xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision aadaeca4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	.monarch_timeout = -1
90 };
91 
92 static DEFINE_PER_CPU(struct mce, mces_seen);
93 static unsigned long mce_need_notify;
94 
95 /*
96  * MCA banks polled by the period polling timer for corrected events.
97  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
98  */
99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101 };
102 
103 /*
104  * MCA banks controlled through firmware first for corrected errors.
105  * This is a global list of banks for which we won't enable CMCI and we
106  * won't poll. Firmware controls these banks and is responsible for
107  * reporting corrected errors through GHES. Uncorrected/recoverable
108  * errors are still notified through a machine check.
109  */
110 mce_banks_t mce_banks_ce_disabled;
111 
112 static struct work_struct mce_work;
113 static struct irq_work mce_irq_work;
114 
115 /*
116  * CPU/chipset specific EDAC code can register a notifier call here to print
117  * MCE errors in a human-readable form.
118  */
119 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
120 
121 /* Do initial initialization of a struct mce */
122 void mce_setup(struct mce *m)
123 {
124 	memset(m, 0, sizeof(struct mce));
125 	m->cpu = m->extcpu = smp_processor_id();
126 	/* need the internal __ version to avoid deadlocks */
127 	m->time = __ktime_get_real_seconds();
128 	m->cpuvendor = boot_cpu_data.x86_vendor;
129 	m->cpuid = cpuid_eax(1);
130 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
131 	m->apicid = cpu_data(m->extcpu).initial_apicid;
132 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
133 	m->ppin = cpu_data(m->extcpu).ppin;
134 	m->microcode = boot_cpu_data.microcode;
135 }
136 
137 DEFINE_PER_CPU(struct mce, injectm);
138 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
139 
140 void mce_log(struct mce *m)
141 {
142 	if (!mce_gen_pool_add(m))
143 		irq_work_queue(&mce_irq_work);
144 }
145 EXPORT_SYMBOL_GPL(mce_log);
146 
147 void mce_register_decode_chain(struct notifier_block *nb)
148 {
149 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
150 		    nb->priority > MCE_PRIO_HIGHEST))
151 		return;
152 
153 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
154 }
155 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
156 
157 void mce_unregister_decode_chain(struct notifier_block *nb)
158 {
159 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
160 }
161 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
162 
163 static void __print_mce(struct mce *m)
164 {
165 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
166 		 m->extcpu,
167 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
168 		 m->mcgstatus, m->bank, m->status);
169 
170 	if (m->ip) {
171 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
172 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
173 			m->cs, m->ip);
174 
175 		if (m->cs == __KERNEL_CS)
176 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
177 		pr_cont("\n");
178 	}
179 
180 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
181 	if (m->addr)
182 		pr_cont("ADDR %llx ", m->addr);
183 	if (m->misc)
184 		pr_cont("MISC %llx ", m->misc);
185 	if (m->ppin)
186 		pr_cont("PPIN %llx ", m->ppin);
187 
188 	if (mce_flags.smca) {
189 		if (m->synd)
190 			pr_cont("SYND %llx ", m->synd);
191 		if (m->ipid)
192 			pr_cont("IPID %llx ", m->ipid);
193 	}
194 
195 	pr_cont("\n");
196 
197 	/*
198 	 * Note this output is parsed by external tools and old fields
199 	 * should not be changed.
200 	 */
201 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
202 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
203 		m->microcode);
204 }
205 
206 static void print_mce(struct mce *m)
207 {
208 	__print_mce(m);
209 
210 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
211 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
212 }
213 
214 #define PANIC_TIMEOUT 5 /* 5 seconds */
215 
216 static atomic_t mce_panicked;
217 
218 static int fake_panic;
219 static atomic_t mce_fake_panicked;
220 
221 /* Panic in progress. Enable interrupts and wait for final IPI */
222 static void wait_for_panic(void)
223 {
224 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
225 
226 	preempt_disable();
227 	local_irq_enable();
228 	while (timeout-- > 0)
229 		udelay(1);
230 	if (panic_timeout == 0)
231 		panic_timeout = mca_cfg.panic_timeout;
232 	panic("Panicing machine check CPU died");
233 }
234 
235 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
236 {
237 	struct llist_node *pending;
238 	struct mce_evt_llist *l;
239 	int apei_err = 0;
240 
241 	/*
242 	 * Allow instrumentation around external facilities usage. Not that it
243 	 * matters a whole lot since the machine is going to panic anyway.
244 	 */
245 	instrumentation_begin();
246 
247 	if (!fake_panic) {
248 		/*
249 		 * Make sure only one CPU runs in machine check panic
250 		 */
251 		if (atomic_inc_return(&mce_panicked) > 1)
252 			wait_for_panic();
253 		barrier();
254 
255 		bust_spinlocks(1);
256 		console_verbose();
257 	} else {
258 		/* Don't log too much for fake panic */
259 		if (atomic_inc_return(&mce_fake_panicked) > 1)
260 			goto out;
261 	}
262 	pending = mce_gen_pool_prepare_records();
263 	/* First print corrected ones that are still unlogged */
264 	llist_for_each_entry(l, pending, llnode) {
265 		struct mce *m = &l->mce;
266 		if (!(m->status & MCI_STATUS_UC)) {
267 			print_mce(m);
268 			if (!apei_err)
269 				apei_err = apei_write_mce(m);
270 		}
271 	}
272 	/* Now print uncorrected but with the final one last */
273 	llist_for_each_entry(l, pending, llnode) {
274 		struct mce *m = &l->mce;
275 		if (!(m->status & MCI_STATUS_UC))
276 			continue;
277 		if (!final || mce_cmp(m, final)) {
278 			print_mce(m);
279 			if (!apei_err)
280 				apei_err = apei_write_mce(m);
281 		}
282 	}
283 	if (final) {
284 		print_mce(final);
285 		if (!apei_err)
286 			apei_err = apei_write_mce(final);
287 	}
288 	if (exp)
289 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
290 	if (!fake_panic) {
291 		if (panic_timeout == 0)
292 			panic_timeout = mca_cfg.panic_timeout;
293 		panic(msg);
294 	} else
295 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
296 
297 out:
298 	instrumentation_end();
299 }
300 
301 /* Support code for software error injection */
302 
303 static int msr_to_offset(u32 msr)
304 {
305 	unsigned bank = __this_cpu_read(injectm.bank);
306 
307 	if (msr == mca_cfg.rip_msr)
308 		return offsetof(struct mce, ip);
309 	if (msr == mca_msr_reg(bank, MCA_STATUS))
310 		return offsetof(struct mce, status);
311 	if (msr == mca_msr_reg(bank, MCA_ADDR))
312 		return offsetof(struct mce, addr);
313 	if (msr == mca_msr_reg(bank, MCA_MISC))
314 		return offsetof(struct mce, misc);
315 	if (msr == MSR_IA32_MCG_STATUS)
316 		return offsetof(struct mce, mcgstatus);
317 	return -1;
318 }
319 
320 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
321 {
322 	if (wrmsr) {
323 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
324 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
325 			 regs->ip, (void *)regs->ip);
326 	} else {
327 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
328 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
329 	}
330 
331 	show_stack_regs(regs);
332 
333 	panic("MCA architectural violation!\n");
334 
335 	while (true)
336 		cpu_relax();
337 }
338 
339 /* MSR access wrappers used for error injection */
340 noinstr u64 mce_rdmsrl(u32 msr)
341 {
342 	DECLARE_ARGS(val, low, high);
343 
344 	if (__this_cpu_read(injectm.finished)) {
345 		int offset;
346 		u64 ret;
347 
348 		instrumentation_begin();
349 
350 		offset = msr_to_offset(msr);
351 		if (offset < 0)
352 			ret = 0;
353 		else
354 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
355 
356 		instrumentation_end();
357 
358 		return ret;
359 	}
360 
361 	/*
362 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
363 	 * architectural violation and needs to be reported to hw vendor. Panic
364 	 * the box to not allow any further progress.
365 	 */
366 	asm volatile("1: rdmsr\n"
367 		     "2:\n"
368 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
369 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
370 
371 
372 	return EAX_EDX_VAL(val, low, high);
373 }
374 
375 static noinstr void mce_wrmsrl(u32 msr, u64 v)
376 {
377 	u32 low, high;
378 
379 	if (__this_cpu_read(injectm.finished)) {
380 		int offset;
381 
382 		instrumentation_begin();
383 
384 		offset = msr_to_offset(msr);
385 		if (offset >= 0)
386 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
387 
388 		instrumentation_end();
389 
390 		return;
391 	}
392 
393 	low  = (u32)v;
394 	high = (u32)(v >> 32);
395 
396 	/* See comment in mce_rdmsrl() */
397 	asm volatile("1: wrmsr\n"
398 		     "2:\n"
399 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
400 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
401 }
402 
403 /*
404  * Collect all global (w.r.t. this processor) status about this machine
405  * check into our "mce" struct so that we can use it later to assess
406  * the severity of the problem as we read per-bank specific details.
407  */
408 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
409 {
410 	/*
411 	 * Enable instrumentation around mce_setup() which calls external
412 	 * facilities.
413 	 */
414 	instrumentation_begin();
415 	mce_setup(m);
416 	instrumentation_end();
417 
418 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
419 	if (regs) {
420 		/*
421 		 * Get the address of the instruction at the time of
422 		 * the machine check error.
423 		 */
424 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
425 			m->ip = regs->ip;
426 			m->cs = regs->cs;
427 
428 			/*
429 			 * When in VM86 mode make the cs look like ring 3
430 			 * always. This is a lie, but it's better than passing
431 			 * the additional vm86 bit around everywhere.
