xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision 9adc8050)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/jump_label.h>
44 #include <linux/set_memory.h>
45 
46 #include <asm/intel-family.h>
47 #include <asm/processor.h>
48 #include <asm/traps.h>
49 #include <asm/tlbflush.h>
50 #include <asm/mce.h>
51 #include <asm/msr.h>
52 #include <asm/reboot.h>
53 
54 #include "internal.h"
55 
56 static DEFINE_MUTEX(mce_log_mutex);
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103 
104 /*
105  * MCA banks polled by the period polling timer for corrected events.
106  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107  */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111 
112 /*
113  * MCA banks controlled through firmware first for corrected errors.
114  * This is a global list of banks for which we won't enable CMCI and we
115  * won't poll. Firmware controls these banks and is responsible for
116  * reporting corrected errors through GHES. Uncorrected/recoverable
117  * errors are still notified through a machine check.
118  */
119 mce_banks_t mce_banks_ce_disabled;
120 
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123 
124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
125 
126 /*
127  * CPU/chipset specific EDAC code can register a notifier call here to print
128  * MCE errors in a human-readable form.
129  */
130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
131 
132 /* Do initial initialization of a struct mce */
133 void mce_setup(struct mce *m)
134 {
135 	memset(m, 0, sizeof(struct mce));
136 	m->cpu = m->extcpu = smp_processor_id();
137 	/* need the internal __ version to avoid deadlocks */
138 	m->time = __ktime_get_real_seconds();
139 	m->cpuvendor = boot_cpu_data.x86_vendor;
140 	m->cpuid = cpuid_eax(1);
141 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
142 	m->apicid = cpu_data(m->extcpu).initial_apicid;
143 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
144 
145 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
146 		rdmsrl(MSR_PPIN, m->ppin);
147 
148 	m->microcode = boot_cpu_data.microcode;
149 }
150 
151 DEFINE_PER_CPU(struct mce, injectm);
152 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
153 
154 void mce_log(struct mce *m)
155 {
156 	if (!mce_gen_pool_add(m))
157 		irq_work_queue(&mce_irq_work);
158 }
159 
160 void mce_inject_log(struct mce *m)
161 {
162 	mutex_lock(&mce_log_mutex);
163 	mce_log(m);
164 	mutex_unlock(&mce_log_mutex);
165 }
166 EXPORT_SYMBOL_GPL(mce_inject_log);
167 
168 static struct notifier_block mce_srao_nb;
169 
170 /*
171  * We run the default notifier if we have only the SRAO, the first and the
172  * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
173  * notifiers registered on the chain.
174  */
175 #define NUM_DEFAULT_NOTIFIERS	3
176 static atomic_t num_notifiers;
177 
178 void mce_register_decode_chain(struct notifier_block *nb)
179 {
180 	if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
181 		return;
182 
183 	atomic_inc(&num_notifiers);
184 
185 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
186 }
187 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
188 
189 void mce_unregister_decode_chain(struct notifier_block *nb)
190 {
191 	atomic_dec(&num_notifiers);
192 
193 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
194 }
195 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
196 
197 static inline u32 ctl_reg(int bank)
198 {
199 	return MSR_IA32_MCx_CTL(bank);
200 }
201 
202 static inline u32 status_reg(int bank)
203 {
204 	return MSR_IA32_MCx_STATUS(bank);
205 }
206 
207 static inline u32 addr_reg(int bank)
208 {
209 	return MSR_IA32_MCx_ADDR(bank);
210 }
211 
212 static inline u32 misc_reg(int bank)
213 {
214 	return MSR_IA32_MCx_MISC(bank);
215 }
216 
217 static inline u32 smca_ctl_reg(int bank)
218 {
219 	return MSR_AMD64_SMCA_MCx_CTL(bank);
220 }
221 
222 static inline u32 smca_status_reg(int bank)
223 {
224 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
225 }
226 
227 static inline u32 smca_addr_reg(int bank)
228 {
229 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
230 }
231 
232 static inline u32 smca_misc_reg(int bank)
233 {
234 	return MSR_AMD64_SMCA_MCx_MISC(bank);
235 }
236 
237 struct mca_msr_regs msr_ops = {
238 	.ctl	= ctl_reg,
239 	.status	= status_reg,
240 	.addr	= addr_reg,
241 	.misc	= misc_reg
242 };
243 
244 static void __print_mce(struct mce *m)
245 {
246 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
247 		 m->extcpu,
248 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
249 		 m->mcgstatus, m->bank, m->status);
250 
251 	if (m->ip) {
252 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
253 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
254 			m->cs, m->ip);
255 
256 		if (m->cs == __KERNEL_CS)
257 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
258 		pr_cont("\n");
259 	}
260 
261 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
262 	if (m->addr)
263 		pr_cont("ADDR %llx ", m->addr);
264 	if (m->misc)
265 		pr_cont("MISC %llx ", m->misc);
266 
267 	if (mce_flags.smca) {
268 		if (m->synd)
269 			pr_cont("SYND %llx ", m->synd);
270 		if (m->ipid)
271 			pr_cont("IPID %llx ", m->ipid);
272 	}
273 
274 	pr_cont("\n");
275 	/*
276 	 * Note this output is parsed by external tools and old fields
277 	 * should not be changed.
