1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 48 #include <asm/intel-family.h> 49 #include <asm/processor.h> 50 #include <asm/traps.h> 51 #include <asm/tlbflush.h> 52 #include <asm/mce.h> 53 #include <asm/msr.h> 54 #include <asm/reboot.h> 55 56 #include "internal.h" 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 struct mce_bank { 71 u64 ctl; /* subevents to enable */ 72 bool init; /* initialise bank? */ 73 }; 74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 75 76 #define ATTR_LEN 16 77 /* One object for each MCE bank, shared by all CPUs */ 78 struct mce_bank_dev { 79 struct device_attribute attr; /* device attribute */ 80 char attrname[ATTR_LEN]; /* attribute name */ 81 u8 bank; /* bank number */ 82 }; 83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 84 85 struct mce_vendor_flags mce_flags __read_mostly; 86 87 struct mca_config mca_cfg __read_mostly = { 88 .bootlog = -1, 89 /* 90 * Tolerant levels: 91 * 0: always panic on uncorrected errors, log corrected errors 92 * 1: panic or SIGBUS on uncorrected errors, log corrected errors 93 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors 94 * 3: never panic or SIGBUS, log all errors (for testing only) 95 */ 96 .tolerant = 1, 97 .monarch_timeout = -1 98 }; 99 100 static DEFINE_PER_CPU(struct mce, mces_seen); 101 static unsigned long mce_need_notify; 102 static int cpu_missing; 103 104 /* 105 * MCA banks polled by the period polling timer for corrected events. 106 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 107 */ 108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 109 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 110 }; 111 112 /* 113 * MCA banks controlled through firmware first for corrected errors. 114 * This is a global list of banks for which we won't enable CMCI and we 115 * won't poll. Firmware controls these banks and is responsible for 116 * reporting corrected errors through GHES. Uncorrected/recoverable 117 * errors are still notified through a machine check. 118 */ 119 mce_banks_t mce_banks_ce_disabled; 120 121 static struct work_struct mce_work; 122 static struct irq_work mce_irq_work; 123 124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); 125 126 /* 127 * CPU/chipset specific EDAC code can register a notifier call here to print 128 * MCE errors in a human-readable form. 129 */ 130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 131 132 /* Do initial initialization of a struct mce */ 133 noinstr void mce_setup(struct mce *m) 134 { 135 memset(m, 0, sizeof(struct mce)); 136 m->cpu = m->extcpu = smp_processor_id(); 137 /* need the internal __ version to avoid deadlocks */ 138 m->time = __ktime_get_real_seconds(); 139 m->cpuvendor = boot_cpu_data.x86_vendor; 140 m->cpuid = cpuid_eax(1); 141 m->socketid = cpu_data(m->extcpu).phys_proc_id; 142 m->apicid = cpu_data(m->extcpu).initial_apicid; 143 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 144 145 if (this_cpu_has(X86_FEATURE_INTEL_PPIN)) 146 m->ppin = __rdmsr(MSR_PPIN); 147 else if (this_cpu_has(X86_FEATURE_AMD_PPIN)) 148 m->ppin = __rdmsr(MSR_AMD_PPIN); 149 150 m->microcode = boot_cpu_data.microcode; 151 } 152 153 DEFINE_PER_CPU(struct mce, injectm); 154 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 155 156 void mce_log(struct mce *m) 157 { 158 if (!mce_gen_pool_add(m)) 159 irq_work_queue(&mce_irq_work); 160 } 161 EXPORT_SYMBOL_GPL(mce_log); 162 163 void mce_register_decode_chain(struct notifier_block *nb) 164 { 165 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 166 nb->priority > MCE_PRIO_HIGHEST)) 167 return; 168 169 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 170 } 171 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 172 173 void mce_unregister_decode_chain(struct notifier_block *nb) 174 { 175 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 176 } 177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 178 179 static inline u32 ctl_reg(int bank) 180 { 181 return MSR_IA32_MCx_CTL(bank); 182 } 183 184 static inline u32 status_reg(int bank) 185 { 186 return MSR_IA32_MCx_STATUS(bank); 187 } 188 189 static inline u32 addr_reg(int bank) 190 { 191 return MSR_IA32_MCx_ADDR(bank); 192 } 193 194 static inline u32 misc_reg(int bank) 195 { 196 return MSR_IA32_MCx_MISC(bank); 197 } 198 199 static inline u32 smca_ctl_reg(int bank) 200 { 201 return MSR_AMD64_SMCA_MCx_CTL(bank); 202 } 203 204 static inline u32 smca_status_reg(int bank) 205 { 206 return MSR_AMD64_SMCA_MCx_STATUS(bank); 207 } 208 209 static inline u32 smca_addr_reg(int bank) 210 { 211 return MSR_AMD64_SMCA_MCx_ADDR(bank); 212 } 213 214 static inline u32 smca_misc_reg(int bank) 215 { 216 return MSR_AMD64_SMCA_MCx_MISC(bank); 217 } 218 219 struct mca_msr_regs msr_ops = { 220 .ctl = ctl_reg, 221 .status = status_reg, 222 .addr = addr_reg, 223 .misc = misc_reg 224 }; 225 226 static void __print_mce(struct mce *m) 227 { 228 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 229 m->extcpu, 230 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 231 m->mcgstatus, m->bank, m->status); 232 233 if (m->ip) { 234 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 235 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 236 m->cs, m->ip); 237 238 if (m->cs == __KERNEL_CS) 239 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 240 pr_cont("\n"); 241 } 242 243 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 244 if (m->addr) 245 pr_cont("ADDR %llx ", m->addr); 246 if (m->misc) 247 pr_cont("MISC %llx ", m->misc); 248 if (m->ppin) 249 pr_cont("PPIN %llx ", m->ppin); 250 251 if (mce_flags.smca) { 252 if (m->synd) 253 pr_cont("SYND %llx ", m->synd); 254 if (m->ipid) 255 pr_cont("IPID %llx ", m->ipid); 256 } 257 258 pr_cont("\n"); 259 260 /* 261 * Note this output is parsed by external tools and old fields 262 * should not be changed. 263 */ 264 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 265 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 266 m->microcode); 267 } 268 269 static void print_mce(struct mce *m) 270 { 271 __print_mce(m); 272 273 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 274 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 275 } 276 277 #define PANIC_TIMEOUT 5 /* 5 seconds */ 278 279 static atomic_t mce_panicked; 280 281 static int fake_panic; 282 static atomic_t mce_fake_panicked; 283 284 /* Panic in progress. Enable interrupts and wait for final IPI */ 285 static void wait_for_panic(void) 286 { 287 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 288 289 preempt_disable(); 290 local_irq_enable(); 291 while (timeout-- > 0) 292 udelay(1); 293 if (panic_timeout == 0) 294 panic_timeout = mca_cfg.panic_timeout; 295 panic("Panicing machine check CPU died"); 296 } 297 298 static void mce_panic(const char *msg, struct mce *final, char *exp) 299 { 300 int apei_err = 0; 301 struct llist_node *pending; 302 struct mce_evt_llist *l; 303 304 if (!fake_panic) { 305 /* 306 * Make sure only one CPU runs in machine check panic 307 */ 308 if (atomic_inc_return(&mce_panicked) > 1) 309 wait_for_panic(); 310 barrier(); 311 312 bust_spinlocks(1); 313 console_verbose(); 314 } else { 315 /* Don't log too much for fake panic */ 316 if (atomic_inc_return(&mce_fake_panicked) > 1) 317 return; 318 } 319 pending = mce_gen_pool_prepare_records(); 320 /* First print corrected ones that are still unlogged */ 321 llist_for_each_entry(l, pending, llnode) { 322 struct mce *m = &l->mce; 323 if (!(m->status & MCI_STATUS_UC)) { 324 print_mce(m); 325 if (!apei_err) 326 apei_err = apei_write_mce(m); 327 } 328 } 329 /* Now print uncorrected but with the final one last */ 330 llist_for_each_entry(l, pending, llnode) { 331 struct mce *m = &l->mce; 332 if (!(m->status & MCI_STATUS_UC)) 333 continue; 334 if (!final || mce_cmp(m, final)) { 335 print_mce(m); 336 if (!apei_err) 337 apei_err = apei_write_mce(m); 338 } 339 } 340 if (final) { 341 print_mce(final); 342 if (!apei_err) 343 apei_err = apei_write_mce(final); 344 } 345 if (cpu_missing) 346 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); 347 if (exp) 348 pr_emerg(HW_ERR "Machine check: %s\n", exp); 349 if (!fake_panic) { 350 if (panic_timeout == 0) 351 panic_timeout = mca_cfg.panic_timeout; 352 panic(msg); 353 } else 354 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 355 } 356 357 /* Support code for software error injection */ 358 359 static int msr_to_offset(u32 msr) 360 { 361 unsigned bank = __this_cpu_read(injectm.bank); 362 363 if (msr == mca_cfg.rip_msr) 364 return offsetof(struct mce, ip); 365 if (msr == msr_ops.status(bank)) 366 return offsetof(struct mce, status); 367 if (msr == msr_ops.addr(bank)) 368 return offsetof(struct mce, addr); 369 if (msr == msr_ops.misc(bank)) 370 return offsetof(struct mce, misc); 371 if (msr == MSR_IA32_MCG_STATUS) 372 return offsetof(struct mce, mcgstatus); 373 return -1; 374 } 375 376 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup, 377 struct pt_regs *regs, int trapnr, 378 unsigned long error_code, 379 unsigned long fault_addr) 380 { 381 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 382 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 383 384 show_stack_regs(regs); 385 386 panic("MCA architectural violation!