xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103 
104 /*
105  * MCA banks polled by the period polling timer for corrected events.
106  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107  */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111 
112 /*
113  * MCA banks controlled through firmware first for corrected errors.
114  * This is a global list of banks for which we won't enable CMCI and we
115  * won't poll. Firmware controls these banks and is responsible for
116  * reporting corrected errors through GHES. Uncorrected/recoverable
117  * errors are still notified through a machine check.
118  */
119 mce_banks_t mce_banks_ce_disabled;
120 
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123 
124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
125 
126 /*
127  * CPU/chipset specific EDAC code can register a notifier call here to print
128  * MCE errors in a human-readable form.
129  */
130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
131 
132 /* Do initial initialization of a struct mce */
133 noinstr void mce_setup(struct mce *m)
134 {
135 	memset(m, 0, sizeof(struct mce));
136 	m->cpu = m->extcpu = smp_processor_id();
137 	/* need the internal __ version to avoid deadlocks */
138 	m->time = __ktime_get_real_seconds();
139 	m->cpuvendor = boot_cpu_data.x86_vendor;
140 	m->cpuid = cpuid_eax(1);
141 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
142 	m->apicid = cpu_data(m->extcpu).initial_apicid;
143 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
144 
145 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
146 		m->ppin = __rdmsr(MSR_PPIN);
147 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
148 		m->ppin = __rdmsr(MSR_AMD_PPIN);
149 
150 	m->microcode = boot_cpu_data.microcode;
151 }
152 
153 DEFINE_PER_CPU(struct mce, injectm);
154 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
155 
156 void mce_log(struct mce *m)
157 {
158 	if (!mce_gen_pool_add(m))
159 		irq_work_queue(&mce_irq_work);
160 }
161 EXPORT_SYMBOL_GPL(mce_log);
162 
163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
166 		    nb->priority > MCE_PRIO_HIGHEST))
167 		return;
168 
169 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
170 }
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
172 
173 void mce_unregister_decode_chain(struct notifier_block *nb)
174 {
175 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
176 }
177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
178 
179 static inline u32 ctl_reg(int bank)
180 {
181 	return MSR_IA32_MCx_CTL(bank);
182 }
183 
184 static inline u32 status_reg(int bank)
185 {
186 	return MSR_IA32_MCx_STATUS(bank);
187 }
188 
189 static inline u32 addr_reg(int bank)
190 {
191 	return MSR_IA32_MCx_ADDR(bank);
192 }
193 
194 static inline u32 misc_reg(int bank)
195 {
196 	return MSR_IA32_MCx_MISC(bank);
197 }
198 
199 static inline u32 smca_ctl_reg(int bank)
200 {
201 	return MSR_AMD64_SMCA_MCx_CTL(bank);
202 }
203 
204 static inline u32 smca_status_reg(int bank)
205 {
206 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
207 }
208 
209 static inline u32 smca_addr_reg(int bank)
210 {
211 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
212 }
213 
214 static inline u32 smca_misc_reg(int bank)
215 {
216 	return MSR_AMD64_SMCA_MCx_MISC(bank);
217 }
218 
219 struct mca_msr_regs msr_ops = {
220 	.ctl	= ctl_reg,
221 	.status	= status_reg,
222 	.addr	= addr_reg,
223 	.misc	= misc_reg
224 };
225 
226 static void __print_mce(struct mce *m)
227 {
228 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
229 		 m->extcpu,
230 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
231 		 m->mcgstatus, m->bank, m->status);
232 
233 	if (m->ip) {
234 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
235 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
236 			m->cs, m->ip);
237 
238 		if (m->cs == __KERNEL_CS)
239 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
240 		pr_cont("\n");
241 	}
242 
243 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
244 	if (m->addr)
245 		pr_cont("ADDR %llx ", m->addr);
246 	if (m->misc)
247 		pr_cont("MISC %llx ", m->misc);
248 	if (m->ppin)
249 		pr_cont("PPIN %llx ", m->ppin);
250 
251 	if (mce_flags.smca) {
252 		if (m->synd)
253 			pr_cont("SYND %llx ", m->synd);
254 		if (m->ipid)
255 			pr_cont("IPID %llx ", m->ipid);
256 	}
257 
258 	pr_cont("\n");
259 
260 	/*
261 	 * Note this output is parsed by external tools and old fields
262 	 * should not be changed.
263 	 */
264 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
265 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
266 		m->microcode);
267 }
268 
269 static void print_mce(struct mce *m)
270 {
271 	__print_mce(m);
272 
273 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
274 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
275 }
276 
277 #define PANIC_TIMEOUT 5 /* 5 seconds */
278 
279 static atomic_t mce_panicked;
280 
281 static int fake_panic;
282 static atomic_t mce_fake_panicked;
283 
284 /* Panic in progress. Enable interrupts and wait for final IPI */
285 static void wait_for_panic(void)
286 {
287 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
288 
289 	preempt_disable();
290 	local_irq_enable();
291 	while (timeout-- > 0)
292 		udelay(1);
293 	if (panic_timeout == 0)
294 		panic_timeout = mca_cfg.panic_timeout;
295 	panic("Panicing machine check CPU died");
296 }
297 
298 static void mce_panic(const char *msg, struct mce *final, char *exp)
299 {
300 	int apei_err = 0;
301 	struct llist_node *pending;
302 	struct mce_evt_llist *l;
303 
304 	if (!fake_panic) {
305 		/*
306 		 * Make sure only one CPU runs in machine check panic
307 		 */
308 		if (atomic_inc_return(&mce_panicked) > 1)
309 			wait_for_panic();
310 		barrier();
311 
312 		bust_spinlocks(1);
313 		console_verbose();
314 	} else {
315 		/* Don't log too much for fake panic */
316 		if (atomic_inc_return(&mce_fake_panicked) > 1)
317 			return;
318 	}
319 	pending = mce_gen_pool_prepare_records();
320 	/* First print corrected ones that are still unlogged */
321 	llist_for_each_entry(l, pending, llnode) {
322 		struct mce *m = &l->mce;
323 		if (!(m->status & MCI_STATUS_UC)) {
324 			print_mce(m);
325 			if (!apei_err)
326 				apei_err = apei_write_mce(m);
327 		}
328 	}
329 	/* Now print uncorrected but with the final one last */
330 	llist_for_each_entry(l, pending, llnode) {
331 		struct mce *m = &l->mce;
332 		if (!(m->status & MCI_STATUS_UC))
333 			continue;
334 		if (!final || mce_cmp(m, final)) {
335 			print_mce(m);
336 			if (!apei_err)
337 				apei_err = apei_write_mce(m);
338 		}
339 	}
340 	if (final) {
341 		print_mce(final);
342 		if (!apei_err)
343 			apei_err = apei_write_mce(final);
344 	}
345 	if (cpu_missing)
346 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
347 	if (exp)
348 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
349 	if (!fake_panic) {
350 		if (panic_timeout == 0)
351 			panic_timeout = mca_cfg.panic_timeout;
352 		panic(msg);
353 	} else
354 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
355 }
356 
357 /* Support code for software error injection */
358 
359 static int msr_to_offset(u32 msr)
360 {
361 	unsigned bank = __this_cpu_read(injectm.bank);
362 
363 	if (msr == mca_cfg.rip_msr)
364 		return offsetof(struct mce, ip);
365 	if (msr == msr_ops.status(bank))
366 		return offsetof(struct mce, status);
367 	if (msr == msr_ops.addr(bank))
368 		return offsetof(struct mce, addr);
369 	if (msr == msr_ops.misc(bank))
370 		return offsetof(struct mce, misc);
371 	if (msr == MSR_IA32_MCG_STATUS)
372 		return offsetof(struct mce, mcgstatus);
373 	return -1;
374 }
375 
376 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup,
377 				      struct pt_regs *regs, int trapnr,
378 				      unsigned long error_code,
379 				      unsigned long fault_addr)
380 {
381 	pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
382 		 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
383 
384 	show_stack_regs(regs);
385 
386 	panic("MCA architectural violation!\n");
387 
388 	while (true)
389 		cpu_relax();
390 
391 	return true;
392 }
393 
394 /* MSR access wrappers used for error injection */
395 static noinstr u64 mce_rdmsrl(u32 msr)
396 {
397 	DECLARE_ARGS(val, low, high);
398 
399 	if (__this_cpu_read(injectm.finished)) {
400 		int offset;
401 		u64 ret;
402 
403 		instrumentation_begin();
404 
405 		offset = msr_to_offset(msr);
406 		if (offset < 0)
407 			ret = 0;
408 		else
409 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
410 
411 		instrumentation_end();
412 
413 		return ret;
414 	}
415 
416 	/*
417 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
418 	 * architectural violation and needs to be reported to hw vendor. Panic
419 	 * the box to not allow any further progress.
420 	 */
421 	asm volatile("1: rdmsr\n"
422 		     "2:\n"
423 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault)
424 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
425 
426 
427 	return EAX_EDX_VAL(val, low, high);
428 }
429 
430 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup,
431 				      struct pt_regs *regs, int trapnr,
432 				      unsigned long error_code,
433 				      unsigned long fault_addr)
434 {
435 	pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
436 		 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
437 		  regs->ip, (void *)regs->ip);
438 
439 	show_stack_regs(regs);
440 
441 	panic("MCA architectural violation!\n");
442 
443 	while (true)
444 		cpu_relax();
445 
446 	return true;
447 }
448 
449 static noinstr void mce_wrmsrl(u32 msr, u64 v)
450 {
451 	u32 low, high;
452 
453 	if (__this_cpu_read(injectm.finished)) {
454 		int offset;
455 
456 		instrumentation_begin();
457 
458 		offset = msr_to_offset(msr);
459 		if (offset >= 0)
460 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
461 
462 		instrumentation_end();
463 
464 		return;
465 	}
466 
467 	low  = (u32)v;
468 	high = (u32)(v >> 32);
469 
470 	/* See comment in mce_rdmsrl() */
471 	asm volatile("1: wrmsr\n"
472 		     "2:\n"
473 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault)
474 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
475 }
476 
477 /*
478  * Collect all global (w.r.t. this processor) status about this machine
479  * check into our "mce" struct so that we can use it later to assess
480  * the severity of the problem as we read per-bank specific details.
