		 */
1688 		b->ctl = -1ULL;
1689 		b->init = true;
1690 	}
1691 }
1692 
1693 /*
1694  * Initialize Machine Checks for a CPU.
1695  */
1696 static void __mcheck_cpu_cap_init(void)
1697 {
1698 	u64 cap;
1699 	u8 b;
1700 
1701 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1702 
1703 	b = cap & MCG_BANKCNT_MASK;
1704 
1705 	if (b > MAX_NR_BANKS) {
1706 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1707 			smp_processor_id(), MAX_NR_BANKS, b);
1708 		b = MAX_NR_BANKS;
1709 	}
1710 
1711 	this_cpu_write(mce_num_banks, b);
1712 
1713 	__mcheck_cpu_mce_banks_init();
1714 
1715 	/* Use accurate RIP reporting if available. */
1716 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1717 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1718 
1719 	if (cap & MCG_SER_P)
1720 		mca_cfg.ser = 1;
1721 }
1722 
1723 static void __mcheck_cpu_init_generic(void)
1724 {
1725 	enum mcp_flags m_fl = 0;
1726 	mce_banks_t all_banks;
1727 	u64 cap;
1728 
1729 	if (!mca_cfg.bootlog)
1730 		m_fl = MCP_DONTLOG;
1731 
1732 	/*
1733 	 * Log the machine checks left over from the previous reset. Log them
1734 	 * only, do not start processing them. That will happen in mcheck_late_init()
1735 	 * when all consumers have been registered on the notifier chain.
1736 	 */
1737 	bitmap_fill(all_banks, MAX_NR_BANKS);
1738 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1739 
1740 	cr4_set_bits(X86_CR4_MCE);
1741 
1742 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1743 	if (cap & MCG_CTL_P)
1744 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1745 }
1746 
1747 static void __mcheck_cpu_init_clear_banks(void)
1748 {
1749 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1750 	int i;
1751 
1752 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1753 		struct mce_bank *b = &mce_banks[i];
1754 
1755 		if (!b->init)
1756 			continue;
1757 		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1758 		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1759 	}
1760 }
1761 
1762 /*
1763  * Do a final check to see if there are any unused/RAZ banks.
1764  *
1765  * This must be done after the banks have been initialized and any quirks have
1766  * been applied.
1767  *
1768  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1769  * Otherwise, a user who disables a bank will not be able to re-enable it
1770  * without a system reboot.
1771  */
1772 static void __mcheck_cpu_check_banks(void)
1773 {
1774 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1775 	u64 msrval;
1776 	int i;
1777 
1778 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1779 		struct mce_bank *b = &mce_banks[i];
1780 
1781 		if (!b->init)
1782 			continue;
1783 
1784 		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1785 		b->init = !!msrval;
1786 	}
1787 }
1788 
1789 /* Add per CPU specific workarounds here */
1790 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1791 {
1792 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1793 	struct mca_config *cfg = &mca_cfg;
1794 
1795 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1796 		pr_info("unknown CPU type - not enabling MCE support\n");
1797 		return -EOPNOTSUPP;
1798 	}
1799 
1800 	/* This should be disabled by the BIOS, but isn't always */
1801 	if (c->x86_vendor == X86_VENDOR_AMD) {
1802 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1803 			/*
1804 			 * disable GART TBL walk error reporting, which
1805 			 * trips off incorrectly with the IOMMU & 3ware
1806 			 * & Cerberus:
1807 			 */
1808 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1809 		}
1810 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1811 			/*
1812 			 * Lots of broken BIOS around that don't clear them
1813 			 * by default and leave crap in there. Don't log:
1814 			 */
1815 			cfg->bootlog = 0;
1816 		}
1817 		/*
1818 		 * Various K7s with broken bank 0 around. Always disable
1819 		 * by default.
1820 		 */
1821 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1822 			mce_banks[0].ctl = 0;
1823 
1824 		/*
1825 		 * overflow_recov is supported for F15h Models 00h-0fh
1826 		 * even though we don't have a CPUID bit for it.
