xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision b8b350af)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103 
104 /*
105  * MCA banks polled by the period polling timer for corrected events.
106  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107  */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111 
112 /*
113  * MCA banks controlled through firmware first for corrected errors.
114  * This is a global list of banks for which we won't enable CMCI and we
115  * won't poll. Firmware controls these banks and is responsible for
116  * reporting corrected errors through GHES. Uncorrected/recoverable
117  * errors are still notified through a machine check.
118  */
119 mce_banks_t mce_banks_ce_disabled;
120 
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123 
124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
125 
126 /*
127  * CPU/chipset specific EDAC code can register a notifier call here to print
128  * MCE errors in a human-readable form.
129  */
130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
131 
132 /* Do initial initialization of a struct mce */
133 noinstr void mce_setup(struct mce *m)
134 {
135 	memset(m, 0, sizeof(struct mce));
136 	m->cpu = m->extcpu = smp_processor_id();
137 	/* need the internal __ version to avoid deadlocks */
138 	m->time = __ktime_get_real_seconds();
139 	m->cpuvendor = boot_cpu_data.x86_vendor;
140 	m->cpuid = cpuid_eax(1);
141 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
142 	m->apicid = cpu_data(m->extcpu).initial_apicid;
143 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
144 
145 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
146 		m->ppin = __rdmsr(MSR_PPIN);
147 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
148 		m->ppin = __rdmsr(MSR_AMD_PPIN);
149 
150 	m->microcode = boot_cpu_data.microcode;
151 }
152 
153 DEFINE_PER_CPU(struct mce, injectm);
154 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
155 
156 void mce_log(struct mce *m)
157 {
158 	if (!mce_gen_pool_add(m))
159 		irq_work_queue(&mce_irq_work);
160 }
161 EXPORT_SYMBOL_GPL(mce_log);
162 
163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
166 		    nb->priority > MCE_PRIO_HIGHEST))
167 		return;
168 
169 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
170 }
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
172 
173 void mce_unregister_decode_chain(struct notifier_block *nb)
174 {
175 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
176 }
177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
178 
179 static inline u32 ctl_reg(int bank)
180 {
181 	return MSR_IA32_MCx_CTL(bank);
182 }
183 
184 static inline u32 status_reg(int bank)
185 {
186 	return MSR_IA32_MCx_STATUS(bank);
187 }
188 
189 static inline u32 addr_reg(int bank)
190 {
191 	return MSR_IA32_MCx_ADDR(bank);
192 }
193 
194 static inline u32 misc_reg(int bank)
195 {
196 	return MSR_IA32_MCx_MISC(bank);
197 }
198 
199 static inline u32 smca_ctl_reg(int bank)
200 {
201 	return MSR_AMD64_SMCA_MCx_CTL(bank);
202 }
203 
204 static inline u32 smca_status_reg(int bank)
205 {
206 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
207 }
208 
209 static inline u32 smca_addr_reg(int bank)
210 {
211 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
212 }
213 
214 static inline u32 smca_misc_reg(int bank)
215 {
216 	return MSR_AMD64_SMCA_MCx_MISC(bank);
217 }
218 
219 struct mca_msr_regs msr_ops = {
220 	.ctl	= ctl_reg,
221 	.status	= status_reg,
222 	.addr	= addr_reg,
223 	.misc	= misc_reg
224 };
225 
226 static void __print_mce(struct mce *m)
227 {
228 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
229 		 m->extcpu,
230 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
231 		 m->mcgstatus, m->bank, m->status);
232 
233 	if (m->ip) {
234 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
235 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
236 			m->cs, m->ip);
237 
238 		if (m->cs == __KERNEL_CS)
239 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
240 		pr_cont("\n");
241 	}
242 
243 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
244 	if (m->addr)
245 		pr_cont("ADDR %llx ", m->addr);
246 	if (m->misc)
247 		pr_cont("MISC %llx ", m->misc);
248 	if (m->ppin)
249 		pr_cont("PPIN %llx ", m->ppin);
250 
251 	if (mce_flags.smca) {
252 		if (m->synd)
253 			pr_cont("SYND %llx ", m->synd);
254 		if (m->ipid)
255 			pr_cont("IPID %llx ", m->ipid);
256 	}
257 
258 	pr_cont("\n");
259 
260 	/*
261 	 * Note this output is parsed by external tools and old fields
262 	 * should not be changed.
263 	 */
264 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
265 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
266 		m->microcode);
267 }
268 
269 static void print_mce(struct mce *m)
270 {
271 	__print_mce(m);
272 
273 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
274 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
275 }
276 
277 #define PANIC_TIMEOUT 5 /* 5 seconds */
278 
279 static atomic_t mce_panicked;
280 
281 static int fake_panic;
282 static atomic_t mce_fake_panicked;
283 
284 /* Panic in progress. Enable interrupts and wait for final IPI */
285 static void wait_for_panic(void)
286 {
287 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
288 
289 	preempt_disable();
290 	local_irq_enable();
291 	while (timeout-- > 0)
292 		udelay(1);
293 	if (panic_timeout == 0)
294 		panic_timeout = mca_cfg.panic_timeout;
295 	panic("Panicing machine check CPU died");
296 }
297 
298 static void mce_panic(const char *msg, struct mce *final, char *exp)
299 {
300 	int apei_err = 0;
301 	struct llist_node *pending;
302 	struct mce_evt_llist *l;
303 
304 	if (!fake_panic) {
305 		/*
306 		 * Make sure only one CPU runs in machine check panic
307 		 */
308 		if (atomic_inc_return(&mce_panicked) > 1)
309 			wait_for_panic();
310 		barrier();
311 
312 		bust_spinlocks(1);
313 		console_verbose();
314 	} else {
315 		/* Don't log too much for fake panic */
316 		if (atomic_inc_return(&mce_fake_panicked) > 1)
317 			return;
318 	}
319 	pending = mce_gen_pool_prepare_records();
320 	/* First print corrected ones that are still unlogged */
321 	llist_for_each_entry(l, pending, llnode) {
322 		struct mce *m = &l->mce;
323 		if (!(m->status & MCI_STATUS_UC)) {
324 			print_mce(m);
325 			if (!apei_err)
326 				apei_err = apei_write_mce(m);
327 		}
328 	}
329 	/* Now print uncorrected but with the final one last */
330 	llist_for_each_entry(l, pending, llnode) {
331 		struct mce *m = &l->mce;
332 		if (!(m->status & MCI_STATUS_UC))
333 			continue;
334 		if (!final || mce_cmp(m, final)) {
335 			print_mce(m);
336 			if (!apei_err)
337 				apei_err = apei_write_mce(m);
338 		}
339 	}
340 	if (final) {
341 		print_mce(final);
342 		if (!apei_err)
343 			apei_err = apei_write_mce(final);
344 	}
345 	if (cpu_missing)
346 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
347 	if (exp)
348 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
349 	if (!fake_panic) {
350 		if (panic_timeout == 0)
351 			panic_timeout = mca_cfg.panic_timeout;
352 		panic(msg);
353 	} else
354 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
355 }
356 
357 /* Support code for software error injection */
358 
359 static int msr_to_offset(u32 msr)
360 {
361 	unsigned bank = __this_cpu_read(injectm.bank);
362 
363 	if (msr == mca_cfg.rip_msr)
364 		return offsetof(struct mce, ip);
365 	if (msr == msr_ops.status(bank))
366 		return offsetof(struct mce, status);
367 	if (msr == msr_ops.addr(bank))
368 		return offsetof(struct mce, addr);
369 	if (msr == msr_ops.misc(bank))
370 		return offsetof(struct mce, misc);
371 	if (msr == MSR_IA32_MCG_STATUS)
372 		return offsetof(struct mce, mcgstatus);
373 	return -1;
374 }
375 
376 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup,
377 				      struct pt_regs *regs, int trapnr,
378 				      unsigned long error_code,
379 				      unsigned long fault_addr)
380 {
381 	pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
382 		 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
383 
384 	show_stack_regs(regs);
385 
386 	panic("MCA architectural violation!\n");
387 
388 	while (true)
389 		cpu_relax();
390 
391 	return true;
392 }
393 
394 /* MSR access wrappers used for error injection */
395 static noinstr u64 mce_rdmsrl(u32 msr)
396 {
397 	DECLARE_ARGS(val, low, high);
398 
399 	if (__this_cpu_read(injectm.finished)) {
400 		int offset;
401 		u64 ret;
402 
403 		instrumentation_begin();
404 
405 		offset = msr_to_offset(msr);
406 		if (offset < 0)
407 			ret = 0;
408 		else
409 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
410 
411 		instrumentation_end();
412 
413 		return ret;
414 	}
415 
416 	/*
417 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
418 	 * architectural violation and needs to be reported to hw vendor. Panic
419 	 * the box to not allow any further progress.
420 	 */
421 	asm volatile("1: rdmsr\n"
422 		     "2:\n"
423 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault)
424 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
425 
426 
427 	return EAX_EDX_VAL(val, low, high);
428 }
429 
430 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup,
431 				      struct pt_regs *regs, int trapnr,
432 				      unsigned long error_code,
433 				      unsigned long fault_addr)
434 {
435 	pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
436 		 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
437 		  regs->ip, (void *)regs->ip);
438 
439 	show_stack_regs(regs);
440 
441 	panic("MCA architectural violation!\n");
442 
443 	while (true)
444 		cpu_relax();
445 
446 	return true;
447 }
448 
449 static noinstr void mce_wrmsrl(u32 msr, u64 v)
450 {
451 	u32 low, high;
452 
453 	if (__this_cpu_read(injectm.finished)) {
454 		int offset;
455 
456 		instrumentation_begin();
457 
458 		offset = msr_to_offset(msr);
459 		if (offset >= 0)
460 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
461 
462 		instrumentation_end();
463 
464 		return;
465 	}
466 
467 	low  = (u32)v;
468 	high = (u32)(v >> 32);
469 
470 	/* See comment in mce_rdmsrl() */
471 	asm volatile("1: wrmsr\n"
472 		     "2:\n"
473 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault)
474 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
475 }
476 
477 /*
478  * Collect all global (w.r.t. this processor) status about this machine
479  * check into our "mce" struct so that we can use it later to assess
480  * the severity of the problem as we read per-bank specific details.