481  */
482 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
483 {
484 	mce_setup(m);
485 
486 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
487 	if (regs) {
488 		/*
489 		 * Get the address of the instruction at the time of
490 		 * the machine check error.
491 		 */
492 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
493 			m->ip = regs->ip;
494 			m->cs = regs->cs;
495 
496 			/*
497 			 * When in VM86 mode make the cs look like ring 3
498 			 * always. This is a lie, but it's better than passing
499 			 * the additional vm86 bit around everywhere.
500 			 */
501 			if (v8086_mode(regs))
502 				m->cs |= 3;
503 		}
504 		/* Use accurate RIP reporting if available. */
505 		if (mca_cfg.rip_msr)
506 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
507 	}
508 }
509 
510 int mce_available(struct cpuinfo_x86 *c)
511 {
512 	if (mca_cfg.disabled)
513 		return 0;
514 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515 }
516 
517 static void mce_schedule_work(void)
518 {
519 	if (!mce_gen_pool_empty())
520 		schedule_work(&mce_work);
521 }
522 
523 static void mce_irq_work_cb(struct irq_work *entry)
524 {
525 	mce_schedule_work();
526 }
527 
528 /*
529  * Check if the address reported by the CPU is in a format we can parse.
530  * It would be possible to add code for most other cases, but all would
531  * be somewhat complicated (e.g. segment offset would require an instruction
532  * parser). So only support physical addresses up to page granuality for now.
533  */
534 int mce_usable_address(struct mce *m)
535 {
536 	if (!(m->status & MCI_STATUS_ADDRV))
537 		return 0;
538 
539 	/* Checks after this one are Intel/Zhaoxin-specific: */
540 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
541 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
542 		return 1;
543 
544 	if (!(m->status & MCI_STATUS_MISCV))
545 		return 0;
546 
547 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
548 		return 0;
549 
550 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
551 		return 0;
552 
553 	return 1;
554 }
555 EXPORT_SYMBOL_GPL(mce_usable_address);
556 
557 bool mce_is_memory_error(struct mce *m)
558 {
559 	switch (m->cpuvendor) {
560 	case X86_VENDOR_AMD:
561 	case X86_VENDOR_HYGON:
562 		return amd_mce_is_memory_error(m);
563 
564 	case X86_VENDOR_INTEL:
565 	case X86_VENDOR_ZHAOXIN:
566 		/*
567 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
568 		 *
569 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
570 		 * indicating a memory error. Bit 8 is used for indicating a
571 		 * cache hierarchy error. The combination of bit 2 and bit 3
572 		 * is used for indicating a `generic' cache hierarchy error
573 		 * But we can't just blindly check the above bits, because if
574 		 * bit 11 is set, then it is a bus/interconnect error - and
575 		 * either way the above bits just gives more detail on what
576 		 * bus/interconnect error happened. Note that bit 12 can be
577 		 * ignored, as it's the "filter" bit.
578 		 */
579 		return (m->status & 0xef80) == BIT(7) ||
580 		       (m->status & 0xef00) == BIT(8) ||
581 		       (m->status & 0xeffc) == 0xc;
582 
583 	default:
584 		return false;
585 	}
586 }
587 EXPORT_SYMBOL_GPL(mce_is_memory_error);
588 
589 static bool whole_page(struct mce *m)
590 {
591 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
592 		return true;
593 
594 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
595 }
596 
597 bool mce_is_correctable(struct mce *m)
598 {
599 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
600 		return false;
601 
602 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
603 		return false;
604 
605 	if (m->status & MCI_STATUS_UC)
606 		return false;
607 
608 	return true;
609 }
610 EXPORT_SYMBOL_GPL(mce_is_correctable);
611 
612 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
613 			      void *data)
614 {
615 	struct mce *m = (struct mce *)data;
616 
617 	if (!m)
618 		return NOTIFY_DONE;
619 
620 	/* Emit the trace record: */
621 	trace_mce_record(m);
622 
623 	set_bit(0, &mce_need_notify);
624 
625 	mce_notify_irq();
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static struct notifier_block early_nb = {
631 	.notifier_call	= mce_early_notifier,
632 	.priority	= MCE_PRIO_EARLY,
633 };
634 
635 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
636 			      void *data)
637 {
638 	struct mce *mce = (struct mce *)data;
639 	unsigned long pfn;
640 
641 	if (!mce || !mce_usable_address(mce))
642 		return NOTIFY_DONE;
643 
644 	if (mce->severity != MCE_AO_SEVERITY &&
645 	    mce->severity != MCE_DEFERRED_SEVERITY)
646 		return NOTIFY_DONE;
647 
648 	pfn = mce->addr >> PAGE_SHIFT;
649 	if (!memory_failure(pfn, 0)) {
650 		set_mce_nospec(pfn, whole_page(mce));
651 		mce->kflags |= MCE_HANDLED_UC;
652 	}
653 
654 	return NOTIFY_OK;
655 }
656 
657 static struct notifier_block mce_uc_nb = {
658 	.notifier_call	= uc_decode_notifier,
659 	.priority	= MCE_PRIO_UC,
660 };
661 
662 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
663 				void *data)
664 {
665 	struct mce *m = (struct mce *)data;
666 
667 	if (!m)
668 		return NOTIFY_DONE;
669 
670 	if (mca_cfg.print_all || !m->kflags)
671 		__print_mce(m);
672 
673 	return NOTIFY_DONE;
674 }
675 
676 static struct notifier_block mce_default_nb = {
677 	.notifier_call	= mce_default_notifier,
678 	/* lowest prio, we want it to run last. */
679 	.priority	= MCE_PRIO_LOWEST,
680 };
681 
682 /*
683  * Read ADDR and MISC registers.
684  */
685 static void mce_read_aux(struct mce *m, int i)
686 {
687 	if (m->status & MCI_STATUS_MISCV)
688 		m->misc = mce_rdmsrl(msr_ops.misc(i));
689 
690 	if (m->status & MCI_STATUS_ADDRV) {
691 		m->addr = mce_rdmsrl(msr_ops.addr(i));
692 
693 		/*
694 		 * Mask the reported address by the reported granularity.
695 		 */
696 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
697 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
698 			m->addr >>= shift;
699 			m->addr <<= shift;
700 		}
701 
702 		/*
703 		 * Extract [55:<lsb>] where lsb is the least significant
704 		 * *valid* bit of the address bits.
705 		 */
706 		if (mce_flags.smca) {
707 			u8 lsb = (m->addr >> 56) & 0x3f;
708 
709 			m->addr &= GENMASK_ULL(55, lsb);
710 		}
711 	}
712 
713 	if (mce_flags.smca) {
714 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
715 
716 		if (m->status & MCI_STATUS_SYNDV)
717 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
718 	}
719 }
720 
721 DEFINE_PER_CPU(unsigned, mce_poll_count);
722 
723 /*
724  * Poll for corrected events or events that happened before reset.
725  * Those are just logged through /dev/mcelog.
726  *
727  * This is executed in standard interrupt context.
728  *
729  * Note: spec recommends to panic for fatal unsignalled
730  * errors here. However this would be quite problematic --
731  * we would need to reimplement the Monarch handling and
732  * it would mess up the exclusion between exception handler
733  * and poll handler -- * so we skip this for now.
734  * These cases should not happen anyways, or only when the CPU
735  * is already totally * confused. In this case it's likely it will
736  * not fully execute the machine check handler either.
737  */
738 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
739 {
740 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
741 	bool error_seen = false;
742 	struct mce m;
743 	int i;
744 
745 	this_cpu_inc(mce_poll_count);
746 
747 	mce_gather_info(&m, NULL);
748 
749 	if (flags & MCP_TIMESTAMP)
750 		m.tsc = rdtsc();
751 
752 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
753 		if (!mce_banks[i].ctl || !test_bit(i, *b))
754 			continue;
755 
756 		m.misc = 0;
757 		m.addr = 0;
758 		m.bank = i;
759 
760 		barrier();
761 		m.status = mce_rdmsrl(msr_ops.status(i));
762 
763 		/* If this entry is not valid, ignore it */
764 		if (!(m.status & MCI_STATUS_VAL))
765 			continue;
766 
767 		/*
768 		 * If we are logging everything (at CPU online) or this
769 		 * is a corrected error, then we must log it.
770 		 */
771 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
772 			goto log_it;
773 
774 		/*
775 		 * Newer Intel systems that support software error
776 		 * recovery need to make additional checks. Other
777 		 * CPUs should skip over uncorrected errors, but log
778 		 * everything else.
779 		 */
780 		if (!mca_cfg.ser) {
781 			if (m.status & MCI_STATUS_UC)
782 				continue;
783 			goto log_it;
784 		}
785 
786 		/* Log "not enabled" (speculative) errors */
787 		if (!(m.status & MCI_STATUS_EN))
788 			goto log_it;
789 
790 		/*
791 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
792 		 * UC == 1 && PCC == 0 && S == 0
793 		 */
794 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
795 			goto log_it;
796 
797 		/*
798 		 * Skip anything else. Presumption is that our read of this
799 		 * bank is racing with a machine check. Leave the log alone
800 		 * for do_machine_check() to deal with it.