1827 		 */
1828 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1829 			mce_flags.overflow_recov = 1;
1830 
1831 	}
1832 
1833 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1834 		/*
1835 		 * SDM documents that on family 6 bank 0 should not be written
1836 		 * because it aliases to another special BIOS controlled
1837 		 * register.
1838 		 * But it's not aliased anymore on model 0x1a+
1839 		 * Don't ignore bank 0 completely because there could be a
1840 		 * valid event later, merely don't write CTL0.
1841 		 */
1842 
1843 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1844 			mce_banks[0].init = false;
1845 
1846 		/*
1847 		 * All newer Intel systems support MCE broadcasting. Enable
1848 		 * synchronization with a one second timeout.
1849 		 */
1850 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1851 			cfg->monarch_timeout < 0)
1852 			cfg->monarch_timeout = USEC_PER_SEC;
1853 
1854 		/*
1855 		 * There are also broken BIOSes on some Pentium M and
1856 		 * earlier systems:
1857 		 */
1858 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1859 			cfg->bootlog = 0;
1860 
1861 		if (c->x86 == 6 && c->x86_model == 45)
1862 			mce_flags.snb_ifu_quirk = 1;
1863 	}
1864 
1865 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1866 		/*
1867 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1868 		 * synchronization with a one second timeout.
1869 		 */
1870 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1871 			if (cfg->monarch_timeout < 0)
1872 				cfg->monarch_timeout = USEC_PER_SEC;
1873 		}
1874 	}
1875 
1876 	if (cfg->monarch_timeout < 0)
1877 		cfg->monarch_timeout = 0;
1878 	if (cfg->bootlog != 0)
1879 		cfg->panic_timeout = 30;
1880 
1881 	return 0;
1882 }
1883 
1884 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1885 {
1886 	if (c->x86 != 5)
1887 		return 0;
1888 
1889 	switch (c->x86_vendor) {
1890 	case X86_VENDOR_INTEL:
1891 		intel_p5_mcheck_init(c);
1892 		mce_flags.p5 = 1;
1893 		return 1;
1894 	case X86_VENDOR_CENTAUR:
1895 		winchip_mcheck_init(c);
1896 		mce_flags.winchip = 1;
1897 		return 1;
1898 	default:
1899 		return 0;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 /*
1906  * Init basic CPU features needed for early decoding of MCEs.
1907  */
1908 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1909 {
1910 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1911 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1912 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1913 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1914 		mce_flags.amd_threshold	 = 1;
1915 	}
1916 }
1917 
1918 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1919 {
1920 	struct mca_config *cfg = &mca_cfg;
1921 
1922 	 /*
1923 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1924 	  * synchronization with a one second timeout.
1925 	  */
1926 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1927 	     c->x86 > 6) {
1928 		if (cfg->monarch_timeout < 0)
1929 			cfg->monarch_timeout = USEC_PER_SEC;
1930 	}
1931 }
1932 
1933 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1934 {
1935 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1936 
1937 	/*
1938 	 * These CPUs have MCA bank 8 which reports only one error type called
1939 	 * SVAD (System View Address Decoder). The reporting of that error is
1940 	 * controlled by IA32_MC8.CTL.0.
1941 	 *
1942 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1943 	 * virtual machines start and result in a system  panic. Always disable
1944 	 * bank 8 SVAD error by default.