\n"); 387 388 while (true) 389 cpu_relax(); 390 391 return true; 392 } 393 394 /* MSR access wrappers used for error injection */ 395 static noinstr u64 mce_rdmsrl(u32 msr) 396 { 397 DECLARE_ARGS(val, low, high); 398 399 if (__this_cpu_read(injectm.finished)) { 400 int offset; 401 u64 ret; 402 403 instrumentation_begin(); 404 405 offset = msr_to_offset(msr); 406 if (offset < 0) 407 ret = 0; 408 else 409 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 410 411 instrumentation_end(); 412 413 return ret; 414 } 415 416 /* 417 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 418 * architectural violation and needs to be reported to hw vendor. Panic 419 * the box to not allow any further progress. 420 */ 421 asm volatile("1: rdmsr\n" 422 "2:\n" 423 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault) 424 : EAX_EDX_RET(val, low, high) : "c" (msr)); 425 426 427 return EAX_EDX_VAL(val, low, high); 428 } 429 430 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup, 431 struct pt_regs *regs, int trapnr, 432 unsigned long error_code, 433 unsigned long fault_addr) 434 { 435 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 436 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 437 regs->ip, (void *)regs->ip); 438 439 show_stack_regs(regs); 440 441 panic("MCA architectural violation!\n"); 442 443 while (true) 444 cpu_relax(); 445 446 return true; 447 } 448 449 static noinstr void mce_wrmsrl(u32 msr, u64 v) 450 { 451 u32 low, high; 452 453 if (__this_cpu_read(injectm.finished)) { 454 int offset; 455 456 instrumentation_begin(); 457 458 offset = msr_to_offset(msr); 459 if (offset >= 0) 460 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 461 462 instrumentation_end(); 463 464 return; 465 } 466 467 low = (u32)v; 468 high = (u32)(v >> 32); 469 470 /* See comment in mce_rdmsrl() */ 471 asm volatile("1: wrmsr\n" 472 "2:\n" 473 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault) 474 : : "c" (msr), "a"(low), "d" (high) : "memory"); 475 } 476 477 /* 478 * Collect all global (w.r.t. this processor) status about this machine 479 * check into our "mce" struct so that we can use it later to assess 480 * the severity of the problem as we read per-bank specific details. 481 */ 482 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) 483 { 484 mce_setup(m); 485 486 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 487 if (regs) { 488 /* 489 * Get the address of the instruction at the time of 490 * the machine check error. 491 */ 492 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 493 m->ip = regs->ip; 494 m->cs = regs->cs; 495 496 /* 497 * When in VM86 mode make the cs look like ring 3 498 * always. This is a lie, but it's better than passing 499 * the additional vm86 bit around everywhere. 500 */ 501 if (v8086_mode(regs)) 502 m->cs |= 3; 503 } 504 /* Use accurate RIP reporting if available. */ 505 if (mca_cfg.rip_msr) 506 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 507 } 508 } 509 510 int mce_available(struct cpuinfo_x86 *c) 511 { 512 if (mca_cfg.disabled) 513 return 0; 514 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 515 } 516 517 static void mce_schedule_work(void) 518 { 519 if (!mce_gen_pool_empty()) 520 schedule_work(&mce_work); 521 } 522 523 static void mce_irq_work_cb(struct irq_work *entry) 524 { 525 mce_schedule_work(); 526 } 527 528 /* 529 * Check if the address reported by the CPU is in a format we can parse. 530 * It would be possible to add code for most other cases, but all would 531 * be somewhat complicated (e.g. segment offset would require an instruction 532 * parser). So only support physical addresses up to page granularity for now. 533 */ 534 int mce_usable_address(struct mce *m) 535 { 536 if (!(m->status & MCI_STATUS_ADDRV)) 537 return 0; 538 539 /* Checks after this one are Intel/Zhaoxin-specific: */ 540 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 541 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 542 return 1; 543 544 if (!(m->status & MCI_STATUS_MISCV)) 545 return 0; 546 547 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 548 return 0; 549 550 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 551 return 0; 552 553 return 1; 554 } 555 EXPORT_SYMBOL_GPL(mce_usable_address); 556 557 bool mce_is_memory_error(struct mce *m) 558 { 559 switch (m->cpuvendor) { 560 case X86_VENDOR_AMD: 561 case X86_VENDOR_HYGON: 562 return amd_mce_is_memory_error(m); 563 564 case X86_VENDOR_INTEL: 565 case X86_VENDOR_ZHAOXIN: 566 /* 567 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 568 * 569 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 570 * indicating a memory error. Bit 8 is used for indicating a 571 * cache hierarchy error. The combination of bit 2 and bit 3 572 * is used for indicating a `generic' cache hierarchy error 573 * But we can't just blindly check the above bits, because if 574 * bit 11 is set, then it is a bus/interconnect error - and 575 * either way the above bits just gives more detail on what 576 * bus/interconnect error happened. Note that bit 12 can be 577 * ignored, as it's the "filter" bit. 578 */ 579 return (m->status & 0xef80) == BIT(7) || 580 (m->status & 0xef00) == BIT(8) || 581 (m->status & 0xeffc) == 0xc; 582 583 default: 584 return false; 585 } 586 } 587 EXPORT_SYMBOL_GPL(mce_is_memory_error); 588 589 static bool whole_page(struct mce *m) 590 { 591 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 592 return true; 593 594 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 595 } 596 597 bool mce_is_correctable(struct mce *m) 598 { 599 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 600 return false; 601 602 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 603 return false; 604 605 if (m->status & MCI_STATUS_UC) 606 return false; 607 608 return true; 609 } 610 EXPORT_SYMBOL_GPL(mce_is_correctable); 611 612 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 613 void *data) 614 { 615 struct mce *m = (struct mce *)data; 616 617 if (!m) 618 return NOTIFY_DONE; 619 620 /* Emit the trace record: */ 621 trace_mce_record(m); 622 623 set_bit(0, &mce_need_notify); 624 625 mce_notify_irq(); 626 627 return NOTIFY_DONE; 628 } 629 630 static struct notifier_block early_nb = { 631 .notifier_call = mce_early_notifier, 632 .priority = MCE_PRIO_EARLY, 633 }; 634 635 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 636 void *data) 637 { 638 struct mce *mce = (struct mce *)data; 639 unsigned long pfn; 640 641 if (!mce || !mce_usable_address(mce)) 642 return NOTIFY_DONE; 643 644 if (mce->severity != MCE_AO_SEVERITY && 645 mce->severity != MCE_DEFERRED_SEVERITY) 646 return NOTIFY_DONE; 647 648 pfn = mce->addr >> PAGE_SHIFT; 649 if (!memory_failure(pfn, 0)) { 650 set_mce_nospec(pfn, whole_page(mce)); 651 mce->kflags |= MCE_HANDLED_UC; 652 } 653 654 return NOTIFY_OK; 655 } 656 657 static struct notifier_block mce_uc_nb = { 658 .notifier_call = uc_decode_notifier, 659 .priority = MCE_PRIO_UC, 660 }; 661 662 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 663 void *data) 664 { 665 struct mce *m = (struct mce *)data; 666 667 if (!m) 668 return NOTIFY_DONE; 669 670 if (mca_cfg.print_all || !m->kflags) 671 __print_mce(m); 672 673 return NOTIFY_DONE; 674 } 675 676 static struct notifier_block mce_default_nb = { 677 .notifier_call = mce_default_notifier, 678 /* lowest prio, we want it to run last. */ 679 .priority = MCE_PRIO_LOWEST, 680 }; 681 682 /* 683 * Read ADDR and MISC registers. 684 */ 685 static void mce_read_aux(struct mce *m, int i) 686 { 687 if (m->status & MCI_STATUS_MISCV) 688 m->misc = mce_rdmsrl(msr_ops.misc(i)); 689 690 if (m->status & MCI_STATUS_ADDRV) { 691 m->addr = mce_rdmsrl(msr_ops.addr(i)); 692 693 /* 694 * Mask the reported address by the reported granularity. 695 */ 696 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 697 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 698 m->addr >>= shift; 699 m->addr <<= shift; 700 } 701 702 /* 703 * Extract [55:<lsb>] where lsb is the least significant 704 * *valid* bit of the address bits. 705 */ 706 if (mce_flags.smca) { 707 u8 lsb = (m->addr >> 56) & 0x3f; 708 709 m->addr &= GENMASK_ULL(55, lsb); 710 } 711 } 712 713 if (mce_flags.smca) { 714 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 715 716 if (m->status & MCI_STATUS_SYNDV) 717 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 718 } 719 } 720 721 DEFINE_PER_CPU(unsigned, mce_poll_count); 722 723 /* 724 * Poll for corrected events or events that happened before reset. 725 * Those are just logged through /dev/mcelog. 726 * 727 * This is executed in standard interrupt context. 728 * 729 * Note: spec recommends to panic for fatal unsignalled 730 * errors here. However this would be quite problematic -- 731 * we would need to reimplement the Monarch handling and 732 * it would mess up the exclusion between exception handler 733 * and poll handler -- * so we skip this for now. 734 * These cases should not happen anyways, or only when the CPU 735 * is already totally * confused. In this case it's likely it will 736 * not fully execute the machine check handler either. 