481  */
482 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
483 {
484 	mce_setup(m);
485 
486 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
487 	if (regs) {
488 		/*
489 		 * Get the address of the instruction at the time of
490 		 * the machine check error.
491 		 */
492 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
493 			m->ip = regs->ip;
494 			m->cs = regs->cs;
495 
496 			/*
497 			 * When in VM86 mode make the cs look like ring 3
498 			 * always. This is a lie, but it's better than passing
499 			 * the additional vm86 bit around everywhere.
500 			 */
501 			if (v8086_mode(regs))
502 				m->cs |= 3;
503 		}
504 		/* Use accurate RIP reporting if available. */
505 		if (mca_cfg.rip_msr)
506 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
507 	}
508 }
509 
510 int mce_available(struct cpuinfo_x86 *c)
511 {
512 	if (mca_cfg.disabled)
513 		return 0;
514 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515 }
516 
517 static void mce_schedule_work(void)
518 {
519 	if (!mce_gen_pool_empty())
520 		schedule_work(&mce_work);
521 }
522 
523 static void mce_irq_work_cb(struct irq_work *entry)
524 {
525 	mce_schedule_work();
526 }
527 
528 /*
529  * Check if the address reported by the CPU is in a format we can parse.
530  * It would be possible to add code for most other cases, but all would
531  * be somewhat complicated (e.g. segment offset would require an instruction
532  * parser). So only support physical addresses up to page granularity for now.
533  */
534 int mce_usable_address(struct mce *m)
535 {
536 	if (!(m->status & MCI_STATUS_ADDRV))
537 		return 0;
538 
539 	/* Checks after this one are Intel/Zhaoxin-specific: */
540 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
541 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
542 		return 1;
543 
544 	if (!(m->status & MCI_STATUS_MISCV))
545 		return 0;
546 
547 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
548 		return 0;
549 
550 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
551 		return 0;
552 
553 	return 1;
554 }
555 EXPORT_SYMBOL_GPL(mce_usable_address);
556 
557 bool mce_is_memory_error(struct mce *m)
558 {
559 	switch (m->cpuvendor) {
560 	case X86_VENDOR_AMD:
561 	case X86_VENDOR_HYGON:
562 		return amd_mce_is_memory_error(m);
563 
564 	case X86_VENDOR_INTEL:
565 	case X86_VENDOR_ZHAOXIN:
566 		/*
567 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
568 		 *
569 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
570 		 * indicating a memory error. Bit 8 is used for indicating a
571 		 * cache hierarchy error. The combination of bit 2 and bit 3
572 		 * is used for indicating a `generic' cache hierarchy error
573 		 * But we can't just blindly check the above bits, because if
574 		 * bit 11 is set, then it is a bus/interconnect error - and
575 		 * either way the above bits just gives more detail on what
576 		 * bus/interconnect error happened. Note that bit 12 can be
577 		 * ignored, as it's the "filter" bit.
578 		 */
579 		return (m->status & 0xef80) == BIT(7) ||
580 		       (m->status & 0xef00) == BIT(8) ||
581 		       (m->status & 0xeffc) == 0xc;
582 
583 	default:
584 		return false;
585 	}
586 }
587 EXPORT_SYMBOL_GPL(mce_is_memory_error);
588 
589 static bool whole_page(struct mce *m)
590 {
591 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
592 		return true;
593 
594 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
595 }
596 
597 bool mce_is_correctable(struct mce *m)
598 {
599 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
600 		return false;
601 
602 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
603 		return false;
604 
605 	if (m->status & MCI_STATUS_UC)
606 		return false;
607 
608 	return true;
609 }
610 EXPORT_SYMBOL_GPL(mce_is_correctable);
611 
612 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
613 			      void *data)
614 {
615 	struct mce *m = (struct mce *)data;
616 
617 	if (!m)
618 		return NOTIFY_DONE;
619 
620 	/* Emit the trace record: */
621 	trace_mce_record(m);
622 
623 	set_bit(0, &mce_need_notify);
624 
625 	mce_notify_irq();
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static struct notifier_block early_nb = {
631 	.notifier_call	= mce_early_notifier,
632 	.priority	= MCE_PRIO_EARLY,
633 };
634 
635 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
636 			      void *data)
637 {
638 	struct mce *mce = (struct mce *)data;
639 	unsigned long pfn;
640 
641 	if (!mce || !mce_usable_address(mce))
642 		return NOTIFY_DONE;
643 
644 	if (mce->severity != MCE_AO_SEVERITY &&
645 	    mce->severity != MCE_DEFERRED_SEVERITY)
646 		return NOTIFY_DONE;
647 
648 	pfn = mce->addr >> PAGE_SHIFT;
649 	if (!memory_failure(pfn, 0)) {
650 		set_mce_nospec(pfn, whole_page(mce));
651 		mce->kflags |= MCE_HANDLED_UC;
652 	}
653 
654 	return NOTIFY_OK;
655 }
656 
657 static struct notifier_block mce_uc_nb = {
658 	.notifier_call	= uc_decode_notifier,
659 	.priority	= MCE_PRIO_UC,
660 };
661 
662 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
663 				void *data)
664 {
665 	struct mce *m = (struct mce *)data;
666 
667 	if (!m)
668 		return NOTIFY_DONE;
669 
670 	if (mca_cfg.print_all || !m->kflags)
671 		__print_mce(m);
672 
673 	return NOTIFY_DONE;
674 }
675 
676 static struct notifier_block mce_default_nb = {
677 	.notifier_call	= mce_default_notifier,
678 	/* lowest prio, we want it to run last. */
679 	.priority	= MCE_PRIO_LOWEST,
680 };
681 
682 /*
683  * Read ADDR and MISC registers.
684  */
685 static void mce_read_aux(struct mce *m, int i)
686 {
687 	if (m->status & MCI_STATUS_MISCV)
688 		m->misc = mce_rdmsrl(msr_ops.misc(i));
689 
690 	if (m->status & MCI_STATUS_ADDRV) {
691 		m->addr = mce_rdmsrl(msr_ops.addr(i));
692 
693 		/*
694 		 * Mask the reported address by the reported granularity.
695 		 */
696 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
697 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
698 			m->addr >>= shift;
699 			m->addr <<= shift;
700 		}
701 
702 		/*
703 		 * Extract [55:<lsb>] where lsb is the least significant
704 		 * *valid* bit of the address bits.
705 		 */
706 		if (mce_flags.smca) {
707 			u8 lsb = (m->addr >> 56) & 0x3f;
708 
709 			m->addr &= GENMASK_ULL(55, lsb);
710 		}
711 	}
712 
713 	if (mce_flags.smca) {
714 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
715 
716 		if (m->status & MCI_STATUS_SYNDV)
717 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
718 	}
719 }
720 
721 DEFINE_PER_CPU(unsigned, mce_poll_count);
722 
723 /*
724  * Poll for corrected events or events that happened before reset.
725  * Those are just logged through /dev/mcelog.
726  *
727  * This is executed in standard interrupt context.
728  *
729  * Note: spec recommends to panic for fatal unsignalled
730  * errors here. However this would be quite problematic --
731  * we would need to reimplement the Monarch handling and
732  * it would mess up the exclusion between exception handler
733  * and poll handler -- * so we skip this for now.
734  * These cases should not happen anyways, or only when the CPU
735  * is already totally * confused. In this case it's likely it will
736  * not fully execute the machine check handler either.
737  */
738 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
739 {
740 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
741 	bool error_seen = false;
742 	struct mce m;
743 	int i;
744 
745 	this_cpu_inc(mce_poll_count);
746 
747 	mce_gather_info(&m, NULL);
748 
749 	if (flags & MCP_TIMESTAMP)
750 		m.tsc = rdtsc();
751 
752 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
753 		if (!mce_banks[i].ctl || !test_bit(i, *b))
754 			continue;
755 
756 		m.misc = 0;
757 		m.addr = 0;
758 		m.bank = i;
759 
760 		barrier();
761 		m.status = mce_rdmsrl(msr_ops.status(i));
762 
763 		/* If this entry is not valid, ignore it */
764 		if (!(m.status & MCI_STATUS_VAL))
765 			continue;
766 
767 		/*
768 		 * If we are logging everything (at CPU online) or this
769 		 * is a corrected error, then we must log it.
770 		 */
771 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
772 			goto log_it;
773 
774 		/*
775 		 * Newer Intel systems that support software error
776 		 * recovery need to make additional checks. Other
777 		 * CPUs should skip over uncorrected errors, but log
778 		 * everything else.
779 		 */
780 		if (!mca_cfg.ser) {
781 			if (m.status & MCI_STATUS_UC)
782 				continue;
783 			goto log_it;
784 		}
785 
786 		/* Log "not enabled" (speculative) errors */
787 		if (!(m.status & MCI_STATUS_EN))
788 			goto log_it;
789 
790 		/*
791 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
792 		 * UC == 1 && PCC == 0 && S == 0
793 		 */
794 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
795 			goto log_it;
796 
797 		/*
798 		 * Skip anything else. Presumption is that our read of this
799 		 * bank is racing with a machine check. Leave the log alone
800 		 * for do_machine_check() to deal with it.