1945 	 */
1946 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1947 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1948 		if (this_cpu_read(mce_num_banks) > 8)
1949 			mce_banks[8].ctl = 0;
1950 	}
1951 
1952 	intel_init_cmci();
1953 	intel_init_lmce();
1954 	mce_adjust_timer = cmci_intel_adjust_timer;
1955 }
1956 
1957 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1958 {
1959 	intel_clear_lmce();
1960 }
1961 
1962 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1963 {
1964 	switch (c->x86_vendor) {
1965 	case X86_VENDOR_INTEL:
1966 		mce_intel_feature_init(c);
1967 		mce_adjust_timer = cmci_intel_adjust_timer;
1968 		break;
1969 
1970 	case X86_VENDOR_AMD: {
1971 		mce_amd_feature_init(c);
1972 		break;
1973 		}
1974 
1975 	case X86_VENDOR_HYGON:
1976 		mce_hygon_feature_init(c);
1977 		break;
1978 
1979 	case X86_VENDOR_CENTAUR:
1980 		mce_centaur_feature_init(c);
1981 		break;
1982 
1983 	case X86_VENDOR_ZHAOXIN:
1984 		mce_zhaoxin_feature_init(c);
1985 		break;
1986 
1987 	default:
1988 		break;
1989 	}
1990 }
1991 
1992 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1993 {
1994 	switch (c->x86_vendor) {
1995 	case X86_VENDOR_INTEL:
1996 		mce_intel_feature_clear(c);
1997 		break;
1998 
1999 	case X86_VENDOR_ZHAOXIN:
2000 		mce_zhaoxin_feature_clear(c);
2001 		break;
2002 
2003 	default:
2004 		break;
2005 	}
2006 }
2007 
2008 static void mce_start_timer(struct timer_list *t)
2009 {
2010 	unsigned long iv = check_interval * HZ;
2011 
2012 	if (mca_cfg.ignore_ce || !iv)
2013 		return;
2014 
2015 	this_cpu_write(mce_next_interval, iv);
2016 	__start_timer(t, iv);
2017 }
2018 
2019 static void __mcheck_cpu_setup_timer(void)
2020 {
2021 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2022 
2023 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2024 }
2025 
2026 static void __mcheck_cpu_init_timer(void)
2027 {
2028 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2029 
2030 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2031 	mce_start_timer(t);
2032 }
2033 
2034 bool filter_mce(struct mce *m)
2035 {
2036 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2037 		return amd_filter_mce(m);
2038 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2039 		return intel_filter_mce(m);
2040 
2041 	return false;
2042 }
2043 
2044 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2045 {
2046 	irqentry_state_t irq_state;
2047 
2048 	WARN_ON_ONCE(user_mode(regs));
2049 
2050 	/*
2051 	 * Only required when from kernel mode. See
2052 	 * mce_check_crashing_cpu() for details.
2053 	 */
2054 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2055 		return;
2056 
2057 	irq_state = irqentry_nmi_enter(regs);
2058 
2059 	do_machine_check(regs);
2060 
2061 	irqentry_nmi_exit(regs, irq_state);
2062 }
2063 
2064 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2065 {
2066 	irqentry_enter_from_user_mode(regs);
2067 
2068 	do_machine_check(regs);
2069 
2070 	irqentry_exit_to_user_mode(regs);
2071 }
2072 
2073 #ifdef CONFIG_X86_64
2074 /* MCE hit kernel mode */
2075 DEFINE_IDTENTRY_MCE(exc_machine_check)
2076 {
2077 	unsigned long dr7;
2078 
2079 	dr7 = local_db_save();
2080 	exc_machine_check_kernel(regs);
2081 	local_db_restore(dr7);
2082 }
2083 
2084 /* The user mode variant. */
2085 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2086 {
2087 	unsigned long dr7;
2088 
2089 	dr7 = local_db_save();
2090 	exc_machine_check_user(regs);
2091 	local_db_restore(dr7);
2092 }
2093 #else
2094 /* 32bit unified entry point */
2095 DEFINE_IDTENTRY_RAW(exc_machine_check)
2096 {
2097 	unsigned long dr7;
2098 
2099 	dr7 = local_db_save();
2100 	if (user_mode(regs))
2101 		exc_machine_check_user(regs);
2102 	else
2103 		exc_machine_check_kernel(regs);
2104 	local_db_restore(dr7);
2105 }
2106 #endif
2107 
2108 /*
2109  * Called for each booted CPU to set up machine checks.