278 	 */
279 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
280 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
281 		m->microcode);
282 }
283 
284 static void print_mce(struct mce *m)
285 {
286 	__print_mce(m);
287 
288 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
289 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
290 }
291 
292 #define PANIC_TIMEOUT 5 /* 5 seconds */
293 
294 static atomic_t mce_panicked;
295 
296 static int fake_panic;
297 static atomic_t mce_fake_panicked;
298 
299 /* Panic in progress. Enable interrupts and wait for final IPI */
300 static void wait_for_panic(void)
301 {
302 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
303 
304 	preempt_disable();
305 	local_irq_enable();
306 	while (timeout-- > 0)
307 		udelay(1);
308 	if (panic_timeout == 0)
309 		panic_timeout = mca_cfg.panic_timeout;
310 	panic("Panicing machine check CPU died");
311 }
312 
313 static void mce_panic(const char *msg, struct mce *final, char *exp)
314 {
315 	int apei_err = 0;
316 	struct llist_node *pending;
317 	struct mce_evt_llist *l;
318 
319 	if (!fake_panic) {
320 		/*
321 		 * Make sure only one CPU runs in machine check panic
322 		 */
323 		if (atomic_inc_return(&mce_panicked) > 1)
324 			wait_for_panic();
325 		barrier();
326 
327 		bust_spinlocks(1);
328 		console_verbose();
329 	} else {
330 		/* Don't log too much for fake panic */
331 		if (atomic_inc_return(&mce_fake_panicked) > 1)
332 			return;
333 	}
334 	pending = mce_gen_pool_prepare_records();
335 	/* First print corrected ones that are still unlogged */
336 	llist_for_each_entry(l, pending, llnode) {
337 		struct mce *m = &l->mce;
338 		if (!(m->status & MCI_STATUS_UC)) {
339 			print_mce(m);
340 			if (!apei_err)
341 				apei_err = apei_write_mce(m);
342 		}
343 	}
344 	/* Now print uncorrected but with the final one last */
345 	llist_for_each_entry(l, pending, llnode) {
346 		struct mce *m = &l->mce;
347 		if (!(m->status & MCI_STATUS_UC))
348 			continue;
349 		if (!final || mce_cmp(m, final)) {
350 			print_mce(m);
351 			if (!apei_err)
352 				apei_err = apei_write_mce(m);
353 		}
354 	}
355 	if (final) {
356 		print_mce(final);
357 		if (!apei_err)
358 			apei_err = apei_write_mce(final);
359 	}
360 	if (cpu_missing)
361 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
362 	if (exp)
363 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
364 	if (!fake_panic) {
365 		if (panic_timeout == 0)
366 			panic_timeout = mca_cfg.panic_timeout;
367 		panic(msg);
368 	} else
369 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
370 }
371 
372 /* Support code for software error injection */
373 
374 static int msr_to_offset(u32 msr)
375 {
376 	unsigned bank = __this_cpu_read(injectm.bank);
377 
378 	if (msr == mca_cfg.rip_msr)
379 		return offsetof(struct mce, ip);
380 	if (msr == msr_ops.status(bank))
381 		return offsetof(struct mce, status);
382 	if (msr == msr_ops.addr(bank))
383 		return offsetof(struct mce, addr);
384 	if (msr == msr_ops.misc(bank))
385 		return offsetof(struct mce, misc);
386 	if (msr == MSR_IA32_MCG_STATUS)
387 		return offsetof(struct mce, mcgstatus);
388 	return -1;
389 }
390 
391 /* MSR access wrappers used for error injection */
392 static u64 mce_rdmsrl(u32 msr)
393 {
394 	u64 v;
395 
396 	if (__this_cpu_read(injectm.finished)) {
397 		int offset = msr_to_offset(msr);
398 
399 		if (offset < 0)
400 			return 0;
401 		return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
402 	}
403 
404 	if (rdmsrl_safe(msr, &v)) {
405 		WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
406 		/*
407 		 * Return zero in case the access faulted. This should
408 		 * not happen normally but can happen if the CPU does
409 		 * something weird, or if the code is buggy.