737 */ 738 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 739 { 740 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 741 bool error_seen = false; 742 struct mce m; 743 int i; 744 745 this_cpu_inc(mce_poll_count); 746 747 mce_gather_info(&m, NULL); 748 749 if (flags & MCP_TIMESTAMP) 750 m.tsc = rdtsc(); 751 752 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 753 if (!mce_banks[i].ctl || !test_bit(i, *b)) 754 continue; 755 756 m.misc = 0; 757 m.addr = 0; 758 m.bank = i; 759 760 barrier(); 761 m.status = mce_rdmsrl(msr_ops.status(i)); 762 763 /* If this entry is not valid, ignore it */ 764 if (!(m.status & MCI_STATUS_VAL)) 765 continue; 766 767 /* 768 * If we are logging everything (at CPU online) or this 769 * is a corrected error, then we must log it. 770 */ 771 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 772 goto log_it; 773 774 /* 775 * Newer Intel systems that support software error 776 * recovery need to make additional checks. Other 777 * CPUs should skip over uncorrected errors, but log 778 * everything else. 779 */ 780 if (!mca_cfg.ser) { 781 if (m.status & MCI_STATUS_UC) 782 continue; 783 goto log_it; 784 } 785 786 /* Log "not enabled" (speculative) errors */ 787 if (!(m.status & MCI_STATUS_EN)) 788 goto log_it; 789 790 /* 791 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 792 * UC == 1 && PCC == 0 && S == 0 793 */ 794 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 795 goto log_it; 796 797 /* 798 * Skip anything else. Presumption is that our read of this 799 * bank is racing with a machine check. Leave the log alone 800 * for do_machine_check() to deal with it. 801 */ 802 continue; 803 804 log_it: 805 error_seen = true; 806 807 if (flags & MCP_DONTLOG) 808 goto clear_it; 809 810 mce_read_aux(&m, i); 811 m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false); 812 /* 813 * Don't get the IP here because it's unlikely to 814 * have anything to do with the actual error location. 815 */ 816 817 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 818 goto clear_it; 819 820 if (flags & MCP_QUEUE_LOG) 821 mce_gen_pool_add(&m); 822 else 823 mce_log(&m); 824 825 clear_it: 826 /* 827 * Clear state for this bank. 828 */ 829 mce_wrmsrl(msr_ops.status(i), 0); 830 } 831 832 /* 833 * Don't clear MCG_STATUS here because it's only defined for 834 * exceptions. 835 */ 836 837 sync_core(); 838 839 return error_seen; 840 } 841 EXPORT_SYMBOL_GPL(machine_check_poll); 842 843 /* 844 * Do a quick check if any of the events requires a panic. 845 * This decides if we keep the events around or clear them. 846 */ 847 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 848 struct pt_regs *regs) 849 { 850 char *tmp = *msg; 851 int i; 852 853 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 854 m->status = mce_rdmsrl(msr_ops.status(i)); 855 if (!(m->status & MCI_STATUS_VAL)) 856 continue; 857 858 __set_bit(i, validp); 859 if (quirk_no_way_out) 860 quirk_no_way_out(i, m, regs); 861 862 m->bank = i; 863 if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) { 864 mce_read_aux(m, i); 865 *msg = tmp; 866 return 1; 867 } 868 } 869 return 0; 870 } 871 872 /* 873 * Variable to establish order between CPUs while scanning. 874 * Each CPU spins initially until executing is equal its number. 875 */ 876 static atomic_t mce_executing; 877 878 /* 879 * Defines order of CPUs on entry. First CPU becomes Monarch. 880 */ 881 static atomic_t mce_callin; 882 883 /* 884 * Track which CPUs entered the MCA broadcast synchronization and which not in 885 * order to print holdouts. 886 */ 887 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 888 889 /* 890 * Check if a timeout waiting for other CPUs happened. 891 */ 892 static int mce_timed_out(u64 *t, const char *msg) 893 { 894 /* 895 * The others already did panic for some reason. 896 * Bail out like in a timeout. 897 * rmb() to tell the compiler that system_state 898 * might have been modified by someone else. 899 */ 900 rmb(); 901 if (atomic_read(&mce_panicked)) 902 wait_for_panic(); 903 if (!mca_cfg.monarch_timeout) 904 goto out; 905 if ((s64)*t < SPINUNIT) { 906 if (mca_cfg.tolerant <= 1) { 907 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 908 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 909 cpumask_pr_args(&mce_missing_cpus)); 910 mce_panic(msg, NULL, NULL); 911 } 912 cpu_missing = 1; 913 return 1; 914 } 915 *t -= SPINUNIT; 916 out: 917 touch_nmi_watchdog(); 918 return 0; 919 } 920 921 /* 922 * The Monarch's reign. The Monarch is the CPU who entered 923 * the machine check handler first. It waits for the others to 924 * raise the exception too and then grades them. When any 925 * error is fatal panic. Only then let the others continue. 926 * 927 * The other CPUs entering the MCE handler will be controlled by the 928 * Monarch. They are called Subjects. 929 * 930 * This way we prevent any potential data corruption in a unrecoverable case 931 * and also makes sure always all CPU's errors are examined. 932 * 933 * Also this detects the case of a machine check event coming from outer 934 * space (not detected by any CPUs) In this case some external agent wants 935 * us to shut down, so panic too. 936 * 937 * The other CPUs might still decide to panic if the handler happens 938 * in a unrecoverable place, but in this case the system is in a semi-stable 939 * state and won't corrupt anything by itself. It's ok to let the others 940 * continue for a bit first. 941 * 942 * All the spin loops have timeouts; when a timeout happens a CPU 943 * typically elects itself to be Monarch. 944 */ 945 static void mce_reign(void) 946 { 947 int cpu; 948 struct mce *m = NULL; 949 int global_worst = 0; 950 char *msg = NULL; 951 952 /* 953 * This CPU is the Monarch and the other CPUs have run 954 * through their handlers. 955 * Grade the severity of the errors of all the CPUs. 956 */ 957 for_each_possible_cpu(cpu) { 958 struct mce *mtmp = &per_cpu(mces_seen, cpu); 959 960 if (mtmp->severity > global_worst) { 961 global_worst = mtmp->severity; 962 m = &per_cpu(mces_seen, cpu); 963 } 964 } 965 966 /* 967 * Cannot recover? Panic here then. 968 * This dumps all the mces in the log buffer and stops the 969 * other CPUs. 970 */ 971 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 972 /* call mce_severity() to get "msg" for panic */ 973 mce_severity(m, NULL, mca_cfg.tolerant, &msg, true); 974 mce_panic("Fatal machine check", m, msg); 975 } 976 977 /* 978 * For UC somewhere we let the CPU who detects it handle it. 979 * Also must let continue the others, otherwise the handling 980 * CPU could deadlock on a lock. 981 */ 982 983 /* 984 * No machine check event found. Must be some external 985 * source or one CPU is hung. Panic. 986 */ 987 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) 988 mce_panic("Fatal machine check from unknown source", NULL, NULL); 989 990 /* 991 * Now clear all the mces_seen so that they don't reappear on 992 * the next mce. 993 */ 994 for_each_possible_cpu(cpu) 995 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 996 } 997 998 static atomic_t global_nwo; 999 1000 /* 1001 * Start of Monarch synchronization. This waits until all CPUs have 1002 * entered the exception handler and then determines if any of them 1003 * saw a fatal event that requires panic. Then it executes them 1004 * in the entry order. 1005 * TBD double check parallel CPU hotunplug 1006 */ 1007 static int mce_start(int *no_way_out) 1008 { 1009 int order; 1010 int cpus = num_online_cpus(); 1011 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1012 1013 if (!timeout) 1014 return -1; 1015 1016 atomic_add(*no_way_out, &global_nwo); 1017 /* 1018 * Rely on the implied barrier below, such that global_nwo 1019 * is updated before mce_callin. 1020 */ 1021 order = atomic_inc_return(&mce_callin); 1022 cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1023 1024 /* 1025 * Wait for everyone. 1026 */ 1027 while (atomic_read(&mce_callin) != cpus) { 1028 if (mce_timed_out(&timeout, 1029 "Timeout: Not all CPUs entered broadcast exception handler")) { 1030 atomic_set(&global_nwo, 0); 1031 return -1; 1032 } 1033 ndelay(SPINUNIT); 1034 } 1035 1036 /* 1037 * mce_callin should be read before global_nwo 1038 */ 1039 smp_rmb(); 1040 1041 if (order == 1) { 1042 /* 1043 * Monarch: Starts executing now, the others wait. 1044 */ 1045 atomic_set(&mce_executing, 1); 1046 } else { 1047 /* 1048 * Subject: Now start the scanning loop one by one in 1049 * the original callin order. 1050 * This way when there are any shared banks it will be 1051 * only seen by one CPU before cleared, avoiding duplicates. 1052 */ 1053 while (atomic_read(&mce_executing) < order) { 1054 if (mce_timed_out(&timeout, 1055 "Timeout: Subject CPUs unable to finish machine check processing")) { 1056 atomic_set(&global_nwo, 0); 1057 return -1; 1058 } 1059 ndelay(SPINUNIT); 1060 } 1061 } 1062 1063 /* 1064 * Cache the global no_way_out state. 1065 */ 1066 *no_way_out = atomic_read(&global_nwo); 1067 1068 return order; 1069 } 1070 1071 /* 1072 * Synchronize between CPUs after main scanning loop. 1073 * This invokes the bulk of the Monarch processing. 1074 */ 1075 static int mce_end(int order) 1076 { 1077 int ret = -1; 1078 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1079 1080 if (!timeout) 1081 goto reset; 1082 if (order < 0) 1083 goto reset; 1084 1085 /* 1086 * Allow others to run. 1087 */ 1088 atomic_inc(&mce_executing); 1089 1090 if (order == 1) { 1091 /* CHECKME: Can this race with a parallel hotplug? */ 1092 int cpus = num_online_cpus(); 1093 1094 /* 1095 * Monarch: Wait for everyone to go through their scanning 1096 * loops. 