2110  * Must be called with preempt off:
2111  */
2112 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2113 {
2114 	if (mca_cfg.disabled)
2115 		return;
2116 
2117 	if (__mcheck_cpu_ancient_init(c))
2118 		return;
2119 
2120 	if (!mce_available(c))
2121 		return;
2122 
2123 	__mcheck_cpu_cap_init();
2124 
2125 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2126 		mca_cfg.disabled = 1;
2127 		return;
2128 	}
2129 
2130 	if (mce_gen_pool_init()) {
2131 		mca_cfg.disabled = 1;
2132 		pr_emerg("Couldn't allocate MCE records pool!\n");
2133 		return;
2134 	}
2135 
2136 	mca_cfg.initialized = 1;
2137 
2138 	__mcheck_cpu_init_early(c);
2139 	__mcheck_cpu_init_generic();
2140 	__mcheck_cpu_init_vendor(c);
2141 	__mcheck_cpu_init_clear_banks();
2142 	__mcheck_cpu_check_banks();
2143 	__mcheck_cpu_setup_timer();
2144 }
2145 
2146 /*
2147  * Called for each booted CPU to clear some machine checks opt-ins
2148  */
2149 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2150 {
2151 	if (mca_cfg.disabled)
2152 		return;
2153 
2154 	if (!mce_available(c))
2155 		return;
2156 
2157 	/*
2158 	 * Possibly to clear general settings generic to x86
2159 	 * __mcheck_cpu_clear_generic(c);
2160 	 */
2161 	__mcheck_cpu_clear_vendor(c);
2162 
2163 }
2164 
2165 static void __mce_disable_bank(void *arg)
2166 {
2167 	int bank = *((int *)arg);
2168 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2169 	cmci_disable_bank(bank);
2170 }
2171 
2172 void mce_disable_bank(int bank)
2173 {
2174 	if (bank >= this_cpu_read(mce_num_banks)) {
2175 		pr_warn(FW_BUG
2176 			"Ignoring request to disable invalid MCA bank %d.\n",
2177 			bank);
2178 		return;
2179 	}
2180 	set_bit(bank, mce_banks_ce_disabled);
2181 	on_each_cpu(__mce_disable_bank, &bank, 1);
2182 }
2183 
2184 /*
2185  * mce=off Disables machine check
2186  * mce=no_cmci Disables CMCI
2187  * mce=no_lmce Disables LMCE
2188  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2189  * mce=print_all Print all machine check logs to console
2190  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2191  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2192  *	monarchtimeout is how long to wait for other CPUs on machine
2193  *	check, or 0 to not wait
2194  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2195 	and older.
2196  * mce=nobootlog Don't log MCEs from before booting.
2197  * mce=bios_cmci_threshold Don't program the CMCI threshold
2198  * mce=recovery force enable copy_mc_fragile()
2199  */
2200 static int __init mcheck_enable(char *str)
2201 {
2202 	struct mca_config *cfg = &mca_cfg;
2203 
2204 	if (*str == 0) {
2205 		enable_p5_mce();
2206 		return 1;
2207 	}
2208 	if (*str == '=')
2209 		str++;
2210 	if (!strcmp(str, "off"))
2211 		cfg->disabled = 1;
2212 	else if (!strcmp(str, "no_cmci"))
2213 		cfg->cmci_disabled = true;
2214 	else if (!strcmp(str, "no_lmce"))
2215 		cfg->lmce_disabled = 1;
2216 	else if (!strcmp(str, "dont_log_ce"))
2217 		cfg->dont_log_ce = true;
2218 	else if (!strcmp(str, "print_all"))
2219 		cfg->print_all = true;
2220 	else if (!strcmp(str, "ignore_ce"))
2221 		cfg->ignore_ce = true;
2222 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2223 		cfg->bootlog = (str[0] == 'b');
2224 	else if (!strcmp(str, "bios_cmci_threshold"))
2225 		cfg->bios_cmci_threshold = 1;
2226 	else if (!strcmp(str, "recovery"))
2227 		cfg->recovery = 1;
2228 	else if (isdigit(str[0])) {
2229 		if (get_option(&str, &cfg->tolerant) == 2)
2230 			get_option(&str, &(cfg->monarch_timeout));
2231 	} else {
2232 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2233 		return 0;
2234 	}
2235 	return 1;
2236 }
2237 __setup("mce", mcheck_enable);
2238 
2239 int __init mcheck_init(void)
2240 {
2241 	mce_register_decode_chain(&early_nb);
2242 	mce_register_decode_chain(&mce_uc_nb);
2243 	mce_register_decode_chain(&mce_default_nb);
2244 
2245 	INIT_WORK(&mce_work, mce_gen_pool_process);
2246 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2247 
2248 	return 0;
2249 }
2250 
2251 /*
2252  * mce_syscore: PM support
2253  */
2254 
2255 /*
2256  * Disable machine checks on suspend and shutdown. We can't really handle
2257  * them later.