410 		 */
411 		v = 0;
412 	}
413 
414 	return v;
415 }
416 
417 static void mce_wrmsrl(u32 msr, u64 v)
418 {
419 	if (__this_cpu_read(injectm.finished)) {
420 		int offset = msr_to_offset(msr);
421 
422 		if (offset >= 0)
423 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
424 		return;
425 	}
426 	wrmsrl(msr, v);
427 }
428 
429 /*
430  * Collect all global (w.r.t. this processor) status about this machine
431  * check into our "mce" struct so that we can use it later to assess
432  * the severity of the problem as we read per-bank specific details.
433  */
434 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
435 {
436 	mce_setup(m);
437 
438 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
439 	if (regs) {
440 		/*
441 		 * Get the address of the instruction at the time of
442 		 * the machine check error.
443 		 */
444 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
445 			m->ip = regs->ip;
446 			m->cs = regs->cs;
447 
448 			/*
449 			 * When in VM86 mode make the cs look like ring 3
450 			 * always. This is a lie, but it's better than passing
451 			 * the additional vm86 bit around everywhere.
452 			 */
453 			if (v8086_mode(regs))
454 				m->cs |= 3;
455 		}
456 		/* Use accurate RIP reporting if available. */
457 		if (mca_cfg.rip_msr)
458 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
459 	}
460 }
461 
462 int mce_available(struct cpuinfo_x86 *c)
463 {
464 	if (mca_cfg.disabled)
465 		return 0;
466 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
467 }
468 
469 static void mce_schedule_work(void)
470 {
471 	if (!mce_gen_pool_empty())
472 		schedule_work(&mce_work);
473 }
474 
475 static void mce_irq_work_cb(struct irq_work *entry)
476 {
477 	mce_schedule_work();
478 }
479 
480 /*
481  * Check if the address reported by the CPU is in a format we can parse.
482  * It would be possible to add code for most other cases, but all would
483  * be somewhat complicated (e.g. segment offset would require an instruction
484  * parser). So only support physical addresses up to page granuality for now.
485  */
486 int mce_usable_address(struct mce *m)
487 {
488 	if (!(m->status & MCI_STATUS_ADDRV))
489 		return 0;
490 
491 	/* Checks after this one are Intel-specific: */
492 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
493 		return 1;
494 
495 	if (!(m->status & MCI_STATUS_MISCV))
496 		return 0;
497 
498 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
499 		return 0;
500 
501 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
502 		return 0;
503 
504 	return 1;
505 }
506 EXPORT_SYMBOL_GPL(mce_usable_address);
507 
508 bool mce_is_memory_error(struct mce *m)
509 {
510 	if (m->cpuvendor == X86_VENDOR_AMD ||
511 	    m->cpuvendor == X86_VENDOR_HYGON) {
512 		return amd_mce_is_memory_error(m);
513 	} else if (m->cpuvendor == X86_VENDOR_INTEL) {
514 		/*
515 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
516 		 *
517 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
518 		 * indicating a memory error. Bit 8 is used for indicating a
519 		 * cache hierarchy error. The combination of bit 2 and bit 3
520 		 * is used for indicating a `generic' cache hierarchy error
521 		 * But we can't just blindly check the above bits, because if
522 		 * bit 11 is set, then it is a bus/interconnect error - and
523 		 * either way the above bits just gives more detail on what
524 		 * bus/interconnect error happened. Note that bit 12 can be
525 		 * ignored, as it's the "filter" bit.