801 		 */
802 		continue;
803 
804 log_it:
805 		error_seen = true;
806 
807 		if (flags & MCP_DONTLOG)
808 			goto clear_it;
809 
810 		mce_read_aux(&m, i);
811 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
812 		/*
813 		 * Don't get the IP here because it's unlikely to
814 		 * have anything to do with the actual error location.
815 		 */
816 
817 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
818 			goto clear_it;
819 
820 		mce_log(&m);
821 
822 clear_it:
823 		/*
824 		 * Clear state for this bank.
825 		 */
826 		mce_wrmsrl(msr_ops.status(i), 0);
827 	}
828 
829 	/*
830 	 * Don't clear MCG_STATUS here because it's only defined for
831 	 * exceptions.
832 	 */
833 
834 	sync_core();
835 
836 	return error_seen;
837 }
838 EXPORT_SYMBOL_GPL(machine_check_poll);
839 
840 /*
841  * Do a quick check if any of the events requires a panic.
842  * This decides if we keep the events around or clear them.
843  */
844 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
845 			  struct pt_regs *regs)
846 {
847 	char *tmp = *msg;
848 	int i;
849 
850 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
851 		m->status = mce_rdmsrl(msr_ops.status(i));
852 		if (!(m->status & MCI_STATUS_VAL))
853 			continue;
854 
855 		__set_bit(i, validp);
856 		if (quirk_no_way_out)
857 			quirk_no_way_out(i, m, regs);
858 
859 		m->bank = i;
860 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
861 			mce_read_aux(m, i);
862 			*msg = tmp;
863 			return 1;
864 		}
865 	}
866 	return 0;
867 }
868 
869 /*
870  * Variable to establish order between CPUs while scanning.
871  * Each CPU spins initially until executing is equal its number.
872  */
873 static atomic_t mce_executing;
874 
875 /*
876  * Defines order of CPUs on entry. First CPU becomes Monarch.
877  */
878 static atomic_t mce_callin;
879 
880 /*
881  * Track which CPUs entered the MCA broadcast synchronization and which not in
882  * order to print holdouts.
883  */
884 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
885 
886 /*
887  * Check if a timeout waiting for other CPUs happened.
888  */
889 static int mce_timed_out(u64 *t, const char *msg)
890 {
891 	/*
892 	 * The others already did panic for some reason.
893 	 * Bail out like in a timeout.
894 	 * rmb() to tell the compiler that system_state
895 	 * might have been modified by someone else.
896 	 */
897 	rmb();
898 	if (atomic_read(&mce_panicked))
899 		wait_for_panic();
900 	if (!mca_cfg.monarch_timeout)
901 		goto out;
902 	if ((s64)*t < SPINUNIT) {
903 		if (mca_cfg.tolerant <= 1) {
904 			if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
905 				pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
906 					 cpumask_pr_args(&mce_missing_cpus));
907 			mce_panic(msg, NULL, NULL);
908 		}
909 		cpu_missing = 1;
910 		return 1;
911 	}
912 	*t -= SPINUNIT;
913 out:
914 	touch_nmi_watchdog();
915 	return 0;
916 }
917 
918 /*
919  * The Monarch's reign.  The Monarch is the CPU who entered
920  * the machine check handler first. It waits for the others to
921  * raise the exception too and then grades them. When any
922  * error is fatal panic. Only then let the others continue.
923  *
924  * The other CPUs entering the MCE handler will be controlled by the
925  * Monarch. They are called Subjects.
926  *
927  * This way we prevent any potential data corruption in a unrecoverable case
928  * and also makes sure always all CPU's errors are examined.
929  *
930  * Also this detects the case of a machine check event coming from outer
931  * space (not detected by any CPUs) In this case some external agent wants
932  * us to shut down, so panic too.
933  *
934  * The other CPUs might still decide to panic if the handler happens
935  * in a unrecoverable place, but in this case the system is in a semi-stable
936  * state and won't corrupt anything by itself. It's ok to let the others
937  * continue for a bit first.
938  *
939  * All the spin loops have timeouts; when a timeout happens a CPU
940  * typically elects itself to be Monarch.
941  */
942 static void mce_reign(void)
943 {
944 	int cpu;
945 	struct mce *m = NULL;
946 	int global_worst = 0;
947 	char *msg = NULL;
948 
949 	/*
950 	 * This CPU is the Monarch and the other CPUs have run
951 	 * through their handlers.
952 	 * Grade the severity of the errors of all the CPUs.
953 	 */
954 	for_each_possible_cpu(cpu) {
955 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
956 
957 		if (mtmp->severity > global_worst) {
958 			global_worst = mtmp->severity;
959 			m = &per_cpu(mces_seen, cpu);
960 		}
961 	}
962 
963 	/*
964 	 * Cannot recover? Panic here then.
965 	 * This dumps all the mces in the log buffer and stops the
966 	 * other CPUs.
967 	 */
968 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
969 		/* call mce_severity() to get "msg" for panic */
970 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
971 		mce_panic("Fatal machine check", m, msg);
972 	}
973 
974 	/*
975 	 * For UC somewhere we let the CPU who detects it handle it.
976 	 * Also must let continue the others, otherwise the handling
977 	 * CPU could deadlock on a lock.
978 	 */
979 
980 	/*
981 	 * No machine check event found. Must be some external
982 	 * source or one CPU is hung. Panic.
983 	 */
984 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
985 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
986 
987 	/*
988 	 * Now clear all the mces_seen so that they don't reappear on
989 	 * the next mce.
990 	 */
991 	for_each_possible_cpu(cpu)
992 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
993 }
994 
995 static atomic_t global_nwo;
996 
997 /*
998  * Start of Monarch synchronization. This waits until all CPUs have
999  * entered the exception handler and then determines if any of them
1000  * saw a fatal event that requires panic. Then it executes them
1001  * in the entry order.
1002  * TBD double check parallel CPU hotunplug
1003  */
1004 static int mce_start(int *no_way_out)
1005 {
1006 	int order;
1007 	int cpus = num_online_cpus();
1008 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1009 
1010 	if (!timeout)
1011 		return -1;
1012 
1013 	atomic_add(*no_way_out, &global_nwo);
1014 	/*
1015 	 * Rely on the implied barrier below, such that global_nwo
1016 	 * is updated before mce_callin.
1017 	 */
1018 	order = atomic_inc_return(&mce_callin);
1019 	cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1020 
1021 	/*
1022 	 * Wait for everyone.
1023 	 */
1024 	while (atomic_read(&mce_callin) != cpus) {
1025 		if (mce_timed_out(&timeout,
1026 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1027 			atomic_set(&global_nwo, 0);
1028 			return -1;
1029 		}
1030 		ndelay(SPINUNIT);
1031 	}
1032 
1033 	/*
1034 	 * mce_callin should be read before global_nwo
1035 	 */
1036 	smp_rmb();
1037 
1038 	if (order == 1) {
1039 		/*
1040 		 * Monarch: Starts executing now, the others wait.
1041 		 */
1042 		atomic_set(&mce_executing, 1);
1043 	} else {
1044 		/*
1045 		 * Subject: Now start the scanning loop one by one in
1046 		 * the original callin order.
1047 		 * This way when there are any shared banks it will be
1048 		 * only seen by one CPU before cleared, avoiding duplicates.
1049 		 */
1050 		while (atomic_read(&mce_executing) < order) {
1051 			if (mce_timed_out(&timeout,
1052 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1053 				atomic_set(&global_nwo, 0);
1054 				return -1;
1055 			}
1056 			ndelay(SPINUNIT);
1057 		}
1058 	}
1059 
1060 	/*
1061 	 * Cache the global no_way_out state.
1062 	 */
1063 	*no_way_out = atomic_read(&global_nwo);
1064 
1065 	return order;
1066 }
1067 
1068 /*
1069  * Synchronize between CPUs after main scanning loop.
1070  * This invokes the bulk of the Monarch processing.
1071  */
1072 static int mce_end(int order)
1073 {
1074 	int ret = -1;
1075 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1076 
1077 	if (!timeout)
1078 		goto reset;
1079 	if (order < 0)
1080 		goto reset;
1081 
1082 	/*
1083 	 * Allow others to run.
1084 	 */
1085 	atomic_inc(&mce_executing);
1086 
1087 	if (order == 1) {
1088 		/* CHECKME: Can this race with a parallel hotplug? */
1089 		int cpus = num_online_cpus();
1090 
1091 		/*
1092 		 * Monarch: Wait for everyone to go through their scanning
1093 		 * loops.
1094 		 */
1095 		while (atomic_read(&mce_executing) <= cpus) {
1096 			if (mce_timed_out(&timeout,
1097 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1098 				goto reset;
1099 			ndelay(SPINUNIT);
1100 		}
1101 
1102 		mce_reign();
1103 		barrier();
1104 		ret = 0;
1105 	} else {
1106 		/*
1107 		 * Subject: Wait for Monarch to finish.
1108 		 */
1109 		while (atomic_read(&mce_executing) != 0) {
1110 			if (mce_timed_out(&timeout,
1111 					  "Timeout: Monarch CPU did not finish machine check processing"))
1112 				goto reset;
1113 			ndelay(SPINUNIT);
1114 		}
1115 
1116 		/*
1117 		 * Don't reset anything. That's done by the Monarch.
1118 		 */
1119 		return 0;
1120 	}
1121 
1122 	/*
1123 	 * Reset all global state.