2258  */
2259 static void mce_disable_error_reporting(void)
2260 {
2261 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2262 	int i;
2263 
2264 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2265 		struct mce_bank *b = &mce_banks[i];
2266 
2267 		if (b->init)
2268 			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2269 	}
2270 	return;
2271 }
2272 
2273 static void vendor_disable_error_reporting(void)
2274 {
2275 	/*
2276 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2277 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2278 	 * is bad, since it will inhibit reporting for all shared resources on
2279 	 * the socket like the last level cache (LLC), the integrated memory
2280 	 * controller (iMC), etc.
2281 	 */
2282 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2283 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2284 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2285 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2286 		return;
2287 
2288 	mce_disable_error_reporting();
2289 }
2290 
2291 static int mce_syscore_suspend(void)
2292 {
2293 	vendor_disable_error_reporting();
2294 	return 0;
2295 }
2296 
2297 static void mce_syscore_shutdown(void)
2298 {
2299 	vendor_disable_error_reporting();
2300 }
2301 
2302 /*
2303  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2304  * Only one CPU is active at this time, the others get re-added later using
2305  * CPU hotplug:
2306  */
2307 static void mce_syscore_resume(void)
2308 {
2309 	__mcheck_cpu_init_generic();
2310 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2311 	__mcheck_cpu_init_clear_banks();
2312 }
2313 
2314 static struct syscore_ops mce_syscore_ops = {
2315 	.suspend	= mce_syscore_suspend,
2316 	.shutdown	= mce_syscore_shutdown,
2317 	.resume		= mce_syscore_resume,
2318 };
2319 
2320 /*
2321  * mce_device: Sysfs support
2322  */
2323 
2324 static void mce_cpu_restart(void *data)
2325 {
2326 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2327 		return;
2328 	__mcheck_cpu_init_generic();
2329 	__mcheck_cpu_init_clear_banks();
2330 	__mcheck_cpu_init_timer();
2331 }
2332 
2333 /* Reinit MCEs after user configuration changes */
2334 static void mce_restart(void)
2335 {
2336 	mce_timer_delete_all();
2337 	on_each_cpu(mce_cpu_restart, NULL, 1);
2338 }
2339 
2340 /* Toggle features for corrected errors */
2341 static void mce_disable_cmci(void *data)
2342 {
2343 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2344 		return;
2345 	cmci_clear();
2346 }
2347 
2348 static void mce_enable_ce(void *all)
2349 {
2350 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2351 		return;
2352 	cmci_reenable();
2353 	cmci_recheck();
2354 	if (all)
2355 		__mcheck_cpu_init_timer();
2356 }
2357 
2358 static struct bus_type mce_subsys = {
2359 	.name		= "machinecheck",
2360 	.dev_name	= "machinecheck",
2361 };
2362 
2363 DEFINE_PER_CPU(struct device *, mce_device);
2364 
2365 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2366 {
2367 	return container_of(attr, struct mce_bank_dev, attr);
2368 }
2369 
2370 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2371 			 char *buf)
2372 {
2373 	u8 bank = attr_to_bank(attr)->bank;
2374 	struct mce_bank *b;
2375 
2376 	if (bank >= per_cpu(mce_num_banks, s->id))
2377 		return -EINVAL;
2378 
2379 	b = &per_cpu(mce_banks_array, s->id)[bank];
2380 
2381 	if (!b->init)
2382 		return -ENODEV;
2383 
2384 	return sprintf(buf, "%llx\n", b->ctl);
2385 }
2386 
2387 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2388 			const char *buf, size_t size)
2389 {
2390 	u8 bank = attr_to_bank(attr)->bank;
2391 	struct mce_bank *b;
2392 	u64 new;
2393 
2394 	if (kstrtou64(buf, 0, &new) < 0)
2395 		return -EINVAL;
2396 
2397 	if (bank >= per_cpu(mce_num_banks, s->id))
2398 		return -EINVAL;
2399 
2400 	b = &per_cpu(mce_banks_array, s->id)[bank];