526 		 */
527 		return (m->status & 0xef80) == BIT(7) ||
528 		       (m->status & 0xef00) == BIT(8) ||
529 		       (m->status & 0xeffc) == 0xc;
530 	}
531 
532 	return false;
533 }
534 EXPORT_SYMBOL_GPL(mce_is_memory_error);
535 
536 bool mce_is_correctable(struct mce *m)
537 {
538 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
539 		return false;
540 
541 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
542 		return false;
543 
544 	if (m->status & MCI_STATUS_UC)
545 		return false;
546 
547 	return true;
548 }
549 EXPORT_SYMBOL_GPL(mce_is_correctable);
550 
551 static bool cec_add_mce(struct mce *m)
552 {
553 	if (!m)
554 		return false;
555 
556 	/* We eat only correctable DRAM errors with usable addresses. */
557 	if (mce_is_memory_error(m) &&
558 	    mce_is_correctable(m)  &&
559 	    mce_usable_address(m))
560 		if (!cec_add_elem(m->addr >> PAGE_SHIFT))
561 			return true;
562 
563 	return false;
564 }
565 
566 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
567 			      void *data)
568 {
569 	struct mce *m = (struct mce *)data;
570 
571 	if (!m)
572 		return NOTIFY_DONE;
573 
574 	if (cec_add_mce(m))
575 		return NOTIFY_STOP;
576 
577 	/* Emit the trace record: */
578 	trace_mce_record(m);
579 
580 	set_bit(0, &mce_need_notify);
581 
582 	mce_notify_irq();
583 
584 	return NOTIFY_DONE;
585 }
586 
587 static struct notifier_block first_nb = {
588 	.notifier_call	= mce_first_notifier,
589 	.priority	= MCE_PRIO_FIRST,
590 };
591 
592 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
593 				void *data)
594 {
595 	struct mce *mce = (struct mce *)data;
596 	unsigned long pfn;
597 
598 	if (!mce)
599 		return NOTIFY_DONE;
600 
601 	if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
602 		pfn = mce->addr >> PAGE_SHIFT;
603 		if (!memory_failure(pfn, 0))
604 			set_mce_nospec(pfn);
605 	}
606 
607 	return NOTIFY_OK;
608 }
609 static struct notifier_block mce_srao_nb = {
610 	.notifier_call	= srao_decode_notifier,
611 	.priority	= MCE_PRIO_SRAO,
612 };
613 
614 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
615 				void *data)
616 {
617 	struct mce *m = (struct mce *)data;
618 
619 	if (!m)
620 		return NOTIFY_DONE;
621 
622 	if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
623 		return NOTIFY_DONE;
624 
625 	__print_mce(m);
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static struct notifier_block mce_default_nb = {
631 	.notifier_call	= mce_default_notifier,
632 	/* lowest prio, we want it to run last. */
633 	.priority	= MCE_PRIO_LOWEST,
634 };
635 
636 /*
637  * Read ADDR and MISC registers.
638  */
639 static void mce_read_aux(struct mce *m, int i)
640 {
641 	if (m->status & MCI_STATUS_MISCV)
642 		m->misc = mce_rdmsrl(msr_ops.misc(i));
643 
644 	if (m->status & MCI_STATUS_ADDRV) {
645 		m->addr = mce_rdmsrl(msr_ops.addr(i));
646 
647 		/*
648 		 * Mask the reported address by the reported granularity.
649 		 */
650 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
651 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
652 			m->addr >>= shift;
653 			m->addr <<= shift;
654 		}
655 
656 		/*
657 		 * Extract [55:<lsb>] where lsb is the least significant
658 		 * *valid* bit of the address bits.