1124 	 */
1125 reset:
1126 	atomic_set(&global_nwo, 0);
1127 	atomic_set(&mce_callin, 0);
1128 	cpumask_setall(&mce_missing_cpus);
1129 	barrier();
1130 
1131 	/*
1132 	 * Let others run again.
1133 	 */
1134 	atomic_set(&mce_executing, 0);
1135 	return ret;
1136 }
1137 
1138 static void mce_clear_state(unsigned long *toclear)
1139 {
1140 	int i;
1141 
1142 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1143 		if (test_bit(i, toclear))
1144 			mce_wrmsrl(msr_ops.status(i), 0);
1145 	}
1146 }
1147 
1148 /*
1149  * Cases where we avoid rendezvous handler timeout:
1150  * 1) If this CPU is offline.
1151  *
1152  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1153  *  skip those CPUs which remain looping in the 1st kernel - see
1154  *  crash_nmi_callback().
1155  *
1156  * Note: there still is a small window between kexec-ing and the new,
1157  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1158  * might not get handled properly.
1159  */
1160 static noinstr bool mce_check_crashing_cpu(void)
1161 {
1162 	unsigned int cpu = smp_processor_id();
1163 
1164 	if (arch_cpu_is_offline(cpu) ||
1165 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1166 		u64 mcgstatus;
1167 
1168 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1169 
1170 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1171 			if (mcgstatus & MCG_STATUS_LMCES)
1172 				return false;
1173 		}
1174 
1175 		if (mcgstatus & MCG_STATUS_RIPV) {
1176 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1177 			return true;
1178 		}
1179 	}
1180 	return false;
1181 }
1182 
1183 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1184 			    unsigned long *toclear, unsigned long *valid_banks,
1185 			    int no_way_out, int *worst)
1186 {
1187 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1188 	struct mca_config *cfg = &mca_cfg;
1189 	int severity, i;
1190 
1191 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1192 		__clear_bit(i, toclear);
1193 		if (!test_bit(i, valid_banks))
1194 			continue;
1195 
1196 		if (!mce_banks[i].ctl)
1197 			continue;
1198 
1199 		m->misc = 0;
1200 		m->addr = 0;
1201 		m->bank = i;
1202 
1203 		m->status = mce_rdmsrl(msr_ops.status(i));
1204 		if (!(m->status & MCI_STATUS_VAL))
1205 			continue;
1206 
1207 		/*
1208 		 * Corrected or non-signaled errors are handled by
1209 		 * machine_check_poll(). Leave them alone, unless this panics.
1210 		 */
1211 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1212 			!no_way_out)
1213 			continue;
1214 
1215 		/* Set taint even when machine check was not enabled. */
1216 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1217 
1218 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1219 
1220 		/*
1221 		 * When machine check was for corrected/deferred handler don't
1222 		 * touch, unless we're panicking.
1223 		 */
1224 		if ((severity == MCE_KEEP_SEVERITY ||
1225 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1226 			continue;
1227 
1228 		__set_bit(i, toclear);
1229 
1230 		/* Machine check event was not enabled. Clear, but ignore. */
1231 		if (severity == MCE_NO_SEVERITY)
1232 			continue;
1233 
1234 		mce_read_aux(m, i);
1235 
1236 		/* assuming valid severity level != 0 */
1237 		m->severity = severity;
1238 
1239 		mce_log(m);
1240 
1241 		if (severity > *worst) {
1242 			*final = *m;
1243 			*worst = severity;
1244 		}
1245 	}
1246 
1247 	/* mce_clear_state will clear *final, save locally for use later */
1248 	*m = *final;
1249 }
1250 
1251 static void kill_me_now(struct callback_head *ch)
1252 {
1253 	force_sig(SIGBUS);
1254 }
1255 
1256 static void kill_me_maybe(struct callback_head *cb)
1257 {
1258 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1259 	int flags = MF_ACTION_REQUIRED;
1260 
1261 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1262 
1263 	if (!p->mce_ripv)
1264 		flags |= MF_MUST_KILL;
1265 
1266 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags) &&
1267 	    !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1268 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1269 		sync_core();
1270 		return;
1271 	}
1272 
1273 	if (p->mce_vaddr != (void __user *)-1l) {
1274 		force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1275 	} else {
1276 		pr_err("Memory error not recovered");
1277 		kill_me_now(cb);
1278 	}
1279 }
1280 
1281 static void queue_task_work(struct mce *m, int kill_current_task)
1282 {
1283 	current->mce_addr = m->addr;
1284 	current->mce_kflags = m->kflags;
1285 	current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1286 	current->mce_whole_page = whole_page(m);
1287 
1288 	if (kill_current_task)
1289 		current->mce_kill_me.func = kill_me_now;
1290 	else
1291 		current->mce_kill_me.func = kill_me_maybe;
1292 
1293 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1294 }
1295 
1296 /*
1297  * The actual machine check handler. This only handles real
1298  * exceptions when something got corrupted coming in through int 18.
1299  *
1300  * This is executed in NMI context not subject to normal locking rules. This
1301  * implies that most kernel services cannot be safely used. Don't even
1302  * think about putting a printk in there!
1303  *
1304  * On Intel systems this is entered on all CPUs in parallel through
1305  * MCE broadcast. However some CPUs might be broken beyond repair,
1306  * so be always careful when synchronizing with others.
1307  *
1308  * Tracing and kprobes are disabled: if we interrupted a kernel context
1309  * with IF=1, we need to minimize stack usage.  There are also recursion
1310  * issues: if the machine check was due to a failure of the memory
1311  * backing the user stack, tracing that reads the user stack will cause
1312  * potentially infinite recursion.
1313  */
1314 noinstr void do_machine_check(struct pt_regs *regs)
1315 {
1316 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1317 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1318 	struct mca_config *cfg = &mca_cfg;
1319 	struct mce m, *final;
1320 	char *msg = NULL;
1321 	int worst = 0;
1322 
1323 	/*
1324 	 * Establish sequential order between the CPUs entering the machine
1325 	 * check handler.
1326 	 */
1327 	int order = -1;
1328 
1329 	/*
1330 	 * If no_way_out gets set, there is no safe way to recover from this
1331 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1332 	 */
1333 	int no_way_out = 0;
1334 
1335 	/*
1336 	 * If kill_current_task is not set, there might be a way to recover from this
1337 	 * error.
1338 	 */
1339 	int kill_current_task = 0;
1340 
1341 	/*
1342 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1343 	 * on Intel.
1344 	 */
1345 	int lmce = 1;
1346 
1347 	this_cpu_inc(mce_exception_count);
1348 
1349 	mce_gather_info(&m, regs);
1350 	m.tsc = rdtsc();
1351 
1352 	final = this_cpu_ptr(&mces_seen);
1353 	*final = m;
1354 
1355 	memset(valid_banks, 0, sizeof(valid_banks));
1356 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1357 
1358 	barrier();
1359 
1360 	/*
1361 	 * When no restart IP might need to kill or panic.
1362 	 * Assume the worst for now, but if we find the
1363 	 * severity is MCE_AR_SEVERITY we have other options.
1364 	 */
1365 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1366 		kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1367 	/*
1368 	 * Check if this MCE is signaled to only this logical processor,
1369 	 * on Intel, Zhaoxin only.
1370 	 */
1371 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1372 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1373 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1374 
1375 	/*
1376 	 * Local machine check may already know that we have to panic.
1377 	 * Broadcast machine check begins rendezvous in mce_start()
1378 	 * Go through all banks in exclusion of the other CPUs. This way we
1379 	 * don't report duplicated events on shared banks because the first one
1380 	 * to see it will clear it.
1381 	 */
1382 	if (lmce) {
1383 		if (no_way_out && cfg->tolerant < 3)
1384 			mce_panic("Fatal local machine check", &m, msg);
1385 	} else {
1386 		order = mce_start(&no_way_out);
1387 	}
1388 
1389 	__mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1390 
1391 	if (!no_way_out)
1392 		mce_clear_state(toclear);
1393 
1394 	/*
1395 	 * Do most of the synchronization with other CPUs.
1396 	 * When there's any problem use only local no_way_out state.
1397 	 */
1398 	if (!lmce) {
1399 		if (mce_end(order) < 0) {
1400 			if (!no_way_out)
1401 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1402 
1403 			if (no_way_out && cfg->tolerant < 3)
1404 				mce_panic("Fatal machine check on current CPU", &m, msg);
1405 		}
1406 	} else {
1407 		/*
1408 		 * If there was a fatal machine check we should have
1409 		 * already called mce_panic earlier in this function.
1410 		 * Since we re-read the banks, we might have found
1411 		 * something new. Check again to see if we found a
1412 		 * fatal error. We call "mce_severity()" again to
1413 		 * make sure we have the right "msg".
1414 		 */
1415 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1416 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1417 			mce_panic("Local fatal machine check!", &m, msg);
1418 		}
1419 	}
1420 
1421 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1422 		goto out;
1423 
1424 	/* Fault was in user mode and we need to take some action */
1425 	if ((m.cs & 3) == 3) {
1426 		/* If this triggers there is no way to recover. Die hard. */
1427 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1428 
1429 		queue_task_work(&m, kill_current_task);
1430 
1431 	} else {
1432 		/*
1433 		 * Handle an MCE which has happened in kernel space but from
1434 		 * which the kernel can recover: ex_has_fault_handler() has
1435 		 * already verified that the rIP at which the error happened is
1436 		 * a rIP from which the kernel can recover (by jumping to
1437 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1438 		 * corresponding exception handler which would do that is the
1439 		 * proper one.