2401 
2402 	if (!b->init)
2403 		return -ENODEV;
2404 
2405 	b->ctl = new;
2406 	mce_restart();
2407 
2408 	return size;
2409 }
2410 
2411 static ssize_t set_ignore_ce(struct device *s,
2412 			     struct device_attribute *attr,
2413 			     const char *buf, size_t size)
2414 {
2415 	u64 new;
2416 
2417 	if (kstrtou64(buf, 0, &new) < 0)
2418 		return -EINVAL;
2419 
2420 	mutex_lock(&mce_sysfs_mutex);
2421 	if (mca_cfg.ignore_ce ^ !!new) {
2422 		if (new) {
2423 			/* disable ce features */
2424 			mce_timer_delete_all();
2425 			on_each_cpu(mce_disable_cmci, NULL, 1);
2426 			mca_cfg.ignore_ce = true;
2427 		} else {
2428 			/* enable ce features */
2429 			mca_cfg.ignore_ce = false;
2430 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2431 		}
2432 	}
2433 	mutex_unlock(&mce_sysfs_mutex);
2434 
2435 	return size;
2436 }
2437 
2438 static ssize_t set_cmci_disabled(struct device *s,
2439 				 struct device_attribute *attr,
2440 				 const char *buf, size_t size)
2441 {
2442 	u64 new;
2443 
2444 	if (kstrtou64(buf, 0, &new) < 0)
2445 		return -EINVAL;
2446 
2447 	mutex_lock(&mce_sysfs_mutex);
2448 	if (mca_cfg.cmci_disabled ^ !!new) {
2449 		if (new) {
2450 			/* disable cmci */
2451 			on_each_cpu(mce_disable_cmci, NULL, 1);
2452 			mca_cfg.cmci_disabled = true;
2453 		} else {
2454 			/* enable cmci */
2455 			mca_cfg.cmci_disabled = false;
2456 			on_each_cpu(mce_enable_ce, NULL, 1);
2457 		}
2458 	}
2459 	mutex_unlock(&mce_sysfs_mutex);
2460 
2461 	return size;
2462 }
2463 
2464 static ssize_t store_int_with_restart(struct device *s,
2465 				      struct device_attribute *attr,
2466 				      const char *buf, size_t size)
2467 {
2468 	unsigned long old_check_interval = check_interval;
2469 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2470 
2471 	if (check_interval == old_check_interval)
2472 		return ret;
2473 
2474 	mutex_lock(&mce_sysfs_mutex);
2475 	mce_restart();
2476 	mutex_unlock(&mce_sysfs_mutex);
2477 
2478 	return ret;
2479 }
2480 
2481 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2482 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2483 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2484 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2485 
2486 static struct dev_ext_attribute dev_attr_check_interval = {
2487 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2488 	&check_interval
2489 };
2490 
2491 static struct dev_ext_attribute dev_attr_ignore_ce = {
2492 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2493 	&mca_cfg.ignore_ce
2494 };
2495 
2496 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2497 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2498 	&mca_cfg.cmci_disabled
2499 };
2500 
2501 static struct device_attribute *mce_device_attrs[] = {
2502 	&dev_attr_tolerant.attr,
2503 	&dev_attr_check_interval.attr,
2504 #ifdef CONFIG_X86_MCELOG_LEGACY
2505 	&dev_attr_trigger,
2506 #endif
2507 	&dev_attr_monarch_timeout.attr,
2508 	&dev_attr_dont_log_ce.attr,
2509 	&dev_attr_print_all.attr,
2510 	&dev_attr_ignore_ce.attr,
2511 	&dev_attr_cmci_disabled.attr,
2512 	NULL
2513 };
2514 
2515 static cpumask_var_t mce_device_initialized;
2516 
2517 static void mce_device_release(struct device *dev)
2518 {
2519 	kfree(dev);
2520 }
2521 
2522 /* Per CPU device init. All of the CPUs still share the same bank device: */
2523 static int mce_device_create(unsigned int cpu)
2524 {
2525 	struct device *dev;
2526 	int err;
2527 	int i, j;
2528 
2529 	if (!mce_available(&boot_cpu_data))
2530 		return -EIO;
2531 
2532 	dev = per_cpu(mce_device, cpu);
2533 	if (dev)
2534 		return 0;
2535 
2536 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2537 	if (!dev)
2538 		return -ENOMEM;
2539 	dev->id  = cpu;
2540 	dev->bus = &mce_subsys;
2541 	dev->release = &mce_device_release;
2542 
2543 	err = device_register(dev);
2544 	if (err) {