801 		 */
802 		continue;
803 
804 log_it:
805 		error_seen = true;
806 
807 		if (flags & MCP_DONTLOG)
808 			goto clear_it;
809 
810 		mce_read_aux(&m, i);
811 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
812 		/*
813 		 * Don't get the IP here because it's unlikely to
814 		 * have anything to do with the actual error location.
815 		 */
816 
817 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
818 			goto clear_it;
819 
820 		if (flags & MCP_QUEUE_LOG)
821 			mce_gen_pool_add(&m);
822 		else
823 			mce_log(&m);
824 
825 clear_it:
826 		/*
827 		 * Clear state for this bank.
828 		 */
829 		mce_wrmsrl(msr_ops.status(i), 0);
830 	}
831 
832 	/*
833 	 * Don't clear MCG_STATUS here because it's only defined for
834 	 * exceptions.
835 	 */
836 
837 	sync_core();
838 
839 	return error_seen;
840 }
841 EXPORT_SYMBOL_GPL(machine_check_poll);
842 
843 /*
844  * Do a quick check if any of the events requires a panic.
845  * This decides if we keep the events around or clear them.
846  */
847 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
848 			  struct pt_regs *regs)
849 {
850 	char *tmp = *msg;
851 	int i;
852 
853 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
854 		m->status = mce_rdmsrl(msr_ops.status(i));
855 		if (!(m->status & MCI_STATUS_VAL))
856 			continue;
857 
858 		__set_bit(i, validp);
859 		if (quirk_no_way_out)
860 			quirk_no_way_out(i, m, regs);
861 
862 		m->bank = i;
863 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
864 			mce_read_aux(m, i);
865 			*msg = tmp;
866 			return 1;
867 		}
868 	}
869 	return 0;
870 }
871 
872 /*
873  * Variable to establish order between CPUs while scanning.
874  * Each CPU spins initially until executing is equal its number.
875  */
876 static atomic_t mce_executing;
877 
878 /*
879  * Defines order of CPUs on entry. First CPU becomes Monarch.
880  */
881 static atomic_t mce_callin;
882 
883 /*
884  * Track which CPUs entered the MCA broadcast synchronization and which not in
885  * order to print holdouts.
886  */
887 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
888 
889 /*
890  * Check if a timeout waiting for other CPUs happened.
891  */
892 static int mce_timed_out(u64 *t, const char *msg)
893 {
894 	/*
895 	 * The others already did panic for some reason.
896 	 * Bail out like in a timeout.
897 	 * rmb() to tell the compiler that system_state
898 	 * might have been modified by someone else.
899 	 */
900 	rmb();
901 	if (atomic_read(&mce_panicked))
902 		wait_for_panic();
903 	if (!mca_cfg.monarch_timeout)
904 		goto out;
905 	if ((s64)*t < SPINUNIT) {
906 		if (mca_cfg.tolerant <= 1) {
907 			if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
908 				pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
909 					 cpumask_pr_args(&mce_missing_cpus));
910 			mce_panic(msg, NULL, NULL);
911 		}
912 		cpu_missing = 1;
913 		return 1;
914 	}
915 	*t -= SPINUNIT;
916 out:
917 	touch_nmi_watchdog();
918 	return 0;
919 }
920 
921 /*
922  * The Monarch's reign.  The Monarch is the CPU who entered
923  * the machine check handler first. It waits for the others to
924  * raise the exception too and then grades them. When any
925  * error is fatal panic. Only then let the others continue.
926  *
927  * The other CPUs entering the MCE handler will be controlled by the
928  * Monarch. They are called Subjects.
929  *
930  * This way we prevent any potential data corruption in a unrecoverable case
931  * and also makes sure always all CPU's errors are examined.
932  *
933  * Also this detects the case of a machine check event coming from outer
934  * space (not detected by any CPUs) In this case some external agent wants
935  * us to shut down, so panic too.
936  *
937  * The other CPUs might still decide to panic if the handler happens
938  * in a unrecoverable place, but in this case the system is in a semi-stable
939  * state and won't corrupt anything by itself. It's ok to let the others
940  * continue for a bit first.
941  *
942  * All the spin loops have timeouts; when a timeout happens a CPU
943  * typically elects itself to be Monarch.
944  */
945 static void mce_reign(void)
946 {
947 	int cpu;
948 	struct mce *m = NULL;
949 	int global_worst = 0;
950 	char *msg = NULL;
951 
952 	/*
953 	 * This CPU is the Monarch and the other CPUs have run
954 	 * through their handlers.
955 	 * Grade the severity of the errors of all the CPUs.
956 	 */
957 	for_each_possible_cpu(cpu) {
958 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
959 
960 		if (mtmp->severity > global_worst) {
961 			global_worst = mtmp->severity;
962 			m = &per_cpu(mces_seen, cpu);
963 		}
964 	}
965 
966 	/*
967 	 * Cannot recover? Panic here then.
968 	 * This dumps all the mces in the log buffer and stops the
969 	 * other CPUs.
970 	 */
971 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
972 		/* call mce_severity() to get "msg" for panic */
973 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
974 		mce_panic("Fatal machine check", m, msg);
975 	}
976 
977 	/*
978 	 * For UC somewhere we let the CPU who detects it handle it.
979 	 * Also must let continue the others, otherwise the handling
980 	 * CPU could deadlock on a lock.
981 	 */
982 
983 	/*
984 	 * No machine check event found. Must be some external
985 	 * source or one CPU is hung. Panic.
986 	 */
987 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
988 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
989 
990 	/*
991 	 * Now clear all the mces_seen so that they don't reappear on
992 	 * the next mce.
993 	 */
994 	for_each_possible_cpu(cpu)
995 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
996 }
997 
998 static atomic_t global_nwo;
999 
1000 /*
1001  * Start of Monarch synchronization. This waits until all CPUs have
1002  * entered the exception handler and then determines if any of them
1003  * saw a fatal event that requires panic. Then it executes them
1004  * in the entry order.
1005  * TBD double check parallel CPU hotunplug
1006  */
1007 static int mce_start(int *no_way_out)
1008 {
1009 	int order;
1010 	int cpus = num_online_cpus();
1011 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1012 
1013 	if (!timeout)
1014 		return -1;
1015 
1016 	atomic_add(*no_way_out, &global_nwo);
1017 	/*
1018 	 * Rely on the implied barrier below, such that global_nwo
1019 	 * is updated before mce_callin.
1020 	 */
1021 	order = atomic_inc_return(&mce_callin);
1022 	cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1023 
1024 	/*
1025 	 * Wait for everyone.
1026 	 */
1027 	while (atomic_read(&mce_callin) != cpus) {
1028 		if (mce_timed_out(&timeout,
1029 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1030 			atomic_set(&global_nwo, 0);
1031 			return -1;
1032 		}
1033 		ndelay(SPINUNIT);
1034 	}
1035 
1036 	/*
1037 	 * mce_callin should be read before global_nwo
1038 	 */
1039 	smp_rmb();
1040 
1041 	if (order == 1) {
1042 		/*
1043 		 * Monarch: Starts executing now, the others wait.
1044 		 */
1045 		atomic_set(&mce_executing, 1);
1046 	} else {
1047 		/*
1048 		 * Subject: Now start the scanning loop one by one in
1049 		 * the original callin order.
1050 		 * This way when there are any shared banks it will be
1051 		 * only seen by one CPU before cleared, avoiding duplicates.
1052 		 */
1053 		while (atomic_read(&mce_executing) < order) {
1054 			if (mce_timed_out(&timeout,
1055 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1056 				atomic_set(&global_nwo, 0);
1057 				return -1;
1058 			}
1059 			ndelay(SPINUNIT);
1060 		}
1061 	}
1062 
1063 	/*
1064 	 * Cache the global no_way_out state.
1065 	 */
1066 	*no_way_out = atomic_read(&global_nwo);
1067 
1068 	return order;
1069 }
1070 
1071 /*
1072  * Synchronize between CPUs after main scanning loop.
1073  * This invokes the bulk of the Monarch processing.
1074  */
1075 static int mce_end(int order)
1076 {
1077 	int ret = -1;
1078 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1079 
1080 	if (!timeout)
1081 		goto reset;
1082 	if (order < 0)
1083 		goto reset;
1084 
1085 	/*
1086 	 * Allow others to run.
1087 	 */
1088 	atomic_inc(&mce_executing);
1089 
1090 	if (order == 1) {
1091 		/* CHECKME: Can this race with a parallel hotplug? */
1092 		int cpus = num_online_cpus();
1093 
1094 		/*
1095 		 * Monarch: Wait for everyone to go through their scanning
1096 		 * loops.
1097 		 */
1098 		while (atomic_read(&mce_executing) <= cpus) {
1099 			if (mce_timed_out(&timeout,
1100 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1101 				goto reset;
1102 			ndelay(SPINUNIT);
1103 		}
1104 
1105 		mce_reign();
1106 		barrier();
1107 		ret = 0;
1108 	} else {
1109 		/*
1110 		 * Subject: Wait for Monarch to finish.
1111 		 */
1112 		while (atomic_read(&mce_executing) != 0) {
1113 			if (mce_timed_out(&timeout,
1114 					  "Timeout: Monarch CPU did not finish machine check processing"))
1115 				goto reset;
1116 			ndelay(SPINUNIT);
1117 		}
1118 
1119 		/*
1120 		 * Don't reset anything. That's done by the Monarch.
1121 		 */
1122 		return 0;
1123 	}
1124 
1125 	/*
1126 	 * Reset all global state.
1127 	 */
1128 reset:
1129 	atomic_set(&global_nwo, 0);
1130 	atomic_set(&mce_callin, 0);
1131 	cpumask_setall(&mce_missing_cpus);
1132 	barrier();
1133 
1134 	/*
1135 	 * Let others run again.