1440 		 */
1441 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1442 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1443 				mce_panic("Failed kernel mode recovery", &m, msg);
1444 		}
1445 
1446 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1447 			queue_task_work(&m, kill_current_task);
1448 	}
1449 out:
1450 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1451 }
1452 EXPORT_SYMBOL_GPL(do_machine_check);
1453 
1454 #ifndef CONFIG_MEMORY_FAILURE
1455 int memory_failure(unsigned long pfn, int flags)
1456 {
1457 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1458 	BUG_ON(flags & MF_ACTION_REQUIRED);
1459 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1460 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1461 	       pfn);
1462 
1463 	return 0;
1464 }
1465 #endif
1466 
1467 /*
1468  * Periodic polling timer for "silent" machine check errors.  If the
1469  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1470  * errors, poll 2x slower (up to check_interval seconds).
1471  */
1472 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1473 
1474 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1475 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1476 
1477 static unsigned long mce_adjust_timer_default(unsigned long interval)
1478 {
1479 	return interval;
1480 }
1481 
1482 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1483 
1484 static void __start_timer(struct timer_list *t, unsigned long interval)
1485 {
1486 	unsigned long when = jiffies + interval;
1487 	unsigned long flags;
1488 
1489 	local_irq_save(flags);
1490 
1491 	if (!timer_pending(t) || time_before(when, t->expires))
1492 		mod_timer(t, round_jiffies(when));
1493 
1494 	local_irq_restore(flags);
1495 }
1496 
1497 static void mce_timer_fn(struct timer_list *t)
1498 {
1499 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1500 	unsigned long iv;
1501 
1502 	WARN_ON(cpu_t != t);
1503 
1504 	iv = __this_cpu_read(mce_next_interval);
1505 
1506 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1507 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1508 
1509 		if (mce_intel_cmci_poll()) {
1510 			iv = mce_adjust_timer(iv);
1511 			goto done;
1512 		}
1513 	}
1514 
1515 	/*
1516 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1517 	 * interval, otherwise increase the polling interval.
1518 	 */
1519 	if (mce_notify_irq())
1520 		iv = max(iv / 2, (unsigned long) HZ/100);
1521 	else
1522 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1523 
1524 done:
1525 	__this_cpu_write(mce_next_interval, iv);
1526 	__start_timer(t, iv);
1527 }
1528 
1529 /*
1530  * Ensure that the timer is firing in @interval from now.
1531  */
1532 void mce_timer_kick(unsigned long interval)
1533 {
1534 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1535 	unsigned long iv = __this_cpu_read(mce_next_interval);
1536 
1537 	__start_timer(t, interval);
1538 
1539 	if (interval < iv)
1540 		__this_cpu_write(mce_next_interval, interval);
1541 }
1542 
1543 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1544 static void mce_timer_delete_all(void)
1545 {
1546 	int cpu;
1547 
1548 	for_each_online_cpu(cpu)
1549 		del_timer_sync(&per_cpu(mce_timer, cpu));
1550 }
1551 
1552 /*
1553  * Notify the user(s) about new machine check events.
1554  * Can be called from interrupt context, but not from machine check/NMI
1555  * context.
1556  */
1557 int mce_notify_irq(void)
1558 {
1559 	/* Not more than two messages every minute */
1560 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1561 
1562 	if (test_and_clear_bit(0, &mce_need_notify)) {
1563 		mce_work_trigger();
1564 
1565 		if (__ratelimit(&ratelimit))
1566 			pr_info(HW_ERR "Machine check events logged\n");
1567 
1568 		return 1;
1569 	}
1570 	return 0;
1571 }
1572 EXPORT_SYMBOL_GPL(mce_notify_irq);
1573 
1574 static void __mcheck_cpu_mce_banks_init(void)
1575 {
1576 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1577 	u8 n_banks = this_cpu_read(mce_num_banks);
1578 	int i;
1579 
1580 	for (i = 0; i < n_banks; i++) {
1581 		struct mce_bank *b = &mce_banks[i];
1582 
1583 		/*
1584 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1585 		 * the required vendor quirks before
1586 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1587 		 */
1588 		b->ctl = -1ULL;
1589 		b->init = true;
1590 	}
1591 }
1592 
1593 /*
1594  * Initialize Machine Checks for a CPU.
1595  */
1596 static void __mcheck_cpu_cap_init(void)
1597 {
1598 	u64 cap;
1599 	u8 b;
1600 
1601 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1602 
1603 	b = cap & MCG_BANKCNT_MASK;
1604 
1605 	if (b > MAX_NR_BANKS) {
1606 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1607 			smp_processor_id(), MAX_NR_BANKS, b);
1608 		b = MAX_NR_BANKS;
1609 	}
1610 
1611 	this_cpu_write(mce_num_banks, b);
1612 
1613 	__mcheck_cpu_mce_banks_init();
1614 
1615 	/* Use accurate RIP reporting if available. */
1616 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1617 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1618 
1619 	if (cap & MCG_SER_P)
1620 		mca_cfg.ser = 1;
1621 }
1622 
1623 static void __mcheck_cpu_init_generic(void)
1624 {
1625 	enum mcp_flags m_fl = 0;
1626 	mce_banks_t all_banks;
1627 	u64 cap;
1628 
1629 	if (!mca_cfg.bootlog)
1630 		m_fl = MCP_DONTLOG;
1631 
1632 	/*
1633 	 * Log the machine checks left over from the previous reset.
1634 	 */
1635 	bitmap_fill(all_banks, MAX_NR_BANKS);
1636 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1637 
1638 	cr4_set_bits(X86_CR4_MCE);
1639 
1640 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1641 	if (cap & MCG_CTL_P)
1642 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1643 }
1644 
1645 static void __mcheck_cpu_init_clear_banks(void)
1646 {
1647 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1648 	int i;
1649 
1650 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1651 		struct mce_bank *b = &mce_banks[i];
1652 
1653 		if (!b->init)
1654 			continue;
1655 		wrmsrl(msr_ops.ctl(i), b->ctl);
1656 		wrmsrl(msr_ops.status(i), 0);
1657 	}
1658 }
1659 
1660 /*
1661  * Do a final check to see if there are any unused/RAZ banks.
1662  *
1663  * This must be done after the banks have been initialized and any quirks have
1664  * been applied.
1665  *
1666  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1667  * Otherwise, a user who disables a bank will not be able to re-enable it
1668  * without a system reboot.
1669  */
1670 static void __mcheck_cpu_check_banks(void)
1671 {
1672 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1673 	u64 msrval;
1674 	int i;
1675 
1676 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1677 		struct mce_bank *b = &mce_banks[i];
1678 
1679 		if (!b->init)
1680 			continue;
1681 
1682 		rdmsrl(msr_ops.ctl(i), msrval);
1683 		b->init = !!msrval;
1684 	}
1685 }
1686 
1687 /*
1688  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1689  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1690  * Vol 3B Table 15-20). But this confuses both the code that determines
1691  * whether the machine check occurred in kernel or user mode, and also
1692  * the severity assessment code. Pretend that EIPV was set, and take the
1693  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1694  */
1695 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1696 {
1697 	if (bank != 0)
1698 		return;
1699 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1700 		return;
1701 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1702 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1703 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1704 			  MCACOD)) !=
1705 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1706 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1707 			  MCI_STATUS_AR|MCACOD_INSTR))
1708 		return;
1709 
1710 	m->mcgstatus |= MCG_STATUS_EIPV;
1711 	m->ip = regs->ip;
1712 	m->cs = regs->cs;
1713 }
1714 
1715 /* Add per CPU specific workarounds here */
1716 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1717 {
1718 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1719 	struct mca_config *cfg = &mca_cfg;
1720 
1721 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1722 		pr_info("unknown CPU type - not enabling MCE support\n");
1723 		return -EOPNOTSUPP;
1724 	}
1725 
1726 	/* This should be disabled by the BIOS, but isn't always */
1727 	if (c->x86_vendor == X86_VENDOR_AMD) {
1728 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1729 			/*
1730 			 * disable GART TBL walk error reporting, which
1731 			 * trips off incorrectly with the IOMMU & 3ware
1732 			 * & Cerberus:
1733 			 */
1734 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1735 		}
1736 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1737 			/*
1738 			 * Lots of broken BIOS around that don't clear them
1739 			 * by default and leave crap in there. Don't log:
1740 			 */
1741 			cfg->bootlog = 0;
1742 		}
1743 		/*
1744 		 * Various K7s with broken bank 0 around. Always disable
1745 		 * by default.
1746 		 */
1747 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1748 			mce_banks[0].ctl = 0;
1749 
1750 		/*
1751 		 * overflow_recov is supported for F15h Models 00h-0fh
1752 		 * even though we don't have a CPUID bit for it.
1753 		 */
1754 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1755 			mce_flags.overflow_recov = 1;
1756 
1757 	}
1758 
1759 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1760 		/*
1761 		 * SDM documents that on family 6 bank 0 should not be written
1762 		 * because it aliases to another special BIOS controlled
1763 		 * register.
1764 		 * But it's not aliased anymore on model 0x1a+
1765 		 * Don't ignore bank 0 completely because there could be a
1766 		 * valid event later, merely don't write CTL0.
1767 		 */
1768 
1769 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1770 			mce_banks[0].init = false;
1771 
1772 		/*
1773 		 * All newer Intel systems support MCE broadcasting. Enable
1774 		 * synchronization with a one second timeout.
1775 		 */
1776 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1777 			cfg->monarch_timeout < 0)
1778 			cfg->monarch_timeout = USEC_PER_SEC;
1779 
1780 		/*
1781 		 * There are also broken BIOSes on some Pentium M and
1782 		 * earlier systems:
1783 		 */
1784 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1785 			cfg->bootlog = 0;
1786 
1787 		if (c->x86 == 6 && c->x86_model == 45)
1788 			quirk_no_way_out = quirk_sandybridge_ifu;
1789 	}
1790 
1791 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1792 		/*
1793 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1794 		 * synchronization with a one second timeout.
