xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision a61127c2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/jump_label.h>
44 #include <linux/set_memory.h>
45 
46 #include <asm/intel-family.h>
47 #include <asm/processor.h>
48 #include <asm/traps.h>
49 #include <asm/tlbflush.h>
50 #include <asm/mce.h>
51 #include <asm/msr.h>
52 #include <asm/reboot.h>
53 
54 #include "internal.h"
55 
56 static DEFINE_MUTEX(mce_log_mutex);
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 struct mce_bank *mce_banks __read_mostly;
69 struct mce_vendor_flags mce_flags __read_mostly;
70 
71 struct mca_config mca_cfg __read_mostly = {
72 	.bootlog  = -1,
73 	/*
74 	 * Tolerant levels:
75 	 * 0: always panic on uncorrected errors, log corrected errors
76 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
77 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
78 	 * 3: never panic or SIGBUS, log all errors (for testing only)
79 	 */
80 	.tolerant = 1,
81 	.monarch_timeout = -1
82 };
83 
84 static DEFINE_PER_CPU(struct mce, mces_seen);
85 static unsigned long mce_need_notify;
86 static int cpu_missing;
87 
88 /*
89  * MCA banks polled by the period polling timer for corrected events.
90  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
91  */
92 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
93 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
94 };
95 
96 /*
97  * MCA banks controlled through firmware first for corrected errors.
98  * This is a global list of banks for which we won't enable CMCI and we
99  * won't poll. Firmware controls these banks and is responsible for
100  * reporting corrected errors through GHES. Uncorrected/recoverable
101  * errors are still notified through a machine check.
102  */
103 mce_banks_t mce_banks_ce_disabled;
104 
105 static struct work_struct mce_work;
106 static struct irq_work mce_irq_work;
107 
108 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
109 
110 /*
111  * CPU/chipset specific EDAC code can register a notifier call here to print
112  * MCE errors in a human-readable form.
113  */
114 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
115 
116 /* Do initial initialization of a struct mce */
117 void mce_setup(struct mce *m)
118 {
119 	memset(m, 0, sizeof(struct mce));
120 	m->cpu = m->extcpu = smp_processor_id();
121 	/* need the internal __ version to avoid deadlocks */
122 	m->time = __ktime_get_real_seconds();
123 	m->cpuvendor = boot_cpu_data.x86_vendor;
124 	m->cpuid = cpuid_eax(1);
125 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
126 	m->apicid = cpu_data(m->extcpu).initial_apicid;
127 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
128 
129 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
130 		rdmsrl(MSR_PPIN, m->ppin);
131 
132 	m->microcode = boot_cpu_data.microcode;
133 }
134 
135 DEFINE_PER_CPU(struct mce, injectm);
136 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
137 
138 void mce_log(struct mce *m)
139 {
140 	if (!mce_gen_pool_add(m))
141 		irq_work_queue(&mce_irq_work);
142 }
143 
144 void mce_inject_log(struct mce *m)
145 {
146 	mutex_lock(&mce_log_mutex);
147 	mce_log(m);
148 	mutex_unlock(&mce_log_mutex);
149 }
150 EXPORT_SYMBOL_GPL(mce_inject_log);
151 
152 static struct notifier_block mce_srao_nb;
153 
154 /*
155  * We run the default notifier if we have only the SRAO, the first and the
156  * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
157  * notifiers registered on the chain.
158  */
159 #define NUM_DEFAULT_NOTIFIERS	3
160 static atomic_t num_notifiers;
161 
162 void mce_register_decode_chain(struct notifier_block *nb)
163 {
164 	if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
165 		return;
166 
167 	atomic_inc(&num_notifiers);
168 
169 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
170 }
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
172 
173 void mce_unregister_decode_chain(struct notifier_block *nb)
174 {
175 	atomic_dec(&num_notifiers);
176 
177 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
178 }
179 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
180 
181 static inline u32 ctl_reg(int bank)
182 {
183 	return MSR_IA32_MCx_CTL(bank);
184 }
185 
186 static inline u32 status_reg(int bank)
187 {
188 	return MSR_IA32_MCx_STATUS(bank);
189 }
190 
191 static inline u32 addr_reg(int bank)
192 {
193 	return MSR_IA32_MCx_ADDR(bank);
194 }
195 
196 static inline u32 misc_reg(int bank)
197 {
198 	return MSR_IA32_MCx_MISC(bank);
199 }
200 
201 static inline u32 smca_ctl_reg(int bank)
202 {
203 	return MSR_AMD64_SMCA_MCx_CTL(bank);
204 }
205 
206 static inline u32 smca_status_reg(int bank)
207 {
208 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
209 }
210 
211 static inline u32 smca_addr_reg(int bank)
212 {
213 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
214 }
215 
216 static inline u32 smca_misc_reg(int bank)
217 {
218 	return MSR_AMD64_SMCA_MCx_MISC(bank);
219 }
220 
221 struct mca_msr_regs msr_ops = {
222 	.ctl	= ctl_reg,
223 	.status	= status_reg,
224 	.addr	= addr_reg,
225 	.misc	= misc_reg
226 };
227 
228 static void __print_mce(struct mce *m)
229 {
230 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
231 		 m->extcpu,
232 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
233 		 m->mcgstatus, m->bank, m->status);
234 
235 	if (m->ip) {
236 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
237 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
238 			m->cs, m->ip);
239 
240 		if (m->cs == __KERNEL_CS)
241 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
242 		pr_cont("\n");
243 	}
244 
245 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
246 	if (m->addr)
247 		pr_cont("ADDR %llx ", m->addr);
248 	if (m->misc)
249 		pr_cont("MISC %llx ", m->misc);
250 
251 	if (mce_flags.smca) {
252 		if (m->synd)
253 			pr_cont("SYND %llx ", m->synd);
254 		if (m->ipid)
255 			pr_cont("IPID %llx ", m->ipid);
256 	}
257 
258 	pr_cont("\n");
259 	/*
260 	 * Note this output is parsed by external tools and old fields
261 	 * should not be changed.
262 	 */
263 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
264 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
265 		m->microcode);
266 }
267 
268 static void print_mce(struct mce *m)
269 {
270 	__print_mce(m);
271 
272 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
273 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
274 }
275 
276 #define PANIC_TIMEOUT 5 /* 5 seconds */
277 
278 static atomic_t mce_panicked;
279 
280 static int fake_panic;
281 static atomic_t mce_fake_panicked;
282 
283 /* Panic in progress. Enable interrupts and wait for final IPI */
284 static void wait_for_panic(void)
285 {
286 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
287 
288 	preempt_disable();
289 	local_irq_enable();
290 	while (timeout-- > 0)
291 		udelay(1);
292 	if (panic_timeout == 0)
293 		panic_timeout = mca_cfg.panic_timeout;
294 	panic("Panicing machine check CPU died");
295 }
296 
297 static void mce_panic(const char *msg, struct mce *final, char *exp)
298 {
299 	int apei_err = 0;
300 	struct llist_node *pending;
301 	struct mce_evt_llist *l;
302 
303 	if (!fake_panic) {
304 		/*
305 		 * Make sure only one CPU runs in machine check panic
306 		 */
307 		if (atomic_inc_return(&mce_panicked) > 1)
308 			wait_for_panic();
309 		barrier();
310 
311 		bust_spinlocks(1);
312 		console_verbose();
313 	} else {
314 		/* Don't log too much for fake panic */
315 		if (atomic_inc_return(&mce_fake_panicked) > 1)
316 			return;
317 	}
318 	pending = mce_gen_pool_prepare_records();
319 	/* First print corrected ones that are still unlogged */
320 	llist_for_each_entry(l, pending, llnode) {
321 		struct mce *m = &l->mce;
322 		if (!(m->status & MCI_STATUS_UC)) {
323 			print_mce(m);
324 			if (!apei_err)
325 				apei_err = apei_write_mce(m);
326 		}
327 	}
328 	/* Now print uncorrected but with the final one last */
329 	llist_for_each_entry(l, pending, llnode) {
330 		struct mce *m = &l->mce;
331 		if (!(m->status & MCI_STATUS_UC))
332 			continue;
333 		if (!final || mce_cmp(m, final)) {
334 			print_mce(m);
335 			if (!apei_err)
336 				apei_err = apei_write_mce(m);
337 		}
338 	}
339 	if (final) {
340 		print_mce(final);
341 		if (!apei_err)
342 			apei_err = apei_write_mce(final);
343 	}
344 	if (cpu_missing)
345 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
346 	if (exp)
347 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
348 	if (!fake_panic) {
349 		if (panic_timeout == 0)
350 			panic_timeout = mca_cfg.panic_timeout;
351 		panic(msg);
352 	} else
353 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
354 }
355 
356 /* Support code for software error injection */
357 
358 static int msr_to_offset(u32 msr)
359 {
360 	unsigned bank = __this_cpu_read(injectm.bank);
361 
362 	if (msr == mca_cfg.rip_msr)
363 		return offsetof(struct mce, ip);
364 	if (msr == msr_ops.status(bank))
365 		return offsetof(struct mce, status);
366 	if (msr == msr_ops.addr(bank))
367 		return offsetof(struct mce, addr);
368 	if (msr == msr_ops.misc(bank))
369 		return offsetof(struct mce, misc);
370 	if (msr == MSR_IA32_MCG_STATUS)
371 		return offsetof(struct mce, mcgstatus);
372 	return -1;
373 }
374 
375 /* MSR access wrappers used for error injection */
376 static u64 mce_rdmsrl(u32 msr)
377 {
378 	u64 v;
379 
380 	if (__this_cpu_read(injectm.finished)) {
381 		int offset = msr_to_offset(msr);
382 
383 		if (offset < 0)
384 			return 0;
385 		return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
386 	}
387 
388 	if (rdmsrl_safe(msr, &v)) {
389 		WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
390 		/*
391 		 * Return zero in case the access faulted. This should
392 		 * not happen normally but can happen if the CPU does
393 		 * something weird, or if the code is buggy.