1097 */ 1098 while (atomic_read(&mce_executing) <= cpus) { 1099 if (mce_timed_out(&timeout, 1100 "Timeout: Monarch CPU unable to finish machine check processing")) 1101 goto reset; 1102 ndelay(SPINUNIT); 1103 } 1104 1105 mce_reign(); 1106 barrier(); 1107 ret = 0; 1108 } else { 1109 /* 1110 * Subject: Wait for Monarch to finish. 1111 */ 1112 while (atomic_read(&mce_executing) != 0) { 1113 if (mce_timed_out(&timeout, 1114 "Timeout: Monarch CPU did not finish machine check processing")) 1115 goto reset; 1116 ndelay(SPINUNIT); 1117 } 1118 1119 /* 1120 * Don't reset anything. That's done by the Monarch. 1121 */ 1122 return 0; 1123 } 1124 1125 /* 1126 * Reset all global state. 1127 */ 1128 reset: 1129 atomic_set(&global_nwo, 0); 1130 atomic_set(&mce_callin, 0); 1131 cpumask_setall(&mce_missing_cpus); 1132 barrier(); 1133 1134 /* 1135 * Let others run again. 1136 */ 1137 atomic_set(&mce_executing, 0); 1138 return ret; 1139 } 1140 1141 static void mce_clear_state(unsigned long *toclear) 1142 { 1143 int i; 1144 1145 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1146 if (test_bit(i, toclear)) 1147 mce_wrmsrl(msr_ops.status(i), 0); 1148 } 1149 } 1150 1151 /* 1152 * Cases where we avoid rendezvous handler timeout: 1153 * 1) If this CPU is offline. 1154 * 1155 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1156 * skip those CPUs which remain looping in the 1st kernel - see 1157 * crash_nmi_callback(). 1158 * 1159 * Note: there still is a small window between kexec-ing and the new, 1160 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1161 * might not get handled properly. 1162 */ 1163 static noinstr bool mce_check_crashing_cpu(void) 1164 { 1165 unsigned int cpu = smp_processor_id(); 1166 1167 if (arch_cpu_is_offline(cpu) || 1168 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1169 u64 mcgstatus; 1170 1171 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1172 1173 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1174 if (mcgstatus & MCG_STATUS_LMCES) 1175 return false; 1176 } 1177 1178 if (mcgstatus & MCG_STATUS_RIPV) { 1179 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1180 return true; 1181 } 1182 } 1183 return false; 1184 } 1185 1186 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, 1187 unsigned long *toclear, unsigned long *valid_banks, 1188 int no_way_out, int *worst) 1189 { 1190 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1191 struct mca_config *cfg = &mca_cfg; 1192 int severity, i; 1193 1194 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1195 __clear_bit(i, toclear); 1196 if (!test_bit(i, valid_banks)) 1197 continue; 1198 1199 if (!mce_banks[i].ctl) 1200 continue; 1201 1202 m->misc = 0; 1203 m->addr = 0; 1204 m->bank = i; 1205 1206 m->status = mce_rdmsrl(msr_ops.status(i)); 1207 if (!(m->status & MCI_STATUS_VAL)) 1208 continue; 1209 1210 /* 1211 * Corrected or non-signaled errors are handled by 1212 * machine_check_poll(). Leave them alone, unless this panics. 1213 */ 1214 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1215 !no_way_out) 1216 continue; 1217 1218 /* Set taint even when machine check was not enabled. */ 1219 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1220 1221 severity = mce_severity(m, regs, cfg->tolerant, NULL, true); 1222 1223 /* 1224 * When machine check was for corrected/deferred handler don't 1225 * touch, unless we're panicking. 1226 */ 1227 if ((severity == MCE_KEEP_SEVERITY || 1228 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1229 continue; 1230 1231 __set_bit(i, toclear); 1232 1233 /* Machine check event was not enabled. Clear, but ignore. */ 1234 if (severity == MCE_NO_SEVERITY) 1235 continue; 1236 1237 mce_read_aux(m, i); 1238 1239 /* assuming valid severity level != 0 */ 1240 m->severity = severity; 1241 1242 mce_log(m); 1243 1244 if (severity > *worst) { 1245 *final = *m; 1246 *worst = severity; 1247 } 1248 } 1249 1250 /* mce_clear_state will clear *final, save locally for use later */ 1251 *m = *final; 1252 } 1253 1254 static void kill_me_now(struct callback_head *ch) 1255 { 1256 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); 1257 1258 p->mce_count = 0; 1259 force_sig(SIGBUS); 1260 } 1261 1262 static void kill_me_maybe(struct callback_head *cb) 1263 { 1264 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1265 int flags = MF_ACTION_REQUIRED; 1266 int ret; 1267 1268 p->mce_count = 0; 1269 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1270 1271 if (!p->mce_ripv) 1272 flags |= MF_MUST_KILL; 1273 1274 ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags); 1275 if (!ret && !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) { 1276 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page); 1277 sync_core(); 1278 return; 1279 } 1280 1281 /* 1282 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1283 * to the current process with the proper error info, so no need to 1284 * send SIGBUS here again. 1285 */ 1286 if (ret == -EHWPOISON) 1287 return; 1288 1289 if (p->mce_vaddr != (void __user *)-1l) { 1290 force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT); 1291 } else { 1292 pr_err("Memory error not recovered"); 1293 kill_me_now(cb); 1294 } 1295 } 1296 1297 static void queue_task_work(struct mce *m, char *msg, int kill_current_task) 1298 { 1299 int count = ++current->mce_count; 1300 1301 /* First call, save all the details */ 1302 if (count == 1) { 1303 current->mce_addr = m->addr; 1304 current->mce_kflags = m->kflags; 1305 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1306 current->mce_whole_page = whole_page(m); 1307 1308 if (kill_current_task) 1309 current->mce_kill_me.func = kill_me_now; 1310 else 1311 current->mce_kill_me.func = kill_me_maybe; 1312 } 1313 1314 /* Ten is likely overkill. Don't expect more than two faults before task_work() */ 1315 if (count > 10) 1316 mce_panic("Too many consecutive machine checks while accessing user data", m, msg); 1317 1318 /* Second or later call, make sure page address matches the one from first call */ 1319 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) 1320 mce_panic("Consecutive machine checks to different user pages", m, msg); 1321 1322 /* Do not call task_work_add() more than once */ 1323 if (count > 1) 1324 return; 1325 1326 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1327 } 1328 1329 /* 1330 * The actual machine check handler. This only handles real 1331 * exceptions when something got corrupted coming in through int 18. 1332 * 1333 * This is executed in NMI context not subject to normal locking rules. This 1334 * implies that most kernel services cannot be safely used. Don't even 1335 * think about putting a printk in there! 1336 * 1337 * On Intel systems this is entered on all CPUs in parallel through 1338 * MCE broadcast. However some CPUs might be broken beyond repair, 1339 * so be always careful when synchronizing with others. 1340 * 1341 * Tracing and kprobes are disabled: if we interrupted a kernel context 1342 * with IF=1, we need to minimize stack usage. There are also recursion 1343 * issues: if the machine check was due to a failure of the memory 1344 * backing the user stack, tracing that reads the user stack will cause 1345 * potentially infinite recursion. 1346 */ 1347 noinstr void do_machine_check(struct pt_regs *regs) 1348 { 1349 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); 1350 DECLARE_BITMAP(toclear, MAX_NR_BANKS); 1351 struct mca_config *cfg = &mca_cfg; 1352 struct mce m, *final; 1353 char *msg = NULL; 1354 int worst = 0; 1355 1356 /* 1357 * Establish sequential order between the CPUs entering the machine 1358 * check handler. 1359 */ 1360 int order = -1; 1361 1362 /* 1363 * If no_way_out gets set, there is no safe way to recover from this 1364 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. 1365 */ 1366 int no_way_out = 0; 1367 1368 /* 1369 * If kill_current_task is not set, there might be a way to recover from this 1370 * error. 1371 */ 1372 int kill_current_task = 0; 1373 1374 /* 1375 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1376 * on Intel. 1377 */ 1378 int lmce = 1; 1379 1380 this_cpu_inc(mce_exception_count); 1381 1382 mce_gather_info(&m, regs); 1383 m.tsc = rdtsc(); 1384 1385 final = this_cpu_ptr(&mces_seen); 1386 *final = m; 1387 1388 memset(valid_banks, 0, sizeof(valid_banks)); 1389 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1390 1391 barrier(); 1392 1393 /* 1394 * When no restart IP might need to kill or panic. 1395 * Assume the worst for now, but if we find the 1396 * severity is MCE_AR_SEVERITY we have other options. 1397 */ 1398 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1399 kill_current_task = (cfg->tolerant == 3) ? 0 : 1; 1400 /* 1401 * Check if this MCE is signaled to only this logical processor, 1402 * on Intel, Zhaoxin only. 1403 */ 1404 if (m.cpuvendor == X86_VENDOR_INTEL || 1405 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1406 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1407 1408 /* 1409 * Local machine check may already know that we have to panic. 