1136 	 */
1137 	atomic_set(&mce_executing, 0);
1138 	return ret;
1139 }
1140 
1141 static void mce_clear_state(unsigned long *toclear)
1142 {
1143 	int i;
1144 
1145 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1146 		if (test_bit(i, toclear))
1147 			mce_wrmsrl(msr_ops.status(i), 0);
1148 	}
1149 }
1150 
1151 /*
1152  * Cases where we avoid rendezvous handler timeout:
1153  * 1) If this CPU is offline.
1154  *
1155  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1156  *  skip those CPUs which remain looping in the 1st kernel - see
1157  *  crash_nmi_callback().
1158  *
1159  * Note: there still is a small window between kexec-ing and the new,
1160  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1161  * might not get handled properly.
1162  */
1163 static noinstr bool mce_check_crashing_cpu(void)
1164 {
1165 	unsigned int cpu = smp_processor_id();
1166 
1167 	if (arch_cpu_is_offline(cpu) ||
1168 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1169 		u64 mcgstatus;
1170 
1171 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1172 
1173 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1174 			if (mcgstatus & MCG_STATUS_LMCES)
1175 				return false;
1176 		}
1177 
1178 		if (mcgstatus & MCG_STATUS_RIPV) {
1179 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1180 			return true;
1181 		}
1182 	}
1183 	return false;
1184 }
1185 
1186 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1187 			    unsigned long *toclear, unsigned long *valid_banks,
1188 			    int no_way_out, int *worst)
1189 {
1190 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1191 	struct mca_config *cfg = &mca_cfg;
1192 	int severity, i;
1193 
1194 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1195 		__clear_bit(i, toclear);
1196 		if (!test_bit(i, valid_banks))
1197 			continue;
1198 
1199 		if (!mce_banks[i].ctl)
1200 			continue;
1201 
1202 		m->misc = 0;
1203 		m->addr = 0;
1204 		m->bank = i;
1205 
1206 		m->status = mce_rdmsrl(msr_ops.status(i));
1207 		if (!(m->status & MCI_STATUS_VAL))
1208 			continue;
1209 
1210 		/*
1211 		 * Corrected or non-signaled errors are handled by
1212 		 * machine_check_poll(). Leave them alone, unless this panics.
1213 		 */
1214 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1215 			!no_way_out)
1216 			continue;
1217 
1218 		/* Set taint even when machine check was not enabled. */
1219 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1220 
1221 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1222 
1223 		/*
1224 		 * When machine check was for corrected/deferred handler don't
1225 		 * touch, unless we're panicking.
1226 		 */
1227 		if ((severity == MCE_KEEP_SEVERITY ||
1228 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1229 			continue;
1230 
1231 		__set_bit(i, toclear);
1232 
1233 		/* Machine check event was not enabled. Clear, but ignore. */
1234 		if (severity == MCE_NO_SEVERITY)
1235 			continue;
1236 
1237 		mce_read_aux(m, i);
1238 
1239 		/* assuming valid severity level != 0 */
1240 		m->severity = severity;
1241 
1242 		mce_log(m);
1243 
1244 		if (severity > *worst) {
1245 			*final = *m;
1246 			*worst = severity;
1247 		}
1248 	}
1249 
1250 	/* mce_clear_state will clear *final, save locally for use later */
1251 	*m = *final;
1252 }
1253 
1254 static void kill_me_now(struct callback_head *ch)
1255 {
1256 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1257 
1258 	p->mce_count = 0;
1259 	force_sig(SIGBUS);
1260 }
1261 
1262 static void kill_me_maybe(struct callback_head *cb)
1263 {
1264 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1265 	int flags = MF_ACTION_REQUIRED;
1266 	int ret;
1267 
1268 	p->mce_count = 0;
1269 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1270 
1271 	if (!p->mce_ripv)
1272 		flags |= MF_MUST_KILL;
1273 
1274 	ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1275 	if (!ret && !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1276 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1277 		sync_core();
1278 		return;
1279 	}
1280 
1281 	/*
1282 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1283 	 * to the current process with the proper error info, so no need to
1284 	 * send SIGBUS here again.
1285 	 */
1286 	if (ret == -EHWPOISON)
1287 		return;
1288 
1289 	if (p->mce_vaddr != (void __user *)-1l) {
1290 		force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1291 	} else {
1292 		pr_err("Memory error not recovered");
1293 		kill_me_now(cb);
1294 	}
1295 }
1296 
1297 static void queue_task_work(struct mce *m, char *msg, int kill_current_task)
1298 {
1299 	int count = ++current->mce_count;
1300 
1301 	/* First call, save all the details */
1302 	if (count == 1) {
1303 		current->mce_addr = m->addr;
1304 		current->mce_kflags = m->kflags;
1305 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1306 		current->mce_whole_page = whole_page(m);
1307 
1308 		if (kill_current_task)
1309 			current->mce_kill_me.func = kill_me_now;
1310 		else
1311 			current->mce_kill_me.func = kill_me_maybe;
1312 	}
1313 
1314 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1315 	if (count > 10)
1316 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1317 
1318 	/* Second or later call, make sure page address matches the one from first call */
1319 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1320 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1321 
1322 	/* Do not call task_work_add() more than once */
1323 	if (count > 1)
1324 		return;
1325 
1326 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1327 }
1328 
1329 /*
1330  * The actual machine check handler. This only handles real
1331  * exceptions when something got corrupted coming in through int 18.
1332  *
1333  * This is executed in NMI context not subject to normal locking rules. This
1334  * implies that most kernel services cannot be safely used. Don't even
1335  * think about putting a printk in there!
1336  *
1337  * On Intel systems this is entered on all CPUs in parallel through
1338  * MCE broadcast. However some CPUs might be broken beyond repair,
1339  * so be always careful when synchronizing with others.
1340  *
1341  * Tracing and kprobes are disabled: if we interrupted a kernel context
1342  * with IF=1, we need to minimize stack usage.  There are also recursion
1343  * issues: if the machine check was due to a failure of the memory
1344  * backing the user stack, tracing that reads the user stack will cause
1345  * potentially infinite recursion.
1346  */
1347 noinstr void do_machine_check(struct pt_regs *regs)
1348 {
1349 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1350 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1351 	struct mca_config *cfg = &mca_cfg;
1352 	struct mce m, *final;
1353 	char *msg = NULL;
1354 	int worst = 0;
1355 
1356 	/*
1357 	 * Establish sequential order between the CPUs entering the machine
1358 	 * check handler.
1359 	 */
1360 	int order = -1;
1361 
1362 	/*
1363 	 * If no_way_out gets set, there is no safe way to recover from this
1364 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1365 	 */
1366 	int no_way_out = 0;
1367 
1368 	/*
1369 	 * If kill_current_task is not set, there might be a way to recover from this
1370 	 * error.
1371 	 */
1372 	int kill_current_task = 0;
1373 
1374 	/*
1375 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1376 	 * on Intel.
1377 	 */
1378 	int lmce = 1;
1379 
1380 	this_cpu_inc(mce_exception_count);
1381 
1382 	mce_gather_info(&m, regs);
1383 	m.tsc = rdtsc();
1384 
1385 	final = this_cpu_ptr(&mces_seen);
1386 	*final = m;
1387 
1388 	memset(valid_banks, 0, sizeof(valid_banks));
1389 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1390 
1391 	barrier();
1392 
1393 	/*
1394 	 * When no restart IP might need to kill or panic.
1395 	 * Assume the worst for now, but if we find the
1396 	 * severity is MCE_AR_SEVERITY we have other options.
1397 	 */
1398 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1399 		kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1400 	/*
1401 	 * Check if this MCE is signaled to only this logical processor,
1402 	 * on Intel, Zhaoxin only.
1403 	 */
1404 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1405 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1406 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1407 
1408 	/*
1409 	 * Local machine check may already know that we have to panic.
1410 	 * Broadcast machine check begins rendezvous in mce_start()
1411 	 * Go through all banks in exclusion of the other CPUs. This way we
1412 	 * don't report duplicated events on shared banks because the first one
1413 	 * to see it will clear it.
1414 	 */
1415 	if (lmce) {
1416 		if (no_way_out && cfg->tolerant < 3)
1417 			mce_panic("Fatal local machine check", &m, msg);
1418 	} else {
1419 		order = mce_start(&no_way_out);
1420 	}
1421 
1422 	__mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1423 
1424 	if (!no_way_out)
1425 		mce_clear_state(toclear);
1426 
1427 	/*
1428 	 * Do most of the synchronization with other CPUs.
1429 	 * When there's any problem use only local no_way_out state.
1430 	 */
1431 	if (!lmce) {
1432 		if (mce_end(order) < 0) {
1433 			if (!no_way_out)
1434 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1435 
1436 			if (no_way_out && cfg->tolerant < 3)
1437 				mce_panic("Fatal machine check on current CPU", &m, msg);
1438 		}
1439 	} else {
1440 		/*
1441 		 * If there was a fatal machine check we should have
1442 		 * already called mce_panic earlier in this function.
1443 		 * Since we re-read the banks, we might have found
1444 		 * something new. Check again to see if we found a
1445 		 * fatal error. We call "mce_severity()" again to
1446 		 * make sure we have the right "msg".
1447 		 */
1448 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1449 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1450 			mce_panic("Local fatal machine check!", &m, msg);
1451 		}
1452 	}
1453 
1454 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1455 		goto out;
1456 
1457 	/* Fault was in user mode and we need to take some action */
1458 	if ((m.cs & 3) == 3) {
1459 		/* If this triggers there is no way to recover. Die hard. */
1460 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1461 
1462 		queue_task_work(&m, msg, kill_current_task);
1463 
1464 	} else {
1465 		/*
1466 		 * Handle an MCE which has happened in kernel space but from
1467 		 * which the kernel can recover: ex_has_fault_handler() has
1468 		 * already verified that the rIP at which the error happened is
1469 		 * a rIP from which the kernel can recover (by jumping to
1470 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1471 		 * corresponding exception handler which would do that is the
1472 		 * proper one.