1795 		 */
1796 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1797 			if (cfg->monarch_timeout < 0)
1798 				cfg->monarch_timeout = USEC_PER_SEC;
1799 		}
1800 	}
1801 
1802 	if (cfg->monarch_timeout < 0)
1803 		cfg->monarch_timeout = 0;
1804 	if (cfg->bootlog != 0)
1805 		cfg->panic_timeout = 30;
1806 
1807 	return 0;
1808 }
1809 
1810 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1811 {
1812 	if (c->x86 != 5)
1813 		return 0;
1814 
1815 	switch (c->x86_vendor) {
1816 	case X86_VENDOR_INTEL:
1817 		intel_p5_mcheck_init(c);
1818 		return 1;
1819 	case X86_VENDOR_CENTAUR:
1820 		winchip_mcheck_init(c);
1821 		return 1;
1822 	default:
1823 		return 0;
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 /*
1830  * Init basic CPU features needed for early decoding of MCEs.
1831  */
1832 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1833 {
1834 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1835 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1836 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1837 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1838 		mce_flags.amd_threshold	 = 1;
1839 
1840 		if (mce_flags.smca) {
1841 			msr_ops.ctl	= smca_ctl_reg;
1842 			msr_ops.status	= smca_status_reg;
1843 			msr_ops.addr	= smca_addr_reg;
1844 			msr_ops.misc	= smca_misc_reg;
1845 		}
1846 	}
1847 }
1848 
1849 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1850 {
1851 	struct mca_config *cfg = &mca_cfg;
1852 
1853 	 /*
1854 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1855 	  * synchronization with a one second timeout.
1856 	  */
1857 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1858 	     c->x86 > 6) {
1859 		if (cfg->monarch_timeout < 0)
1860 			cfg->monarch_timeout = USEC_PER_SEC;
1861 	}
1862 }
1863 
1864 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1865 {
1866 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1867 
1868 	/*
1869 	 * These CPUs have MCA bank 8 which reports only one error type called
1870 	 * SVAD (System View Address Decoder). The reporting of that error is
1871 	 * controlled by IA32_MC8.CTL.0.
1872 	 *
1873 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1874 	 * virtual machines start and result in a system  panic. Always disable
1875 	 * bank 8 SVAD error by default.
1876 	 */
1877 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1878 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1879 		if (this_cpu_read(mce_num_banks) > 8)
1880 			mce_banks[8].ctl = 0;
1881 	}
1882 
1883 	intel_init_cmci();
1884 	intel_init_lmce();
1885 	mce_adjust_timer = cmci_intel_adjust_timer;
1886 }
1887 
1888 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1889 {
1890 	intel_clear_lmce();
1891 }
1892 
1893 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1894 {
1895 	switch (c->x86_vendor) {
1896 	case X86_VENDOR_INTEL:
1897 		mce_intel_feature_init(c);
1898 		mce_adjust_timer = cmci_intel_adjust_timer;
1899 		break;
1900 
1901 	case X86_VENDOR_AMD: {
1902 		mce_amd_feature_init(c);
1903 		break;
1904 		}
1905 
1906 	case X86_VENDOR_HYGON:
1907 		mce_hygon_feature_init(c);
1908 		break;
1909 
1910 	case X86_VENDOR_CENTAUR:
1911 		mce_centaur_feature_init(c);
1912 		break;
1913 
1914 	case X86_VENDOR_ZHAOXIN:
1915 		mce_zhaoxin_feature_init(c);
1916 		break;
1917 
1918 	default:
1919 		break;
1920 	}
1921 }
1922 
1923 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1924 {
1925 	switch (c->x86_vendor) {
1926 	case X86_VENDOR_INTEL:
1927 		mce_intel_feature_clear(c);
1928 		break;
1929 
1930 	case X86_VENDOR_ZHAOXIN:
1931 		mce_zhaoxin_feature_clear(c);
1932 		break;
1933 
1934 	default:
1935 		break;
1936 	}
1937 }
1938 
1939 static void mce_start_timer(struct timer_list *t)
1940 {
1941 	unsigned long iv = check_interval * HZ;
1942 
1943 	if (mca_cfg.ignore_ce || !iv)
1944 		return;
1945 
1946 	this_cpu_write(mce_next_interval, iv);
1947 	__start_timer(t, iv);
1948 }
1949 
1950 static void __mcheck_cpu_setup_timer(void)
1951 {
1952 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1953 
1954 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1955 }
1956 
1957 static void __mcheck_cpu_init_timer(void)
1958 {
1959 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1960 
1961 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1962 	mce_start_timer(t);
1963 }
1964 
1965 bool filter_mce(struct mce *m)
1966 {
1967 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1968 		return amd_filter_mce(m);
1969 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1970 		return intel_filter_mce(m);
1971 
1972 	return false;
1973 }
1974 
1975 /* Handle unconfigured int18 (should never happen) */
1976 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1977 {
1978 	instrumentation_begin();
1979 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1980 	       smp_processor_id());
1981 	instrumentation_end();
1982 }
1983 
1984 /* Call the installed machine check handler for this CPU setup. */
1985 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
1986 
1987 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
1988 {
1989 	irqentry_state_t irq_state;
1990 
1991 	WARN_ON_ONCE(user_mode(regs));
1992 
1993 	/*
1994 	 * Only required when from kernel mode. See
1995 	 * mce_check_crashing_cpu() for details.
1996 	 */
1997 	if (machine_check_vector == do_machine_check &&
1998 	    mce_check_crashing_cpu())
1999 		return;
2000 
2001 	irq_state = irqentry_nmi_enter(regs);
2002 	/*
2003 	 * The call targets are marked noinstr, but objtool can't figure
2004 	 * that out because it's an indirect call. Annotate it.
2005 	 */
2006 	instrumentation_begin();
2007 
2008 	machine_check_vector(regs);
2009 
2010 	instrumentation_end();
2011 	irqentry_nmi_exit(regs, irq_state);
2012 }
2013 
2014 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2015 {
2016 	irqentry_enter_from_user_mode(regs);
2017 	instrumentation_begin();
2018 
2019 	machine_check_vector(regs);
2020 
2021 	instrumentation_end();
2022 	irqentry_exit_to_user_mode(regs);
2023 }
2024 
2025 #ifdef CONFIG_X86_64
2026 /* MCE hit kernel mode */
2027 DEFINE_IDTENTRY_MCE(exc_machine_check)
2028 {
2029 	unsigned long dr7;
2030 
2031 	dr7 = local_db_save();
2032 	exc_machine_check_kernel(regs);
2033 	local_db_restore(dr7);
2034 }
2035 
2036 /* The user mode variant. */
2037 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2038 {
2039 	unsigned long dr7;
2040 
2041 	dr7 = local_db_save();
2042 	exc_machine_check_user(regs);
2043 	local_db_restore(dr7);
2044 }
2045 #else
2046 /* 32bit unified entry point */
2047 DEFINE_IDTENTRY_RAW(exc_machine_check)
2048 {
2049 	unsigned long dr7;
2050 
2051 	dr7 = local_db_save();
2052 	if (user_mode(regs))
2053 		exc_machine_check_user(regs);
2054 	else
2055 		exc_machine_check_kernel(regs);
2056 	local_db_restore(dr7);
2057 }
2058 #endif
2059 
2060 /*
2061  * Called for each booted CPU to set up machine checks.
2062  * Must be called with preempt off:
2063  */
2064 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2065 {
2066 	if (mca_cfg.disabled)
2067 		return;
2068 
2069 	if (__mcheck_cpu_ancient_init(c))
2070 		return;
2071 
2072 	if (!mce_available(c))
2073 		return;
2074 
2075 	__mcheck_cpu_cap_init();
2076 
2077 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2078 		mca_cfg.disabled = 1;
2079 		return;
2080 	}
2081 
2082 	if (mce_gen_pool_init()) {
2083 		mca_cfg.disabled = 1;
2084 		pr_emerg("Couldn't allocate MCE records pool!\n");
2085 		return;
2086 	}
2087 
2088 	machine_check_vector = do_machine_check;
2089 
2090 	__mcheck_cpu_init_early(c);
2091 	__mcheck_cpu_init_generic();
2092 	__mcheck_cpu_init_vendor(c);
2093 	__mcheck_cpu_init_clear_banks();
2094 	__mcheck_cpu_check_banks();
2095 	__mcheck_cpu_setup_timer();
2096 }
2097 
2098 /*
2099  * Called for each booted CPU to clear some machine checks opt-ins
2100  */
2101 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2102 {
2103 	if (mca_cfg.disabled)
2104 		return;
2105 
2106 	if (!mce_available(c))
2107 		return;
2108 
2109 	/*
2110 	 * Possibly to clear general settings generic to x86
2111 	 * __mcheck_cpu_clear_generic(c);
2112 	 */
2113 	__mcheck_cpu_clear_vendor(c);
2114 
2115 }
2116 
2117 static void __mce_disable_bank(void *arg)
2118 {
2119 	int bank = *((int *)arg);
2120 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2121 	cmci_disable_bank(bank);
2122 }
2123 
2124 void mce_disable_bank(int bank)
2125 {
2126 	if (bank >= this_cpu_read(mce_num_banks)) {
2127 		pr_warn(FW_BUG
2128 			"Ignoring request to disable invalid MCA bank %d.\n",
2129 			bank);
2130 		return;
2131 	}
2132 	set_bit(bank, mce_banks_ce_disabled);
2133 	on_each_cpu(__mce_disable_bank, &bank, 1);
2134 }
2135 
2136 /*
2137  * mce=off Disables machine check
2138  * mce=no_cmci Disables CMCI
2139  * mce=no_lmce Disables LMCE
2140  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2141  * mce=print_all Print all machine check logs to console
2142  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2143  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2144  *	monarchtimeout is how long to wait for other CPUs on machine
2145  *	check, or 0 to not wait
2146  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2147 	and older.