432 			 */
433 			if (v8086_mode(regs))
434 				m->cs |= 3;
435 		}
436 		/* Use accurate RIP reporting if available. */
437 		if (mca_cfg.rip_msr)
438 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
439 	}
440 }
441 
442 int mce_available(struct cpuinfo_x86 *c)
443 {
444 	if (mca_cfg.disabled)
445 		return 0;
446 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
447 }
448 
449 static void mce_schedule_work(void)
450 {
451 	if (!mce_gen_pool_empty())
452 		schedule_work(&mce_work);
453 }
454 
455 static void mce_irq_work_cb(struct irq_work *entry)
456 {
457 	mce_schedule_work();
458 }
459 
460 /*
461  * Check if the address reported by the CPU is in a format we can parse.
462  * It would be possible to add code for most other cases, but all would
463  * be somewhat complicated (e.g. segment offset would require an instruction
464  * parser). So only support physical addresses up to page granularity for now.
465  */
466 int mce_usable_address(struct mce *m)
467 {
468 	if (!(m->status & MCI_STATUS_ADDRV))
469 		return 0;
470 
471 	/* Checks after this one are Intel/Zhaoxin-specific: */
472 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
473 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
474 		return 1;
475 
476 	if (!(m->status & MCI_STATUS_MISCV))
477 		return 0;
478 
479 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
480 		return 0;
481 
482 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
483 		return 0;
484 
485 	return 1;
486 }
487 EXPORT_SYMBOL_GPL(mce_usable_address);
488 
489 bool mce_is_memory_error(struct mce *m)
490 {
491 	switch (m->cpuvendor) {
492 	case X86_VENDOR_AMD:
493 	case X86_VENDOR_HYGON:
494 		return amd_mce_is_memory_error(m);
495 
496 	case X86_VENDOR_INTEL:
497 	case X86_VENDOR_ZHAOXIN:
498 		/*
499 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
500 		 *
501 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
502 		 * indicating a memory error. Bit 8 is used for indicating a
503 		 * cache hierarchy error. The combination of bit 2 and bit 3
504 		 * is used for indicating a `generic' cache hierarchy error
505 		 * But we can't just blindly check the above bits, because if
506 		 * bit 11 is set, then it is a bus/interconnect error - and
507 		 * either way the above bits just gives more detail on what
508 		 * bus/interconnect error happened. Note that bit 12 can be
509 		 * ignored, as it's the "filter" bit.
510 		 */
511 		return (m->status & 0xef80) == BIT(7) ||
512 		       (m->status & 0xef00) == BIT(8) ||
513 		       (m->status & 0xeffc) == 0xc;
514 
515 	default:
516 		return false;
517 	}
518 }
519 EXPORT_SYMBOL_GPL(mce_is_memory_error);
520 
521 static bool whole_page(struct mce *m)
522 {
523 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
524 		return true;
525 
526 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
527 }
528 
529 bool mce_is_correctable(struct mce *m)
530 {
531 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
532 		return false;
533 
534 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
535 		return false;
536 
537 	if (m->status & MCI_STATUS_UC)
538 		return false;
539 
540 	return true;
541 }
542 EXPORT_SYMBOL_GPL(mce_is_correctable);
543 
544 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
545 			      void *data)
546 {
547 	struct mce *m = (struct mce *)data;
548 
549 	if (!m)
550 		return NOTIFY_DONE;
551 
552 	/* Emit the trace record: */
553 	trace_mce_record(m);
554 
555 	set_bit(0, &mce_need_notify);
556 
557 	mce_notify_irq();
558 
559 	return NOTIFY_DONE;
560 }
561 
562 static struct notifier_block early_nb = {
563 	.notifier_call	= mce_early_notifier,
564 	.priority	= MCE_PRIO_EARLY,
565 };
566 
567 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
568 			      void *data)
569 {
570 	struct mce *mce = (struct mce *)data;
571 	unsigned long pfn;
572 
573 	if (!mce || !mce_usable_address(mce))
574 		return NOTIFY_DONE;
575 
576 	if (mce->severity != MCE_AO_SEVERITY &&
577 	    mce->severity != MCE_DEFERRED_SEVERITY)
578 		return NOTIFY_DONE;
579 
580 	pfn = mce->addr >> PAGE_SHIFT;
581 	if (!memory_failure(pfn, 0)) {
582 		set_mce_nospec(pfn, whole_page(mce));
583 		mce->kflags |= MCE_HANDLED_UC;
584 	}
585 
586 	return NOTIFY_OK;
587 }
588 
589 static struct notifier_block mce_uc_nb = {
590 	.notifier_call	= uc_decode_notifier,
591 	.priority	= MCE_PRIO_UC,
592 };
593 
594 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
595 				void *data)
596 {
597 	struct mce *m = (struct mce *)data;
598 
599 	if (!m)
600 		return NOTIFY_DONE;
601 
602 	if (mca_cfg.print_all || !m->kflags)
603 		__print_mce(m);
604 
605 	return NOTIFY_DONE;
606 }
607 
608 static struct notifier_block mce_default_nb = {
609 	.notifier_call	= mce_default_notifier,
610 	/* lowest prio, we want it to run last. */
611 	.priority	= MCE_PRIO_LOWEST,
612 };
613 
614 /*
615  * Read ADDR and MISC registers.
616  */
617 static noinstr void mce_read_aux(struct mce *m, int i)
618 {
619 	if (m->status & MCI_STATUS_MISCV)
620 		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
621 
622 	if (m->status & MCI_STATUS_ADDRV) {
623 		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
624 
625 		/*
626 		 * Mask the reported address by the reported granularity.
627 		 */
628 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
629 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
630 			m->addr >>= shift;
631 			m->addr <<= shift;
632 		}
633 
634 		/*
635 		 * Extract [55:<lsb>] where lsb is the least significant
636 		 * *valid* bit of the address bits.
637 		 */
638 		if (mce_flags.smca) {
639 			u8 lsb = (m->addr >> 56) & 0x3f;
640 
641 			m->addr &= GENMASK_ULL(55, lsb);
642 		}
643 	}
644 
645 	if (mce_flags.smca) {
646 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
647 
648 		if (m->status & MCI_STATUS_SYNDV)
649 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
650 	}
651 }
652 
653 DEFINE_PER_CPU(unsigned, mce_poll_count);
654 
655 /*
656  * Poll for corrected events or events that happened before reset.
657  * Those are just logged through /dev/mcelog.
658  *
659  * This is executed in standard interrupt context.
660  *
661  * Note: spec recommends to panic for fatal unsignalled
662  * errors here. However this would be quite problematic --
663  * we would need to reimplement the Monarch handling and
664  * it would mess up the exclusion between exception handler
665  * and poll handler -- * so we skip this for now.
666  * These cases should not happen anyways, or only when the CPU
667  * is already totally * confused. In this case it's likely it will
668  * not fully execute the machine check handler either.
669  */
670 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
671 {
672 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
673 	bool error_seen = false;
674 	struct mce m;
675 	int i;
676 
677 	this_cpu_inc(mce_poll_count);
678 
679 	mce_gather_info(&m, NULL);
680 
681 	if (flags & MCP_TIMESTAMP)
682 		m.tsc = rdtsc();
683 
684 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
685 		if (!mce_banks[i].ctl || !test_bit(i, *b))
686 			continue;
687 
688 		m.misc = 0;
689 		m.addr = 0;
690 		m.bank = i;
691 
692 		barrier();
693 		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
694 
695 		/* If this entry is not valid, ignore it */
696 		if (!(m.status & MCI_STATUS_VAL))
697 			continue;
698 
699 		/*
700 		 * If we are logging everything (at CPU online) or this
701 		 * is a corrected error, then we must log it.
702 		 */
703 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
704 			goto log_it;
705 
706 		/*
707 		 * Newer Intel systems that support software error
708 		 * recovery need to make additional checks. Other
709 		 * CPUs should skip over uncorrected errors, but log
710 		 * everything else.
711 		 */
712 		if (!mca_cfg.ser) {
713 			if (m.status & MCI_STATUS_UC)
714 				continue;
715 			goto log_it;
716 		}
717 
718 		/* Log "not enabled" (speculative) errors */
719 		if (!(m.status & MCI_STATUS_EN))
720 			goto log_it;
721 
722 		/*
723 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
724 		 * UC == 1 && PCC == 0 && S == 0
725 		 */
726 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
727 			goto log_it;
728 
729 		/*
730 		 * Skip anything else. Presumption is that our read of this
731 		 * bank is racing with a machine check. Leave the log alone
732 		 * for do_machine_check() to deal with it.
733 		 */
734 		continue;
735 
736 log_it:
737 		error_seen = true;
738 
739 		if (flags & MCP_DONTLOG)
740 			goto clear_it;
741 
742 		mce_read_aux(&m, i);
743 		m.severity = mce_severity(&m, NULL, NULL, false);
744 		/*
745 		 * Don't get the IP here because it's unlikely to
746 		 * have anything to do with the actual error location.
747 		 */
748 
749 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
750 			goto clear_it;
751 
752 		if (flags & MCP_QUEUE_LOG)
753 			mce_gen_pool_add(&m);
754 		else
755 			mce_log(&m);
756 
757 clear_it:
758 		/*
759 		 * Clear state for this bank.
760 		 */
761 		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
762 	}
763 
764 	/*
765 	 * Don't clear MCG_STATUS here because it's only defined for
766 	 * exceptions.
767 	 */
768 
769 	sync_core();
770 
771 	return error_seen;
772 }
773 EXPORT_SYMBOL_GPL(machine_check_poll);
774 
775 /*
776  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
777  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
778  * Vol 3B Table 15-20). But this confuses both the code that determines
779  * whether the machine check occurred in kernel or user mode, and also
780  * the severity assessment code. Pretend that EIPV was set, and take the
781  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
782  */
783 static __always_inline void
784 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
785 {
786 	if (bank != 0)
787 		return;
788 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
789 		return;
790 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
791 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
792 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
793 			  MCACOD)) !=
794 			 (MCI_STATUS_UC|MCI_STATUS_EN|
795 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
796 			  MCI_STATUS_AR|MCACOD_INSTR))
797 		return;
798 
799 	m->mcgstatus |= MCG_STATUS_EIPV;
800 	m->ip = regs->ip;
801 	m->cs = regs->cs;
802 }
803 
804 /*
805  * Disable fast string copy and return from the MCE handler upon the first SRAR
806  * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
807  * CPUs.