1410 * Broadcast machine check begins rendezvous in mce_start() 1411 * Go through all banks in exclusion of the other CPUs. This way we 1412 * don't report duplicated events on shared banks because the first one 1413 * to see it will clear it. 1414 */ 1415 if (lmce) { 1416 if (no_way_out && cfg->tolerant < 3) 1417 mce_panic("Fatal local machine check", &m, msg); 1418 } else { 1419 order = mce_start(&no_way_out); 1420 } 1421 1422 __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); 1423 1424 if (!no_way_out) 1425 mce_clear_state(toclear); 1426 1427 /* 1428 * Do most of the synchronization with other CPUs. 1429 * When there's any problem use only local no_way_out state. 1430 */ 1431 if (!lmce) { 1432 if (mce_end(order) < 0) { 1433 if (!no_way_out) 1434 no_way_out = worst >= MCE_PANIC_SEVERITY; 1435 1436 if (no_way_out && cfg->tolerant < 3) 1437 mce_panic("Fatal machine check on current CPU", &m, msg); 1438 } 1439 } else { 1440 /* 1441 * If there was a fatal machine check we should have 1442 * already called mce_panic earlier in this function. 1443 * Since we re-read the banks, we might have found 1444 * something new. Check again to see if we found a 1445 * fatal error. We call "mce_severity()" again to 1446 * make sure we have the right "msg". 1447 */ 1448 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 1449 mce_severity(&m, regs, cfg->tolerant, &msg, true); 1450 mce_panic("Local fatal machine check!", &m, msg); 1451 } 1452 } 1453 1454 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1455 goto out; 1456 1457 /* Fault was in user mode and we need to take some action */ 1458 if ((m.cs & 3) == 3) { 1459 /* If this triggers there is no way to recover. Die hard. */ 1460 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1461 1462 queue_task_work(&m, msg, kill_current_task); 1463 1464 } else { 1465 /* 1466 * Handle an MCE which has happened in kernel space but from 1467 * which the kernel can recover: ex_has_fault_handler() has 1468 * already verified that the rIP at which the error happened is 1469 * a rIP from which the kernel can recover (by jumping to 1470 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1471 * corresponding exception handler which would do that is the 1472 * proper one. 1473 */ 1474 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1475 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1476 mce_panic("Failed kernel mode recovery", &m, msg); 1477 } 1478 1479 if (m.kflags & MCE_IN_KERNEL_COPYIN) 1480 queue_task_work(&m, msg, kill_current_task); 1481 } 1482 out: 1483 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1484 } 1485 EXPORT_SYMBOL_GPL(do_machine_check); 1486 1487 #ifndef CONFIG_MEMORY_FAILURE 1488 int memory_failure(unsigned long pfn, int flags) 1489 { 1490 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1491 BUG_ON(flags & MF_ACTION_REQUIRED); 1492 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1493 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1494 pfn); 1495 1496 return 0; 1497 } 1498 #endif 1499 1500 /* 1501 * Periodic polling timer for "silent" machine check errors. If the 1502 * poller finds an MCE, poll 2x faster. When the poller finds no more 1503 * errors, poll 2x slower (up to check_interval seconds). 1504 */ 1505 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1506 1507 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1508 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1509 1510 static unsigned long mce_adjust_timer_default(unsigned long interval) 1511 { 1512 return interval; 1513 } 1514 1515 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1516 1517 static void __start_timer(struct timer_list *t, unsigned long interval) 1518 { 1519 unsigned long when = jiffies + interval; 1520 unsigned long flags; 1521 1522 local_irq_save(flags); 1523 1524 if (!timer_pending(t) || time_before(when, t->expires)) 1525 mod_timer(t, round_jiffies(when)); 1526 1527 local_irq_restore(flags); 1528 } 1529 1530 static void mce_timer_fn(struct timer_list *t) 1531 { 1532 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1533 unsigned long iv; 1534 1535 WARN_ON(cpu_t != t); 1536 1537 iv = __this_cpu_read(mce_next_interval); 1538 1539 if (mce_available(this_cpu_ptr(&cpu_info))) { 1540 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1541 1542 if (mce_intel_cmci_poll()) { 1543 iv = mce_adjust_timer(iv); 1544 goto done; 1545 } 1546 } 1547 1548 /* 1549 * Alert userspace if needed. If we logged an MCE, reduce the polling 1550 * interval, otherwise increase the polling interval. 1551 */ 1552 if (mce_notify_irq()) 1553 iv = max(iv / 2, (unsigned long) HZ/100); 1554 else 1555 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1556 1557 done: 1558 __this_cpu_write(mce_next_interval, iv); 1559 __start_timer(t, iv); 1560 } 1561 1562 /* 1563 * Ensure that the timer is firing in @interval from now. 1564 */ 1565 void mce_timer_kick(unsigned long interval) 1566 { 1567 struct timer_list *t = this_cpu_ptr(&mce_timer); 1568 unsigned long iv = __this_cpu_read(mce_next_interval); 1569 1570 __start_timer(t, interval); 1571 1572 if (interval < iv) 1573 __this_cpu_write(mce_next_interval, interval); 1574 } 1575 1576 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1577 static void mce_timer_delete_all(void) 1578 { 1579 int cpu; 1580 1581 for_each_online_cpu(cpu) 1582 del_timer_sync(&per_cpu(mce_timer, cpu)); 1583 } 1584 1585 /* 1586 * Notify the user(s) about new machine check events. 1587 * Can be called from interrupt context, but not from machine check/NMI 1588 * context. 1589 */ 1590 int mce_notify_irq(void) 1591 { 1592 /* Not more than two messages every minute */ 1593 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1594 1595 if (test_and_clear_bit(0, &mce_need_notify)) { 1596 mce_work_trigger(); 1597 1598 if (__ratelimit(&ratelimit)) 1599 pr_info(HW_ERR "Machine check events logged\n"); 1600 1601 return 1; 1602 } 1603 return 0; 1604 } 1605 EXPORT_SYMBOL_GPL(mce_notify_irq); 1606 1607 static void __mcheck_cpu_mce_banks_init(void) 1608 { 1609 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1610 u8 n_banks = this_cpu_read(mce_num_banks); 1611 int i; 1612 1613 for (i = 0; i < n_banks; i++) { 1614 struct mce_bank *b = &mce_banks[i]; 1615 1616 /* 1617 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1618 * the required vendor quirks before 1619 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1620 */ 1621 b->ctl = -1ULL; 1622 b->init = true; 1623 } 1624 } 1625 1626 /* 1627 * Initialize Machine Checks for a CPU. 1628 */ 1629 static void __mcheck_cpu_cap_init(void) 1630 { 1631 u64 cap; 1632 u8 b; 1633 1634 rdmsrl(MSR_IA32_MCG_CAP, cap); 1635 1636 b = cap & MCG_BANKCNT_MASK; 1637 1638 if (b > MAX_NR_BANKS) { 1639 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1640 smp_processor_id(), MAX_NR_BANKS, b); 1641 b = MAX_NR_BANKS; 1642 } 1643 1644 this_cpu_write(mce_num_banks, b); 1645 1646 __mcheck_cpu_mce_banks_init(); 1647 1648 /* Use accurate RIP reporting if available. */ 1649 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1650 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1651 1652 if (cap & MCG_SER_P) 1653 mca_cfg.ser = 1; 1654 } 1655 1656 static void __mcheck_cpu_init_generic(void) 1657 { 1658 enum mcp_flags m_fl = 0; 1659 mce_banks_t all_banks; 1660 u64 cap; 1661 1662 if (!mca_cfg.bootlog) 1663 m_fl = MCP_DONTLOG; 1664 1665 /* 1666 * Log the machine checks left over from the previous reset. Log them 1667 * only, do not start processing them. That will happen in mcheck_late_init() 1668 * when all consumers have been registered on the notifier chain. 1669 */ 1670 bitmap_fill(all_banks, MAX_NR_BANKS); 1671 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1672 1673 cr4_set_bits(X86_CR4_MCE); 1674 1675 rdmsrl(MSR_IA32_MCG_CAP, cap); 1676 if (cap & MCG_CTL_P) 1677 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1678 } 1679 1680 static void __mcheck_cpu_init_clear_banks(void) 1681 { 1682 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1683 int i; 1684 1685 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1686 struct mce_bank *b = &mce_banks[i]; 1687 1688 if (!b->init) 1689 continue; 1690 wrmsrl(msr_ops.ctl(i), b->ctl); 1691 wrmsrl(msr_ops.status(i), 0); 1692 } 1693 } 1694 1695 /* 1696 * Do a final check to see if there are any unused/RAZ banks. 1697 * 1698 * This must be done after the banks have been initialized and any quirks have 1699 * been applied. 1700 * 1701 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1702 * Otherwise, a user who disables a bank will not be able to re-enable it 1703 * without a system reboot. 