2148  * mce=nobootlog Don't log MCEs from before booting.
2149  * mce=bios_cmci_threshold Don't program the CMCI threshold
2150  * mce=recovery force enable copy_mc_fragile()
2151  */
2152 static int __init mcheck_enable(char *str)
2153 {
2154 	struct mca_config *cfg = &mca_cfg;
2155 
2156 	if (*str == 0) {
2157 		enable_p5_mce();
2158 		return 1;
2159 	}
2160 	if (*str == '=')
2161 		str++;
2162 	if (!strcmp(str, "off"))
2163 		cfg->disabled = 1;
2164 	else if (!strcmp(str, "no_cmci"))
2165 		cfg->cmci_disabled = true;
2166 	else if (!strcmp(str, "no_lmce"))
2167 		cfg->lmce_disabled = 1;
2168 	else if (!strcmp(str, "dont_log_ce"))
2169 		cfg->dont_log_ce = true;
2170 	else if (!strcmp(str, "print_all"))
2171 		cfg->print_all = true;
2172 	else if (!strcmp(str, "ignore_ce"))
2173 		cfg->ignore_ce = true;
2174 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2175 		cfg->bootlog = (str[0] == 'b');
2176 	else if (!strcmp(str, "bios_cmci_threshold"))
2177 		cfg->bios_cmci_threshold = 1;
2178 	else if (!strcmp(str, "recovery"))
2179 		cfg->recovery = 1;
2180 	else if (isdigit(str[0])) {
2181 		if (get_option(&str, &cfg->tolerant) == 2)
2182 			get_option(&str, &(cfg->monarch_timeout));
2183 	} else {
2184 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2185 		return 0;
2186 	}
2187 	return 1;
2188 }
2189 __setup("mce", mcheck_enable);
2190 
2191 int __init mcheck_init(void)
2192 {
2193 	mce_register_decode_chain(&early_nb);
2194 	mce_register_decode_chain(&mce_uc_nb);
2195 	mce_register_decode_chain(&mce_default_nb);
2196 	mcheck_vendor_init_severity();
2197 
2198 	INIT_WORK(&mce_work, mce_gen_pool_process);
2199 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2200 
2201 	return 0;
2202 }
2203 
2204 /*
2205  * mce_syscore: PM support
2206  */
2207 
2208 /*
2209  * Disable machine checks on suspend and shutdown. We can't really handle
2210  * them later.
2211  */
2212 static void mce_disable_error_reporting(void)
2213 {
2214 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2215 	int i;
2216 
2217 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2218 		struct mce_bank *b = &mce_banks[i];
2219 
2220 		if (b->init)
2221 			wrmsrl(msr_ops.ctl(i), 0);
2222 	}
2223 	return;
2224 }
2225 
2226 static void vendor_disable_error_reporting(void)
2227 {
2228 	/*
2229 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2230 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2231 	 * is bad, since it will inhibit reporting for all shared resources on
2232 	 * the socket like the last level cache (LLC), the integrated memory
2233 	 * controller (iMC), etc.
2234 	 */
2235 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2236 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2237 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2238 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2239 		return;
2240 
2241 	mce_disable_error_reporting();
2242 }
2243 
2244 static int mce_syscore_suspend(void)
2245 {
2246 	vendor_disable_error_reporting();
2247 	return 0;
2248 }
2249 
2250 static void mce_syscore_shutdown(void)
2251 {
2252 	vendor_disable_error_reporting();
2253 }
2254 
2255 /*
2256  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2257  * Only one CPU is active at this time, the others get re-added later using
2258  * CPU hotplug:
2259  */
2260 static void mce_syscore_resume(void)
2261 {
2262 	__mcheck_cpu_init_generic();
2263 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2264 	__mcheck_cpu_init_clear_banks();
2265 }
2266 
2267 static struct syscore_ops mce_syscore_ops = {
2268 	.suspend	= mce_syscore_suspend,
2269 	.shutdown	= mce_syscore_shutdown,
2270 	.resume		= mce_syscore_resume,
2271 };
2272 
2273 /*
2274  * mce_device: Sysfs support
2275  */
2276 
2277 static void mce_cpu_restart(void *data)
2278 {
2279 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2280 		return;
2281 	__mcheck_cpu_init_generic();
2282 	__mcheck_cpu_init_clear_banks();
2283 	__mcheck_cpu_init_timer();
2284 }
2285 
2286 /* Reinit MCEs after user configuration changes */
2287 static void mce_restart(void)
2288 {
2289 	mce_timer_delete_all();
2290 	on_each_cpu(mce_cpu_restart, NULL, 1);
2291 }
2292 
2293 /* Toggle features for corrected errors */
2294 static void mce_disable_cmci(void *data)
2295 {
2296 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2297 		return;
2298 	cmci_clear();
2299 }
2300 
2301 static void mce_enable_ce(void *all)
2302 {
2303 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2304 		return;
2305 	cmci_reenable();
2306 	cmci_recheck();
2307 	if (all)
2308 		__mcheck_cpu_init_timer();
2309 }
2310 
2311 static struct bus_type mce_subsys = {
2312 	.name		= "machinecheck",
2313 	.dev_name	= "machinecheck",
2314 };
2315 
2316 DEFINE_PER_CPU(struct device *, mce_device);
2317 
2318 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2319 {
2320 	return container_of(attr, struct mce_bank_dev, attr);
2321 }
2322 
2323 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2324 			 char *buf)
2325 {
2326 	u8 bank = attr_to_bank(attr)->bank;
2327 	struct mce_bank *b;
2328 
2329 	if (bank >= per_cpu(mce_num_banks, s->id))
2330 		return -EINVAL;
2331 
2332 	b = &per_cpu(mce_banks_array, s->id)[bank];
2333 
2334 	if (!b->init)
2335 		return -ENODEV;
2336 
2337 	return sprintf(buf, "%llx\n", b->ctl);
2338 }
2339 
2340 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2341 			const char *buf, size_t size)
2342 {
2343 	u8 bank = attr_to_bank(attr)->bank;
2344 	struct mce_bank *b;
2345 	u64 new;
2346 
2347 	if (kstrtou64(buf, 0, &new) < 0)
2348 		return -EINVAL;
2349 
2350 	if (bank >= per_cpu(mce_num_banks, s->id))
2351 		return -EINVAL;
2352 
2353 	b = &per_cpu(mce_banks_array, s->id)[bank];
2354 
2355 	if (!b->init)
2356 		return -ENODEV;
2357 
2358 	b->ctl = new;
2359 	mce_restart();
2360 
2361 	return size;
2362 }
2363 
2364 static ssize_t set_ignore_ce(struct device *s,
2365 			     struct device_attribute *attr,
2366 			     const char *buf, size_t size)
2367 {
2368 	u64 new;
2369 
2370 	if (kstrtou64(buf, 0, &new) < 0)
2371 		return -EINVAL;
2372 
2373 	mutex_lock(&mce_sysfs_mutex);
2374 	if (mca_cfg.ignore_ce ^ !!new) {
2375 		if (new) {
2376 			/* disable ce features */
2377 			mce_timer_delete_all();
2378 			on_each_cpu(mce_disable_cmci, NULL, 1);
2379 			mca_cfg.ignore_ce = true;
2380 		} else {
2381 			/* enable ce features */
2382 			mca_cfg.ignore_ce = false;
2383 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2384 		}
2385 	}
2386 	mutex_unlock(&mce_sysfs_mutex);
2387 
2388 	return size;
2389 }
2390 
2391 static ssize_t set_cmci_disabled(struct device *s,
2392 				 struct device_attribute *attr,
2393 				 const char *buf, size_t size)
2394 {
2395 	u64 new;
2396 
2397 	if (kstrtou64(buf, 0, &new) < 0)
2398 		return -EINVAL;
2399 
2400 	mutex_lock(&mce_sysfs_mutex);
2401 	if (mca_cfg.cmci_disabled ^ !!new) {
2402 		if (new) {
2403 			/* disable cmci */
2404 			on_each_cpu(mce_disable_cmci, NULL, 1);
2405 			mca_cfg.cmci_disabled = true;
2406 		} else {
2407 			/* enable cmci */
2408 			mca_cfg.cmci_disabled = false;
2409 			on_each_cpu(mce_enable_ce, NULL, 1);
2410 		}
2411 	}
2412 	mutex_unlock(&mce_sysfs_mutex);
2413 
2414 	return size;
2415 }
2416 
2417 static ssize_t store_int_with_restart(struct device *s,
2418 				      struct device_attribute *attr,
2419 				      const char *buf, size_t size)
2420 {
2421 	unsigned long old_check_interval = check_interval;
2422 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2423 
2424 	if (check_interval == old_check_interval)
2425 		return ret;
2426 
2427 	mutex_lock(&mce_sysfs_mutex);
2428 	mce_restart();
2429 	mutex_unlock(&mce_sysfs_mutex);
2430 
2431 	return ret;
2432 }
2433 
2434 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2435 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2436 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2437 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2438 
2439 static struct dev_ext_attribute dev_attr_check_interval = {
2440 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2441 	&check_interval
2442 };
2443 
2444 static struct dev_ext_attribute dev_attr_ignore_ce = {