659 		 */
660 		if (mce_flags.smca) {
661 			u8 lsb = (m->addr >> 56) & 0x3f;
662 
663 			m->addr &= GENMASK_ULL(55, lsb);
664 		}
665 	}
666 
667 	if (mce_flags.smca) {
668 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
669 
670 		if (m->status & MCI_STATUS_SYNDV)
671 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
672 	}
673 }
674 
675 DEFINE_PER_CPU(unsigned, mce_poll_count);
676 
677 /*
678  * Poll for corrected events or events that happened before reset.
679  * Those are just logged through /dev/mcelog.
680  *
681  * This is executed in standard interrupt context.
682  *
683  * Note: spec recommends to panic for fatal unsignalled
684  * errors here. However this would be quite problematic --
685  * we would need to reimplement the Monarch handling and
686  * it would mess up the exclusion between exception handler
687  * and poll handler -- * so we skip this for now.
688  * These cases should not happen anyways, or only when the CPU
689  * is already totally * confused. In this case it's likely it will
690  * not fully execute the machine check handler either.
691  */
692 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
693 {
694 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
695 	bool error_seen = false;
696 	struct mce m;
697 	int i;
698 
699 	this_cpu_inc(mce_poll_count);
700 
701 	mce_gather_info(&m, NULL);
702 
703 	if (flags & MCP_TIMESTAMP)
704 		m.tsc = rdtsc();
705 
706 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
707 		if (!mce_banks[i].ctl || !test_bit(i, *b))
708 			continue;
709 
710 		m.misc = 0;
711 		m.addr = 0;
712 		m.bank = i;
713 
714 		barrier();
715 		m.status = mce_rdmsrl(msr_ops.status(i));
716 
717 		/* If this entry is not valid, ignore it */
718 		if (!(m.status & MCI_STATUS_VAL))
719 			continue;
720 
721 		/*
722 		 * If we are logging everything (at CPU online) or this
723 		 * is a corrected error, then we must log it.
724 		 */
725 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
726 			goto log_it;
727 
728 		/*
729 		 * Newer Intel systems that support software error
730 		 * recovery need to make additional checks. Other
731 		 * CPUs should skip over uncorrected errors, but log
732 		 * everything else.
733 		 */
734 		if (!mca_cfg.ser) {
735 			if (m.status & MCI_STATUS_UC)
736 				continue;
737 			goto log_it;
738 		}
739 
740 		/* Log "not enabled" (speculative) errors */
741 		if (!(m.status & MCI_STATUS_EN))
742 			goto log_it;
743 
744 		/*
745 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
746 		 * UC == 1 && PCC == 0 && S == 0
747 		 */
748 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
749 			goto log_it;
750 
751 		/*
752 		 * Skip anything else. Presumption is that our read of this
753 		 * bank is racing with a machine check. Leave the log alone
754 		 * for do_machine_check() to deal with it.
755 		 */
756 		continue;
757 
758 log_it:
759 		error_seen = true;
760 
761 		mce_read_aux(&m, i);
762 
763 		m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
764 
765 		/*
766 		 * Don't get the IP here because it's unlikely to
767 		 * have anything to do with the actual error location.
768 		 */
769 		if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
770 			mce_log(&m);
771 		else if (mce_usable_address(&m)) {
772 			/*
773 			 * Although we skipped logging this, we still want
774 			 * to take action. Add to the pool so the registered
775 			 * notifiers will see it.
776 			 */
777 			if (!mce_gen_pool_add(&m))
778 				mce_schedule_work();
779 		}
780 
781 		/*
782 		 * Clear state for this bank.
783 		 */
784 		mce_wrmsrl(msr_ops.status(i), 0);
785 	}
786 
787 	/*
788 	 * Don't clear MCG_STATUS here because it's only defined for
789 	 * exceptions.
790 	 */
791 
792 	sync_core();
793 
794 	return error_seen;
795 }
796 EXPORT_SYMBOL_GPL(machine_check_poll);
797 
798 /*
799  * Do a quick check if any of the events requires a panic.
800  * This decides if we keep the events around or clear them.