394 		 */
395 		v = 0;
396 	}
397 
398 	return v;
399 }
400 
401 static void mce_wrmsrl(u32 msr, u64 v)
402 {
403 	if (__this_cpu_read(injectm.finished)) {
404 		int offset = msr_to_offset(msr);
405 
406 		if (offset >= 0)
407 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
408 		return;
409 	}
410 	wrmsrl(msr, v);
411 }
412 
413 /*
414  * Collect all global (w.r.t. this processor) status about this machine
415  * check into our "mce" struct so that we can use it later to assess
416  * the severity of the problem as we read per-bank specific details.
417  */
418 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
419 {
420 	mce_setup(m);
421 
422 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
423 	if (regs) {
424 		/*
425 		 * Get the address of the instruction at the time of
426 		 * the machine check error.
427 		 */
428 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
429 			m->ip = regs->ip;
430 			m->cs = regs->cs;
431 
432 			/*
433 			 * When in VM86 mode make the cs look like ring 3
434 			 * always. This is a lie, but it's better than passing
435 			 * the additional vm86 bit around everywhere.
436 			 */
437 			if (v8086_mode(regs))
438 				m->cs |= 3;
439 		}
440 		/* Use accurate RIP reporting if available. */
441 		if (mca_cfg.rip_msr)
442 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
443 	}
444 }
445 
446 int mce_available(struct cpuinfo_x86 *c)
447 {
448 	if (mca_cfg.disabled)
449 		return 0;
450 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
451 }
452 
453 static void mce_schedule_work(void)
454 {
455 	if (!mce_gen_pool_empty())
456 		schedule_work(&mce_work);
457 }
458 
459 static void mce_irq_work_cb(struct irq_work *entry)
460 {
461 	mce_schedule_work();
462 }
463 
464 /*
465  * Check if the address reported by the CPU is in a format we can parse.
466  * It would be possible to add code for most other cases, but all would
467  * be somewhat complicated (e.g. segment offset would require an instruction
468  * parser). So only support physical addresses up to page granuality for now.
469  */
470 int mce_usable_address(struct mce *m)
471 {
472 	if (!(m->status & MCI_STATUS_ADDRV))
473 		return 0;
474 
475 	/* Checks after this one are Intel-specific: */
476 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
477 		return 1;
478 
479 	if (!(m->status & MCI_STATUS_MISCV))
480 		return 0;
481 
482 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
483 		return 0;
484 
485 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
486 		return 0;
487 
488 	return 1;
489 }
490 EXPORT_SYMBOL_GPL(mce_usable_address);
491 
492 bool mce_is_memory_error(struct mce *m)
493 {
494 	if (m->cpuvendor == X86_VENDOR_AMD ||
495 	    m->cpuvendor == X86_VENDOR_HYGON) {
496 		return amd_mce_is_memory_error(m);
497 	} else if (m->cpuvendor == X86_VENDOR_INTEL) {
498 		/*
499 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
500 		 *
501 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
502 		 * indicating a memory error. Bit 8 is used for indicating a
503 		 * cache hierarchy error. The combination of bit 2 and bit 3
504 		 * is used for indicating a `generic' cache hierarchy error
505 		 * But we can't just blindly check the above bits, because if
506 		 * bit 11 is set, then it is a bus/interconnect error - and
507 		 * either way the above bits just gives more detail on what
508 		 * bus/interconnect error happened. Note that bit 12 can be
509 		 * ignored, as it's the "filter" bit.
510 		 */
511 		return (m->status & 0xef80) == BIT(7) ||
512 		       (m->status & 0xef00) == BIT(8) ||
513 		       (m->status & 0xeffc) == 0xc;
514 	}
515 
516 	return false;
517 }
518 EXPORT_SYMBOL_GPL(mce_is_memory_error);
519 
520 bool mce_is_correctable(struct mce *m)
521 {
522 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
523 		return false;
524 
525 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
526 		return false;
527 
528 	if (m->status & MCI_STATUS_UC)
529 		return false;
530 
531 	return true;
532 }
533 EXPORT_SYMBOL_GPL(mce_is_correctable);
534 
535 static bool cec_add_mce(struct mce *m)
536 {
537 	if (!m)
538 		return false;
539 
540 	/* We eat only correctable DRAM errors with usable addresses. */
541 	if (mce_is_memory_error(m) &&
542 	    mce_is_correctable(m)  &&
543 	    mce_usable_address(m))
544 		if (!cec_add_elem(m->addr >> PAGE_SHIFT))
545 			return true;
546 
547 	return false;
548 }
549 
550 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
551 			      void *data)
552 {
553 	struct mce *m = (struct mce *)data;
554 
555 	if (!m)
556 		return NOTIFY_DONE;
557 
558 	if (cec_add_mce(m))
559 		return NOTIFY_STOP;
560 
561 	/* Emit the trace record: */
562 	trace_mce_record(m);
563 
564 	set_bit(0, &mce_need_notify);
565 
566 	mce_notify_irq();
567 
568 	return NOTIFY_DONE;
569 }
570 
571 static struct notifier_block first_nb = {
572 	.notifier_call	= mce_first_notifier,
573 	.priority	= MCE_PRIO_FIRST,
574 };
575 
576 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
577 				void *data)
578 {
579 	struct mce *mce = (struct mce *)data;
580 	unsigned long pfn;
581 
582 	if (!mce)
583 		return NOTIFY_DONE;
584 
585 	if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
586 		pfn = mce->addr >> PAGE_SHIFT;
587 		if (!memory_failure(pfn, 0))
588 			set_mce_nospec(pfn);
589 	}
590 
591 	return NOTIFY_OK;
592 }
593 static struct notifier_block mce_srao_nb = {
594 	.notifier_call	= srao_decode_notifier,
595 	.priority	= MCE_PRIO_SRAO,
596 };
597 
598 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
599 				void *data)
600 {
601 	struct mce *m = (struct mce *)data;
602 
603 	if (!m)
604 		return NOTIFY_DONE;
605 
606 	if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
607 		return NOTIFY_DONE;
608 
609 	__print_mce(m);
610 
611 	return NOTIFY_DONE;
612 }
613 
614 static struct notifier_block mce_default_nb = {
615 	.notifier_call	= mce_default_notifier,
616 	/* lowest prio, we want it to run last. */
617 	.priority	= MCE_PRIO_LOWEST,
618 };
619 
620 /*
621  * Read ADDR and MISC registers.
622  */
623 static void mce_read_aux(struct mce *m, int i)
624 {
625 	if (m->status & MCI_STATUS_MISCV)
626 		m->misc = mce_rdmsrl(msr_ops.misc(i));
627 
628 	if (m->status & MCI_STATUS_ADDRV) {
629 		m->addr = mce_rdmsrl(msr_ops.addr(i));
630 
631 		/*
632 		 * Mask the reported address by the reported granularity.
633 		 */
634 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
635 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
636 			m->addr >>= shift;
637 			m->addr <<= shift;
638 		}
639 
640 		/*
641 		 * Extract [55:<lsb>] where lsb is the least significant
642 		 * *valid* bit of the address bits.
643 		 */
644 		if (mce_flags.smca) {
645 			u8 lsb = (m->addr >> 56) & 0x3f;
646 
647 			m->addr &= GENMASK_ULL(55, lsb);
648 		}
649 	}
650 
651 	if (mce_flags.smca) {
652 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
653 
654 		if (m->status & MCI_STATUS_SYNDV)
655 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
656 	}
657 }
658 
659 DEFINE_PER_CPU(unsigned, mce_poll_count);
660 
661 /*
662  * Poll for corrected events or events that happened before reset.
663  * Those are just logged through /dev/mcelog.
664  *
665  * This is executed in standard interrupt context.
666  *
667  * Note: spec recommends to panic for fatal unsignalled
668  * errors here. However this would be quite problematic --
669  * we would need to reimplement the Monarch handling and
670  * it would mess up the exclusion between exception handler
671  * and poll handler -- * so we skip this for now.