1473 		 */
1474 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1475 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1476 				mce_panic("Failed kernel mode recovery", &m, msg);
1477 		}
1478 
1479 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1480 			queue_task_work(&m, msg, kill_current_task);
1481 	}
1482 out:
1483 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1484 }
1485 EXPORT_SYMBOL_GPL(do_machine_check);
1486 
1487 #ifndef CONFIG_MEMORY_FAILURE
1488 int memory_failure(unsigned long pfn, int flags)
1489 {
1490 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1491 	BUG_ON(flags & MF_ACTION_REQUIRED);
1492 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1493 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1494 	       pfn);
1495 
1496 	return 0;
1497 }
1498 #endif
1499 
1500 /*
1501  * Periodic polling timer for "silent" machine check errors.  If the
1502  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1503  * errors, poll 2x slower (up to check_interval seconds).
1504  */
1505 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1506 
1507 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1508 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1509 
1510 static unsigned long mce_adjust_timer_default(unsigned long interval)
1511 {
1512 	return interval;
1513 }
1514 
1515 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1516 
1517 static void __start_timer(struct timer_list *t, unsigned long interval)
1518 {
1519 	unsigned long when = jiffies + interval;
1520 	unsigned long flags;
1521 
1522 	local_irq_save(flags);
1523 
1524 	if (!timer_pending(t) || time_before(when, t->expires))
1525 		mod_timer(t, round_jiffies(when));
1526 
1527 	local_irq_restore(flags);
1528 }
1529 
1530 static void mce_timer_fn(struct timer_list *t)
1531 {
1532 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1533 	unsigned long iv;
1534 
1535 	WARN_ON(cpu_t != t);
1536 
1537 	iv = __this_cpu_read(mce_next_interval);
1538 
1539 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1540 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1541 
1542 		if (mce_intel_cmci_poll()) {
1543 			iv = mce_adjust_timer(iv);
1544 			goto done;
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1550 	 * interval, otherwise increase the polling interval.
1551 	 */
1552 	if (mce_notify_irq())
1553 		iv = max(iv / 2, (unsigned long) HZ/100);
1554 	else
1555 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1556 
1557 done:
1558 	__this_cpu_write(mce_next_interval, iv);
1559 	__start_timer(t, iv);
1560 }
1561 
1562 /*
1563  * Ensure that the timer is firing in @interval from now.
1564  */
1565 void mce_timer_kick(unsigned long interval)
1566 {
1567 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1568 	unsigned long iv = __this_cpu_read(mce_next_interval);
1569 
1570 	__start_timer(t, interval);
1571 
1572 	if (interval < iv)
1573 		__this_cpu_write(mce_next_interval, interval);
1574 }
1575 
1576 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1577 static void mce_timer_delete_all(void)
1578 {
1579 	int cpu;
1580 
1581 	for_each_online_cpu(cpu)
1582 		del_timer_sync(&per_cpu(mce_timer, cpu));
1583 }
1584 
1585 /*
1586  * Notify the user(s) about new machine check events.
1587  * Can be called from interrupt context, but not from machine check/NMI
1588  * context.
1589  */
1590 int mce_notify_irq(void)
1591 {
1592 	/* Not more than two messages every minute */
1593 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1594 
1595 	if (test_and_clear_bit(0, &mce_need_notify)) {
1596 		mce_work_trigger();
1597 
1598 		if (__ratelimit(&ratelimit))
1599 			pr_info(HW_ERR "Machine check events logged\n");
1600 
1601 		return 1;
1602 	}
1603 	return 0;
1604 }
1605 EXPORT_SYMBOL_GPL(mce_notify_irq);
1606 
1607 static void __mcheck_cpu_mce_banks_init(void)
1608 {
1609 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1610 	u8 n_banks = this_cpu_read(mce_num_banks);
1611 	int i;
1612 
1613 	for (i = 0; i < n_banks; i++) {
1614 		struct mce_bank *b = &mce_banks[i];
1615 
1616 		/*
1617 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1618 		 * the required vendor quirks before
1619 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1620 		 */
1621 		b->ctl = -1ULL;
1622 		b->init = true;
1623 	}
1624 }
1625 
1626 /*
1627  * Initialize Machine Checks for a CPU.
1628  */
1629 static void __mcheck_cpu_cap_init(void)
1630 {
1631 	u64 cap;
1632 	u8 b;
1633 
1634 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1635 
1636 	b = cap & MCG_BANKCNT_MASK;
1637 
1638 	if (b > MAX_NR_BANKS) {
1639 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1640 			smp_processor_id(), MAX_NR_BANKS, b);
1641 		b = MAX_NR_BANKS;
1642 	}
1643 
1644 	this_cpu_write(mce_num_banks, b);
1645 
1646 	__mcheck_cpu_mce_banks_init();
1647 
1648 	/* Use accurate RIP reporting if available. */
1649 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1650 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1651 
1652 	if (cap & MCG_SER_P)
1653 		mca_cfg.ser = 1;
1654 }
1655 
1656 static void __mcheck_cpu_init_generic(void)
1657 {
1658 	enum mcp_flags m_fl = 0;
1659 	mce_banks_t all_banks;
1660 	u64 cap;
1661 
1662 	if (!mca_cfg.bootlog)
1663 		m_fl = MCP_DONTLOG;
1664 
1665 	/*
1666 	 * Log the machine checks left over from the previous reset. Log them
1667 	 * only, do not start processing them. That will happen in mcheck_late_init()
1668 	 * when all consumers have been registered on the notifier chain.
1669 	 */
1670 	bitmap_fill(all_banks, MAX_NR_BANKS);
1671 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1672 
1673 	cr4_set_bits(X86_CR4_MCE);
1674 
1675 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1676 	if (cap & MCG_CTL_P)
1677 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1678 }
1679 
1680 static void __mcheck_cpu_init_clear_banks(void)
1681 {
1682 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1683 	int i;
1684 
1685 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1686 		struct mce_bank *b = &mce_banks[i];
1687 
1688 		if (!b->init)
1689 			continue;
1690 		wrmsrl(msr_ops.ctl(i), b->ctl);
1691 		wrmsrl(msr_ops.status(i), 0);
1692 	}
1693 }
1694 
1695 /*
1696  * Do a final check to see if there are any unused/RAZ banks.
1697  *
1698  * This must be done after the banks have been initialized and any quirks have
1699  * been applied.
1700  *
1701  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1702  * Otherwise, a user who disables a bank will not be able to re-enable it
1703  * without a system reboot.
1704  */
1705 static void __mcheck_cpu_check_banks(void)
1706 {
1707 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1708 	u64 msrval;
1709 	int i;
1710 
1711 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1712 		struct mce_bank *b = &mce_banks[i];
1713 
1714 		if (!b->init)
1715 			continue;
1716 
1717 		rdmsrl(msr_ops.ctl(i), msrval);
1718 		b->init = !!msrval;
1719 	}
1720 }
1721 
1722 /*
1723  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1724  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1725  * Vol 3B Table 15-20). But this confuses both the code that determines
1726  * whether the machine check occurred in kernel or user mode, and also
1727  * the severity assessment code. Pretend that EIPV was set, and take the
1728  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1729  */
1730 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1731 {
1732 	if (bank != 0)
1733 		return;
1734 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1735 		return;
1736 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1737 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1738 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1739 			  MCACOD)) !=
1740 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1741 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1742 			  MCI_STATUS_AR|MCACOD_INSTR))
1743 		return;
1744 
1745 	m->mcgstatus |= MCG_STATUS_EIPV;
1746 	m->ip = regs->ip;
1747 	m->cs = regs->cs;
1748 }
1749 
1750 /* Add per CPU specific workarounds here */
1751 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1752 {
1753 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1754 	struct mca_config *cfg = &mca_cfg;
1755 
1756 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1757 		pr_info("unknown CPU type - not enabling MCE support\n");
1758 		return -EOPNOTSUPP;
1759 	}
1760 
1761 	/* This should be disabled by the BIOS, but isn't always */
1762 	if (c->x86_vendor == X86_VENDOR_AMD) {
1763 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1764 			/*
1765 			 * disable GART TBL walk error reporting, which
1766 			 * trips off incorrectly with the IOMMU & 3ware
1767 			 * & Cerberus:
1768 			 */
1769 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1770 		}
1771 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1772 			/*
1773 			 * Lots of broken BIOS around that don't clear them
1774 			 * by default and leave crap in there. Don't log:
1775 			 */
1776 			cfg->bootlog = 0;
1777 		}
1778 		/*
1779 		 * Various K7s with broken bank 0 around. Always disable
1780 		 * by default.
1781 		 */
1782 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1783 			mce_banks[0].ctl = 0;
1784 
1785 		/*
1786 		 * overflow_recov is supported for F15h Models 00h-0fh
1787 		 * even though we don't have a CPUID bit for it.
1788 		 */
1789 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1790 			mce_flags.overflow_recov = 1;
1791 
1792 	}
1793 
1794 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1795 		/*
1796 		 * SDM documents that on family 6 bank 0 should not be written
1797 		 * because it aliases to another special BIOS controlled
1798 		 * register.
1799 		 * But it's not aliased anymore on model 0x1a+
1800 		 * Don't ignore bank 0 completely because there could be a
1801 		 * valid event later, merely don't write CTL0.
1802 		 */
1803 
1804 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1805 			mce_banks[0].init = false;
1806 
1807 		/*
1808 		 * All newer Intel systems support MCE broadcasting. Enable
1809 		 * synchronization with a one second timeout.