801  */
802 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
803 			  struct pt_regs *regs)
804 {
805 	char *tmp;
806 	int i;
807 
808 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
809 		m->status = mce_rdmsrl(msr_ops.status(i));
810 		if (!(m->status & MCI_STATUS_VAL))
811 			continue;
812 
813 		__set_bit(i, validp);
814 		if (quirk_no_way_out)
815 			quirk_no_way_out(i, m, regs);
816 
817 		if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
818 			m->bank = i;
819 			mce_read_aux(m, i);
820 			*msg = tmp;
821 			return 1;
822 		}
823 	}
824 	return 0;
825 }
826 
827 /*
828  * Variable to establish order between CPUs while scanning.
829  * Each CPU spins initially until executing is equal its number.
830  */
831 static atomic_t mce_executing;
832 
833 /*
834  * Defines order of CPUs on entry. First CPU becomes Monarch.
835  */
836 static atomic_t mce_callin;
837 
838 /*
839  * Check if a timeout waiting for other CPUs happened.
840  */
841 static int mce_timed_out(u64 *t, const char *msg)
842 {
843 	/*
844 	 * The others already did panic for some reason.
845 	 * Bail out like in a timeout.
846 	 * rmb() to tell the compiler that system_state
847 	 * might have been modified by someone else.
848 	 */
849 	rmb();
850 	if (atomic_read(&mce_panicked))
851 		wait_for_panic();
852 	if (!mca_cfg.monarch_timeout)
853 		goto out;
854 	if ((s64)*t < SPINUNIT) {
855 		if (mca_cfg.tolerant <= 1)
856 			mce_panic(msg, NULL, NULL);
857 		cpu_missing = 1;
858 		return 1;
859 	}
860 	*t -= SPINUNIT;
861 out:
862 	touch_nmi_watchdog();
863 	return 0;
864 }
865 
866 /*
867  * The Monarch's reign.  The Monarch is the CPU who entered
868  * the machine check handler first. It waits for the others to
869  * raise the exception too and then grades them. When any
870  * error is fatal panic. Only then let the others continue.
871  *
872  * The other CPUs entering the MCE handler will be controlled by the
873  * Monarch. They are called Subjects.
874  *
875  * This way we prevent any potential data corruption in a unrecoverable case
876  * and also makes sure always all CPU's errors are examined.
877  *
878  * Also this detects the case of a machine check event coming from outer
879  * space (not detected by any CPUs) In this case some external agent wants
880  * us to shut down, so panic too.
881  *
882  * The other CPUs might still decide to panic if the handler happens
883  * in a unrecoverable place, but in this case the system is in a semi-stable
884  * state and won't corrupt anything by itself. It's ok to let the others
885  * continue for a bit first.
886  *
887  * All the spin loops have timeouts; when a timeout happens a CPU
888  * typically elects itself to be Monarch.
889  */
890 static void mce_reign(void)
891 {
892 	int cpu;
893 	struct mce *m = NULL;
894 	int global_worst = 0;
895 	char *msg = NULL;
896 	char *nmsg = NULL;
897 
898 	/*
899 	 * This CPU is the Monarch and the other CPUs have run
900 	 * through their handlers.
901 	 * Grade the severity of the errors of all the CPUs.
902 	 */
903 	for_each_possible_cpu(cpu) {
904 		int severity = mce_severity(&per_cpu(mces_seen, cpu),
905 					    mca_cfg.tolerant,
906 					    &nmsg, true);
907 		if (severity > global_worst) {
908 			msg = nmsg;
909 			global_worst = severity;
910 			m = &per_cpu(mces_seen, cpu);
911 		}
912 	}
913 
914 	/*
915 	 * Cannot recover? Panic here then.
916 	 * This dumps all the mces in the log buffer and stops the
917 	 * other CPUs.
918 	 */
919 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
920 		mce_panic("Fatal machine check", m, msg);
921 
922 	/*
923 	 * For UC somewhere we let the CPU who detects it handle it.
924 	 * Also must let continue the others, otherwise the handling
925 	 * CPU could deadlock on a lock.
926 	 */
927 
928 	/*
929 	 * No machine check event found. Must be some external
930 	 * source or one CPU is hung. Panic.
931 	 */
932 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
933 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
934 
935 	/*
936 	 * Now clear all the mces_seen so that they don't reappear on
937 	 * the next mce.