672  * These cases should not happen anyways, or only when the CPU
673  * is already totally * confused. In this case it's likely it will
674  * not fully execute the machine check handler either.
675  */
676 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
677 {
678 	bool error_seen = false;
679 	struct mce m;
680 	int i;
681 
682 	this_cpu_inc(mce_poll_count);
683 
684 	mce_gather_info(&m, NULL);
685 
686 	if (flags & MCP_TIMESTAMP)
687 		m.tsc = rdtsc();
688 
689 	for (i = 0; i < mca_cfg.banks; i++) {
690 		if (!mce_banks[i].ctl || !test_bit(i, *b))
691 			continue;
692 
693 		m.misc = 0;
694 		m.addr = 0;
695 		m.bank = i;
696 
697 		barrier();
698 		m.status = mce_rdmsrl(msr_ops.status(i));
699 
700 		/* If this entry is not valid, ignore it */
701 		if (!(m.status & MCI_STATUS_VAL))
702 			continue;
703 
704 		/*
705 		 * If we are logging everything (at CPU online) or this
706 		 * is a corrected error, then we must log it.
707 		 */
708 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
709 			goto log_it;
710 
711 		/*
712 		 * Newer Intel systems that support software error
713 		 * recovery need to make additional checks. Other
714 		 * CPUs should skip over uncorrected errors, but log
715 		 * everything else.
716 		 */
717 		if (!mca_cfg.ser) {
718 			if (m.status & MCI_STATUS_UC)
719 				continue;
720 			goto log_it;
721 		}
722 
723 		/* Log "not enabled" (speculative) errors */
724 		if (!(m.status & MCI_STATUS_EN))
725 			goto log_it;
726 
727 		/*
728 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
729 		 * UC == 1 && PCC == 0 && S == 0
730 		 */
731 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
732 			goto log_it;
733 
734 		/*
735 		 * Skip anything else. Presumption is that our read of this
736 		 * bank is racing with a machine check. Leave the log alone
737 		 * for do_machine_check() to deal with it.
738 		 */
739 		continue;
740 
741 log_it:
742 		error_seen = true;
743 
744 		mce_read_aux(&m, i);
745 
746 		m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
747 
748 		/*
749 		 * Don't get the IP here because it's unlikely to
750 		 * have anything to do with the actual error location.
751 		 */
752 		if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
753 			mce_log(&m);
754 		else if (mce_usable_address(&m)) {
755 			/*
756 			 * Although we skipped logging this, we still want
757 			 * to take action. Add to the pool so the registered
758 			 * notifiers will see it.
759 			 */
760 			if (!mce_gen_pool_add(&m))
761 				mce_schedule_work();
762 		}
763 
764 		/*
765 		 * Clear state for this bank.
766 		 */
767 		mce_wrmsrl(msr_ops.status(i), 0);
768 	}
769 
770 	/*
771 	 * Don't clear MCG_STATUS here because it's only defined for
772 	 * exceptions.
773 	 */
774 
775 	sync_core();
776 
777 	return error_seen;
778 }
779 EXPORT_SYMBOL_GPL(machine_check_poll);
780 
781 /*
782  * Do a quick check if any of the events requires a panic.
783  * This decides if we keep the events around or clear them.
784  */
785 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
786 			  struct pt_regs *regs)
787 {
788 	char *tmp;
789 	int i;
790 
791 	for (i = 0; i < mca_cfg.banks; i++) {
792 		m->status = mce_rdmsrl(msr_ops.status(i));
793 		if (!(m->status & MCI_STATUS_VAL))
794 			continue;
795 
796 		__set_bit(i, validp);
797 		if (quirk_no_way_out)
798 			quirk_no_way_out(i, m, regs);
799 
800 		if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
801 			m->bank = i;
802 			mce_read_aux(m, i);
803 			*msg = tmp;
804 			return 1;
805 		}
806 	}
807 	return 0;
808 }
809 
810 /*
811  * Variable to establish order between CPUs while scanning.
812  * Each CPU spins initially until executing is equal its number.
813  */
814 static atomic_t mce_executing;
815 
816 /*
817  * Defines order of CPUs on entry. First CPU becomes Monarch.
818  */
819 static atomic_t mce_callin;
820 
821 /*
822  * Check if a timeout waiting for other CPUs happened.
823  */
824 static int mce_timed_out(u64 *t, const char *msg)
825 {
826 	/*
827 	 * The others already did panic for some reason.
828 	 * Bail out like in a timeout.
829 	 * rmb() to tell the compiler that system_state
830 	 * might have been modified by someone else.
831 	 */
832 	rmb();
833 	if (atomic_read(&mce_panicked))
834 		wait_for_panic();
835 	if (!mca_cfg.monarch_timeout)
836 		goto out;
837 	if ((s64)*t < SPINUNIT) {
838 		if (mca_cfg.tolerant <= 1)
839 			mce_panic(msg, NULL, NULL);
840 		cpu_missing = 1;
841 		return 1;
842 	}
843 	*t -= SPINUNIT;
844 out:
845 	touch_nmi_watchdog();
846 	return 0;
847 }
848 
849 /*
850  * The Monarch's reign.  The Monarch is the CPU who entered
851  * the machine check handler first. It waits for the others to
852  * raise the exception too and then grades them. When any
853  * error is fatal panic. Only then let the others continue.
854  *
855  * The other CPUs entering the MCE handler will be controlled by the
856  * Monarch. They are called Subjects.
857  *
858  * This way we prevent any potential data corruption in a unrecoverable case
859  * and also makes sure always all CPU's errors are examined.
860  *
861  * Also this detects the case of a machine check event coming from outer
862  * space (not detected by any CPUs) In this case some external agent wants
863  * us to shut down, so panic too.
864  *
865  * The other CPUs might still decide to panic if the handler happens
866  * in a unrecoverable place, but in this case the system is in a semi-stable
867  * state and won't corrupt anything by itself. It's ok to let the others
868  * continue for a bit first.
869  *
870  * All the spin loops have timeouts; when a timeout happens a CPU
871  * typically elects itself to be Monarch.
872  */
873 static void mce_reign(void)
874 {
875 	int cpu;
876 	struct mce *m = NULL;
877 	int global_worst = 0;
878 	char *msg = NULL;
879 	char *nmsg = NULL;
880 
881 	/*
882 	 * This CPU is the Monarch and the other CPUs have run
883 	 * through their handlers.
884 	 * Grade the severity of the errors of all the CPUs.
885 	 */
886 	for_each_possible_cpu(cpu) {
887 		int severity = mce_severity(&per_cpu(mces_seen, cpu),
888 					    mca_cfg.tolerant,
889 					    &nmsg, true);
890 		if (severity > global_worst) {
891 			msg = nmsg;
892 			global_worst = severity;
893 			m = &per_cpu(mces_seen, cpu);
894 		}
895 	}
896 
897 	/*
898 	 * Cannot recover? Panic here then.
899 	 * This dumps all the mces in the log buffer and stops the
900 	 * other CPUs.
901 	 */
902 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
903 		mce_panic("Fatal machine check", m, msg);
904 
905 	/*
906 	 * For UC somewhere we let the CPU who detects it handle it.
907 	 * Also must let continue the others, otherwise the handling
908 	 * CPU could deadlock on a lock.
909 	 */
910 
911 	/*
912 	 * No machine check event found. Must be some external
913 	 * source or one CPU is hung. Panic.
914 	 */
915 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
916 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
917 
918 	/*
919 	 * Now clear all the mces_seen so that they don't reappear on
920 	 * the next mce.
921 	 */
922 	for_each_possible_cpu(cpu)
923 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
924 }
925 
926 static atomic_t global_nwo;
927 
928 /*
929  * Start of Monarch synchronization. This waits until all CPUs have
930  * entered the exception handler and then determines if any of them
931  * saw a fatal event that requires panic. Then it executes them
932  * in the entry order.
933  * TBD double check parallel CPU hotunplug
934  */
935 static int mce_start(int *no_way_out)
936 {
937 	int order;
938 	int cpus = num_online_cpus();
939 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
940 
941 	if (!timeout)
942 		return -1;
943 
944 	atomic_add(*no_way_out, &global_nwo);
945 	/*
946 	 * Rely on the implied barrier below, such that global_nwo
947 	 * is updated before mce_callin.
948 	 */
949 	order = atomic_inc_return(&mce_callin);
950 
951 	/*
952 	 * Wait for everyone.
953 	 */
954 	while (atomic_read(&mce_callin) != cpus) {
955 		if (mce_timed_out(&timeout,
956 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
957 			atomic_set(&global_nwo, 0);
958 			return -1;
959 		}
960 		ndelay(SPINUNIT);
961 	}
962 
963 	/*
964 	 * mce_callin should be read before global_nwo
965 	 */
966 	smp_rmb();
967 
968 	if (order == 1) {
969 		/*
970 		 * Monarch: Starts executing now, the others wait.
971 		 */
972 		atomic_set(&mce_executing, 1);
973 	} else {
974 		/*
975 		 * Subject: Now start the scanning loop one by one in
976 		 * the original callin order.