2445 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2446 	&mca_cfg.ignore_ce
2447 };
2448 
2449 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2450 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2451 	&mca_cfg.cmci_disabled
2452 };
2453 
2454 static struct device_attribute *mce_device_attrs[] = {
2455 	&dev_attr_tolerant.attr,
2456 	&dev_attr_check_interval.attr,
2457 #ifdef CONFIG_X86_MCELOG_LEGACY
2458 	&dev_attr_trigger,
2459 #endif
2460 	&dev_attr_monarch_timeout.attr,
2461 	&dev_attr_dont_log_ce.attr,
2462 	&dev_attr_print_all.attr,
2463 	&dev_attr_ignore_ce.attr,
2464 	&dev_attr_cmci_disabled.attr,
2465 	NULL
2466 };
2467 
2468 static cpumask_var_t mce_device_initialized;
2469 
2470 static void mce_device_release(struct device *dev)
2471 {
2472 	kfree(dev);
2473 }
2474 
2475 /* Per CPU device init. All of the CPUs still share the same bank device: */
2476 static int mce_device_create(unsigned int cpu)
2477 {
2478 	struct device *dev;
2479 	int err;
2480 	int i, j;
2481 
2482 	if (!mce_available(&boot_cpu_data))
2483 		return -EIO;
2484 
2485 	dev = per_cpu(mce_device, cpu);
2486 	if (dev)
2487 		return 0;
2488 
2489 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2490 	if (!dev)
2491 		return -ENOMEM;
2492 	dev->id  = cpu;
2493 	dev->bus = &mce_subsys;
2494 	dev->release = &mce_device_release;
2495 
2496 	err = device_register(dev);
2497 	if (err) {
2498 		put_device(dev);
2499 		return err;
2500 	}
2501 
2502 	for (i = 0; mce_device_attrs[i]; i++) {
2503 		err = device_create_file(dev, mce_device_attrs[i]);
2504 		if (err)
2505 			goto error;
2506 	}
2507 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2508 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2509 		if (err)
2510 			goto error2;
2511 	}
2512 	cpumask_set_cpu(cpu, mce_device_initialized);
2513 	per_cpu(mce_device, cpu) = dev;
2514 
2515 	return 0;
2516 error2:
2517 	while (--j >= 0)
2518 		device_remove_file(dev, &mce_bank_devs[j].attr);
2519 error:
2520 	while (--i >= 0)
2521 		device_remove_file(dev, mce_device_attrs[i]);
2522 
2523 	device_unregister(dev);
2524 
2525 	return err;
2526 }
2527 
2528 static void mce_device_remove(unsigned int cpu)
2529 {
2530 	struct device *dev = per_cpu(mce_device, cpu);
2531 	int i;
2532 
2533 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2534 		return;
2535 
2536 	for (i = 0; mce_device_attrs[i]; i++)
2537 		device_remove_file(dev, mce_device_attrs[i]);
2538 
2539 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2540 		device_remove_file(dev, &mce_bank_devs[i].attr);
2541 
2542 	device_unregister(dev);
2543 	cpumask_clear_cpu(cpu, mce_device_initialized);
2544 	per_cpu(mce_device, cpu) = NULL;
2545 }
2546 
2547 /* Make sure there are no machine checks on offlined CPUs. */
2548 static void mce_disable_cpu(void)
2549 {
2550 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2551 		return;
2552 
2553 	if (!cpuhp_tasks_frozen)
2554 		cmci_clear();
2555 
2556 	vendor_disable_error_reporting();
2557 }
2558 
2559 static void mce_reenable_cpu(void)
2560 {
2561 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2562 	int i;
2563 
2564 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2565 		return;
2566 
2567 	if (!cpuhp_tasks_frozen)
2568 		cmci_reenable();
2569 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2570 		struct mce_bank *b = &mce_banks[i];
2571 
2572 		if (b->init)
2573 			wrmsrl(msr_ops.ctl(i), b->ctl);
2574 	}
2575 }
2576 
2577 static int mce_cpu_dead(unsigned int cpu)
2578 {
2579 	mce_intel_hcpu_update(cpu);
2580 
2581 	/* intentionally ignoring frozen here */
2582 	if (!cpuhp_tasks_frozen)
2583 		cmci_rediscover();
2584 	return 0;
2585 }
2586 
2587 static int mce_cpu_online(unsigned int cpu)
2588 {
2589 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2590 	int ret;
2591 
2592 	mce_device_create(cpu);
2593 
2594 	ret = mce_threshold_create_device(cpu);
2595 	if (ret) {
2596 		mce_device_remove(cpu);
2597 		return ret;
2598 	}
2599 	mce_reenable_cpu();
2600 	mce_start_timer(t);
2601 	return 0;
2602 }
2603 
2604 static int mce_cpu_pre_down(unsigned int cpu)
2605 {
2606 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2607 
2608 	mce_disable_cpu();
2609 	del_timer_sync(t);
2610 	mce_threshold_remove_device(cpu);
2611 	mce_device_remove(cpu);
2612 	return 0;
2613 }
2614 
2615 static __init void mce_init_banks(void)
2616 {
2617 	int i;
2618 
2619 	for (i = 0; i < MAX_NR_BANKS; i++) {
2620 		struct mce_bank_dev *b = &mce_bank_devs[i];
2621 		struct device_attribute *a = &b->attr;
2622 
2623 		b->bank = i;
2624 
2625 		sysfs_attr_init(&a->attr);
2626 		a->attr.name	= b->attrname;
2627 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2628 
2629 		a->attr.mode	= 0644;
2630 		a->show		= show_bank;
2631 		a->store	= set_bank;
2632 	}
2633 }
2634 
2635 /*
2636  * When running on XEN, this initcall is ordered against the XEN mcelog
2637  * initcall:
2638  *
2639  *   device_initcall(xen_late_init_mcelog);
2640  *   device_initcall_sync(mcheck_init_device);
2641  */
2642 static __init int mcheck_init_device(void)
2643 {
2644 	int err;
2645 
2646 	/*
2647 	 * Check if we have a spare virtual bit. This will only become
2648 	 * a problem if/when we move beyond 5-level page tables.
2649 	 */
2650 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2651 
2652 	if (!mce_available(&boot_cpu_data)) {
2653 		err = -EIO;
2654 		goto err_out;
2655 	}
2656 
2657 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2658 		err = -ENOMEM;
2659 		goto err_out;
2660 	}
2661 
2662 	mce_init_banks();
2663 
2664 	err = subsys_system_register(&mce_subsys, NULL);
2665 	if (err)
2666 		goto err_out_mem;
2667 
2668 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2669 				mce_cpu_dead);
2670 	if (err)
2671 		goto err_out_mem;
2672 
2673 	/*
2674 	 * Invokes mce_cpu_online() on all CPUs which are online when
2675 	 * the state is installed.
2676 	 */
2677 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2678 				mce_cpu_online, mce_cpu_pre_down);
2679 	if (err < 0)
2680 		goto err_out_online;
2681 
2682 	register_syscore_ops(&mce_syscore_ops);
2683 
2684 	return 0;
2685 
2686 err_out_online:
2687 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2688 
2689 err_out_mem:
2690 	free_cpumask_var(mce_device_initialized);
2691 
2692 err_out:
2693 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2694 
2695 	return err;
2696 }
2697 device_initcall_sync(mcheck_init_device);
2698 
2699 /*
2700  * Old style boot options parsing. Only for compatibility.
2701  */
2702 static int __init mcheck_disable(char *str)
2703 {
2704 	mca_cfg.disabled = 1;
2705 	return 1;
2706 }
2707 __setup("nomce", mcheck_disable);
2708 
2709 #ifdef CONFIG_DEBUG_FS
2710 struct dentry *mce_get_debugfs_dir(void)
2711 {
2712 	static struct dentry *dmce;
2713 
2714 	if (!dmce)
2715 		dmce = debugfs_create_dir("mce", NULL);
2716 
2717 	return dmce;
2718 }
2719 
2720 static void mce_reset(void)
2721 {
2722 	cpu_missing = 0;
2723 	atomic_set(&mce_fake_panicked, 0);
2724 	atomic_set(&mce_executing, 0);
2725 	atomic_set(&mce_callin, 0);
2726 	atomic_set(&global_nwo, 0);
2727 	cpumask_setall(&mce_missing_cpus);
2728 }
2729 
2730 static int fake_panic_get(void *data, u64 *val)
2731 {
2732 	*val = fake_panic;
2733 	return 0;
2734 }
2735 
2736 static int fake_panic_set(void *data, u64 val)
2737 {
2738 	mce_reset();
2739 	fake_panic = val;
2740 	return 0;
2741 }
2742 
2743 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2744 			 "%llu\n");
2745 
2746 static void __init mcheck_debugfs_init(void)
2747 {
2748 	struct dentry *dmce;
2749 
2750 	dmce = mce_get_debugfs_dir();
2751 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2752 				   &fake_panic_fops);
2753 }
2754 #else
2755 static void __init mcheck_debugfs_init(void) { }
2756 #endif
2757 
2758 static int __init mcheck_late_init(void)
2759 {
2760 	if (mca_cfg.recovery)
2761 		enable_copy_mc_fragile();
2762 
2763 	mcheck_debugfs_init();
2764 
2765 	/*
2766 	 * Flush out everything that has been logged during early boot, now that
2767 	 * everything has been initialized (workqueues, decoders, ...).
2768 	 */
2769 	mce_schedule_work();
2770 
2771 	return 0;
2772 }
2773 late_initcall(mcheck_late_init);
2774