2545 		put_device(dev);
2546 		return err;
2547 	}
2548 
2549 	for (i = 0; mce_device_attrs[i]; i++) {
2550 		err = device_create_file(dev, mce_device_attrs[i]);
2551 		if (err)
2552 			goto error;
2553 	}
2554 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2555 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2556 		if (err)
2557 			goto error2;
2558 	}
2559 	cpumask_set_cpu(cpu, mce_device_initialized);
2560 	per_cpu(mce_device, cpu) = dev;
2561 
2562 	return 0;
2563 error2:
2564 	while (--j >= 0)
2565 		device_remove_file(dev, &mce_bank_devs[j].attr);
2566 error:
2567 	while (--i >= 0)
2568 		device_remove_file(dev, mce_device_attrs[i]);
2569 
2570 	device_unregister(dev);
2571 
2572 	return err;
2573 }
2574 
2575 static void mce_device_remove(unsigned int cpu)
2576 {
2577 	struct device *dev = per_cpu(mce_device, cpu);
2578 	int i;
2579 
2580 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2581 		return;
2582 
2583 	for (i = 0; mce_device_attrs[i]; i++)
2584 		device_remove_file(dev, mce_device_attrs[i]);
2585 
2586 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2587 		device_remove_file(dev, &mce_bank_devs[i].attr);
2588 
2589 	device_unregister(dev);
2590 	cpumask_clear_cpu(cpu, mce_device_initialized);
2591 	per_cpu(mce_device, cpu) = NULL;
2592 }
2593 
2594 /* Make sure there are no machine checks on offlined CPUs. */
2595 static void mce_disable_cpu(void)
2596 {
2597 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2598 		return;
2599 
2600 	if (!cpuhp_tasks_frozen)
2601 		cmci_clear();
2602 
2603 	vendor_disable_error_reporting();
2604 }
2605 
2606 static void mce_reenable_cpu(void)
2607 {
2608 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2609 	int i;
2610 
2611 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2612 		return;
2613 
2614 	if (!cpuhp_tasks_frozen)
2615 		cmci_reenable();
2616 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2617 		struct mce_bank *b = &mce_banks[i];
2618 
2619 		if (b->init)
2620 			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2621 	}
2622 }
2623 
2624 static int mce_cpu_dead(unsigned int cpu)
2625 {
2626 	mce_intel_hcpu_update(cpu);
2627 
2628 	/* intentionally ignoring frozen here */
2629 	if (!cpuhp_tasks_frozen)
2630 		cmci_rediscover();
2631 	return 0;
2632 }
2633 
2634 static int mce_cpu_online(unsigned int cpu)
2635 {
2636 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2637 	int ret;
2638 
2639 	mce_device_create(cpu);
2640 
2641 	ret = mce_threshold_create_device(cpu);
2642 	if (ret) {
2643 		mce_device_remove(cpu);
2644 		return ret;
2645 	}
2646 	mce_reenable_cpu();
2647 	mce_start_timer(t);
2648 	return 0;
2649 }
2650 
2651 static int mce_cpu_pre_down(unsigned int cpu)
2652 {
2653 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2654 
2655 	mce_disable_cpu();
2656 	del_timer_sync(t);
2657 	mce_threshold_remove_device(cpu);
2658 	mce_device_remove(cpu);
2659 	return 0;
2660 }
2661 
2662 static __init void mce_init_banks(void)
2663 {
2664 	int i;
2665 
2666 	for (i = 0; i < MAX_NR_BANKS; i++) {
2667 		struct mce_bank_dev *b = &mce_bank_devs[i];
2668 		struct device_attribute *a = &b->attr;
2669 
2670 		b->bank = i;
2671 
2672 		sysfs_attr_init(&a->attr);
2673 		a->attr.name	= b->attrname;
2674 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2675 
2676 		a->attr.mode	= 0644;
2677 		a->show		= show_bank;
2678 		a->store	= set_bank;
2679 	}
2680 }
2681 
2682 /*
2683  * When running on XEN, this initcall is ordered against the XEN mcelog
2684  * initcall:
2685  *
2686  *   device_initcall(xen_late_init_mcelog);
2687  *   device_initcall_sync(mcheck_init_device);
2688  */
2689 static __init int mcheck_init_device(void)
2690 {
2691 	int err;
2692 
2693 	/*
2694 	 * Check if we have a spare virtual bit. This will only become
2695 	 * a problem if/when we move beyond 5-level page tables.