977 		 * This way when there are any shared banks it will be
978 		 * only seen by one CPU before cleared, avoiding duplicates.
979 		 */
980 		while (atomic_read(&mce_executing) < order) {
981 			if (mce_timed_out(&timeout,
982 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
983 				atomic_set(&global_nwo, 0);
984 				return -1;
985 			}
986 			ndelay(SPINUNIT);
987 		}
988 	}
989 
990 	/*
991 	 * Cache the global no_way_out state.
992 	 */
993 	*no_way_out = atomic_read(&global_nwo);
994 
995 	return order;
996 }
997 
998 /*
999  * Synchronize between CPUs after main scanning loop.
1000  * This invokes the bulk of the Monarch processing.
1001  */
1002 static int mce_end(int order)
1003 {
1004 	int ret = -1;
1005 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1006 
1007 	if (!timeout)
1008 		goto reset;
1009 	if (order < 0)
1010 		goto reset;
1011 
1012 	/*
1013 	 * Allow others to run.
1014 	 */
1015 	atomic_inc(&mce_executing);
1016 
1017 	if (order == 1) {
1018 		/* CHECKME: Can this race with a parallel hotplug? */
1019 		int cpus = num_online_cpus();
1020 
1021 		/*
1022 		 * Monarch: Wait for everyone to go through their scanning
1023 		 * loops.
1024 		 */
1025 		while (atomic_read(&mce_executing) <= cpus) {
1026 			if (mce_timed_out(&timeout,
1027 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1028 				goto reset;
1029 			ndelay(SPINUNIT);
1030 		}
1031 
1032 		mce_reign();
1033 		barrier();
1034 		ret = 0;
1035 	} else {
1036 		/*
1037 		 * Subject: Wait for Monarch to finish.
1038 		 */
1039 		while (atomic_read(&mce_executing) != 0) {
1040 			if (mce_timed_out(&timeout,
1041 					  "Timeout: Monarch CPU did not finish machine check processing"))
1042 				goto reset;
1043 			ndelay(SPINUNIT);
1044 		}
1045 
1046 		/*
1047 		 * Don't reset anything. That's done by the Monarch.
1048 		 */
1049 		return 0;
1050 	}
1051 
1052 	/*
1053 	 * Reset all global state.
1054 	 */
1055 reset:
1056 	atomic_set(&global_nwo, 0);
1057 	atomic_set(&mce_callin, 0);
1058 	barrier();
1059 
1060 	/*
1061 	 * Let others run again.
1062 	 */
1063 	atomic_set(&mce_executing, 0);
1064 	return ret;
1065 }
1066 
1067 static void mce_clear_state(unsigned long *toclear)
1068 {
1069 	int i;
1070 
1071 	for (i = 0; i < mca_cfg.banks; i++) {
1072 		if (test_bit(i, toclear))
1073 			mce_wrmsrl(msr_ops.status(i), 0);
1074 	}
1075 }
1076 
1077 static int do_memory_failure(struct mce *m)
1078 {
1079 	int flags = MF_ACTION_REQUIRED;
1080 	int ret;
1081 
1082 	pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1083 	if (!(m->mcgstatus & MCG_STATUS_RIPV))
1084 		flags |= MF_MUST_KILL;
1085 	ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1086 	if (ret)
1087 		pr_err("Memory error not recovered");
1088 	else
1089 		set_mce_nospec(m->addr >> PAGE_SHIFT);
1090 	return ret;
1091 }
1092 
1093 
1094 /*
1095  * Cases where we avoid rendezvous handler timeout:
1096  * 1) If this CPU is offline.
1097  *
1098  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1099  *  skip those CPUs which remain looping in the 1st kernel - see
1100  *  crash_nmi_callback().
1101  *
1102  * Note: there still is a small window between kexec-ing and the new,
1103  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1104  * might not get handled properly.
1105  */
1106 static bool __mc_check_crashing_cpu(int cpu)
1107 {
1108 	if (cpu_is_offline(cpu) ||
1109 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1110 		u64 mcgstatus;
1111 
1112 		mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1113 		if (mcgstatus & MCG_STATUS_RIPV) {
1114 			mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1115 			return true;
1116 		}
1117 	}
1118 	return false;
1119 }
1120 
1121 static void __mc_scan_banks(struct mce *m, struct mce *final,
1122 			    unsigned long *toclear, unsigned long *valid_banks,
1123 			    int no_way_out, int *worst)
1124 {
1125 	struct mca_config *cfg = &mca_cfg;
1126 	int severity, i;
1127 
1128 	for (i = 0; i < cfg->banks; i++) {
1129 		__clear_bit(i, toclear);
1130 		if (!test_bit(i, valid_banks))
1131 			continue;
1132 
1133 		if (!mce_banks[i].ctl)
1134 			continue;
1135 
1136 		m->misc = 0;
1137 		m->addr = 0;
1138 		m->bank = i;
1139 
1140 		m->status = mce_rdmsrl(msr_ops.status(i));
1141 		if (!(m->status & MCI_STATUS_VAL))
1142 			continue;
1143 
1144 		/*
1145 		 * Corrected or non-signaled errors are handled by
1146 		 * machine_check_poll(). Leave them alone, unless this panics.
1147 		 */
1148 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1149 			!no_way_out)
1150 			continue;
1151 
1152 		/* Set taint even when machine check was not enabled. */
1153 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1154 
1155 		severity = mce_severity(m, cfg->tolerant, NULL, true);
1156 
1157 		/*
1158 		 * When machine check was for corrected/deferred handler don't
1159 		 * touch, unless we're panicking.
1160 		 */
1161 		if ((severity == MCE_KEEP_SEVERITY ||
1162 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1163 			continue;
1164 
1165 		__set_bit(i, toclear);
1166 
1167 		/* Machine check event was not enabled. Clear, but ignore. */
1168 		if (severity == MCE_NO_SEVERITY)
1169 			continue;
1170 
1171 		mce_read_aux(m, i);
1172 
1173 		/* assuming valid severity level != 0 */
1174 		m->severity = severity;
1175 
1176 		mce_log(m);
1177 
1178 		if (severity > *worst) {
1179 			*final = *m;
1180 			*worst = severity;
1181 		}
1182 	}
1183 
1184 	/* mce_clear_state will clear *final, save locally for use later */
1185 	*m = *final;
1186 }
1187 
1188 /*
1189  * The actual machine check handler. This only handles real
1190  * exceptions when something got corrupted coming in through int 18.
1191  *
1192  * This is executed in NMI context not subject to normal locking rules. This
1193  * implies that most kernel services cannot be safely used. Don't even
1194  * think about putting a printk in there!
1195  *
1196  * On Intel systems this is entered on all CPUs in parallel through
1197  * MCE broadcast. However some CPUs might be broken beyond repair,
1198  * so be always careful when synchronizing with others.
1199  */
1200 void do_machine_check(struct pt_regs *regs, long error_code)
1201 {
1202 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1203 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1204 	struct mca_config *cfg = &mca_cfg;
1205 	int cpu = smp_processor_id();
1206 	char *msg = "Unknown";
1207 	struct mce m, *final;
1208 	int worst = 0;
1209 
1210 	/*
1211 	 * Establish sequential order between the CPUs entering the machine
1212 	 * check handler.
1213 	 */
1214 	int order = -1;
1215 
1216 	/*
1217 	 * If no_way_out gets set, there is no safe way to recover from this
1218 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1219 	 */
1220 	int no_way_out = 0;
1221 
1222 	/*
1223 	 * If kill_it gets set, there might be a way to recover from this
1224 	 * error.
1225 	 */
1226 	int kill_it = 0;
1227 
1228 	/*
1229 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1230 	 * on Intel.
1231 	 */
1232 	int lmce = 1;
1233 
1234 	if (__mc_check_crashing_cpu(cpu))
1235 		return;
1236 
1237 	ist_enter(regs);
1238 
1239 	this_cpu_inc(mce_exception_count);
1240 
1241 	mce_gather_info(&m, regs);
1242 	m.tsc = rdtsc();
1243 
1244 	final = this_cpu_ptr(&mces_seen);
1245 	*final = m;
1246 
1247 	memset(valid_banks, 0, sizeof(valid_banks));
1248 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1249 
1250 	barrier();
1251 
1252 	/*
1253 	 * When no restart IP might need to kill or panic.
1254 	 * Assume the worst for now, but if we find the
1255 	 * severity is MCE_AR_SEVERITY we have other options.
1256 	 */
1257 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1258 		kill_it = 1;
1259 
1260 	/*
1261 	 * Check if this MCE is signaled to only this logical processor,
1262 	 * on Intel only.
1263 	 */
1264 	if (m.cpuvendor == X86_VENDOR_INTEL)
1265 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1266 
1267 	/*
1268 	 * Local machine check may already know that we have to panic.
1269 	 * Broadcast machine check begins rendezvous in mce_start()
1270 	 * Go through all banks in exclusion of the other CPUs. This way we
1271 	 * don't report duplicated events on shared banks because the first one
1272 	 * to see it will clear it.