1810 		 */
1811 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1812 			cfg->monarch_timeout < 0)
1813 			cfg->monarch_timeout = USEC_PER_SEC;
1814 
1815 		/*
1816 		 * There are also broken BIOSes on some Pentium M and
1817 		 * earlier systems:
1818 		 */
1819 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1820 			cfg->bootlog = 0;
1821 
1822 		if (c->x86 == 6 && c->x86_model == 45)
1823 			quirk_no_way_out = quirk_sandybridge_ifu;
1824 	}
1825 
1826 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1827 		/*
1828 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1829 		 * synchronization with a one second timeout.
1830 		 */
1831 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1832 			if (cfg->monarch_timeout < 0)
1833 				cfg->monarch_timeout = USEC_PER_SEC;
1834 		}
1835 	}
1836 
1837 	if (cfg->monarch_timeout < 0)
1838 		cfg->monarch_timeout = 0;
1839 	if (cfg->bootlog != 0)
1840 		cfg->panic_timeout = 30;
1841 
1842 	return 0;
1843 }
1844 
1845 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1846 {
1847 	if (c->x86 != 5)
1848 		return 0;
1849 
1850 	switch (c->x86_vendor) {
1851 	case X86_VENDOR_INTEL:
1852 		intel_p5_mcheck_init(c);
1853 		return 1;
1854 	case X86_VENDOR_CENTAUR:
1855 		winchip_mcheck_init(c);
1856 		return 1;
1857 	default:
1858 		return 0;
1859 	}
1860 
1861 	return 0;
1862 }
1863 
1864 /*
1865  * Init basic CPU features needed for early decoding of MCEs.
1866  */
1867 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1868 {
1869 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1870 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1871 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1872 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1873 		mce_flags.amd_threshold	 = 1;
1874 
1875 		if (mce_flags.smca) {
1876 			msr_ops.ctl	= smca_ctl_reg;
1877 			msr_ops.status	= smca_status_reg;
1878 			msr_ops.addr	= smca_addr_reg;
1879 			msr_ops.misc	= smca_misc_reg;
1880 		}
1881 	}
1882 }
1883 
1884 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1885 {
1886 	struct mca_config *cfg = &mca_cfg;
1887 
1888 	 /*
1889 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1890 	  * synchronization with a one second timeout.
1891 	  */
1892 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1893 	     c->x86 > 6) {
1894 		if (cfg->monarch_timeout < 0)
1895 			cfg->monarch_timeout = USEC_PER_SEC;
1896 	}
1897 }
1898 
1899 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1900 {
1901 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1902 
1903 	/*
1904 	 * These CPUs have MCA bank 8 which reports only one error type called
1905 	 * SVAD (System View Address Decoder). The reporting of that error is
1906 	 * controlled by IA32_MC8.CTL.0.
1907 	 *
1908 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1909 	 * virtual machines start and result in a system  panic. Always disable
1910 	 * bank 8 SVAD error by default.
1911 	 */
1912 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1913 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1914 		if (this_cpu_read(mce_num_banks) > 8)
1915 			mce_banks[8].ctl = 0;
1916 	}
1917 
1918 	intel_init_cmci();
1919 	intel_init_lmce();
1920 	mce_adjust_timer = cmci_intel_adjust_timer;
1921 }
1922 
1923 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1924 {
1925 	intel_clear_lmce();
1926 }
1927 
1928 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1929 {
1930 	switch (c->x86_vendor) {
1931 	case X86_VENDOR_INTEL:
1932 		mce_intel_feature_init(c);
1933 		mce_adjust_timer = cmci_intel_adjust_timer;
1934 		break;
1935 
1936 	case X86_VENDOR_AMD: {
1937 		mce_amd_feature_init(c);
1938 		break;
1939 		}
1940 
1941 	case X86_VENDOR_HYGON:
1942 		mce_hygon_feature_init(c);
1943 		break;
1944 
1945 	case X86_VENDOR_CENTAUR:
1946 		mce_centaur_feature_init(c);
1947 		break;
1948 
1949 	case X86_VENDOR_ZHAOXIN:
1950 		mce_zhaoxin_feature_init(c);
1951 		break;
1952 
1953 	default:
1954 		break;
1955 	}
1956 }
1957 
1958 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1959 {
1960 	switch (c->x86_vendor) {
1961 	case X86_VENDOR_INTEL:
1962 		mce_intel_feature_clear(c);
1963 		break;
1964 
1965 	case X86_VENDOR_ZHAOXIN:
1966 		mce_zhaoxin_feature_clear(c);
1967 		break;
1968 
1969 	default:
1970 		break;
1971 	}
1972 }
1973 
1974 static void mce_start_timer(struct timer_list *t)
1975 {
1976 	unsigned long iv = check_interval * HZ;
1977 
1978 	if (mca_cfg.ignore_ce || !iv)
1979 		return;
1980 
1981 	this_cpu_write(mce_next_interval, iv);
1982 	__start_timer(t, iv);
1983 }
1984 
1985 static void __mcheck_cpu_setup_timer(void)
1986 {
1987 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1988 
1989 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1990 }
1991 
1992 static void __mcheck_cpu_init_timer(void)
1993 {
1994 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1995 
1996 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1997 	mce_start_timer(t);
1998 }
1999 
2000 bool filter_mce(struct mce *m)
2001 {
2002 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2003 		return amd_filter_mce(m);
2004 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2005 		return intel_filter_mce(m);
2006 
2007 	return false;
2008 }
2009 
2010 /* Handle unconfigured int18 (should never happen) */
2011 static noinstr void unexpected_machine_check(struct pt_regs *regs)
2012 {
2013 	instrumentation_begin();
2014 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
2015 	       smp_processor_id());
2016 	instrumentation_end();
2017 }
2018 
2019 /* Call the installed machine check handler for this CPU setup. */
2020 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
2021 
2022 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2023 {
2024 	irqentry_state_t irq_state;
2025 
2026 	WARN_ON_ONCE(user_mode(regs));
2027 
2028 	/*
2029 	 * Only required when from kernel mode. See
2030 	 * mce_check_crashing_cpu() for details.
2031 	 */
2032 	if (machine_check_vector == do_machine_check &&
2033 	    mce_check_crashing_cpu())
2034 		return;
2035 
2036 	irq_state = irqentry_nmi_enter(regs);
2037 	/*
2038 	 * The call targets are marked noinstr, but objtool can't figure
2039 	 * that out because it's an indirect call. Annotate it.
2040 	 */
2041 	instrumentation_begin();
2042 
2043 	machine_check_vector(regs);
2044 
2045 	instrumentation_end();
2046 	irqentry_nmi_exit(regs, irq_state);
2047 }
2048 
2049 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2050 {
2051 	irqentry_enter_from_user_mode(regs);
2052 	instrumentation_begin();
2053 
2054 	machine_check_vector(regs);
2055 
2056 	instrumentation_end();
2057 	irqentry_exit_to_user_mode(regs);
2058 }
2059 
2060 #ifdef CONFIG_X86_64
2061 /* MCE hit kernel mode */
2062 DEFINE_IDTENTRY_MCE(exc_machine_check)
2063 {
2064 	unsigned long dr7;
2065 
2066 	dr7 = local_db_save();
2067 	exc_machine_check_kernel(regs);
2068 	local_db_restore(dr7);
2069 }
2070 
2071 /* The user mode variant. */
2072 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2073 {
2074 	unsigned long dr7;
2075 
2076 	dr7 = local_db_save();
2077 	exc_machine_check_user(regs);
2078 	local_db_restore(dr7);
2079 }
2080 #else
2081 /* 32bit unified entry point */
2082 DEFINE_IDTENTRY_RAW(exc_machine_check)
2083 {
2084 	unsigned long dr7;
2085 
2086 	dr7 = local_db_save();
2087 	if (user_mode(regs))
2088 		exc_machine_check_user(regs);
2089 	else
2090 		exc_machine_check_kernel(regs);
2091 	local_db_restore(dr7);
2092 }
2093 #endif
2094 
2095 /*
2096  * Called for each booted CPU to set up machine checks.
2097  * Must be called with preempt off:
2098  */
2099 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2100 {
2101 	if (mca_cfg.disabled)
2102 		return;
2103 
2104 	if (__mcheck_cpu_ancient_init(c))
2105 		return;
2106 
2107 	if (!mce_available(c))
2108 		return;
2109 
2110 	__mcheck_cpu_cap_init();
2111 
2112 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2113 		mca_cfg.disabled = 1;
2114 		return;
2115 	}
2116 
2117 	if (mce_gen_pool_init()) {
2118 		mca_cfg.disabled = 1;
2119 		pr_emerg("Couldn't allocate MCE records pool!\n");
2120 		return;
2121 	}
2122 
2123 	machine_check_vector = do_machine_check;
2124 
2125 	__mcheck_cpu_init_early(c);
2126 	__mcheck_cpu_init_generic();
2127 	__mcheck_cpu_init_vendor(c);
2128 	__mcheck_cpu_init_clear_banks();
2129 	__mcheck_cpu_check_banks();
2130 	__mcheck_cpu_setup_timer();
2131 }
2132 
2133 /*
2134  * Called for each booted CPU to clear some machine checks opt-ins
2135  */
2136 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2137 {
2138 	if (mca_cfg.disabled)
2139 		return;
2140 
2141 	if (!mce_available(c))
2142 		return;
2143 
2144 	/*
2145 	 * Possibly to clear general settings generic to x86
2146 	 * __mcheck_cpu_clear_generic(c);
2147 	 */
2148 	__mcheck_cpu_clear_vendor(c);
2149 
2150 }
2151 
2152 static void __mce_disable_bank(void *arg)
2153 {
2154 	int bank = *((int *)arg);
2155 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2156 	cmci_disable_bank(bank);
2157 }
2158 
2159 void mce_disable_bank(int bank)
2160 {
2161 	if (bank >= this_cpu_read(mce_num_banks)) {
2162 		pr_warn(FW_BUG
2163 			"Ignoring request to disable invalid MCA bank %d.\n",
2164 			bank);
2165 		return;
2166 	}
2167 	set_bit(bank, mce_banks_ce_disabled);
2168 	on_each_cpu(__mce_disable_bank, &bank, 1);
2169 }
2170 
2171 /*
2172  * mce=off Disables machine check
2173  * mce=no_cmci Disables CMCI
2174  * mce=no_lmce Disables LMCE
2175  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2176  * mce=print_all Print all machine check logs to console
2177  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2178  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2179  *	monarchtimeout is how long to wait for other CPUs on machine
2180  *	check, or 0 to not wait
2181  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2182 	and older.