1704 */ 1705 static void __mcheck_cpu_check_banks(void) 1706 { 1707 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1708 u64 msrval; 1709 int i; 1710 1711 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1712 struct mce_bank *b = &mce_banks[i]; 1713 1714 if (!b->init) 1715 continue; 1716 1717 rdmsrl(msr_ops.ctl(i), msrval); 1718 b->init = !!msrval; 1719 } 1720 } 1721 1722 /* 1723 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 1724 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 1725 * Vol 3B Table 15-20). But this confuses both the code that determines 1726 * whether the machine check occurred in kernel or user mode, and also 1727 * the severity assessment code. Pretend that EIPV was set, and take the 1728 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 1729 */ 1730 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 1731 { 1732 if (bank != 0) 1733 return; 1734 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 1735 return; 1736 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 1737 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 1738 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 1739 MCACOD)) != 1740 (MCI_STATUS_UC|MCI_STATUS_EN| 1741 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 1742 MCI_STATUS_AR|MCACOD_INSTR)) 1743 return; 1744 1745 m->mcgstatus |= MCG_STATUS_EIPV; 1746 m->ip = regs->ip; 1747 m->cs = regs->cs; 1748 } 1749 1750 /* Add per CPU specific workarounds here */ 1751 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1752 { 1753 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1754 struct mca_config *cfg = &mca_cfg; 1755 1756 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1757 pr_info("unknown CPU type - not enabling MCE support\n"); 1758 return -EOPNOTSUPP; 1759 } 1760 1761 /* This should be disabled by the BIOS, but isn't always */ 1762 if (c->x86_vendor == X86_VENDOR_AMD) { 1763 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1764 /* 1765 * disable GART TBL walk error reporting, which 1766 * trips off incorrectly with the IOMMU & 3ware 1767 * & Cerberus: 1768 */ 1769 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1770 } 1771 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1772 /* 1773 * Lots of broken BIOS around that don't clear them 1774 * by default and leave crap in there. Don't log: 1775 */ 1776 cfg->bootlog = 0; 1777 } 1778 /* 1779 * Various K7s with broken bank 0 around. Always disable 1780 * by default. 1781 */ 1782 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1783 mce_banks[0].ctl = 0; 1784 1785 /* 1786 * overflow_recov is supported for F15h Models 00h-0fh 1787 * even though we don't have a CPUID bit for it. 1788 */ 1789 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1790 mce_flags.overflow_recov = 1; 1791 1792 } 1793 1794 if (c->x86_vendor == X86_VENDOR_INTEL) { 1795 /* 1796 * SDM documents that on family 6 bank 0 should not be written 1797 * because it aliases to another special BIOS controlled 1798 * register. 1799 * But it's not aliased anymore on model 0x1a+ 1800 * Don't ignore bank 0 completely because there could be a 1801 * valid event later, merely don't write CTL0. 1802 */ 1803 1804 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1805 mce_banks[0].init = false; 1806 1807 /* 1808 * All newer Intel systems support MCE broadcasting. Enable 1809 * synchronization with a one second timeout. 1810 */ 1811 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1812 cfg->monarch_timeout < 0) 1813 cfg->monarch_timeout = USEC_PER_SEC; 1814 1815 /* 1816 * There are also broken BIOSes on some Pentium M and 1817 * earlier systems: 1818 */ 1819 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1820 cfg->bootlog = 0; 1821 1822 if (c->x86 == 6 && c->x86_model == 45) 1823 quirk_no_way_out = quirk_sandybridge_ifu; 1824 } 1825 1826 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1827 /* 1828 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1829 * synchronization with a one second timeout. 1830 */ 1831 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1832 if (cfg->monarch_timeout < 0) 1833 cfg->monarch_timeout = USEC_PER_SEC; 1834 } 1835 } 1836 1837 if (cfg->monarch_timeout < 0) 1838 cfg->monarch_timeout = 0; 1839 if (cfg->bootlog != 0) 1840 cfg->panic_timeout = 30; 1841 1842 return 0; 1843 } 1844 1845 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1846 { 1847 if (c->x86 != 5) 1848 return 0; 1849 1850 switch (c->x86_vendor) { 1851 case X86_VENDOR_INTEL: 1852 intel_p5_mcheck_init(c); 1853 return 1; 1854 case X86_VENDOR_CENTAUR: 1855 winchip_mcheck_init(c); 1856 return 1; 1857 default: 1858 return 0; 1859 } 1860 1861 return 0; 1862 } 1863 1864 /* 1865 * Init basic CPU features needed for early decoding of MCEs. 1866 */ 1867 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1868 { 1869 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1870 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1871 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1872 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1873 mce_flags.amd_threshold = 1; 1874 1875 if (mce_flags.smca) { 1876 msr_ops.ctl = smca_ctl_reg; 1877 msr_ops.status = smca_status_reg; 1878 msr_ops.addr = smca_addr_reg; 1879 msr_ops.misc = smca_misc_reg; 1880 } 1881 } 1882 } 1883 1884 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1885 { 1886 struct mca_config *cfg = &mca_cfg; 1887 1888 /* 1889 * All newer Centaur CPUs support MCE broadcasting. Enable 1890 * synchronization with a one second timeout. 1891 */ 1892 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1893 c->x86 > 6) { 1894 if (cfg->monarch_timeout < 0) 1895 cfg->monarch_timeout = USEC_PER_SEC; 1896 } 1897 } 1898 1899 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1900 { 1901 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1902 1903 /* 1904 * These CPUs have MCA bank 8 which reports only one error type called 1905 * SVAD (System View Address Decoder). The reporting of that error is 1906 * controlled by IA32_MC8.CTL.0. 1907 * 1908 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1909 * virtual machines start and result in a system panic. Always disable 1910 * bank 8 SVAD error by default. 1911 */ 1912 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1913 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1914 if (this_cpu_read(mce_num_banks) > 8) 1915 mce_banks[8].ctl = 0; 1916 } 1917 1918 intel_init_cmci(); 1919 intel_init_lmce(); 1920 mce_adjust_timer = cmci_intel_adjust_timer; 1921 } 1922 1923 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 1924 { 1925 intel_clear_lmce(); 1926 } 1927 1928 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1929 { 1930 switch (c->x86_vendor) { 1931 case X86_VENDOR_INTEL: 1932 mce_intel_feature_init(c); 1933 mce_adjust_timer = cmci_intel_adjust_timer; 1934 break; 1935 1936 case X86_VENDOR_AMD: { 1937 mce_amd_feature_init(c); 1938 break; 1939 } 1940 1941 case X86_VENDOR_HYGON: 1942 mce_hygon_feature_init(c); 1943 break; 1944 1945 case X86_VENDOR_CENTAUR: 1946 mce_centaur_feature_init(c); 1947 break; 1948 1949 case X86_VENDOR_ZHAOXIN: 1950 mce_zhaoxin_feature_init(c); 1951 break; 1952 1953 default: 1954 break; 1955 } 1956 } 1957 1958 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 1959 { 1960 switch (c->x86_vendor) { 1961 case X86_VENDOR_INTEL: 1962 mce_intel_feature_clear(c); 1963 break; 1964 1965 case X86_VENDOR_ZHAOXIN: 1966 mce_zhaoxin_feature_clear(c); 1967 break; 1968 1969 default: 1970 break; 1971 } 1972 } 1973 1974 static void mce_start_timer(struct timer_list *t) 1975 { 1976 unsigned long iv = check_interval * HZ; 1977 1978 if (mca_cfg.ignore_ce || !iv) 1979 return; 1980 1981 this_cpu_write(mce_next_interval, iv); 1982 __start_timer(t, iv); 1983 } 1984 1985 static void __mcheck_cpu_setup_timer(void) 1986 { 1987 struct timer_list *t = this_cpu_ptr(&mce_timer); 1988 1989 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1990 } 1991 1992 static void __mcheck_cpu_init_timer(void) 1993 { 1994 struct timer_list *t = this_cpu_ptr(&mce_timer); 1995 1996 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1997 mce_start_timer(t); 1998 } 1999 2000 bool filter_mce(struct mce *m) 2001 { 2002 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 2003 return amd_filter_mce(m); 2004 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2005 return intel_filter_mce(m); 2006 2007 return false; 2008 } 2009 2010 /* Handle unconfigured int18 (should never happen) */ 2011 static noinstr void unexpected_machine_check(struct pt_regs *regs) 2012 { 2013 instrumentation_begin(); 2014 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 2015 smp_processor_id()); 2016 instrumentation_end(); 2017 } 2018 2019 /* Call the installed machine check handler for this CPU setup. */ 2020 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check; 2021 2022 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2023 { 2024 irqentry_state_t irq_state; 2025 2026 WARN_ON_ONCE(user_mode(regs)); 2027 2028 /* 2029 * Only required when from kernel mode. See 2030 * mce_check_crashing_cpu() for details. 2031 */ 2032 if (machine_check_vector == do_machine_check && 2033 mce_check_crashing_cpu()) 2034 return; 2035 2036 irq_state = irqentry_nmi_enter(regs); 2037 /* 2038 * The call targets are marked noinstr, but objtool can't figure 2039 * that out because it's an indirect call. Annotate it. 2040 */ 2041 instrumentation_begin(); 2042 2043 machine_check_vector(regs); 2044 2045 instrumentation_end(); 2046 irqentry_nmi_exit(regs, irq_state); 2047 } 2048 2049 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2050 { 2051 irqentry_enter_from_user_mode(regs); 2052 instrumentation_begin(); 2053 2054 machine_check_vector(regs); 2055 2056 instrumentation_end(); 2057 irqentry_exit_to_user_mode(regs); 2058 } 2059 2060 #ifdef CONFIG_X86_64 2061 /* MCE hit kernel mode */ 2062 DEFINE_IDTENTRY_MCE(exc_machine_check) 2063 { 2064 unsigned long dr7; 2065 2066 dr7 = local_db_save(); 2067 exc_machine_check_kernel(regs); 2068 local_db_restore(dr7); 2069 } 2070 2071 /* The user mode variant. */ 2072 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2073 { 2074 unsigned long dr7; 2075 2076 dr7 = local_db_save(); 2077 exc_machine_check_user(regs); 2078 local_db_restore(dr7); 2079 } 2080 #else 2081 /* 32bit unified entry point */ 2082 DEFINE_IDTENTRY_RAW(exc_machine_check) 2083 { 2084 unsigned long dr7; 2085 2086 dr7 = local_db_save(); 2087 if (user_mode(regs)) 2088 exc_machine_check_user(regs); 2089 else 2090 exc_machine_check_kernel(regs); 2091 local_db_restore(dr7); 2092 } 2093 #endif 2094 2095 /* 2096 * Called for each booted CPU to set up machine checks. 