808  * The fast string copy instructions ("REP; MOVS*") could consume an
809  * uncorrectable memory error in the cache line _right after_ the desired region
810  * to copy and raise an MCE with RIP pointing to the instruction _after_ the
811  * "REP; MOVS*".
812  * This mitigation addresses the issue completely with the caveat of performance
813  * degradation on the CPU affected. This is still better than the OS crashing on
814  * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
815  * kernel context (e.g., copy_page).
816  *
817  * Returns true when fast string copy on CPU has been disabled.
818  */
819 static noinstr bool quirk_skylake_repmov(void)
820 {
821 	u64 mcgstatus   = mce_rdmsrl(MSR_IA32_MCG_STATUS);
822 	u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
823 	u64 mc1_status;
824 
825 	/*
826 	 * Apply the quirk only to local machine checks, i.e., no broadcast
827 	 * sync is needed.
828 	 */
829 	if (!(mcgstatus & MCG_STATUS_LMCES) ||
830 	    !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
831 		return false;
832 
833 	mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
834 
835 	/* Check for a software-recoverable data fetch error. */
836 	if ((mc1_status &
837 	     (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
838 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
839 	      MCI_STATUS_AR | MCI_STATUS_S)) ==
840 	     (MCI_STATUS_VAL |                   MCI_STATUS_UC | MCI_STATUS_EN |
841 	      MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
842 	      MCI_STATUS_AR | MCI_STATUS_S)) {
843 		misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
844 		mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
845 		mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
846 
847 		instrumentation_begin();
848 		pr_err_once("Erratum detected, disable fast string copy instructions.\n");
849 		instrumentation_end();
850 
851 		return true;
852 	}
853 
854 	return false;
855 }
856 
857 /*
858  * Do a quick check if any of the events requires a panic.
859  * This decides if we keep the events around or clear them.
860  */
861 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
862 					  struct pt_regs *regs)
863 {
864 	char *tmp = *msg;
865 	int i;
866 
867 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
868 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
869 		if (!(m->status & MCI_STATUS_VAL))
870 			continue;
871 
872 		arch___set_bit(i, validp);
873 		if (mce_flags.snb_ifu_quirk)
874 			quirk_sandybridge_ifu(i, m, regs);
875 
876 		m->bank = i;
877 		if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
878 			mce_read_aux(m, i);
879 			*msg = tmp;
880 			return 1;
881 		}
882 	}
883 	return 0;
884 }
885 
886 /*
887  * Variable to establish order between CPUs while scanning.
888  * Each CPU spins initially until executing is equal its number.
889  */
890 static atomic_t mce_executing;
891 
892 /*
893  * Defines order of CPUs on entry. First CPU becomes Monarch.
894  */
895 static atomic_t mce_callin;
896 
897 /*
898  * Track which CPUs entered the MCA broadcast synchronization and which not in
899  * order to print holdouts.
900  */
901 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
902 
903 /*
904  * Check if a timeout waiting for other CPUs happened.
905  */
906 static noinstr int mce_timed_out(u64 *t, const char *msg)
907 {
908 	int ret = 0;
909 
910 	/* Enable instrumentation around calls to external facilities */
911 	instrumentation_begin();
912 
913 	/*
914 	 * The others already did panic for some reason.
915 	 * Bail out like in a timeout.
916 	 * rmb() to tell the compiler that system_state
917 	 * might have been modified by someone else.
918 	 */
919 	rmb();
920 	if (atomic_read(&mce_panicked))
921 		wait_for_panic();
922 	if (!mca_cfg.monarch_timeout)
923 		goto out;
924 	if ((s64)*t < SPINUNIT) {
925 		if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
926 			pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
927 				 cpumask_pr_args(&mce_missing_cpus));
928 		mce_panic(msg, NULL, NULL);
929 
930 		ret = 1;
931 		goto out;
932 	}
933 	*t -= SPINUNIT;
934 
935 out:
936 	touch_nmi_watchdog();
937 
938 	instrumentation_end();
939 
940 	return ret;
941 }
942 
943 /*
944  * The Monarch's reign.  The Monarch is the CPU who entered
945  * the machine check handler first. It waits for the others to
946  * raise the exception too and then grades them. When any
947  * error is fatal panic. Only then let the others continue.
948  *
949  * The other CPUs entering the MCE handler will be controlled by the
950  * Monarch. They are called Subjects.
951  *
952  * This way we prevent any potential data corruption in a unrecoverable case
953  * and also makes sure always all CPU's errors are examined.
954  *
955  * Also this detects the case of a machine check event coming from outer
956  * space (not detected by any CPUs) In this case some external agent wants
957  * us to shut down, so panic too.
958  *
959  * The other CPUs might still decide to panic if the handler happens
960  * in a unrecoverable place, but in this case the system is in a semi-stable
961  * state and won't corrupt anything by itself. It's ok to let the others
962  * continue for a bit first.
963  *
964  * All the spin loops have timeouts; when a timeout happens a CPU
965  * typically elects itself to be Monarch.
966  */
967 static void mce_reign(void)
968 {
969 	int cpu;
970 	struct mce *m = NULL;
971 	int global_worst = 0;
972 	char *msg = NULL;
973 
974 	/*
975 	 * This CPU is the Monarch and the other CPUs have run
976 	 * through their handlers.
977 	 * Grade the severity of the errors of all the CPUs.
978 	 */
979 	for_each_possible_cpu(cpu) {
980 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
981 
982 		if (mtmp->severity > global_worst) {
983 			global_worst = mtmp->severity;
984 			m = &per_cpu(mces_seen, cpu);
985 		}
986 	}
987 
988 	/*
989 	 * Cannot recover? Panic here then.
990 	 * This dumps all the mces in the log buffer and stops the
991 	 * other CPUs.
992 	 */
993 	if (m && global_worst >= MCE_PANIC_SEVERITY) {
994 		/* call mce_severity() to get "msg" for panic */
995 		mce_severity(m, NULL, &msg, true);
996 		mce_panic("Fatal machine check", m, msg);
997 	}
998 
999 	/*
1000 	 * For UC somewhere we let the CPU who detects it handle it.
1001 	 * Also must let continue the others, otherwise the handling
1002 	 * CPU could deadlock on a lock.
1003 	 */
1004 
1005 	/*
1006 	 * No machine check event found. Must be some external
1007 	 * source or one CPU is hung. Panic.
1008 	 */
1009 	if (global_worst <= MCE_KEEP_SEVERITY)
1010 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
1011 
1012 	/*
1013 	 * Now clear all the mces_seen so that they don't reappear on
1014 	 * the next mce.
1015 	 */
1016 	for_each_possible_cpu(cpu)
1017 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1018 }
1019 
1020 static atomic_t global_nwo;
1021 
1022 /*
1023  * Start of Monarch synchronization. This waits until all CPUs have
1024  * entered the exception handler and then determines if any of them
1025  * saw a fatal event that requires panic. Then it executes them
1026  * in the entry order.
1027  * TBD double check parallel CPU hotunplug
1028  */
1029 static noinstr int mce_start(int *no_way_out)
1030 {
1031 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1032 	int order, ret = -1;
1033 
1034 	if (!timeout)
1035 		return ret;
1036 
1037 	arch_atomic_add(*no_way_out, &global_nwo);
1038 	/*
1039 	 * Rely on the implied barrier below, such that global_nwo
1040 	 * is updated before mce_callin.
1041 	 */
1042 	order = arch_atomic_inc_return(&mce_callin);
1043 	arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1044 
1045 	/* Enable instrumentation around calls to external facilities */
1046 	instrumentation_begin();
1047 
1048 	/*
1049 	 * Wait for everyone.
1050 	 */
1051 	while (arch_atomic_read(&mce_callin) != num_online_cpus()) {
1052 		if (mce_timed_out(&timeout,
1053 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1054 			arch_atomic_set(&global_nwo, 0);
1055 			goto out;
1056 		}
1057 		ndelay(SPINUNIT);
1058 	}
1059 
1060 	/*
1061 	 * mce_callin should be read before global_nwo
1062 	 */
1063 	smp_rmb();
1064 
1065 	if (order == 1) {
1066 		/*
1067 		 * Monarch: Starts executing now, the others wait.
1068 		 */
1069 		arch_atomic_set(&mce_executing, 1);
1070 	} else {
1071 		/*
1072 		 * Subject: Now start the scanning loop one by one in
1073 		 * the original callin order.
1074 		 * This way when there are any shared banks it will be
1075 		 * only seen by one CPU before cleared, avoiding duplicates.
1076 		 */
1077 		while (arch_atomic_read(&mce_executing) < order) {
1078 			if (mce_timed_out(&timeout,
1079 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1080 				arch_atomic_set(&global_nwo, 0);
1081 				goto out;
1082 			}
1083 			ndelay(SPINUNIT);
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * Cache the global no_way_out state.
1089 	 */
1090 	*no_way_out = arch_atomic_read(&global_nwo);
1091 
1092 	ret = order;
1093 
1094 out:
1095 	instrumentation_end();
1096 
1097 	return ret;
1098 }
1099 
1100 /*
1101  * Synchronize between CPUs after main scanning loop.
1102  * This invokes the bulk of the Monarch processing.
1103  */
1104 static noinstr int mce_end(int order)
1105 {
1106 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1107 	int ret = -1;
1108 
1109 	/* Allow instrumentation around external facilities. */
1110 	instrumentation_begin();
1111 
1112 	if (!timeout)
1113 		goto reset;
1114 	if (order < 0)
1115 		goto reset;
1116 
1117 	/*
1118 	 * Allow others to run.