1273 	 */
1274 	if (lmce) {
1275 		if (no_way_out)
1276 			mce_panic("Fatal local machine check", &m, msg);
1277 	} else {
1278 		order = mce_start(&no_way_out);
1279 	}
1280 
1281 	__mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst);
1282 
1283 	if (!no_way_out)
1284 		mce_clear_state(toclear);
1285 
1286 	/*
1287 	 * Do most of the synchronization with other CPUs.
1288 	 * When there's any problem use only local no_way_out state.
1289 	 */
1290 	if (!lmce) {
1291 		if (mce_end(order) < 0)
1292 			no_way_out = worst >= MCE_PANIC_SEVERITY;
1293 	} else {
1294 		/*
1295 		 * If there was a fatal machine check we should have
1296 		 * already called mce_panic earlier in this function.
1297 		 * Since we re-read the banks, we might have found
1298 		 * something new. Check again to see if we found a
1299 		 * fatal error. We call "mce_severity()" again to
1300 		 * make sure we have the right "msg".
1301 		 */
1302 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1303 			mce_severity(&m, cfg->tolerant, &msg, true);
1304 			mce_panic("Local fatal machine check!", &m, msg);
1305 		}
1306 	}
1307 
1308 	/*
1309 	 * If tolerant is at an insane level we drop requests to kill
1310 	 * processes and continue even when there is no way out.
1311 	 */
1312 	if (cfg->tolerant == 3)
1313 		kill_it = 0;
1314 	else if (no_way_out)
1315 		mce_panic("Fatal machine check on current CPU", &m, msg);
1316 
1317 	if (worst > 0)
1318 		irq_work_queue(&mce_irq_work);
1319 
1320 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1321 
1322 	sync_core();
1323 
1324 	if (worst != MCE_AR_SEVERITY && !kill_it)
1325 		goto out_ist;
1326 
1327 	/* Fault was in user mode and we need to take some action */
1328 	if ((m.cs & 3) == 3) {
1329 		ist_begin_non_atomic(regs);
1330 		local_irq_enable();
1331 
1332 		if (kill_it || do_memory_failure(&m))
1333 			force_sig(SIGBUS, current);
1334 		local_irq_disable();
1335 		ist_end_non_atomic();
1336 	} else {
1337 		if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0))
1338 			mce_panic("Failed kernel mode recovery", &m, NULL);
1339 	}
1340 
1341 out_ist:
1342 	ist_exit(regs);
1343 }
1344 EXPORT_SYMBOL_GPL(do_machine_check);
1345 
1346 #ifndef CONFIG_MEMORY_FAILURE
1347 int memory_failure(unsigned long pfn, int flags)
1348 {
1349 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1350 	BUG_ON(flags & MF_ACTION_REQUIRED);
1351 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1352 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1353 	       pfn);
1354 
1355 	return 0;
1356 }
1357 #endif
1358 
1359 /*
1360  * Periodic polling timer for "silent" machine check errors.  If the
1361  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1362  * errors, poll 2x slower (up to check_interval seconds).
1363  */
1364 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1365 
1366 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1367 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1368 
1369 static unsigned long mce_adjust_timer_default(unsigned long interval)
1370 {
1371 	return interval;
1372 }
1373 
1374 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1375 
1376 static void __start_timer(struct timer_list *t, unsigned long interval)
1377 {
1378 	unsigned long when = jiffies + interval;
1379 	unsigned long flags;
1380 
1381 	local_irq_save(flags);
1382 
1383 	if (!timer_pending(t) || time_before(when, t->expires))
1384 		mod_timer(t, round_jiffies(when));
1385 
1386 	local_irq_restore(flags);
1387 }
1388 
1389 static void mce_timer_fn(struct timer_list *t)
1390 {
1391 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1392 	unsigned long iv;
1393 
1394 	WARN_ON(cpu_t != t);
1395 
1396 	iv = __this_cpu_read(mce_next_interval);
1397 
1398 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1399 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1400 
1401 		if (mce_intel_cmci_poll()) {
1402 			iv = mce_adjust_timer(iv);
1403 			goto done;
1404 		}
1405 	}
1406 
1407 	/*
1408 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1409 	 * interval, otherwise increase the polling interval.
1410 	 */
1411 	if (mce_notify_irq())
1412 		iv = max(iv / 2, (unsigned long) HZ/100);
1413 	else
1414 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1415 
1416 done:
1417 	__this_cpu_write(mce_next_interval, iv);
1418 	__start_timer(t, iv);
1419 }
1420 
1421 /*
1422  * Ensure that the timer is firing in @interval from now.
1423  */
1424 void mce_timer_kick(unsigned long interval)
1425 {
1426 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1427 	unsigned long iv = __this_cpu_read(mce_next_interval);
1428 
1429 	__start_timer(t, interval);
1430 
1431 	if (interval < iv)
1432 		__this_cpu_write(mce_next_interval, interval);
1433 }
1434 
1435 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1436 static void mce_timer_delete_all(void)
1437 {
1438 	int cpu;
1439 
1440 	for_each_online_cpu(cpu)
1441 		del_timer_sync(&per_cpu(mce_timer, cpu));
1442 }
1443 
1444 /*
1445  * Notify the user(s) about new machine check events.
1446  * Can be called from interrupt context, but not from machine check/NMI
1447  * context.
1448  */
1449 int mce_notify_irq(void)
1450 {
1451 	/* Not more than two messages every minute */
1452 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1453 
1454 	if (test_and_clear_bit(0, &mce_need_notify)) {
1455 		mce_work_trigger();
1456 
1457 		if (__ratelimit(&ratelimit))
1458 			pr_info(HW_ERR "Machine check events logged\n");
1459 
1460 		return 1;
1461 	}
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(mce_notify_irq);
1465 
1466 static int __mcheck_cpu_mce_banks_init(void)
1467 {
1468 	int i;
1469 
1470 	mce_banks = kcalloc(MAX_NR_BANKS, sizeof(struct mce_bank), GFP_KERNEL);
1471 	if (!mce_banks)
1472 		return -ENOMEM;
1473 
1474 	for (i = 0; i < MAX_NR_BANKS; i++) {
1475 		struct mce_bank *b = &mce_banks[i];
1476 
1477 		b->ctl = -1ULL;
1478 		b->init = 1;
1479 	}
1480 	return 0;
1481 }
1482 
1483 /*
1484  * Initialize Machine Checks for a CPU.
1485  */
1486 static int __mcheck_cpu_cap_init(void)
1487 {
1488 	u64 cap;
1489 	u8 b;
1490 
1491 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1492 
1493 	b = cap & MCG_BANKCNT_MASK;
1494 	if (WARN_ON_ONCE(b > MAX_NR_BANKS))
1495 		b = MAX_NR_BANKS;
1496 
1497 	mca_cfg.banks = max(mca_cfg.banks, b);
1498 
1499 	if (!mce_banks) {
1500 		int err = __mcheck_cpu_mce_banks_init();
1501 		if (err)
1502 			return err;
1503 	}
1504 
1505 	/* Use accurate RIP reporting if available. */
1506 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1507 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1508 
1509 	if (cap & MCG_SER_P)
1510 		mca_cfg.ser = 1;
1511 
1512 	return 0;
1513 }
1514 
1515 static void __mcheck_cpu_init_generic(void)
1516 {
1517 	enum mcp_flags m_fl = 0;
1518 	mce_banks_t all_banks;
1519 	u64 cap;
1520 
1521 	if (!mca_cfg.bootlog)
1522 		m_fl = MCP_DONTLOG;
1523 
1524 	/*
1525 	 * Log the machine checks left over from the previous reset.
1526 	 */
1527 	bitmap_fill(all_banks, MAX_NR_BANKS);
1528 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1529 
1530 	cr4_set_bits(X86_CR4_MCE);
1531 
1532 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1533 	if (cap & MCG_CTL_P)
1534 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1535 }
1536 
1537 static void __mcheck_cpu_init_clear_banks(void)
1538 {
1539 	int i;
1540 
1541 	for (i = 0; i < mca_cfg.banks; i++) {
1542 		struct mce_bank *b = &mce_banks[i];
1543 
1544 		if (!b->init)
1545 			continue;
1546 		wrmsrl(msr_ops.ctl(i), b->ctl);
1547 		wrmsrl(msr_ops.status(i), 0);
1548 	}
1549 }
1550 
1551 /*
1552  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1553  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1554  * Vol 3B Table 15-20). But this confuses both the code that determines
1555  * whether the machine check occurred in kernel or user mode, and also
1556  * the severity assessment code. Pretend that EIPV was set, and take the
1557  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1558  */
1559 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1560 {
1561 	if (bank != 0)
1562 		return;
1563 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1564 		return;
1565 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1566 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1567 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1568 			  MCACOD)) !=
1569 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1570 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1571 			  MCI_STATUS_AR|MCACOD_INSTR))
1572 		return;
1573 
1574 	m->mcgstatus |= MCG_STATUS_EIPV;
1575 	m->ip = regs->ip;
1576 	m->cs = regs->cs;
1577 }
1578 
1579 /* Add per CPU specific workarounds here */
1580 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1581 {
1582 	struct mca_config *cfg = &mca_cfg;
1583 
1584 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1585 		pr_info("unknown CPU type - not enabling MCE support\n");
1586 		return -EOPNOTSUPP;
1587 	}
1588 
1589 	/* This should be disabled by the BIOS, but isn't always */
1590 	if (c->x86_vendor == X86_VENDOR_AMD) {
1591 		if (c->x86 == 15 && cfg->banks > 4) {
1592 			/*
1593 			 * disable GART TBL walk error reporting, which
1594 			 * trips off incorrectly with the IOMMU & 3ware
1595 			 * & Cerberus:
1596 			 */
1597 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1598 		}
1599 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1600 			/*
1601 			 * Lots of broken BIOS around that don't clear them
1602 			 * by default and leave crap in there. Don't log:
1603 			 */
1604 			cfg->bootlog = 0;
1605 		}
1606 		/*
1607 		 * Various K7s with broken bank 0 around. Always disable
1608 		 * by default.