2097 * Must be called with preempt off: 2098 */ 2099 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2100 { 2101 if (mca_cfg.disabled) 2102 return; 2103 2104 if (__mcheck_cpu_ancient_init(c)) 2105 return; 2106 2107 if (!mce_available(c)) 2108 return; 2109 2110 __mcheck_cpu_cap_init(); 2111 2112 if (__mcheck_cpu_apply_quirks(c) < 0) { 2113 mca_cfg.disabled = 1; 2114 return; 2115 } 2116 2117 if (mce_gen_pool_init()) { 2118 mca_cfg.disabled = 1; 2119 pr_emerg("Couldn't allocate MCE records pool!\n"); 2120 return; 2121 } 2122 2123 machine_check_vector = do_machine_check; 2124 2125 __mcheck_cpu_init_early(c); 2126 __mcheck_cpu_init_generic(); 2127 __mcheck_cpu_init_vendor(c); 2128 __mcheck_cpu_init_clear_banks(); 2129 __mcheck_cpu_check_banks(); 2130 __mcheck_cpu_setup_timer(); 2131 } 2132 2133 /* 2134 * Called for each booted CPU to clear some machine checks opt-ins 2135 */ 2136 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2137 { 2138 if (mca_cfg.disabled) 2139 return; 2140 2141 if (!mce_available(c)) 2142 return; 2143 2144 /* 2145 * Possibly to clear general settings generic to x86 2146 * __mcheck_cpu_clear_generic(c); 2147 */ 2148 __mcheck_cpu_clear_vendor(c); 2149 2150 } 2151 2152 static void __mce_disable_bank(void *arg) 2153 { 2154 int bank = *((int *)arg); 2155 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2156 cmci_disable_bank(bank); 2157 } 2158 2159 void mce_disable_bank(int bank) 2160 { 2161 if (bank >= this_cpu_read(mce_num_banks)) { 2162 pr_warn(FW_BUG 2163 "Ignoring request to disable invalid MCA bank %d.\n", 2164 bank); 2165 return; 2166 } 2167 set_bit(bank, mce_banks_ce_disabled); 2168 on_each_cpu(__mce_disable_bank, &bank, 1); 2169 } 2170 2171 /* 2172 * mce=off Disables machine check 2173 * mce=no_cmci Disables CMCI 2174 * mce=no_lmce Disables LMCE 2175 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2176 * mce=print_all Print all machine check logs to console 2177 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2178 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2179 * monarchtimeout is how long to wait for other CPUs on machine 2180 * check, or 0 to not wait 2181 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2182 and older. 2183 * mce=nobootlog Don't log MCEs from before booting. 2184 * mce=bios_cmci_threshold Don't program the CMCI threshold 2185 * mce=recovery force enable copy_mc_fragile() 2186 */ 2187 static int __init mcheck_enable(char *str) 2188 { 2189 struct mca_config *cfg = &mca_cfg; 2190 2191 if (*str == 0) { 2192 enable_p5_mce(); 2193 return 1; 2194 } 2195 if (*str == '=') 2196 str++; 2197 if (!strcmp(str, "off")) 2198 cfg->disabled = 1; 2199 else if (!strcmp(str, "no_cmci")) 2200 cfg->cmci_disabled = true; 2201 else if (!strcmp(str, "no_lmce")) 2202 cfg->lmce_disabled = 1; 2203 else if (!strcmp(str, "dont_log_ce")) 2204 cfg->dont_log_ce = true; 2205 else if (!strcmp(str, "print_all")) 2206 cfg->print_all = true; 2207 else if (!strcmp(str, "ignore_ce")) 2208 cfg->ignore_ce = true; 2209 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2210 cfg->bootlog = (str[0] == 'b'); 2211 else if (!strcmp(str, "bios_cmci_threshold")) 2212 cfg->bios_cmci_threshold = 1; 2213 else if (!strcmp(str, "recovery")) 2214 cfg->recovery = 1; 2215 else if (isdigit(str[0])) { 2216 if (get_option(&str, &cfg->tolerant) == 2) 2217 get_option(&str, &(cfg->monarch_timeout)); 2218 } else { 2219 pr_info("mce argument %s ignored. Please use /sys\n", str); 2220 return 0; 2221 } 2222 return 1; 2223 } 2224 __setup("mce", mcheck_enable); 2225 2226 int __init mcheck_init(void) 2227 { 2228 mce_register_decode_chain(&early_nb); 2229 mce_register_decode_chain(&mce_uc_nb); 2230 mce_register_decode_chain(&mce_default_nb); 2231 mcheck_vendor_init_severity(); 2232 2233 INIT_WORK(&mce_work, mce_gen_pool_process); 2234 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2235 2236 return 0; 2237 } 2238 2239 /* 2240 * mce_syscore: PM support 2241 */ 2242 2243 /* 2244 * Disable machine checks on suspend and shutdown. We can't really handle 2245 * them later. 2246 */ 2247 static void mce_disable_error_reporting(void) 2248 { 2249 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2250 int i; 2251 2252 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2253 struct mce_bank *b = &mce_banks[i]; 2254 2255 if (b->init) 2256 wrmsrl(msr_ops.ctl(i), 0); 2257 } 2258 return; 2259 } 2260 2261 static void vendor_disable_error_reporting(void) 2262 { 2263 /* 2264 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2265 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2266 * is bad, since it will inhibit reporting for all shared resources on 2267 * the socket like the last level cache (LLC), the integrated memory 2268 * controller (iMC), etc. 2269 */ 2270 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2271 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2272 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2273 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2274 return; 2275 2276 mce_disable_error_reporting(); 2277 } 2278 2279 static int mce_syscore_suspend(void) 2280 { 2281 vendor_disable_error_reporting(); 2282 return 0; 2283 } 2284 2285 static void mce_syscore_shutdown(void) 2286 { 2287 vendor_disable_error_reporting(); 2288 } 2289 2290 /* 2291 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2292 * Only one CPU is active at this time, the others get re-added later using 2293 * CPU hotplug: 2294 */ 2295 static void mce_syscore_resume(void) 2296 { 2297 __mcheck_cpu_init_generic(); 2298 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2299 __mcheck_cpu_init_clear_banks(); 2300 } 2301 2302 static struct syscore_ops mce_syscore_ops = { 2303 .suspend = mce_syscore_suspend, 2304 .shutdown = mce_syscore_shutdown, 2305 .resume = mce_syscore_resume, 2306 }; 2307 2308 /* 2309 * mce_device: Sysfs support 2310 */ 2311 2312 static void mce_cpu_restart(void *data) 2313 { 2314 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2315 return; 2316 __mcheck_cpu_init_generic(); 2317 __mcheck_cpu_init_clear_banks(); 2318 __mcheck_cpu_init_timer(); 2319 } 2320 2321 /* Reinit MCEs after user configuration changes */ 2322 static void mce_restart(void) 2323 { 2324 mce_timer_delete_all(); 2325 on_each_cpu(mce_cpu_restart, NULL, 1); 2326 } 2327 2328 /* Toggle features for corrected errors */ 2329 static void mce_disable_cmci(void *data) 2330 { 2331 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2332 return; 2333 cmci_clear(); 2334 } 2335 2336 static void mce_enable_ce(void *all) 2337 { 2338 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2339 return; 2340 cmci_reenable(); 2341 cmci_recheck(); 2342 if (all) 2343 __mcheck_cpu_init_timer(); 2344 } 2345 2346 static struct bus_type mce_subsys = { 2347 .name = "machinecheck", 2348 .dev_name = "machinecheck", 2349 }; 2350 2351 DEFINE_PER_CPU(struct device *, mce_device); 2352 2353 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2354 { 2355 return container_of(attr, struct mce_bank_dev, attr); 2356 } 2357 2358 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2359 char *buf) 2360 { 2361 u8 bank = attr_to_bank(attr)->bank; 2362 struct mce_bank *b; 2363 2364 if (bank >= per_cpu(mce_num_banks, s->id)) 2365 return -EINVAL; 2366 2367 b = &per_cpu(mce_banks_array, s->id)[bank]; 2368 2369 if (!b->init) 2370 return -ENODEV; 2371 2372 return sprintf(buf, "%llx\n", b->ctl); 2373 } 2374 2375 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2376 const char *buf, size_t size) 2377 { 2378 u8 bank = attr_to_bank(attr)->bank; 2379 struct mce_bank *b; 2380 u64 new; 2381 2382 if (kstrtou64(buf, 0, &new) < 0) 2383 return -EINVAL; 2384 2385 if (bank >= per_cpu(mce_num_banks, s->id)) 2386 return -EINVAL; 2387 2388 b = &per_cpu(mce_banks_array, s->id)[bank]; 2389 2390 if (!b->init) 2391 return -ENODEV; 2392 2393 b->ctl = new; 2394 mce_restart(); 2395 2396 return size; 2397 } 2398 2399 static ssize_t set_ignore_ce(struct device *s, 2400 struct device_attribute *attr, 2401 const char *buf, size_t size) 2402 { 2403 u64 new; 2404 2405 if (kstrtou64(buf, 0, &new) < 0) 2406 return -EINVAL; 2407 2408 mutex_lock(&mce_sysfs_mutex); 2409 if (mca_cfg.ignore_ce ^ !!new) { 2410 if (new) { 2411 /* disable ce features */ 2412 mce_timer_delete_all(); 2413 on_each_cpu(mce_disable_cmci, NULL, 1); 2414 mca_cfg.ignore_ce = true; 2415 } else { 2416 /* enable ce features */ 2417 mca_cfg.ignore_ce = false; 2418 on_each_cpu(mce_enable_ce, (void *)1, 1); 2419 } 2420 } 2421 mutex_unlock(&mce_sysfs_mutex); 2422 2423 return size; 2424 } 2425 2426 static ssize_t set_cmci_disabled(struct device *s, 2427 struct device_attribute *attr, 2428 const char *buf, size_t size) 2429 { 2430 u64 new; 2431 