1119 	 */
1120 	atomic_inc(&mce_executing);
1121 
1122 	if (order == 1) {
1123 		/*
1124 		 * Monarch: Wait for everyone to go through their scanning
1125 		 * loops.
1126 		 */
1127 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1128 			if (mce_timed_out(&timeout,
1129 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1130 				goto reset;
1131 			ndelay(SPINUNIT);
1132 		}
1133 
1134 		mce_reign();
1135 		barrier();
1136 		ret = 0;
1137 	} else {
1138 		/*
1139 		 * Subject: Wait for Monarch to finish.
1140 		 */
1141 		while (atomic_read(&mce_executing) != 0) {
1142 			if (mce_timed_out(&timeout,
1143 					  "Timeout: Monarch CPU did not finish machine check processing"))
1144 				goto reset;
1145 			ndelay(SPINUNIT);
1146 		}
1147 
1148 		/*
1149 		 * Don't reset anything. That's done by the Monarch.
1150 		 */
1151 		ret = 0;
1152 		goto out;
1153 	}
1154 
1155 	/*
1156 	 * Reset all global state.
1157 	 */
1158 reset:
1159 	atomic_set(&global_nwo, 0);
1160 	atomic_set(&mce_callin, 0);
1161 	cpumask_setall(&mce_missing_cpus);
1162 	barrier();
1163 
1164 	/*
1165 	 * Let others run again.
1166 	 */
1167 	atomic_set(&mce_executing, 0);
1168 
1169 out:
1170 	instrumentation_end();
1171 
1172 	return ret;
1173 }
1174 
1175 static __always_inline void mce_clear_state(unsigned long *toclear)
1176 {
1177 	int i;
1178 
1179 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1180 		if (arch_test_bit(i, toclear))
1181 			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1182 	}
1183 }
1184 
1185 /*
1186  * Cases where we avoid rendezvous handler timeout:
1187  * 1) If this CPU is offline.
1188  *
1189  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1190  *  skip those CPUs which remain looping in the 1st kernel - see
1191  *  crash_nmi_callback().
1192  *
1193  * Note: there still is a small window between kexec-ing and the new,
1194  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1195  * might not get handled properly.
1196  */
1197 static noinstr bool mce_check_crashing_cpu(void)
1198 {
1199 	unsigned int cpu = smp_processor_id();
1200 
1201 	if (arch_cpu_is_offline(cpu) ||
1202 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1203 		u64 mcgstatus;
1204 
1205 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1206 
1207 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1208 			if (mcgstatus & MCG_STATUS_LMCES)
1209 				return false;
1210 		}
1211 
1212 		if (mcgstatus & MCG_STATUS_RIPV) {
1213 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1214 			return true;
1215 		}
1216 	}
1217 	return false;
1218 }
1219 
1220 static __always_inline int
1221 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1222 		unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1223 		int *worst)
1224 {
1225 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1226 	struct mca_config *cfg = &mca_cfg;
1227 	int severity, i, taint = 0;
1228 
1229 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1230 		arch___clear_bit(i, toclear);
1231 		if (!arch_test_bit(i, valid_banks))
1232 			continue;
1233 
1234 		if (!mce_banks[i].ctl)
1235 			continue;
1236 
1237 		m->misc = 0;
1238 		m->addr = 0;
1239 		m->bank = i;
1240 
1241 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1242 		if (!(m->status & MCI_STATUS_VAL))
1243 			continue;
1244 
1245 		/*
1246 		 * Corrected or non-signaled errors are handled by
1247 		 * machine_check_poll(). Leave them alone, unless this panics.
1248 		 */
1249 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1250 			!no_way_out)
1251 			continue;
1252 
1253 		/* Set taint even when machine check was not enabled. */
1254 		taint++;
1255 
1256 		severity = mce_severity(m, regs, NULL, true);
1257 
1258 		/*
1259 		 * When machine check was for corrected/deferred handler don't
1260 		 * touch, unless we're panicking.
1261 		 */
1262 		if ((severity == MCE_KEEP_SEVERITY ||
1263 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1264 			continue;
1265 
1266 		arch___set_bit(i, toclear);
1267 
1268 		/* Machine check event was not enabled. Clear, but ignore. */
1269 		if (severity == MCE_NO_SEVERITY)
1270 			continue;
1271 
1272 		mce_read_aux(m, i);
1273 
1274 		/* assuming valid severity level != 0 */
1275 		m->severity = severity;
1276 
1277 		/*
1278 		 * Enable instrumentation around the mce_log() call which is
1279 		 * done in #MC context, where instrumentation is disabled.
1280 		 */
1281 		instrumentation_begin();
1282 		mce_log(m);
1283 		instrumentation_end();
1284 
1285 		if (severity > *worst) {
1286 			*final = *m;
1287 			*worst = severity;
1288 		}
1289 	}
1290 
1291 	/* mce_clear_state will clear *final, save locally for use later */
1292 	*m = *final;
1293 
1294 	return taint;
1295 }
1296 
1297 static void kill_me_now(struct callback_head *ch)
1298 {
1299 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1300 
1301 	p->mce_count = 0;
1302 	force_sig(SIGBUS);
1303 }
1304 
1305 static void kill_me_maybe(struct callback_head *cb)
1306 {
1307 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1308 	int flags = MF_ACTION_REQUIRED;
1309 	int ret;
1310 
1311 	p->mce_count = 0;
1312 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1313 
1314 	if (!p->mce_ripv)
1315 		flags |= MF_MUST_KILL;
1316 
1317 	ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1318 	if (!ret) {
1319 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1320 		sync_core();
1321 		return;
1322 	}
1323 
1324 	/*
1325 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1326 	 * to the current process with the proper error info,
1327 	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1328 	 *
1329 	 * In both cases, no further processing is required.
1330 	 */
1331 	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1332 		return;
1333 
1334 	pr_err("Memory error not recovered");
1335 	kill_me_now(cb);
1336 }
1337 
1338 static void kill_me_never(struct callback_head *cb)
1339 {
1340 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1341 
1342 	p->mce_count = 0;
1343 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1344 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0))
1345 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1346 }
1347 
1348 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1349 {
1350 	int count = ++current->mce_count;
1351 
1352 	/* First call, save all the details */
1353 	if (count == 1) {
1354 		current->mce_addr = m->addr;
1355 		current->mce_kflags = m->kflags;
1356 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1357 		current->mce_whole_page = whole_page(m);
1358 		current->mce_kill_me.func = func;
1359 	}
1360 
1361 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1362 	if (count > 10)
1363 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1364 
1365 	/* Second or later call, make sure page address matches the one from first call */
1366 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1367 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1368 
1369 	/* Do not call task_work_add() more than once */
1370 	if (count > 1)
1371 		return;
1372 
1373 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1374 }
1375 
1376 /* Handle unconfigured int18 (should never happen) */
1377 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1378 {
1379 	instrumentation_begin();
1380 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1381 	       smp_processor_id());
1382 	instrumentation_end();
1383 }
1384 
1385 /*
1386  * The actual machine check handler. This only handles real exceptions when
1387  * something got corrupted coming in through int 18.
1388  *
1389  * This is executed in #MC context not subject to normal locking rules.
1390  * This implies that most kernel services cannot be safely used. Don't even
1391  * think about putting a printk in there!
1392  *
1393  * On Intel systems this is entered on all CPUs in parallel through
1394  * MCE broadcast. However some CPUs might be broken beyond repair,
1395  * so be always careful when synchronizing with others.
1396  *
1397  * Tracing and kprobes are disabled: if we interrupted a kernel context
1398  * with IF=1, we need to minimize stack usage.  There are also recursion
1399  * issues: if the machine check was due to a failure of the memory
1400  * backing the user stack, tracing that reads the user stack will cause
1401  * potentially infinite recursion.
1402  *
1403  * Currently, the #MC handler calls out to a number of external facilities
1404  * and, therefore, allows instrumentation around them. The optimal thing to
1405  * have would be to do the absolutely minimal work required in #MC context
1406  * and have instrumentation disabled only around that. Further processing can
1407  * then happen in process context where instrumentation is allowed. Achieving
1408  * that requires careful auditing and modifications. Until then, the code
1409  * allows instrumentation temporarily, where required. *
1410  */
1411 noinstr void do_machine_check(struct pt_regs *regs)
1412 {
1413 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1414 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1415 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1416 	struct mce m, *final;
1417 	char *msg = NULL;
1418 
1419 	if (unlikely(mce_flags.p5))
1420 		return pentium_machine_check(regs);
1421 	else if (unlikely(mce_flags.winchip))
1422 		return winchip_machine_check(regs);
1423 	else if (unlikely(!mca_cfg.initialized))
1424 		return unexpected_machine_check(regs);
1425 
1426 	if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1427 		goto clear;
1428 
1429 	/*
1430 	 * Establish sequential order between the CPUs entering the machine
1431 	 * check handler.
1432 	 */
1433 	order = -1;
1434 
1435 	/*
1436 	 * If no_way_out gets set, there is no safe way to recover from this
1437 	 * MCE.
1438 	 */
1439 	no_way_out = 0;
1440 
1441 	/*
1442 	 * If kill_current_task is not set, there might be a way to recover from this
1443 	 * error.
1444 	 */
1445 	kill_current_task = 0;
1446 
1447 	/*
1448 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1449 	 * on Intel.
1450 	 */
1451 	lmce = 1;
1452 
1453 	this_cpu_inc(mce_exception_count);
1454 
1455 	mce_gather_info(&m, regs);
1456 	m.tsc = rdtsc();
1457 
1458 	final = this_cpu_ptr(&mces_seen);
1459 	*final = m;
1460 
1461 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1462 
1463 	barrier();
1464 
1465 	/*
1466 	 * When no restart IP might need to kill or panic.
1467 	 * Assume the worst for now, but if we find the
1468 	 * severity is MCE_AR_SEVERITY we have other options.