2183  * mce=nobootlog Don't log MCEs from before booting.
2184  * mce=bios_cmci_threshold Don't program the CMCI threshold
2185  * mce=recovery force enable copy_mc_fragile()
2186  */
2187 static int __init mcheck_enable(char *str)
2188 {
2189 	struct mca_config *cfg = &mca_cfg;
2190 
2191 	if (*str == 0) {
2192 		enable_p5_mce();
2193 		return 1;
2194 	}
2195 	if (*str == '=')
2196 		str++;
2197 	if (!strcmp(str, "off"))
2198 		cfg->disabled = 1;
2199 	else if (!strcmp(str, "no_cmci"))
2200 		cfg->cmci_disabled = true;
2201 	else if (!strcmp(str, "no_lmce"))
2202 		cfg->lmce_disabled = 1;
2203 	else if (!strcmp(str, "dont_log_ce"))
2204 		cfg->dont_log_ce = true;
2205 	else if (!strcmp(str, "print_all"))
2206 		cfg->print_all = true;
2207 	else if (!strcmp(str, "ignore_ce"))
2208 		cfg->ignore_ce = true;
2209 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2210 		cfg->bootlog = (str[0] == 'b');
2211 	else if (!strcmp(str, "bios_cmci_threshold"))
2212 		cfg->bios_cmci_threshold = 1;
2213 	else if (!strcmp(str, "recovery"))
2214 		cfg->recovery = 1;
2215 	else if (isdigit(str[0])) {
2216 		if (get_option(&str, &cfg->tolerant) == 2)
2217 			get_option(&str, &(cfg->monarch_timeout));
2218 	} else {
2219 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2220 		return 0;
2221 	}
2222 	return 1;
2223 }
2224 __setup("mce", mcheck_enable);
2225 
2226 int __init mcheck_init(void)
2227 {
2228 	mce_register_decode_chain(&early_nb);
2229 	mce_register_decode_chain(&mce_uc_nb);
2230 	mce_register_decode_chain(&mce_default_nb);
2231 	mcheck_vendor_init_severity();
2232 
2233 	INIT_WORK(&mce_work, mce_gen_pool_process);
2234 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2235 
2236 	return 0;
2237 }
2238 
2239 /*
2240  * mce_syscore: PM support
2241  */
2242 
2243 /*
2244  * Disable machine checks on suspend and shutdown. We can't really handle
2245  * them later.
2246  */
2247 static void mce_disable_error_reporting(void)
2248 {
2249 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2250 	int i;
2251 
2252 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2253 		struct mce_bank *b = &mce_banks[i];
2254 
2255 		if (b->init)
2256 			wrmsrl(msr_ops.ctl(i), 0);
2257 	}
2258 	return;
2259 }
2260 
2261 static void vendor_disable_error_reporting(void)
2262 {
2263 	/*
2264 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2265 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2266 	 * is bad, since it will inhibit reporting for all shared resources on
2267 	 * the socket like the last level cache (LLC), the integrated memory
2268 	 * controller (iMC), etc.
2269 	 */
2270 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2271 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2272 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2273 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2274 		return;
2275 
2276 	mce_disable_error_reporting();
2277 }
2278 
2279 static int mce_syscore_suspend(void)
2280 {
2281 	vendor_disable_error_reporting();
2282 	return 0;
2283 }
2284 
2285 static void mce_syscore_shutdown(void)
2286 {
2287 	vendor_disable_error_reporting();
2288 }
2289 
2290 /*
2291  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2292  * Only one CPU is active at this time, the others get re-added later using
2293  * CPU hotplug:
2294  */
2295 static void mce_syscore_resume(void)
2296 {
2297 	__mcheck_cpu_init_generic();
2298 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2299 	__mcheck_cpu_init_clear_banks();
2300 }
2301 
2302 static struct syscore_ops mce_syscore_ops = {
2303 	.suspend	= mce_syscore_suspend,
2304 	.shutdown	= mce_syscore_shutdown,
2305 	.resume		= mce_syscore_resume,
2306 };
2307 
2308 /*
2309  * mce_device: Sysfs support
2310  */
2311 
2312 static void mce_cpu_restart(void *data)
2313 {
2314 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2315 		return;
2316 	__mcheck_cpu_init_generic();
2317 	__mcheck_cpu_init_clear_banks();
2318 	__mcheck_cpu_init_timer();
2319 }
2320 
2321 /* Reinit MCEs after user configuration changes */
2322 static void mce_restart(void)
2323 {
2324 	mce_timer_delete_all();
2325 	on_each_cpu(mce_cpu_restart, NULL, 1);
2326 }
2327 
2328 /* Toggle features for corrected errors */
2329 static void mce_disable_cmci(void *data)
2330 {
2331 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2332 		return;
2333 	cmci_clear();
2334 }
2335 
2336 static void mce_enable_ce(void *all)
2337 {
2338 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2339 		return;
2340 	cmci_reenable();
2341 	cmci_recheck();
2342 	if (all)
2343 		__mcheck_cpu_init_timer();
2344 }
2345 
2346 static struct bus_type mce_subsys = {
2347 	.name		= "machinecheck",
2348 	.dev_name	= "machinecheck",
2349 };
2350 
2351 DEFINE_PER_CPU(struct device *, mce_device);
2352 
2353 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2354 {
2355 	return container_of(attr, struct mce_bank_dev, attr);
2356 }
2357 
2358 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2359 			 char *buf)
2360 {
2361 	u8 bank = attr_to_bank(attr)->bank;
2362 	struct mce_bank *b;
2363 
2364 	if (bank >= per_cpu(mce_num_banks, s->id))
2365 		return -EINVAL;
2366 
2367 	b = &per_cpu(mce_banks_array, s->id)[bank];
2368 
2369 	if (!b->init)
2370 		return -ENODEV;
2371 
2372 	return sprintf(buf, "%llx\n", b->ctl);
2373 }
2374 
2375 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2376 			const char *buf, size_t size)
2377 {
2378 	u8 bank = attr_to_bank(attr)->bank;
2379 	struct mce_bank *b;
2380 	u64 new;
2381 
2382 	if (kstrtou64(buf, 0, &new) < 0)
2383 		return -EINVAL;
2384 
2385 	if (bank >= per_cpu(mce_num_banks, s->id))
2386 		return -EINVAL;
2387 
2388 	b = &per_cpu(mce_banks_array, s->id)[bank];
2389 
2390 	if (!b->init)
2391 		return -ENODEV;
2392 
2393 	b->ctl = new;
2394 	mce_restart();
2395 
2396 	return size;
2397 }
2398 
2399 static ssize_t set_ignore_ce(struct device *s,
2400 			     struct device_attribute *attr,
2401 			     const char *buf, size_t size)
2402 {
2403 	u64 new;
2404 
2405 	if (kstrtou64(buf, 0, &new) < 0)
2406 		return -EINVAL;
2407 
2408 	mutex_lock(&mce_sysfs_mutex);
2409 	if (mca_cfg.ignore_ce ^ !!new) {
2410 		if (new) {
2411 			/* disable ce features */
2412 			mce_timer_delete_all();
2413 			on_each_cpu(mce_disable_cmci, NULL, 1);
2414 			mca_cfg.ignore_ce = true;
2415 		} else {
2416 			/* enable ce features */
2417 			mca_cfg.ignore_ce = false;
2418 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2419 		}
2420 	}
2421 	mutex_unlock(&mce_sysfs_mutex);
2422 
2423 	return size;
2424 }
2425 
2426 static ssize_t set_cmci_disabled(struct device *s,
2427 				 struct device_attribute *attr,
2428 				 const char *buf, size_t size)
2429 {
2430 	u64 new;
2431 
2432 	if (kstrtou64(buf, 0, &new) < 0)
2433 		return -EINVAL;
2434 
2435 	mutex_lock(&mce_sysfs_mutex);
2436 	if (mca_cfg.cmci_disabled ^ !!new) {
2437 		if (new) {
2438 			/* disable cmci */
2439 			on_each_cpu(mce_disable_cmci, NULL, 1);
2440 			mca_cfg.cmci_disabled = true;
2441 		} else {
2442 			/* enable cmci */
2443 			mca_cfg.cmci_disabled = false;
2444 			on_each_cpu(mce_enable_ce, NULL, 1);
2445 		}
2446 	}
2447 	mutex_unlock(&mce_sysfs_mutex);
2448 
2449 	return size;
2450 }
2451 
2452 static ssize_t store_int_with_restart(struct device *s,
2453 				      struct device_attribute *attr,
2454 				      const char *buf, size_t size)
2455 {
2456 	unsigned long old_check_interval = check_interval;
2457 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2458 
2459 	if (check_interval == old_check_interval)
2460 		return ret;
2461 
2462 	mutex_lock(&mce_sysfs_mutex);
2463 	mce_restart();
2464 	mutex_unlock(&mce_sysfs_mutex);
2465 
2466 	return ret;
2467 }
2468 
2469 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2470 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2471 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2472 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2473 
2474 static struct dev_ext_attribute dev_attr_check_interval = {
2475 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2476 	&check_interval
2477 };
2478 
2479 static struct dev_ext_attribute dev_attr_ignore_ce = {