2432 if (kstrtou64(buf, 0, &new) < 0) 2433 return -EINVAL; 2434 2435 mutex_lock(&mce_sysfs_mutex); 2436 if (mca_cfg.cmci_disabled ^ !!new) { 2437 if (new) { 2438 /* disable cmci */ 2439 on_each_cpu(mce_disable_cmci, NULL, 1); 2440 mca_cfg.cmci_disabled = true; 2441 } else { 2442 /* enable cmci */ 2443 mca_cfg.cmci_disabled = false; 2444 on_each_cpu(mce_enable_ce, NULL, 1); 2445 } 2446 } 2447 mutex_unlock(&mce_sysfs_mutex); 2448 2449 return size; 2450 } 2451 2452 static ssize_t store_int_with_restart(struct device *s, 2453 struct device_attribute *attr, 2454 const char *buf, size_t size) 2455 { 2456 unsigned long old_check_interval = check_interval; 2457 ssize_t ret = device_store_ulong(s, attr, buf, size); 2458 2459 if (check_interval == old_check_interval) 2460 return ret; 2461 2462 mutex_lock(&mce_sysfs_mutex); 2463 mce_restart(); 2464 mutex_unlock(&mce_sysfs_mutex); 2465 2466 return ret; 2467 } 2468 2469 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); 2470 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2471 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2472 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2473 2474 static struct dev_ext_attribute dev_attr_check_interval = { 2475 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2476 &check_interval 2477 }; 2478 2479 static struct dev_ext_attribute dev_attr_ignore_ce = { 2480 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2481 &mca_cfg.ignore_ce 2482 }; 2483 2484 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2485 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2486 &mca_cfg.cmci_disabled 2487 }; 2488 2489 static struct device_attribute *mce_device_attrs[] = { 2490 &dev_attr_tolerant.attr, 2491 &dev_attr_check_interval.attr, 2492 #ifdef CONFIG_X86_MCELOG_LEGACY 2493 &dev_attr_trigger, 2494 #endif 2495 &dev_attr_monarch_timeout.attr, 2496 &dev_attr_dont_log_ce.attr, 2497 &dev_attr_print_all.attr, 2498 &dev_attr_ignore_ce.attr, 2499 &dev_attr_cmci_disabled.attr, 2500 NULL 2501 }; 2502 2503 static cpumask_var_t mce_device_initialized; 2504 2505 static void mce_device_release(struct device *dev) 2506 { 2507 kfree(dev); 2508 } 2509 2510 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2511 static int mce_device_create(unsigned int cpu) 2512 { 2513 struct device *dev; 2514 int err; 2515 int i, j; 2516 2517 if (!mce_available(&boot_cpu_data)) 2518 return -EIO; 2519 2520 dev = per_cpu(mce_device, cpu); 2521 if (dev) 2522 return 0; 2523 2524 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2525 if (!dev) 2526 return -ENOMEM; 2527 dev->id = cpu; 2528 dev->bus = &mce_subsys; 2529 dev->release = &mce_device_release; 2530 2531 err = device_register(dev); 2532 if (err) { 2533 put_device(dev); 2534 return err; 2535 } 2536 2537 for (i = 0; mce_device_attrs[i]; i++) { 2538 err = device_create_file(dev, mce_device_attrs[i]); 2539 if (err) 2540 goto error; 2541 } 2542 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2543 err = device_create_file(dev, &mce_bank_devs[j].attr); 2544 if (err) 2545 goto error2; 2546 } 2547 cpumask_set_cpu(cpu, mce_device_initialized); 2548 per_cpu(mce_device, cpu) = dev; 2549 2550 return 0; 2551 error2: 2552 while (--j >= 0) 2553 device_remove_file(dev, &mce_bank_devs[j].attr); 2554 error: 2555 while (--i >= 0) 2556 device_remove_file(dev, mce_device_attrs[i]); 2557 2558 device_unregister(dev); 2559 2560 return err; 2561 } 2562 2563 static void mce_device_remove(unsigned int cpu) 2564 { 2565 struct device *dev = per_cpu(mce_device, cpu); 2566 int i; 2567 2568 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2569 return; 2570 2571 for (i = 0; mce_device_attrs[i]; i++) 2572 device_remove_file(dev, mce_device_attrs[i]); 2573 2574 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2575 device_remove_file(dev, &mce_bank_devs[i].attr); 2576 2577 device_unregister(dev); 2578 cpumask_clear_cpu(cpu, mce_device_initialized); 2579 per_cpu(mce_device, cpu) = NULL; 2580 } 2581 2582 /* Make sure there are no machine checks on offlined CPUs. */ 2583 static void mce_disable_cpu(void) 2584 { 2585 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2586 return; 2587 2588 if (!cpuhp_tasks_frozen) 2589 cmci_clear(); 2590 2591 vendor_disable_error_reporting(); 2592 } 2593 2594 static void mce_reenable_cpu(void) 2595 { 2596 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2597 int i; 2598 2599 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2600 return; 2601 2602 if (!cpuhp_tasks_frozen) 2603 cmci_reenable(); 2604 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2605 struct mce_bank *b = &mce_banks[i]; 2606 2607 if (b->init) 2608 wrmsrl(msr_ops.ctl(i), b->ctl); 2609 } 2610 } 2611 2612 static int mce_cpu_dead(unsigned int cpu) 2613 { 2614 mce_intel_hcpu_update(cpu); 2615 2616 /* intentionally ignoring frozen here */ 2617 if (!cpuhp_tasks_frozen) 2618 cmci_rediscover(); 2619 return 0; 2620 } 2621 2622 static int mce_cpu_online(unsigned int cpu) 2623 { 2624 struct timer_list *t = this_cpu_ptr(&mce_timer); 2625 int ret; 2626 2627 mce_device_create(cpu); 2628 2629 ret = mce_threshold_create_device(cpu); 2630 if (ret) { 2631 mce_device_remove(cpu); 2632 return ret; 2633 } 2634 mce_reenable_cpu(); 2635 mce_start_timer(t); 2636 return 0; 2637 } 2638 2639 static int mce_cpu_pre_down(unsigned int cpu) 2640 { 2641 struct timer_list *t = this_cpu_ptr(&mce_timer); 2642 2643 mce_disable_cpu(); 2644 del_timer_sync(t); 2645 mce_threshold_remove_device(cpu); 2646 mce_device_remove(cpu); 2647 return 0; 2648 } 2649 2650 static __init void mce_init_banks(void) 2651 { 2652 int i; 2653 2654 for (i = 0; i < MAX_NR_BANKS; i++) { 2655 struct mce_bank_dev *b = &mce_bank_devs[i]; 2656 struct device_attribute *a = &b->attr; 2657 2658 b->bank = i; 2659 2660 sysfs_attr_init(&a->attr); 2661 a->attr.name = b->attrname; 2662 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2663 2664 a->attr.mode = 0644; 2665 a->show = show_bank; 2666 a->store = set_bank; 2667 } 2668 } 2669 2670 /* 2671 * When running on XEN, this initcall is ordered against the XEN mcelog 2672 * initcall: 2673 * 2674 * device_initcall(xen_late_init_mcelog); 2675 * device_initcall_sync(mcheck_init_device); 2676 */ 2677 static __init int mcheck_init_device(void) 2678 { 2679 int err; 2680 2681 /* 2682 * Check if we have a spare virtual bit. This will only become 2683 * a problem if/when we move beyond 5-level page tables. 2684 */ 2685 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2686 2687 if (!mce_available(&boot_cpu_data)) { 2688 err = -EIO; 2689 goto err_out; 2690 } 2691 2692 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2693 err = -ENOMEM; 2694 goto err_out; 2695 } 2696 2697 mce_init_banks(); 2698 2699 err = subsys_system_register(&mce_subsys, NULL); 2700 if (err) 2701 goto err_out_mem; 2702 2703 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2704 mce_cpu_dead); 2705 if (err) 2706 goto err_out_mem; 2707 2708 /* 2709 * Invokes mce_cpu_online() on all CPUs which are online when 2710 * the state is installed. 2711 */ 2712 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2713 mce_cpu_online, mce_cpu_pre_down); 2714 if (err < 0) 2715 goto err_out_online; 2716 2717 register_syscore_ops(&mce_syscore_ops); 2718 2719 return 0; 2720 2721 err_out_online: 2722 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2723 2724 err_out_mem: 2725 free_cpumask_var(mce_device_initialized); 2726 2727 err_out: 2728 pr_err("Unable to init MCE device (rc: %d)\n", err); 2729 2730 return err; 2731 } 2732 device_initcall_sync(mcheck_init_device); 2733 2734 /* 2735 * Old style boot options parsing. Only for compatibility. 2736 */ 2737 static int __init mcheck_disable(char *str) 2738 { 2739 mca_cfg.disabled = 1; 2740 return 1; 2741 } 2742 __setup("nomce", mcheck_disable); 2743 2744 #ifdef CONFIG_DEBUG_FS 2745 struct dentry *mce_get_debugfs_dir(void) 2746 { 2747 static struct dentry *dmce; 2748 2749 if (!dmce) 2750 dmce = debugfs_create_dir("mce", NULL); 2751 2752 return dmce; 2753 } 2754 2755 static void mce_reset(void) 2756 { 2757 cpu_missing = 0; 2758 atomic_set(&mce_fake_panicked, 0); 2759 atomic_set(&mce_executing, 0); 2760 atomic_set(&mce_callin, 0); 2761 atomic_set(&global_nwo, 0); 2762 cpumask_setall(&mce_missing_cpus); 2763 } 2764 2765 static int fake_panic_get(void *data, u64 *val) 2766 { 2767 *val = fake_panic; 2768 return 0; 2769 } 2770 2771 static int fake_panic_set(void *data, u64 val) 2772 { 2773 mce_reset(); 2774 fake_panic = val; 2775 return 0; 2776 } 2777 2778 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2779 "%llu\n"); 2780 2781 static void __init mcheck_debugfs_init(void) 2782 { 2783 struct dentry *dmce; 2784 2785 dmce = mce_get_debugfs_dir(); 2786 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2787 &fake_panic_fops); 2788 } 2789 #else 2790 static void __init mcheck_debugfs_init(void) { } 2791 #endif 2792 2793 static int __init mcheck_late_init(void) 2794 { 2795 if (mca_cfg.recovery) 2796 enable_copy_mc_fragile(); 2797 2798 mcheck_debugfs_init(); 2799 2800 /* 2801 * Flush out everything that has been logged during early boot, now that 2802 * everything has been initialized (workqueues, decoders, ...). 2803 */ 2804 mce_schedule_work(); 2805 2806 return 0; 2807 } 2808 late_initcall(mcheck_late_init); 2809