1469 	 */
1470 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1471 		kill_current_task = 1;
1472 	/*
1473 	 * Check if this MCE is signaled to only this logical processor,
1474 	 * on Intel, Zhaoxin only.
1475 	 */
1476 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1477 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1478 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1479 
1480 	/*
1481 	 * Local machine check may already know that we have to panic.
1482 	 * Broadcast machine check begins rendezvous in mce_start()
1483 	 * Go through all banks in exclusion of the other CPUs. This way we
1484 	 * don't report duplicated events on shared banks because the first one
1485 	 * to see it will clear it.
1486 	 */
1487 	if (lmce) {
1488 		if (no_way_out)
1489 			mce_panic("Fatal local machine check", &m, msg);
1490 	} else {
1491 		order = mce_start(&no_way_out);
1492 	}
1493 
1494 	taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1495 
1496 	if (!no_way_out)
1497 		mce_clear_state(toclear);
1498 
1499 	/*
1500 	 * Do most of the synchronization with other CPUs.
1501 	 * When there's any problem use only local no_way_out state.
1502 	 */
1503 	if (!lmce) {
1504 		if (mce_end(order) < 0) {
1505 			if (!no_way_out)
1506 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1507 
1508 			if (no_way_out)
1509 				mce_panic("Fatal machine check on current CPU", &m, msg);
1510 		}
1511 	} else {
1512 		/*
1513 		 * If there was a fatal machine check we should have
1514 		 * already called mce_panic earlier in this function.
1515 		 * Since we re-read the banks, we might have found
1516 		 * something new. Check again to see if we found a
1517 		 * fatal error. We call "mce_severity()" again to
1518 		 * make sure we have the right "msg".
1519 		 */
1520 		if (worst >= MCE_PANIC_SEVERITY) {
1521 			mce_severity(&m, regs, &msg, true);
1522 			mce_panic("Local fatal machine check!", &m, msg);
1523 		}
1524 	}
1525 
1526 	/*
1527 	 * Enable instrumentation around the external facilities like task_work_add()
1528 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1529 	 * properly would need a lot more involved reorganization.
1530 	 */
1531 	instrumentation_begin();
1532 
1533 	if (taint)
1534 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1535 
1536 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1537 		goto out;
1538 
1539 	/* Fault was in user mode and we need to take some action */
1540 	if ((m.cs & 3) == 3) {
1541 		/* If this triggers there is no way to recover. Die hard. */
1542 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1543 
1544 		if (kill_current_task)
1545 			queue_task_work(&m, msg, kill_me_now);
1546 		else
1547 			queue_task_work(&m, msg, kill_me_maybe);
1548 
1549 	} else {
1550 		/*
1551 		 * Handle an MCE which has happened in kernel space but from
1552 		 * which the kernel can recover: ex_has_fault_handler() has
1553 		 * already verified that the rIP at which the error happened is
1554 		 * a rIP from which the kernel can recover (by jumping to
1555 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1556 		 * corresponding exception handler which would do that is the
1557 		 * proper one.
1558 		 */
1559 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1560 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1561 				mce_panic("Failed kernel mode recovery", &m, msg);
1562 		}
1563 
1564 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1565 			queue_task_work(&m, msg, kill_me_never);
1566 	}
1567 
1568 out:
1569 	instrumentation_end();
1570 
1571 clear:
1572 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1573 }
1574 EXPORT_SYMBOL_GPL(do_machine_check);
1575 
1576 #ifndef CONFIG_MEMORY_FAILURE
1577 int memory_failure(unsigned long pfn, int flags)
1578 {
1579 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1580 	BUG_ON(flags & MF_ACTION_REQUIRED);
1581 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1582 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1583 	       pfn);
1584 
1585 	return 0;
1586 }
1587 #endif
1588 
1589 /*
1590  * Periodic polling timer for "silent" machine check errors.  If the
1591  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1592  * errors, poll 2x slower (up to check_interval seconds).
1593  */
1594 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1595 
1596 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1597 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1598 
1599 static unsigned long mce_adjust_timer_default(unsigned long interval)
1600 {
1601 	return interval;
1602 }
1603 
1604 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1605 
1606 static void __start_timer(struct timer_list *t, unsigned long interval)
1607 {
1608 	unsigned long when = jiffies + interval;
1609 	unsigned long flags;
1610 
1611 	local_irq_save(flags);
1612 
1613 	if (!timer_pending(t) || time_before(when, t->expires))
1614 		mod_timer(t, round_jiffies(when));
1615 
1616 	local_irq_restore(flags);
1617 }
1618 
1619 static void mce_timer_fn(struct timer_list *t)
1620 {
1621 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1622 	unsigned long iv;
1623 
1624 	WARN_ON(cpu_t != t);
1625 
1626 	iv = __this_cpu_read(mce_next_interval);
1627 
1628 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1629 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1630 
1631 		if (mce_intel_cmci_poll()) {
1632 			iv = mce_adjust_timer(iv);
1633 			goto done;
1634 		}
1635 	}
1636 
1637 	/*
1638 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1639 	 * interval, otherwise increase the polling interval.
1640 	 */
1641 	if (mce_notify_irq())
1642 		iv = max(iv / 2, (unsigned long) HZ/100);
1643 	else
1644 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1645 
1646 done:
1647 	__this_cpu_write(mce_next_interval, iv);
1648 	__start_timer(t, iv);
1649 }
1650 
1651 /*
1652  * Ensure that the timer is firing in @interval from now.
1653  */
1654 void mce_timer_kick(unsigned long interval)
1655 {
1656 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1657 	unsigned long iv = __this_cpu_read(mce_next_interval);
1658 
1659 	__start_timer(t, interval);
1660 
1661 	if (interval < iv)
1662 		__this_cpu_write(mce_next_interval, interval);
1663 }
1664 
1665 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1666 static void mce_timer_delete_all(void)
1667 {
1668 	int cpu;
1669 
1670 	for_each_online_cpu(cpu)
1671 		del_timer_sync(&per_cpu(mce_timer, cpu));
1672 }
1673 
1674 /*
1675  * Notify the user(s) about new machine check events.
1676  * Can be called from interrupt context, but not from machine check/NMI
1677  * context.
1678  */
1679 int mce_notify_irq(void)
1680 {
1681 	/* Not more than two messages every minute */
1682 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1683 
1684 	if (test_and_clear_bit(0, &mce_need_notify)) {
1685 		mce_work_trigger();
1686 
1687 		if (__ratelimit(&ratelimit))
1688 			pr_info(HW_ERR "Machine check events logged\n");
1689 
1690 		return 1;
1691 	}
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL_GPL(mce_notify_irq);
1695 
1696 static void __mcheck_cpu_mce_banks_init(void)
1697 {
1698 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1699 	u8 n_banks = this_cpu_read(mce_num_banks);
1700 	int i;
1701 
1702 	for (i = 0; i < n_banks; i++) {
1703 		struct mce_bank *b = &mce_banks[i];
1704 
1705 		/*
1706 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1707 		 * the required vendor quirks before
1708 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1709 		 */
1710 		b->ctl = -1ULL;
1711 		b->init = true;
1712 	}
1713 }
1714 
1715 /*
1716  * Initialize Machine Checks for a CPU.
1717  */
1718 static void __mcheck_cpu_cap_init(void)
1719 {
1720 	u64 cap;
1721 	u8 b;
1722 
1723 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1724 
1725 	b = cap & MCG_BANKCNT_MASK;
1726 
1727 	if (b > MAX_NR_BANKS) {
1728 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1729 			smp_processor_id(), MAX_NR_BANKS, b);
1730 		b = MAX_NR_BANKS;
1731 	}
1732 
1733 	this_cpu_write(mce_num_banks, b);
1734 
1735 	__mcheck_cpu_mce_banks_init();
1736 
1737 	/* Use accurate RIP reporting if available. */
1738 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1739 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1740 
1741 	if (cap & MCG_SER_P)
1742 		mca_cfg.ser = 1;
1743 }
1744 
1745 static void __mcheck_cpu_init_generic(void)
1746 {
1747 	enum mcp_flags m_fl = 0;
1748 	mce_banks_t all_banks;
1749 	u64 cap;
1750 
1751 	if (!mca_cfg.bootlog)
1752 		m_fl = MCP_DONTLOG;
1753 
1754 	/*
1755 	 * Log the machine checks left over from the previous reset. Log them
1756 	 * only, do not start processing them. That will happen in mcheck_late_init()
1757 	 * when all consumers have been registered on the notifier chain.
1758 	 */
1759 	bitmap_fill(all_banks, MAX_NR_BANKS);
1760 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1761 
1762 	cr4_set_bits(X86_CR4_MCE);
1763 
1764 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1765 	if (cap & MCG_CTL_P)
1766 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1767 }
1768 
1769 static void __mcheck_cpu_init_clear_banks(void)
1770 {
1771 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1772 	int i;
1773 
1774 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1775 		struct mce_bank *b = &mce_banks[i];
1776 
1777 		if (!b->init)
1778 			continue;
1779 		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1780 		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1781 	}
1782 }
1783 
1784 /*
1785  * Do a final check to see if there are any unused/RAZ banks.
1786  *
1787  * This must be done after the banks have been initialized and any quirks have
1788  * been applied.
1789  *
1790  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1791  * Otherwise, a user who disables a bank will not be able to re-enable it
1792  * without a system reboot.