2696 	 */
2697 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2698 
2699 	if (!mce_available(&boot_cpu_data)) {
2700 		err = -EIO;
2701 		goto err_out;
2702 	}
2703 
2704 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2705 		err = -ENOMEM;
2706 		goto err_out;
2707 	}
2708 
2709 	mce_init_banks();
2710 
2711 	err = subsys_system_register(&mce_subsys, NULL);
2712 	if (err)
2713 		goto err_out_mem;
2714 
2715 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2716 				mce_cpu_dead);
2717 	if (err)
2718 		goto err_out_mem;
2719 
2720 	/*
2721 	 * Invokes mce_cpu_online() on all CPUs which are online when
2722 	 * the state is installed.
2723 	 */
2724 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2725 				mce_cpu_online, mce_cpu_pre_down);
2726 	if (err < 0)
2727 		goto err_out_online;
2728 
2729 	register_syscore_ops(&mce_syscore_ops);
2730 
2731 	return 0;
2732 
2733 err_out_online:
2734 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2735 
2736 err_out_mem:
2737 	free_cpumask_var(mce_device_initialized);
2738 
2739 err_out:
2740 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2741 
2742 	return err;
2743 }
2744 device_initcall_sync(mcheck_init_device);
2745 
2746 /*
2747  * Old style boot options parsing. Only for compatibility.
2748  */
2749 static int __init mcheck_disable(char *str)
2750 {
2751 	mca_cfg.disabled = 1;
2752 	return 1;
2753 }
2754 __setup("nomce", mcheck_disable);
2755 
2756 #ifdef CONFIG_DEBUG_FS
2757 struct dentry *mce_get_debugfs_dir(void)
2758 {
2759 	static struct dentry *dmce;
2760 
2761 	if (!dmce)
2762 		dmce = debugfs_create_dir("mce", NULL);
2763 
2764 	return dmce;
2765 }
2766 
2767 static void mce_reset(void)
2768 {
2769 	atomic_set(&mce_fake_panicked, 0);
2770 	atomic_set(&mce_executing, 0);
2771 	atomic_set(&mce_callin, 0);
2772 	atomic_set(&global_nwo, 0);
2773 	cpumask_setall(&mce_missing_cpus);
2774 }
2775 
2776 static int fake_panic_get(void *data, u64 *val)
2777 {
2778 	*val = fake_panic;
2779 	return 0;
2780 }
2781 
2782 static int fake_panic_set(void *data, u64 val)
2783 {
2784 	mce_reset();
2785 	fake_panic = val;
2786 	return 0;
2787 }
2788 
2789 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2790 			 "%llu\n");
2791 
2792 static void __init mcheck_debugfs_init(void)
2793 {
2794 	struct dentry *dmce;
2795 
2796 	dmce = mce_get_debugfs_dir();
2797 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2798 				   &fake_panic_fops);
2799 }
2800 #else
2801 static void __init mcheck_debugfs_init(void) { }
2802 #endif
2803 
2804 static int __init mcheck_late_init(void)
2805 {
2806 	if (mca_cfg.recovery)
2807 		enable_copy_mc_fragile();
2808 
2809 	mcheck_debugfs_init();
2810 
2811 	/*
2812 	 * Flush out everything that has been logged during early boot, now that
2813 	 * everything has been initialized (workqueues, decoders, ...).
2814 	 */
2815 	mce_schedule_work();
2816 
2817 	return 0;
2818 }
2819 late_initcall(mcheck_late_init);
2820