1609 		 */
1610 		if (c->x86 == 6 && cfg->banks > 0)
1611 			mce_banks[0].ctl = 0;
1612 
1613 		/*
1614 		 * overflow_recov is supported for F15h Models 00h-0fh
1615 		 * even though we don't have a CPUID bit for it.
1616 		 */
1617 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1618 			mce_flags.overflow_recov = 1;
1619 
1620 	}
1621 
1622 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1623 		/*
1624 		 * SDM documents that on family 6 bank 0 should not be written
1625 		 * because it aliases to another special BIOS controlled
1626 		 * register.
1627 		 * But it's not aliased anymore on model 0x1a+
1628 		 * Don't ignore bank 0 completely because there could be a
1629 		 * valid event later, merely don't write CTL0.
1630 		 */
1631 
1632 		if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1633 			mce_banks[0].init = 0;
1634 
1635 		/*
1636 		 * All newer Intel systems support MCE broadcasting. Enable
1637 		 * synchronization with a one second timeout.
1638 		 */
1639 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1640 			cfg->monarch_timeout < 0)
1641 			cfg->monarch_timeout = USEC_PER_SEC;
1642 
1643 		/*
1644 		 * There are also broken BIOSes on some Pentium M and
1645 		 * earlier systems:
1646 		 */
1647 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1648 			cfg->bootlog = 0;
1649 
1650 		if (c->x86 == 6 && c->x86_model == 45)
1651 			quirk_no_way_out = quirk_sandybridge_ifu;
1652 	}
1653 	if (cfg->monarch_timeout < 0)
1654 		cfg->monarch_timeout = 0;
1655 	if (cfg->bootlog != 0)
1656 		cfg->panic_timeout = 30;
1657 
1658 	return 0;
1659 }
1660 
1661 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1662 {
1663 	if (c->x86 != 5)
1664 		return 0;
1665 
1666 	switch (c->x86_vendor) {
1667 	case X86_VENDOR_INTEL:
1668 		intel_p5_mcheck_init(c);
1669 		return 1;
1670 		break;
1671 	case X86_VENDOR_CENTAUR:
1672 		winchip_mcheck_init(c);
1673 		return 1;
1674 		break;
1675 	default:
1676 		return 0;
1677 	}
1678 
1679 	return 0;
1680 }
1681 
1682 /*
1683  * Init basic CPU features needed for early decoding of MCEs.
1684  */
1685 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1686 {
1687 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1688 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1689 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1690 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1691 
1692 		if (mce_flags.smca) {
1693 			msr_ops.ctl	= smca_ctl_reg;
1694 			msr_ops.status	= smca_status_reg;
1695 			msr_ops.addr	= smca_addr_reg;
1696 			msr_ops.misc	= smca_misc_reg;
1697 		}
1698 	}
1699 }
1700 
1701 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1702 {
1703 	struct mca_config *cfg = &mca_cfg;
1704 
1705 	 /*
1706 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1707 	  * synchronization with a one second timeout.
1708 	  */
1709 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1710 	     c->x86 > 6) {
1711 		if (cfg->monarch_timeout < 0)
1712 			cfg->monarch_timeout = USEC_PER_SEC;
1713 	}
1714 }
1715 
1716 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1717 {
1718 	switch (c->x86_vendor) {
1719 	case X86_VENDOR_INTEL:
1720 		mce_intel_feature_init(c);
1721 		mce_adjust_timer = cmci_intel_adjust_timer;
1722 		break;
1723 
1724 	case X86_VENDOR_AMD: {
1725 		mce_amd_feature_init(c);
1726 		break;
1727 		}
1728 
1729 	case X86_VENDOR_HYGON:
1730 		mce_hygon_feature_init(c);
1731 		break;
1732 
1733 	case X86_VENDOR_CENTAUR:
1734 		mce_centaur_feature_init(c);
1735 		break;
1736 
1737 	default:
1738 		break;
1739 	}
1740 }
1741 
1742 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1743 {
1744 	switch (c->x86_vendor) {
1745 	case X86_VENDOR_INTEL:
1746 		mce_intel_feature_clear(c);
1747 		break;
1748 	default:
1749 		break;
1750 	}
1751 }
1752 
1753 static void mce_start_timer(struct timer_list *t)
1754 {
1755 	unsigned long iv = check_interval * HZ;
1756 
1757 	if (mca_cfg.ignore_ce || !iv)
1758 		return;
1759 
1760 	this_cpu_write(mce_next_interval, iv);
1761 	__start_timer(t, iv);
1762 }
1763 
1764 static void __mcheck_cpu_setup_timer(void)
1765 {
1766 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1767 
1768 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1769 }
1770 
1771 static void __mcheck_cpu_init_timer(void)
1772 {
1773 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1774 
1775 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1776 	mce_start_timer(t);
1777 }
1778 
1779 bool filter_mce(struct mce *m)
1780 {
1781 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1782 		return amd_filter_mce(m);
1783 
1784 	return false;
1785 }
1786 
1787 /* Handle unconfigured int18 (should never happen) */
1788 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1789 {
1790 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1791 	       smp_processor_id());
1792 }
1793 
1794 /* Call the installed machine check handler for this CPU setup. */
1795 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1796 						unexpected_machine_check;
1797 
1798 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1799 {
1800 	machine_check_vector(regs, error_code);
1801 }
1802 
1803 /*
1804  * Called for each booted CPU to set up machine checks.
1805  * Must be called with preempt off:
1806  */
1807 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1808 {
1809 	if (mca_cfg.disabled)
1810 		return;
1811 
1812 	if (__mcheck_cpu_ancient_init(c))
1813 		return;
1814 
1815 	if (!mce_available(c))
1816 		return;
1817 
1818 	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1819 		mca_cfg.disabled = 1;
1820 		return;
1821 	}
1822 
1823 	if (mce_gen_pool_init()) {
1824 		mca_cfg.disabled = 1;
1825 		pr_emerg("Couldn't allocate MCE records pool!\n");
1826 		return;
1827 	}
1828 
1829 	machine_check_vector = do_machine_check;
1830 
1831 	__mcheck_cpu_init_early(c);
1832 	__mcheck_cpu_init_generic();
1833 	__mcheck_cpu_init_vendor(c);
1834 	__mcheck_cpu_init_clear_banks();
1835 	__mcheck_cpu_setup_timer();
1836 }
1837 
1838 /*
1839  * Called for each booted CPU to clear some machine checks opt-ins
1840  */
1841 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1842 {
1843 	if (mca_cfg.disabled)
1844 		return;
1845 
1846 	if (!mce_available(c))
1847 		return;
1848 
1849 	/*
1850 	 * Possibly to clear general settings generic to x86
1851 	 * __mcheck_cpu_clear_generic(c);
1852 	 */
1853 	__mcheck_cpu_clear_vendor(c);
1854 
1855 }
1856 
1857 static void __mce_disable_bank(void *arg)
1858 {
1859 	int bank = *((int *)arg);
1860 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1861 	cmci_disable_bank(bank);
1862 }
1863 
1864 void mce_disable_bank(int bank)
1865 {
1866 	if (bank >= mca_cfg.banks) {
1867 		pr_warn(FW_BUG
1868 			"Ignoring request to disable invalid MCA bank %d.\n",
1869 			bank);
1870 		return;
1871 	}
1872 	set_bit(bank, mce_banks_ce_disabled);
1873 	on_each_cpu(__mce_disable_bank, &bank, 1);
1874 }
1875 
1876 /*
1877  * mce=off Disables machine check
1878  * mce=no_cmci Disables CMCI
1879  * mce=no_lmce Disables LMCE
1880  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1881  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1882  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1883  *	monarchtimeout is how long to wait for other CPUs on machine
1884  *	check, or 0 to not wait
1885  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1886 	and older.
1887  * mce=nobootlog Don't log MCEs from before booting.