1793  */
1794 static void __mcheck_cpu_check_banks(void)
1795 {
1796 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1797 	u64 msrval;
1798 	int i;
1799 
1800 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1801 		struct mce_bank *b = &mce_banks[i];
1802 
1803 		if (!b->init)
1804 			continue;
1805 
1806 		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1807 		b->init = !!msrval;
1808 	}
1809 }
1810 
1811 /* Add per CPU specific workarounds here */
1812 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1813 {
1814 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1815 	struct mca_config *cfg = &mca_cfg;
1816 
1817 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1818 		pr_info("unknown CPU type - not enabling MCE support\n");
1819 		return -EOPNOTSUPP;
1820 	}
1821 
1822 	/* This should be disabled by the BIOS, but isn't always */
1823 	if (c->x86_vendor == X86_VENDOR_AMD) {
1824 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1825 			/*
1826 			 * disable GART TBL walk error reporting, which
1827 			 * trips off incorrectly with the IOMMU & 3ware
1828 			 * & Cerberus:
1829 			 */
1830 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1831 		}
1832 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1833 			/*
1834 			 * Lots of broken BIOS around that don't clear them
1835 			 * by default and leave crap in there. Don't log:
1836 			 */
1837 			cfg->bootlog = 0;
1838 		}
1839 		/*
1840 		 * Various K7s with broken bank 0 around. Always disable
1841 		 * by default.
1842 		 */
1843 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1844 			mce_banks[0].ctl = 0;
1845 
1846 		/*
1847 		 * overflow_recov is supported for F15h Models 00h-0fh
1848 		 * even though we don't have a CPUID bit for it.
1849 		 */
1850 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1851 			mce_flags.overflow_recov = 1;
1852 
1853 	}
1854 
1855 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1856 		/*
1857 		 * SDM documents that on family 6 bank 0 should not be written
1858 		 * because it aliases to another special BIOS controlled
1859 		 * register.
1860 		 * But it's not aliased anymore on model 0x1a+
1861 		 * Don't ignore bank 0 completely because there could be a
1862 		 * valid event later, merely don't write CTL0.
1863 		 */
1864 
1865 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1866 			mce_banks[0].init = false;
1867 
1868 		/*
1869 		 * All newer Intel systems support MCE broadcasting. Enable
1870 		 * synchronization with a one second timeout.
1871 		 */
1872 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1873 			cfg->monarch_timeout < 0)
1874 			cfg->monarch_timeout = USEC_PER_SEC;
1875 
1876 		/*
1877 		 * There are also broken BIOSes on some Pentium M and
1878 		 * earlier systems:
1879 		 */
1880 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1881 			cfg->bootlog = 0;
1882 
1883 		if (c->x86 == 6 && c->x86_model == 45)
1884 			mce_flags.snb_ifu_quirk = 1;
1885 
1886 		/*
1887 		 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1888 		 * rep movs.
1889 		 */
1890 		if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X)
1891 			mce_flags.skx_repmov_quirk = 1;
1892 	}
1893 
1894 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1895 		/*
1896 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1897 		 * synchronization with a one second timeout.
1898 		 */
1899 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1900 			if (cfg->monarch_timeout < 0)
1901 				cfg->monarch_timeout = USEC_PER_SEC;
1902 		}
1903 	}
1904 
1905 	if (cfg->monarch_timeout < 0)
1906 		cfg->monarch_timeout = 0;
1907 	if (cfg->bootlog != 0)
1908 		cfg->panic_timeout = 30;
1909 
1910 	return 0;
1911 }
1912 
1913 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1914 {
1915 	if (c->x86 != 5)
1916 		return 0;
1917 
1918 	switch (c->x86_vendor) {
1919 	case X86_VENDOR_INTEL:
1920 		intel_p5_mcheck_init(c);
1921 		mce_flags.p5 = 1;
1922 		return 1;
1923 	case X86_VENDOR_CENTAUR:
1924 		winchip_mcheck_init(c);
1925 		mce_flags.winchip = 1;
1926 		return 1;
1927 	default:
1928 		return 0;
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 /*
1935  * Init basic CPU features needed for early decoding of MCEs.
1936  */
1937 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1938 {
1939 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1940 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1941 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1942 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1943 		mce_flags.amd_threshold	 = 1;
1944 	}
1945 }
1946 
1947 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1948 {
1949 	struct mca_config *cfg = &mca_cfg;
1950 
1951 	 /*
1952 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1953 	  * synchronization with a one second timeout.
1954 	  */
1955 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1956 	     c->x86 > 6) {
1957 		if (cfg->monarch_timeout < 0)
1958 			cfg->monarch_timeout = USEC_PER_SEC;
1959 	}
1960 }
1961 
1962 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1963 {
1964 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1965 
1966 	/*
1967 	 * These CPUs have MCA bank 8 which reports only one error type called
1968 	 * SVAD (System View Address Decoder). The reporting of that error is
1969 	 * controlled by IA32_MC8.CTL.0.
1970 	 *
1971 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1972 	 * virtual machines start and result in a system  panic. Always disable
1973 	 * bank 8 SVAD error by default.
1974 	 */
1975 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1976 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1977 		if (this_cpu_read(mce_num_banks) > 8)
1978 			mce_banks[8].ctl = 0;
1979 	}
1980 
1981 	intel_init_cmci();
1982 	intel_init_lmce();
1983 	mce_adjust_timer = cmci_intel_adjust_timer;
1984 }
1985 
1986 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1987 {
1988 	intel_clear_lmce();
1989 }
1990 
1991 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1992 {
1993 	switch (c->x86_vendor) {
1994 	case X86_VENDOR_INTEL:
1995 		mce_intel_feature_init(c);
1996 		mce_adjust_timer = cmci_intel_adjust_timer;
1997 		break;
1998 
1999 	case X86_VENDOR_AMD: {
2000 		mce_amd_feature_init(c);
2001 		break;
2002 		}
2003 
2004 	case X86_VENDOR_HYGON:
2005 		mce_hygon_feature_init(c);
2006 		break;
2007 
2008 	case X86_VENDOR_CENTAUR:
2009 		mce_centaur_feature_init(c);
2010 		break;
2011 
2012 	case X86_VENDOR_ZHAOXIN:
2013 		mce_zhaoxin_feature_init(c);
2014 		break;
2015 
2016 	default:
2017 		break;
2018 	}
2019 }
2020 
2021 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2022 {
2023 	switch (c->x86_vendor) {
2024 	case X86_VENDOR_INTEL:
2025 		mce_intel_feature_clear(c);
2026 		break;
2027 
2028 	case X86_VENDOR_ZHAOXIN:
2029 		mce_zhaoxin_feature_clear(c);
2030 		break;
2031 
2032 	default:
2033 		break;
2034 	}
2035 }
2036 
2037 static void mce_start_timer(struct timer_list *t)
2038 {
2039 	unsigned long iv = check_interval * HZ;
2040 
2041 	if (mca_cfg.ignore_ce || !iv)
2042 		return;
2043 
2044 	this_cpu_write(mce_next_interval, iv);
2045 	__start_timer(t, iv);
2046 }
2047 
2048 static void __mcheck_cpu_setup_timer(void)
2049 {
2050 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2051 
2052 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2053 }
2054 
2055 static void __mcheck_cpu_init_timer(void)
2056 {
2057 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2058 
2059 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2060 	mce_start_timer(t);
2061 }
2062 
2063 bool filter_mce(struct mce *m)
2064 {
2065 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2066 		return amd_filter_mce(m);
2067 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2068 		return intel_filter_mce(m);
2069 
2070 	return false;
2071 }
2072 
2073 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2074 {
2075 	irqentry_state_t irq_state;
2076 
2077 	WARN_ON_ONCE(user_mode(regs));
2078 
2079 	/*
2080 	 * Only required when from kernel mode. See
2081 	 * mce_check_crashing_cpu() for details.
2082 	 */
2083 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2084 		return;
2085 
2086 	irq_state = irqentry_nmi_enter(regs);
2087 
2088 	do_machine_check(regs);
2089 
2090 	irqentry_nmi_exit(regs, irq_state);
2091 }
2092 
2093 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2094 {
2095 	irqentry_enter_from_user_mode(regs);
2096 
2097 	do_machine_check(regs);
2098 
2099 	irqentry_exit_to_user_mode(regs);
2100 }
2101 
2102 #ifdef CONFIG_X86_64
2103 /* MCE hit kernel mode */
2104 DEFINE_IDTENTRY_MCE(exc_machine_check)
2105 {
2106 	unsigned long dr7;
2107 
2108 	dr7 = local_db_save();
2109 	exc_machine_check_kernel(regs);
2110 	local_db_restore(dr7);
2111 }
2112 
2113 /* The user mode variant. */
2114 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2115 {
2116 	unsigned long dr7;
2117 
2118 	dr7 = local_db_save();
2119 	exc_machine_check_user(regs);
2120 	local_db_restore(dr7);
2121 }
2122 #else
2123 /* 32bit unified entry point */
2124 DEFINE_IDTENTRY_RAW(exc_machine_check)
2125 {
2126 	unsigned long dr7;
2127 
2128 	dr7 = local_db_save();
2129 	if (user_mode(regs))
2130 		exc_machine_check_user(regs);
2131 	else
2132 		exc_machine_check_kernel(regs);
2133 	local_db_restore(dr7);
2134 }
2135 #endif
2136 
2137 /*
2138  * Called for each booted CPU to set up machine checks.