938 	 */
939 	for_each_possible_cpu(cpu)
940 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
941 }
942 
943 static atomic_t global_nwo;
944 
945 /*
946  * Start of Monarch synchronization. This waits until all CPUs have
947  * entered the exception handler and then determines if any of them
948  * saw a fatal event that requires panic. Then it executes them
949  * in the entry order.
950  * TBD double check parallel CPU hotunplug
951  */
952 static int mce_start(int *no_way_out)
953 {
954 	int order;
955 	int cpus = num_online_cpus();
956 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
957 
958 	if (!timeout)
959 		return -1;
960 
961 	atomic_add(*no_way_out, &global_nwo);
962 	/*
963 	 * Rely on the implied barrier below, such that global_nwo
964 	 * is updated before mce_callin.
965 	 */
966 	order = atomic_inc_return(&mce_callin);
967 
968 	/*
969 	 * Wait for everyone.
970 	 */
971 	while (atomic_read(&mce_callin) != cpus) {
972 		if (mce_timed_out(&timeout,
973 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
974 			atomic_set(&global_nwo, 0);
975 			return -1;
976 		}
977 		ndelay(SPINUNIT);
978 	}
979 
980 	/*
981 	 * mce_callin should be read before global_nwo
982 	 */
983 	smp_rmb();
984 
985 	if (order == 1) {
986 		/*
987 		 * Monarch: Starts executing now, the others wait.
988 		 */
989 		atomic_set(&mce_executing, 1);
990 	} else {
991 		/*
992 		 * Subject: Now start the scanning loop one by one in
993 		 * the original callin order.
994 		 * This way when there are any shared banks it will be
995 		 * only seen by one CPU before cleared, avoiding duplicates.
996 		 */
997 		while (atomic_read(&mce_executing) < order) {
998 			if (mce_timed_out(&timeout,
999 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1000 				atomic_set(&global_nwo, 0);
1001 				return -1;
1002 			}
1003 			ndelay(SPINUNIT);
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * Cache the global no_way_out state.
1009 	 */
1010 	*no_way_out = atomic_read(&global_nwo);
1011 
1012 	return order;
1013 }
1014 
1015 /*
1016  * Synchronize between CPUs after main scanning loop.
1017  * This invokes the bulk of the Monarch processing.
1018  */
1019 static int mce_end(int order)
1020 {
1021 	int ret = -1;
1022 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1023 
1024 	if (!timeout)
1025 		goto reset;
1026 	if (order < 0)
1027 		goto reset;
1028 
1029 	/*
1030 	 * Allow others to run.
1031 	 */
1032 	atomic_inc(&mce_executing);
1033 
1034 	if (order == 1) {
1035 		/* CHECKME: Can this race with a parallel hotplug? */
1036 		int cpus = num_online_cpus();
1037 
1038 		/*
1039 		 * Monarch: Wait for everyone to go through their scanning
1040 		 * loops.
1041 		 */
1042 		while (atomic_read(&mce_executing) <= cpus) {
1043 			if (mce_timed_out(&timeout,
1044 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1045 				goto reset;
1046 			ndelay(SPINUNIT);
1047 		}
1048 
1049 		mce_reign();
1050 		barrier();
1051 		ret = 0;
1052 	} else {
1053 		/*
1054 		 * Subject: Wait for Monarch to finish.
1055 		 */
1056 		while (atomic_read(&mce_executing) != 0) {
1057 			if (mce_timed_out(&timeout,
1058 					  "Timeout: Monarch CPU did not finish machine check processing"))
1059 				goto reset;
1060 			ndelay(SPINUNIT);
1061 		}
1062 
1063 		/*
1064 		 * Don't reset anything. That's done by the Monarch.
1065 		 */
1066 		return 0;
1067 	}
1068 
1069 	/*
1070 	 * Reset all global state.
1071 	 */
1072 reset:
1073 	atomic_set(&global_nwo, 0);
1074 	atomic_set(&mce_callin, 0);
1075 	barrier();
1076 
1077 	/*
1078 	 * Let others run again.