1888  * mce=bios_cmci_threshold Don't program the CMCI threshold
1889  * mce=recovery force enable memcpy_mcsafe()
1890  */
1891 static int __init mcheck_enable(char *str)
1892 {
1893 	struct mca_config *cfg = &mca_cfg;
1894 
1895 	if (*str == 0) {
1896 		enable_p5_mce();
1897 		return 1;
1898 	}
1899 	if (*str == '=')
1900 		str++;
1901 	if (!strcmp(str, "off"))
1902 		cfg->disabled = 1;
1903 	else if (!strcmp(str, "no_cmci"))
1904 		cfg->cmci_disabled = true;
1905 	else if (!strcmp(str, "no_lmce"))
1906 		cfg->lmce_disabled = 1;
1907 	else if (!strcmp(str, "dont_log_ce"))
1908 		cfg->dont_log_ce = true;
1909 	else if (!strcmp(str, "ignore_ce"))
1910 		cfg->ignore_ce = true;
1911 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1912 		cfg->bootlog = (str[0] == 'b');
1913 	else if (!strcmp(str, "bios_cmci_threshold"))
1914 		cfg->bios_cmci_threshold = 1;
1915 	else if (!strcmp(str, "recovery"))
1916 		cfg->recovery = 1;
1917 	else if (isdigit(str[0])) {
1918 		if (get_option(&str, &cfg->tolerant) == 2)
1919 			get_option(&str, &(cfg->monarch_timeout));
1920 	} else {
1921 		pr_info("mce argument %s ignored. Please use /sys\n", str);
1922 		return 0;
1923 	}
1924 	return 1;
1925 }
1926 __setup("mce", mcheck_enable);
1927 
1928 int __init mcheck_init(void)
1929 {
1930 	mcheck_intel_therm_init();
1931 	mce_register_decode_chain(&first_nb);
1932 	mce_register_decode_chain(&mce_srao_nb);
1933 	mce_register_decode_chain(&mce_default_nb);
1934 	mcheck_vendor_init_severity();
1935 
1936 	INIT_WORK(&mce_work, mce_gen_pool_process);
1937 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
1938 
1939 	return 0;
1940 }
1941 
1942 /*
1943  * mce_syscore: PM support
1944  */
1945 
1946 /*
1947  * Disable machine checks on suspend and shutdown. We can't really handle
1948  * them later.
1949  */
1950 static void mce_disable_error_reporting(void)
1951 {
1952 	int i;
1953 
1954 	for (i = 0; i < mca_cfg.banks; i++) {
1955 		struct mce_bank *b = &mce_banks[i];
1956 
1957 		if (b->init)
1958 			wrmsrl(msr_ops.ctl(i), 0);
1959 	}
1960 	return;
1961 }
1962 
1963 static void vendor_disable_error_reporting(void)
1964 {
1965 	/*
1966 	 * Don't clear on Intel or AMD or Hygon CPUs. Some of these MSRs
1967 	 * are socket-wide.
1968 	 * Disabling them for just a single offlined CPU is bad, since it will
1969 	 * inhibit reporting for all shared resources on the socket like the
1970 	 * last level cache (LLC), the integrated memory controller (iMC), etc.
1971 	 */
1972 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1973 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
1974 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1975 		return;
1976 
1977 	mce_disable_error_reporting();
1978 }
1979 
1980 static int mce_syscore_suspend(void)
1981 {
1982 	vendor_disable_error_reporting();
1983 	return 0;
1984 }
1985 
1986 static void mce_syscore_shutdown(void)
1987 {
1988 	vendor_disable_error_reporting();
1989 }
1990 
1991 /*
1992  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1993  * Only one CPU is active at this time, the others get re-added later using
1994  * CPU hotplug:
1995  */
1996 static void mce_syscore_resume(void)
1997 {
1998 	__mcheck_cpu_init_generic();
1999 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2000 	__mcheck_cpu_init_clear_banks();
2001 }
2002 
2003 static struct syscore_ops mce_syscore_ops = {
2004 	.suspend	= mce_syscore_suspend,
2005 	.shutdown	= mce_syscore_shutdown,
2006 	.resume		= mce_syscore_resume,
2007 };
2008 
2009 /*
2010  * mce_device: Sysfs support
2011  */
2012 
2013 static void mce_cpu_restart(void *data)
2014 {
2015 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2016 		return;
2017 	__mcheck_cpu_init_generic();
2018 	__mcheck_cpu_init_clear_banks();
2019 	__mcheck_cpu_init_timer();
2020 }
2021 
2022 /* Reinit MCEs after user configuration changes */
2023 static void mce_restart(void)
2024 {
2025 	mce_timer_delete_all();
2026 	on_each_cpu(mce_cpu_restart, NULL, 1);
2027 }
2028 
2029 /* Toggle features for corrected errors */
2030 static void mce_disable_cmci(void *data)
2031 {
2032 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2033 		return;
2034 	cmci_clear();
2035 }
2036 
2037 static void mce_enable_ce(void *all)
2038 {
2039 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2040 		return;
2041 	cmci_reenable();
2042 	cmci_recheck();
2043 	if (all)
2044 		__mcheck_cpu_init_timer();
2045 }
2046 
2047 static struct bus_type mce_subsys = {
2048 	.name		= "machinecheck",
2049 	.dev_name	= "machinecheck",
2050 };
2051 
2052 DEFINE_PER_CPU(struct device *, mce_device);
2053 
2054 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2055 {
2056 	return container_of(attr, struct mce_bank, attr);
2057 }
2058 
2059 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2060 			 char *buf)
2061 {
2062 	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2063 }
2064 
2065 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2066 			const char *buf, size_t size)
2067 {
2068 	u64 new;
2069 
2070 	if (kstrtou64(buf, 0, &new) < 0)
2071 		return -EINVAL;
2072 
2073 	attr_to_bank(attr)->ctl = new;
2074 	mce_restart();
2075 
2076 	return size;
2077 }
2078 
2079 static ssize_t set_ignore_ce(struct device *s,
2080 			     struct device_attribute *attr,
2081 			     const char *buf, size_t size)
2082 {
2083 	u64 new;
2084 
2085 	if (kstrtou64(buf, 0, &new) < 0)
2086 		return -EINVAL;
2087 
2088 	mutex_lock(&mce_sysfs_mutex);
2089 	if (mca_cfg.ignore_ce ^ !!new) {
2090 		if (new) {
2091 			/* disable ce features */
2092 			mce_timer_delete_all();
2093 			on_each_cpu(mce_disable_cmci, NULL, 1);
2094 			mca_cfg.ignore_ce = true;
2095 		} else {
2096 			/* enable ce features */
2097 			mca_cfg.ignore_ce = false;
2098 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2099 		}
2100 	}
2101 	mutex_unlock(&mce_sysfs_mutex);
2102 
2103 	return size;
2104 }
2105 
2106 static ssize_t set_cmci_disabled(struct device *s,
2107 				 struct device_attribute *attr,
2108 				 const char *buf, size_t size)
2109 {
2110 	u64 new;
2111 
2112 	if (kstrtou64(buf, 0, &new) < 0)
2113 		return -EINVAL;
2114 
2115 	mutex_lock(&mce_sysfs_mutex);
2116 	if (mca_cfg.cmci_disabled ^ !!new) {
2117 		if (new) {
2118 			/* disable cmci */
2119 			on_each_cpu(mce_disable_cmci, NULL, 1);
2120 			mca_cfg.cmci_disabled = true;
2121 		} else {
2122 			/* enable cmci */
2123 			mca_cfg.cmci_disabled = false;
2124 			on_each_cpu(mce_enable_ce, NULL, 1);
2125 		}
2126 	}
2127 	mutex_unlock(&mce_sysfs_mutex);
2128 
2129 	return size;
2130 }
2131 
2132 static ssize_t store_int_with_restart(struct device *s,
2133 				      struct device_attribute *attr,
2134 				      const char *buf, size_t size)
2135 {
2136 	unsigned long old_check_interval = check_interval;
2137 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2138 
2139 	if (check_interval == old_check_interval)
2140 		return ret;
2141 
2142 	mutex_lock(&mce_sysfs_mutex);
2143 	mce_restart();
2144 	mutex_unlock(&mce_sysfs_mutex);
2145 
2146 	return ret;
2147 }
2148 
2149 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2150 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2151 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2152 
2153 static struct dev_ext_attribute dev_attr_check_interval = {
2154 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2155 	&check_interval
2156 };
2157 
2158 static struct dev_ext_attribute dev_attr_ignore_ce = {
2159 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2160 	&mca_cfg.ignore_ce
2161 };
2162 
2163 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2164 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2165 	&mca_cfg.cmci_disabled
2166 };
2167 