2139  * Must be called with preempt off:
2140  */
2141 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2142 {
2143 	if (mca_cfg.disabled)
2144 		return;
2145 
2146 	if (__mcheck_cpu_ancient_init(c))
2147 		return;
2148 
2149 	if (!mce_available(c))
2150 		return;
2151 
2152 	__mcheck_cpu_cap_init();
2153 
2154 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2155 		mca_cfg.disabled = 1;
2156 		return;
2157 	}
2158 
2159 	if (mce_gen_pool_init()) {
2160 		mca_cfg.disabled = 1;
2161 		pr_emerg("Couldn't allocate MCE records pool!\n");
2162 		return;
2163 	}
2164 
2165 	mca_cfg.initialized = 1;
2166 
2167 	__mcheck_cpu_init_early(c);
2168 	__mcheck_cpu_init_generic();
2169 	__mcheck_cpu_init_vendor(c);
2170 	__mcheck_cpu_init_clear_banks();
2171 	__mcheck_cpu_check_banks();
2172 	__mcheck_cpu_setup_timer();
2173 }
2174 
2175 /*
2176  * Called for each booted CPU to clear some machine checks opt-ins
2177  */
2178 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2179 {
2180 	if (mca_cfg.disabled)
2181 		return;
2182 
2183 	if (!mce_available(c))
2184 		return;
2185 
2186 	/*
2187 	 * Possibly to clear general settings generic to x86
2188 	 * __mcheck_cpu_clear_generic(c);
2189 	 */
2190 	__mcheck_cpu_clear_vendor(c);
2191 
2192 }
2193 
2194 static void __mce_disable_bank(void *arg)
2195 {
2196 	int bank = *((int *)arg);
2197 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2198 	cmci_disable_bank(bank);
2199 }
2200 
2201 void mce_disable_bank(int bank)
2202 {
2203 	if (bank >= this_cpu_read(mce_num_banks)) {
2204 		pr_warn(FW_BUG
2205 			"Ignoring request to disable invalid MCA bank %d.\n",
2206 			bank);
2207 		return;
2208 	}
2209 	set_bit(bank, mce_banks_ce_disabled);
2210 	on_each_cpu(__mce_disable_bank, &bank, 1);
2211 }
2212 
2213 /*
2214  * mce=off Disables machine check
2215  * mce=no_cmci Disables CMCI
2216  * mce=no_lmce Disables LMCE
2217  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2218  * mce=print_all Print all machine check logs to console
2219  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2220  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2221  *	monarchtimeout is how long to wait for other CPUs on machine
2222  *	check, or 0 to not wait
2223  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2224 	and older.
2225  * mce=nobootlog Don't log MCEs from before booting.
2226  * mce=bios_cmci_threshold Don't program the CMCI threshold
2227  * mce=recovery force enable copy_mc_fragile()
2228  */
2229 static int __init mcheck_enable(char *str)
2230 {
2231 	struct mca_config *cfg = &mca_cfg;
2232 
2233 	if (*str == 0) {
2234 		enable_p5_mce();
2235 		return 1;
2236 	}
2237 	if (*str == '=')
2238 		str++;
2239 	if (!strcmp(str, "off"))
2240 		cfg->disabled = 1;
2241 	else if (!strcmp(str, "no_cmci"))
2242 		cfg->cmci_disabled = true;
2243 	else if (!strcmp(str, "no_lmce"))
2244 		cfg->lmce_disabled = 1;
2245 	else if (!strcmp(str, "dont_log_ce"))
2246 		cfg->dont_log_ce = true;
2247 	else if (!strcmp(str, "print_all"))
2248 		cfg->print_all = true;
2249 	else if (!strcmp(str, "ignore_ce"))
2250 		cfg->ignore_ce = true;
2251 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2252 		cfg->bootlog = (str[0] == 'b');
2253 	else if (!strcmp(str, "bios_cmci_threshold"))
2254 		cfg->bios_cmci_threshold = 1;
2255 	else if (!strcmp(str, "recovery"))
2256 		cfg->recovery = 1;
2257 	else if (isdigit(str[0]))
2258 		get_option(&str, &(cfg->monarch_timeout));
2259 	else {
2260 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2261 		return 0;
2262 	}
2263 	return 1;
2264 }
2265 __setup("mce", mcheck_enable);
2266 
2267 int __init mcheck_init(void)
2268 {
2269 	mce_register_decode_chain(&early_nb);
2270 	mce_register_decode_chain(&mce_uc_nb);
2271 	mce_register_decode_chain(&mce_default_nb);
2272 
2273 	INIT_WORK(&mce_work, mce_gen_pool_process);
2274 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2275 
2276 	return 0;
2277 }
2278 
2279 /*
2280  * mce_syscore: PM support
2281  */
2282 
2283 /*
2284  * Disable machine checks on suspend and shutdown. We can't really handle
2285  * them later.
2286  */
2287 static void mce_disable_error_reporting(void)
2288 {
2289 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2290 	int i;
2291 
2292 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2293 		struct mce_bank *b = &mce_banks[i];
2294 
2295 		if (b->init)
2296 			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2297 	}
2298 	return;
2299 }
2300 
2301 static void vendor_disable_error_reporting(void)
2302 {
2303 	/*
2304 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2305 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2306 	 * is bad, since it will inhibit reporting for all shared resources on
2307 	 * the socket like the last level cache (LLC), the integrated memory
2308 	 * controller (iMC), etc.
2309 	 */
2310 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2311 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2312 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2313 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2314 		return;
2315 
2316 	mce_disable_error_reporting();
2317 }
2318 
2319 static int mce_syscore_suspend(void)
2320 {
2321 	vendor_disable_error_reporting();
2322 	return 0;
2323 }
2324 
2325 static void mce_syscore_shutdown(void)
2326 {
2327 	vendor_disable_error_reporting();
2328 }
2329 
2330 /*
2331  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2332  * Only one CPU is active at this time, the others get re-added later using
2333  * CPU hotplug:
2334  */
2335 static void mce_syscore_resume(void)
2336 {
2337 	__mcheck_cpu_init_generic();
2338 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2339 	__mcheck_cpu_init_clear_banks();
2340 }
2341 
2342 static struct syscore_ops mce_syscore_ops = {
2343 	.suspend	= mce_syscore_suspend,
2344 	.shutdown	= mce_syscore_shutdown,
2345 	.resume		= mce_syscore_resume,
2346 };
2347 
2348 /*
2349  * mce_device: Sysfs support
2350  */
2351 
2352 static void mce_cpu_restart(void *data)
2353 {
2354 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2355 		return;
2356 	__mcheck_cpu_init_generic();
2357 	__mcheck_cpu_init_clear_banks();
2358 	__mcheck_cpu_init_timer();
2359 }
2360 
2361 /* Reinit MCEs after user configuration changes */
2362 static void mce_restart(void)
2363 {
2364 	mce_timer_delete_all();
2365 	on_each_cpu(mce_cpu_restart, NULL, 1);
2366 }
2367 
2368 /* Toggle features for corrected errors */
2369 static void mce_disable_cmci(void *data)
2370 {
2371 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2372 		return;
2373 	cmci_clear();
2374 }
2375 
2376 static void mce_enable_ce(void *all)
2377 {
2378 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2379 		return;
2380 	cmci_reenable();
2381 	cmci_recheck();
2382 	if (all)
2383 		__mcheck_cpu_init_timer();
2384 }
2385 
2386 static struct bus_type mce_subsys = {
2387 	.name		= "machinecheck",
2388 	.dev_name	= "machinecheck",
2389 };
2390 
2391 DEFINE_PER_CPU(struct device *, mce_device);
2392 
2393 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2394 {
2395 	return container_of(attr, struct mce_bank_dev, attr);
2396 }
2397 
2398 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2399 			 char *buf)
2400 {
2401 	u8 bank = attr_to_bank(attr)->bank;
2402 	struct mce_bank *b;
2403 
2404 	if (bank >= per_cpu(mce_num_banks, s->id))
2405 		return -EINVAL;
2406 
2407 	b = &per_cpu(mce_banks_array, s->id)[bank];
2408 
2409 	if (!b->init)
2410 		return -ENODEV;
2411 
2412 	return sprintf(buf, "%llx\n", b->ctl);
2413 }
2414 
2415 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2416 			const char *buf, size_t size)
2417 {
2418 	u8 bank = attr_to_bank(attr)->bank;
2419 	struct mce_bank *b;
2420 	u64 new;
2421 
2422 	if (kstrtou64(buf, 0, &new) < 0)
2423 		return -EINVAL;
2424 
2425 	if (bank >= per_cpu(mce_num_banks, s->id))
2426 		return -EINVAL;
2427 
2428 	b = &per_cpu(mce_banks_array, s->id)[bank];
2429 
2430 	if (!b->init)
2431 		return -ENODEV;
2432 
2433 	b->ctl = new;
2434 	mce_restart();
2435 
2436 	return size;
2437 }
2438 
2439 static ssize_t set_ignore_ce(struct device *s,
2440 			     struct device_attribute *attr,
2441 			     const char *buf, size_t size)
2442 {
2443 	u64 new;
2444 
2445 	if (kstrtou64(buf, 0, &new) < 0)
2446 		return -EINVAL;
2447 
2448 	mutex_lock(&mce_sysfs_mutex);
2449 	if (mca_cfg.ignore_ce ^ !!new) {
2450 		if (new) {
2451 			/* disable ce features */
2452 			mce_timer_delete_all();
2453 			on_each_cpu(mce_disable_cmci, NULL, 1);
2454 			mca_cfg.ignore_ce = true;
2455 		} else {
2456 			/* enable ce features */
2457 			mca_cfg.ignore_ce = false;
2458 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2459 		}
2460 	}
2461 	mutex_unlock(&mce_sysfs_mutex);
2462 
2463 	return size;
2464 }
2465 
2466 static ssize_t set_cmci_disabled(struct device *s,
2467 				 struct device_attribute *attr,
2468 				 const char *buf, size_t size)
2469 {
2470 	u64 new;
2471 
2472 	if (kstrtou64(buf, 0, &new) < 0)
2473 		return -EINVAL;
2474 
2475 	mutex_lock(&mce_sysfs_mutex);
2476 	if (mca_cfg.cmci_disabled ^ !!new) {
2477 		if (new) {
2478 			/* disable cmci */
2479 			on_each_cpu(mce_disable_cmci, NULL, 1);
2480 			mca_cfg.cmci_disabled = true;
2481 		} else {