2480 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2481 	&mca_cfg.ignore_ce
2482 };
2483 
2484 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2485 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2486 	&mca_cfg.cmci_disabled
2487 };
2488 
2489 static struct device_attribute *mce_device_attrs[] = {
2490 	&dev_attr_tolerant.attr,
2491 	&dev_attr_check_interval.attr,
2492 #ifdef CONFIG_X86_MCELOG_LEGACY
2493 	&dev_attr_trigger,
2494 #endif
2495 	&dev_attr_monarch_timeout.attr,
2496 	&dev_attr_dont_log_ce.attr,
2497 	&dev_attr_print_all.attr,
2498 	&dev_attr_ignore_ce.attr,
2499 	&dev_attr_cmci_disabled.attr,
2500 	NULL
2501 };
2502 
2503 static cpumask_var_t mce_device_initialized;
2504 
2505 static void mce_device_release(struct device *dev)
2506 {
2507 	kfree(dev);
2508 }
2509 
2510 /* Per CPU device init. All of the CPUs still share the same bank device: */
2511 static int mce_device_create(unsigned int cpu)
2512 {
2513 	struct device *dev;
2514 	int err;
2515 	int i, j;
2516 
2517 	if (!mce_available(&boot_cpu_data))
2518 		return -EIO;
2519 
2520 	dev = per_cpu(mce_device, cpu);
2521 	if (dev)
2522 		return 0;
2523 
2524 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2525 	if (!dev)
2526 		return -ENOMEM;
2527 	dev->id  = cpu;
2528 	dev->bus = &mce_subsys;
2529 	dev->release = &mce_device_release;
2530 
2531 	err = device_register(dev);
2532 	if (err) {
2533 		put_device(dev);
2534 		return err;
2535 	}
2536 
2537 	for (i = 0; mce_device_attrs[i]; i++) {
2538 		err = device_create_file(dev, mce_device_attrs[i]);
2539 		if (err)
2540 			goto error;
2541 	}
2542 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2543 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2544 		if (err)
2545 			goto error2;
2546 	}
2547 	cpumask_set_cpu(cpu, mce_device_initialized);
2548 	per_cpu(mce_device, cpu) = dev;
2549 
2550 	return 0;
2551 error2:
2552 	while (--j >= 0)
2553 		device_remove_file(dev, &mce_bank_devs[j].attr);
2554 error:
2555 	while (--i >= 0)
2556 		device_remove_file(dev, mce_device_attrs[i]);
2557 
2558 	device_unregister(dev);
2559 
2560 	return err;
2561 }
2562 
2563 static void mce_device_remove(unsigned int cpu)
2564 {
2565 	struct device *dev = per_cpu(mce_device, cpu);
2566 	int i;
2567 
2568 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2569 		return;
2570 
2571 	for (i = 0; mce_device_attrs[i]; i++)
2572 		device_remove_file(dev, mce_device_attrs[i]);
2573 
2574 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2575 		device_remove_file(dev, &mce_bank_devs[i].attr);
2576 
2577 	device_unregister(dev);
2578 	cpumask_clear_cpu(cpu, mce_device_initialized);
2579 	per_cpu(mce_device, cpu) = NULL;
2580 }
2581 
2582 /* Make sure there are no machine checks on offlined CPUs. */
2583 static void mce_disable_cpu(void)
2584 {
2585 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2586 		return;
2587 
2588 	if (!cpuhp_tasks_frozen)
2589 		cmci_clear();
2590 
2591 	vendor_disable_error_reporting();
2592 }
2593 
2594 static void mce_reenable_cpu(void)
2595 {
2596 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2597 	int i;
2598 
2599 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2600 		return;
2601 
2602 	if (!cpuhp_tasks_frozen)
2603 		cmci_reenable();
2604 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2605 		struct mce_bank *b = &mce_banks[i];
2606 
2607 		if (b->init)
2608 			wrmsrl(msr_ops.ctl(i), b->ctl);
2609 	}
2610 }
2611 
2612 static int mce_cpu_dead(unsigned int cpu)
2613 {
2614 	mce_intel_hcpu_update(cpu);
2615 
2616 	/* intentionally ignoring frozen here */
2617 	if (!cpuhp_tasks_frozen)
2618 		cmci_rediscover();
2619 	return 0;
2620 }
2621 
2622 static int mce_cpu_online(unsigned int cpu)
2623 {
2624 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2625 	int ret;
2626 
2627 	mce_device_create(cpu);
2628 
2629 	ret = mce_threshold_create_device(cpu);
2630 	if (ret) {
2631 		mce_device_remove(cpu);
2632 		return ret;
2633 	}
2634 	mce_reenable_cpu();
2635 	mce_start_timer(t);
2636 	return 0;
2637 }
2638 
2639 static int mce_cpu_pre_down(unsigned int cpu)
2640 {
2641 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2642 
2643 	mce_disable_cpu();
2644 	del_timer_sync(t);
2645 	mce_threshold_remove_device(cpu);
2646 	mce_device_remove(cpu);
2647 	return 0;
2648 }
2649 
2650 static __init void mce_init_banks(void)
2651 {
2652 	int i;
2653 
2654 	for (i = 0; i < MAX_NR_BANKS; i++) {
2655 		struct mce_bank_dev *b = &mce_bank_devs[i];
2656 		struct device_attribute *a = &b->attr;
2657 
2658 		b->bank = i;
2659 
2660 		sysfs_attr_init(&a->attr);
2661 		a->attr.name	= b->attrname;
2662 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2663 
2664 		a->attr.mode	= 0644;
2665 		a->show		= show_bank;
2666 		a->store	= set_bank;
2667 	}
2668 }
2669 
2670 /*
2671  * When running on XEN, this initcall is ordered against the XEN mcelog
2672  * initcall:
2673  *
2674  *   device_initcall(xen_late_init_mcelog);
2675  *   device_initcall_sync(mcheck_init_device);
2676  */
2677 static __init int mcheck_init_device(void)
2678 {
2679 	int err;
2680 
2681 	/*
2682 	 * Check if we have a spare virtual bit. This will only become
2683 	 * a problem if/when we move beyond 5-level page tables.
2684 	 */
2685 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2686 
2687 	if (!mce_available(&boot_cpu_data)) {
2688 		err = -EIO;
2689 		goto err_out;
2690 	}
2691 
2692 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2693 		err = -ENOMEM;
2694 		goto err_out;
2695 	}
2696 
2697 	mce_init_banks();
2698 
2699 	err = subsys_system_register(&mce_subsys, NULL);
2700 	if (err)
2701 		goto err_out_mem;
2702 
2703 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2704 				mce_cpu_dead);
2705 	if (err)
2706 		goto err_out_mem;
2707 
2708 	/*
2709 	 * Invokes mce_cpu_online() on all CPUs which are online when
2710 	 * the state is installed.
2711 	 */
2712 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2713 				mce_cpu_online, mce_cpu_pre_down);
2714 	if (err < 0)
2715 		goto err_out_online;
2716 
2717 	register_syscore_ops(&mce_syscore_ops);
2718 
2719 	return 0;
2720 
2721 err_out_online:
2722 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2723 
2724 err_out_mem:
2725 	free_cpumask_var(mce_device_initialized);
2726 
2727 err_out:
2728 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2729 
2730 	return err;
2731 }
2732 device_initcall_sync(mcheck_init_device);
2733 
2734 /*
2735  * Old style boot options parsing. Only for compatibility.
2736  */
2737 static int __init mcheck_disable(char *str)
2738 {
2739 	mca_cfg.disabled = 1;
2740 	return 1;
2741 }
2742 __setup("nomce", mcheck_disable);
2743 
2744 #ifdef CONFIG_DEBUG_FS
2745 struct dentry *mce_get_debugfs_dir(void)
2746 {
2747 	static struct dentry *dmce;
2748 
2749 	if (!dmce)
2750 		dmce = debugfs_create_dir("mce", NULL);
2751 
2752 	return dmce;
2753 }
2754 
2755 static void mce_reset(void)
2756 {
2757 	cpu_missing = 0;
2758 	atomic_set(&mce_fake_panicked, 0);
2759 	atomic_set(&mce_executing, 0);
2760 	atomic_set(&mce_callin, 0);
2761 	atomic_set(&global_nwo, 0);
2762 	cpumask_setall(&mce_missing_cpus);
2763 }
2764 
2765 static int fake_panic_get(void *data, u64 *val)
2766 {
2767 	*val = fake_panic;
2768 	return 0;
2769 }
2770 
2771 static int fake_panic_set(void *data, u64 val)
2772 {
2773 	mce_reset();
2774 	fake_panic = val;
2775 	return 0;
2776 }
2777 
2778 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2779 			 "%llu\n");
2780 
2781 static void __init mcheck_debugfs_init(void)
2782 {
2783 	struct dentry *dmce;
2784 
2785 	dmce = mce_get_debugfs_dir();
2786 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2787 				   &fake_panic_fops);
2788 }
2789 #else
2790 static void __init mcheck_debugfs_init(void) { }
2791 #endif
2792 
2793 static int __init mcheck_late_init(void)
2794 {
2795 	if (mca_cfg.recovery)
2796 		enable_copy_mc_fragile();
2797 
2798 	mcheck_debugfs_init();
2799 
2800 	/*
2801 	 * Flush out everything that has been logged during early boot, now that
2802 	 * everything has been initialized (workqueues, decoders, ...).
2803 	 */
2804 	mce_schedule_work();
2805 
2806 	return 0;
2807 }
2808 late_initcall(mcheck_late_init);
2809