2168 static struct device_attribute *mce_device_attrs[] = {
2169 	&dev_attr_tolerant.attr,
2170 	&dev_attr_check_interval.attr,
2171 #ifdef CONFIG_X86_MCELOG_LEGACY
2172 	&dev_attr_trigger,
2173 #endif
2174 	&dev_attr_monarch_timeout.attr,
2175 	&dev_attr_dont_log_ce.attr,
2176 	&dev_attr_ignore_ce.attr,
2177 	&dev_attr_cmci_disabled.attr,
2178 	NULL
2179 };
2180 
2181 static cpumask_var_t mce_device_initialized;
2182 
2183 static void mce_device_release(struct device *dev)
2184 {
2185 	kfree(dev);
2186 }
2187 
2188 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2189 static int mce_device_create(unsigned int cpu)
2190 {
2191 	struct device *dev;
2192 	int err;
2193 	int i, j;
2194 
2195 	if (!mce_available(&boot_cpu_data))
2196 		return -EIO;
2197 
2198 	dev = per_cpu(mce_device, cpu);
2199 	if (dev)
2200 		return 0;
2201 
2202 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2203 	if (!dev)
2204 		return -ENOMEM;
2205 	dev->id  = cpu;
2206 	dev->bus = &mce_subsys;
2207 	dev->release = &mce_device_release;
2208 
2209 	err = device_register(dev);
2210 	if (err) {
2211 		put_device(dev);
2212 		return err;
2213 	}
2214 
2215 	for (i = 0; mce_device_attrs[i]; i++) {
2216 		err = device_create_file(dev, mce_device_attrs[i]);
2217 		if (err)
2218 			goto error;
2219 	}
2220 	for (j = 0; j < mca_cfg.banks; j++) {
2221 		err = device_create_file(dev, &mce_banks[j].attr);
2222 		if (err)
2223 			goto error2;
2224 	}
2225 	cpumask_set_cpu(cpu, mce_device_initialized);
2226 	per_cpu(mce_device, cpu) = dev;
2227 
2228 	return 0;
2229 error2:
2230 	while (--j >= 0)
2231 		device_remove_file(dev, &mce_banks[j].attr);
2232 error:
2233 	while (--i >= 0)
2234 		device_remove_file(dev, mce_device_attrs[i]);
2235 
2236 	device_unregister(dev);
2237 
2238 	return err;
2239 }
2240 
2241 static void mce_device_remove(unsigned int cpu)
2242 {
2243 	struct device *dev = per_cpu(mce_device, cpu);
2244 	int i;
2245 
2246 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2247 		return;
2248 
2249 	for (i = 0; mce_device_attrs[i]; i++)
2250 		device_remove_file(dev, mce_device_attrs[i]);
2251 
2252 	for (i = 0; i < mca_cfg.banks; i++)
2253 		device_remove_file(dev, &mce_banks[i].attr);
2254 
2255 	device_unregister(dev);
2256 	cpumask_clear_cpu(cpu, mce_device_initialized);
2257 	per_cpu(mce_device, cpu) = NULL;
2258 }
2259 
2260 /* Make sure there are no machine checks on offlined CPUs. */
2261 static void mce_disable_cpu(void)
2262 {
2263 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2264 		return;
2265 
2266 	if (!cpuhp_tasks_frozen)
2267 		cmci_clear();
2268 
2269 	vendor_disable_error_reporting();
2270 }
2271 
2272 static void mce_reenable_cpu(void)
2273 {
2274 	int i;
2275 
2276 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2277 		return;
2278 
2279 	if (!cpuhp_tasks_frozen)
2280 		cmci_reenable();
2281 	for (i = 0; i < mca_cfg.banks; i++) {
2282 		struct mce_bank *b = &mce_banks[i];
2283 
2284 		if (b->init)
2285 			wrmsrl(msr_ops.ctl(i), b->ctl);
2286 	}
2287 }
2288 
2289 static int mce_cpu_dead(unsigned int cpu)
2290 {
2291 	mce_intel_hcpu_update(cpu);
2292 
2293 	/* intentionally ignoring frozen here */
2294 	if (!cpuhp_tasks_frozen)
2295 		cmci_rediscover();
2296 	return 0;
2297 }
2298 
2299 static int mce_cpu_online(unsigned int cpu)
2300 {
2301 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2302 	int ret;
2303 
2304 	mce_device_create(cpu);
2305 
2306 	ret = mce_threshold_create_device(cpu);
2307 	if (ret) {
2308 		mce_device_remove(cpu);
2309 		return ret;
2310 	}
2311 	mce_reenable_cpu();
2312 	mce_start_timer(t);
2313 	return 0;
2314 }
2315 
2316 static int mce_cpu_pre_down(unsigned int cpu)
2317 {
2318 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2319 
2320 	mce_disable_cpu();
2321 	del_timer_sync(t);
2322 	mce_threshold_remove_device(cpu);
2323 	mce_device_remove(cpu);
2324 	return 0;
2325 }
2326 
2327 static __init void mce_init_banks(void)
2328 {
2329 	int i;
2330 
2331 	for (i = 0; i < mca_cfg.banks; i++) {
2332 		struct mce_bank *b = &mce_banks[i];
2333 		struct device_attribute *a = &b->attr;
2334 
2335 		sysfs_attr_init(&a->attr);
2336 		a->attr.name	= b->attrname;
2337 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2338 
2339 		a->attr.mode	= 0644;
2340 		a->show		= show_bank;
2341 		a->store	= set_bank;
2342 	}
2343 }
2344 
2345 static __init int mcheck_init_device(void)
2346 {
2347 	int err;
2348 
2349 	/*
2350 	 * Check if we have a spare virtual bit. This will only become
2351 	 * a problem if/when we move beyond 5-level page tables.
2352 	 */
2353 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2354 
2355 	if (!mce_available(&boot_cpu_data)) {
2356 		err = -EIO;
2357 		goto err_out;
2358 	}
2359 
2360 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2361 		err = -ENOMEM;
2362 		goto err_out;
2363 	}
2364 
2365 	mce_init_banks();
2366 
2367 	err = subsys_system_register(&mce_subsys, NULL);
2368 	if (err)
2369 		goto err_out_mem;
2370 
2371 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2372 				mce_cpu_dead);
2373 	if (err)
2374 		goto err_out_mem;
2375 
2376 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2377 				mce_cpu_online, mce_cpu_pre_down);
2378 	if (err < 0)
2379 		goto err_out_online;
2380 
2381 	register_syscore_ops(&mce_syscore_ops);
2382 
2383 	return 0;
2384 
2385 err_out_online:
2386 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2387 
2388 err_out_mem:
2389 	free_cpumask_var(mce_device_initialized);
2390 
2391 err_out:
2392 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2393 
2394 	return err;
2395 }
2396 device_initcall_sync(mcheck_init_device);
2397 
2398 /*
2399  * Old style boot options parsing. Only for compatibility.
2400  */
2401 static int __init mcheck_disable(char *str)
2402 {
2403 	mca_cfg.disabled = 1;
2404 	return 1;
2405 }
2406 __setup("nomce", mcheck_disable);
2407 
2408 #ifdef CONFIG_DEBUG_FS
2409 struct dentry *mce_get_debugfs_dir(void)
2410 {
2411 	static struct dentry *dmce;
2412 
2413 	if (!dmce)
2414 		dmce = debugfs_create_dir("mce", NULL);
2415 
2416 	return dmce;
2417 }
2418 
2419 static void mce_reset(void)
2420 {
2421 	cpu_missing = 0;
2422 	atomic_set(&mce_fake_panicked, 0);
2423 	atomic_set(&mce_executing, 0);
2424 	atomic_set(&mce_callin, 0);
2425 	atomic_set(&global_nwo, 0);
2426 }
2427 
2428 static int fake_panic_get(void *data, u64 *val)
2429 {
2430 	*val = fake_panic;
2431 	return 0;
2432 }
2433 
2434 static int fake_panic_set(void *data, u64 val)
2435 {
2436 	mce_reset();
2437 	fake_panic = val;
2438 	return 0;
2439 }
2440 
2441 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2442 			 "%llu\n");
2443 
2444 static int __init mcheck_debugfs_init(void)
2445 {
2446 	struct dentry *dmce, *ffake_panic;
2447 
2448 	dmce = mce_get_debugfs_dir();
2449 	if (!dmce)
2450 		return -ENOMEM;
2451 	ffake_panic = debugfs_create_file_unsafe("fake_panic", 0444, dmce,
2452 						 NULL, &fake_panic_fops);
2453 	if (!ffake_panic)
2454 		return -ENOMEM;
2455 
2456 	return 0;
2457 }
2458 #else
2459 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2460 #endif
2461 
2462 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2463 EXPORT_SYMBOL_GPL(mcsafe_key);
2464 
2465 static int __init mcheck_late_init(void)
2466 {
2467 	pr_info("Using %d MCE banks\n", mca_cfg.banks);
2468 
2469 	if (mca_cfg.recovery)
2470 		static_branch_inc(&mcsafe_key);
2471 
2472 	mcheck_debugfs_init();
2473 	cec_init();
2474 
2475 	/*
2476 	 * Flush out everything that has been logged during early boot, now that
2477 	 * everything has been initialized (workqueues, decoders, ...).
2478 	 */
2479 	mce_schedule_work();
2480 
2481 	return 0;
2482 }
2483 late_initcall(mcheck_late_init);
2484