2482 			/* enable cmci */
2483 			mca_cfg.cmci_disabled = false;
2484 			on_each_cpu(mce_enable_ce, NULL, 1);
2485 		}
2486 	}
2487 	mutex_unlock(&mce_sysfs_mutex);
2488 
2489 	return size;
2490 }
2491 
2492 static ssize_t store_int_with_restart(struct device *s,
2493 				      struct device_attribute *attr,
2494 				      const char *buf, size_t size)
2495 {
2496 	unsigned long old_check_interval = check_interval;
2497 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2498 
2499 	if (check_interval == old_check_interval)
2500 		return ret;
2501 
2502 	mutex_lock(&mce_sysfs_mutex);
2503 	mce_restart();
2504 	mutex_unlock(&mce_sysfs_mutex);
2505 
2506 	return ret;
2507 }
2508 
2509 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2510 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2511 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2512 
2513 static struct dev_ext_attribute dev_attr_check_interval = {
2514 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2515 	&check_interval
2516 };
2517 
2518 static struct dev_ext_attribute dev_attr_ignore_ce = {
2519 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2520 	&mca_cfg.ignore_ce
2521 };
2522 
2523 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2524 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2525 	&mca_cfg.cmci_disabled
2526 };
2527 
2528 static struct device_attribute *mce_device_attrs[] = {
2529 	&dev_attr_check_interval.attr,
2530 #ifdef CONFIG_X86_MCELOG_LEGACY
2531 	&dev_attr_trigger,
2532 #endif
2533 	&dev_attr_monarch_timeout.attr,
2534 	&dev_attr_dont_log_ce.attr,
2535 	&dev_attr_print_all.attr,
2536 	&dev_attr_ignore_ce.attr,
2537 	&dev_attr_cmci_disabled.attr,
2538 	NULL
2539 };
2540 
2541 static cpumask_var_t mce_device_initialized;
2542 
2543 static void mce_device_release(struct device *dev)
2544 {
2545 	kfree(dev);
2546 }
2547 
2548 /* Per CPU device init. All of the CPUs still share the same bank device: */
2549 static int mce_device_create(unsigned int cpu)
2550 {
2551 	struct device *dev;
2552 	int err;
2553 	int i, j;
2554 
2555 	if (!mce_available(&boot_cpu_data))
2556 		return -EIO;
2557 
2558 	dev = per_cpu(mce_device, cpu);
2559 	if (dev)
2560 		return 0;
2561 
2562 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2563 	if (!dev)
2564 		return -ENOMEM;
2565 	dev->id  = cpu;
2566 	dev->bus = &mce_subsys;
2567 	dev->release = &mce_device_release;
2568 
2569 	err = device_register(dev);
2570 	if (err) {
2571 		put_device(dev);
2572 		return err;
2573 	}
2574 
2575 	for (i = 0; mce_device_attrs[i]; i++) {
2576 		err = device_create_file(dev, mce_device_attrs[i]);
2577 		if (err)
2578 			goto error;
2579 	}
2580 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2581 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2582 		if (err)
2583 			goto error2;
2584 	}
2585 	cpumask_set_cpu(cpu, mce_device_initialized);
2586 	per_cpu(mce_device, cpu) = dev;
2587 
2588 	return 0;
2589 error2:
2590 	while (--j >= 0)
2591 		device_remove_file(dev, &mce_bank_devs[j].attr);
2592 error:
2593 	while (--i >= 0)
2594 		device_remove_file(dev, mce_device_attrs[i]);
2595 
2596 	device_unregister(dev);
2597 
2598 	return err;
2599 }
2600 
2601 static void mce_device_remove(unsigned int cpu)
2602 {
2603 	struct device *dev = per_cpu(mce_device, cpu);
2604 	int i;
2605 
2606 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2607 		return;
2608 
2609 	for (i = 0; mce_device_attrs[i]; i++)
2610 		device_remove_file(dev, mce_device_attrs[i]);
2611 
2612 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2613 		device_remove_file(dev, &mce_bank_devs[i].attr);
2614 
2615 	device_unregister(dev);
2616 	cpumask_clear_cpu(cpu, mce_device_initialized);
2617 	per_cpu(mce_device, cpu) = NULL;
2618 }
2619 
2620 /* Make sure there are no machine checks on offlined CPUs. */
2621 static void mce_disable_cpu(void)
2622 {
2623 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2624 		return;
2625 
2626 	if (!cpuhp_tasks_frozen)
2627 		cmci_clear();
2628 
2629 	vendor_disable_error_reporting();
2630 }
2631 
2632 static void mce_reenable_cpu(void)
2633 {
2634 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2635 	int i;
2636 
2637 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2638 		return;
2639 
2640 	if (!cpuhp_tasks_frozen)
2641 		cmci_reenable();
2642 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2643 		struct mce_bank *b = &mce_banks[i];
2644 
2645 		if (b->init)
2646 			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2647 	}
2648 }
2649 
2650 static int mce_cpu_dead(unsigned int cpu)
2651 {
2652 	mce_intel_hcpu_update(cpu);
2653 
2654 	/* intentionally ignoring frozen here */
2655 	if (!cpuhp_tasks_frozen)
2656 		cmci_rediscover();
2657 	return 0;
2658 }
2659 
2660 static int mce_cpu_online(unsigned int cpu)
2661 {
2662 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2663 	int ret;
2664 
2665 	mce_device_create(cpu);
2666 
2667 	ret = mce_threshold_create_device(cpu);
2668 	if (ret) {
2669 		mce_device_remove(cpu);
2670 		return ret;
2671 	}
2672 	mce_reenable_cpu();
2673 	mce_start_timer(t);
2674 	return 0;
2675 }
2676 
2677 static int mce_cpu_pre_down(unsigned int cpu)
2678 {
2679 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2680 
2681 	mce_disable_cpu();
2682 	del_timer_sync(t);
2683 	mce_threshold_remove_device(cpu);
2684 	mce_device_remove(cpu);
2685 	return 0;
2686 }
2687 
2688 static __init void mce_init_banks(void)
2689 {
2690 	int i;
2691 
2692 	for (i = 0; i < MAX_NR_BANKS; i++) {
2693 		struct mce_bank_dev *b = &mce_bank_devs[i];
2694 		struct device_attribute *a = &b->attr;
2695 
2696 		b->bank = i;
2697 
2698 		sysfs_attr_init(&a->attr);
2699 		a->attr.name	= b->attrname;
2700 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2701 
2702 		a->attr.mode	= 0644;
2703 		a->show		= show_bank;
2704 		a->store	= set_bank;
2705 	}
2706 }
2707 
2708 /*
2709  * When running on XEN, this initcall is ordered against the XEN mcelog
2710  * initcall:
2711  *
2712  *   device_initcall(xen_late_init_mcelog);
2713  *   device_initcall_sync(mcheck_init_device);
2714  */
2715 static __init int mcheck_init_device(void)
2716 {
2717 	int err;
2718 
2719 	/*
2720 	 * Check if we have a spare virtual bit. This will only become
2721 	 * a problem if/when we move beyond 5-level page tables.
2722 	 */
2723 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2724 
2725 	if (!mce_available(&boot_cpu_data)) {
2726 		err = -EIO;
2727 		goto err_out;
2728 	}
2729 
2730 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2731 		err = -ENOMEM;
2732 		goto err_out;
2733 	}
2734 
2735 	mce_init_banks();
2736 
2737 	err = subsys_system_register(&mce_subsys, NULL);
2738 	if (err)
2739 		goto err_out_mem;
2740 
2741 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2742 				mce_cpu_dead);
2743 	if (err)
2744 		goto err_out_mem;
2745 
2746 	/*
2747 	 * Invokes mce_cpu_online() on all CPUs which are online when
2748 	 * the state is installed.
2749 	 */
2750 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2751 				mce_cpu_online, mce_cpu_pre_down);
2752 	if (err < 0)
2753 		goto err_out_online;
2754 
2755 	register_syscore_ops(&mce_syscore_ops);
2756 
2757 	return 0;
2758 
2759 err_out_online:
2760 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2761 
2762 err_out_mem:
2763 	free_cpumask_var(mce_device_initialized);
2764 
2765 err_out:
2766 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2767 
2768 	return err;
2769 }
2770 device_initcall_sync(mcheck_init_device);
2771 
2772 /*
2773  * Old style boot options parsing. Only for compatibility.
2774  */
2775 static int __init mcheck_disable(char *str)
2776 {
2777 	mca_cfg.disabled = 1;
2778 	return 1;
2779 }
2780 __setup("nomce", mcheck_disable);
2781 
2782 #ifdef CONFIG_DEBUG_FS
2783 struct dentry *mce_get_debugfs_dir(void)
2784 {
2785 	static struct dentry *dmce;
2786 
2787 	if (!dmce)
2788 		dmce = debugfs_create_dir("mce", NULL);
2789 
2790 	return dmce;
2791 }
2792 
2793 static void mce_reset(void)
2794 {
2795 	atomic_set(&mce_fake_panicked, 0);
2796 	atomic_set(&mce_executing, 0);
2797 	atomic_set(&mce_callin, 0);
2798 	atomic_set(&global_nwo, 0);
2799 	cpumask_setall(&mce_missing_cpus);
2800 }
2801 
2802 static int fake_panic_get(void *data, u64 *val)
2803 {
2804 	*val = fake_panic;
2805 	return 0;
2806 }
2807 
2808 static int fake_panic_set(void *data, u64 val)
2809 {
2810 	mce_reset();
2811 	fake_panic = val;
2812 	return 0;
2813 }
2814 
2815 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2816 			 "%llu\n");
2817 
2818 static void __init mcheck_debugfs_init(void)
2819 {
2820 	struct dentry *dmce;
2821 
2822 	dmce = mce_get_debugfs_dir();
2823 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2824 				   &fake_panic_fops);
2825 }
2826 #else
2827 static void __init mcheck_debugfs_init(void) { }
2828 #endif
2829 
2830 static int __init mcheck_late_init(void)
2831 {
2832 	if (mca_cfg.recovery)
2833 		enable_copy_mc_fragile();
2834 
2835 	mcheck_debugfs_init();
2836 
2837 	/*
2838 	 * Flush out everything that has been logged during early boot, now that
2839 	 * everything has been initialized (workqueues, decoders, ...).
2840 	 */
2841 	mce_schedule_work();
2842 
2843 	return 0;
2844 }
2845 late_initcall(mcheck_late_init);
2846