1079 	 */
1080 	atomic_set(&mce_executing, 0);
1081 	return ret;
1082 }
1083 
1084 static void mce_clear_state(unsigned long *toclear)
1085 {
1086 	int i;
1087 
1088 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1089 		if (test_bit(i, toclear))
1090 			mce_wrmsrl(msr_ops.status(i), 0);
1091 	}
1092 }
1093 
1094 static int do_memory_failure(struct mce *m)
1095 {
1096 	int flags = MF_ACTION_REQUIRED;
1097 	int ret;
1098 
1099 	pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1100 	if (!(m->mcgstatus & MCG_STATUS_RIPV))
1101 		flags |= MF_MUST_KILL;
1102 	ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1103 	if (ret)
1104 		pr_err("Memory error not recovered");
1105 	else
1106 		set_mce_nospec(m->addr >> PAGE_SHIFT);
1107 	return ret;
1108 }
1109 
1110 
1111 /*
1112  * Cases where we avoid rendezvous handler timeout:
1113  * 1) If this CPU is offline.
1114  *
1115  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1116  *  skip those CPUs which remain looping in the 1st kernel - see
1117  *  crash_nmi_callback().
1118  *
1119  * Note: there still is a small window between kexec-ing and the new,
1120  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1121  * might not get handled properly.
1122  */
1123 static bool __mc_check_crashing_cpu(int cpu)
1124 {
1125 	if (cpu_is_offline(cpu) ||
1126 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1127 		u64 mcgstatus;
1128 
1129 		mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1130 		if (mcgstatus & MCG_STATUS_RIPV) {
1131 			mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1132 			return true;
1133 		}
1134 	}
1135 	return false;
1136 }
1137 
1138 static void __mc_scan_banks(struct mce *m, struct mce *final,
1139 			    unsigned long *toclear, unsigned long *valid_banks,
1140 			    int no_way_out, int *worst)
1141 {
1142 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1143 	struct mca_config *cfg = &mca_cfg;
1144 	int severity, i;
1145 
1146 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1147 		__clear_bit(i, toclear);
1148 		if (!test_bit(i, valid_banks))
1149 			continue;
1150 
1151 		if (!mce_banks[i].ctl)
1152 			continue;
1153 
1154 		m->misc = 0;
1155 		m->addr = 0;
1156 		m->bank = i;
1157 
1158 		m->status = mce_rdmsrl(msr_ops.status(i));
1159 		if (!(m->status & MCI_STATUS_VAL))
1160 			continue;
1161 
1162 		/*
1163 		 * Corrected or non-signaled errors are handled by
1164 		 * machine_check_poll(). Leave them alone, unless this panics.
1165 		 */
1166 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1167 			!no_way_out)
1168 			continue;
1169 
1170 		/* Set taint even when machine check was not enabled. */
1171 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1172 
1173 		severity = mce_severity(m, cfg->tolerant, NULL, true);
1174 
1175 		/*
1176 		 * When machine check was for corrected/deferred handler don't
1177 		 * touch, unless we're panicking.
1178 		 */
1179 		if ((severity == MCE_KEEP_SEVERITY ||
1180 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1181 			continue;
1182 
1183 		__set_bit(i, toclear);
1184 
1185 		/* Machine check event was not enabled. Clear, but ignore. */
1186 		if (severity == MCE_NO_SEVERITY)
1187 			continue;
1188 
1189 		mce_read_aux(m, i);
1190 
1191 		/* assuming valid severity level != 0 */
1192 		m->severity = severity;
1193 
1194 		mce_log(m);
1195 
1196 		if (severity > *worst) {
1197 			*final = *m;
1198 			*worst = severity;
1199 		}
1200 	}
1201 
1202 	/* mce_clear_state will clear *final, save locally for use later */
1203 	*m = *final;
1204 }
1205 
1206 /*
1207  * The actual machine check handler. This only handles real
1208  * exceptions when something got corrupted coming in through int 18.
1209  *
1210  * This is executed in NMI context not subject to normal locking rules. This
1211  * implies that most kernel services cannot be safely used. Don't even
1212  * think about putting a printk in there!
1213  *
1214  * On Intel systems this is entered on all CPUs in parallel through
1215  * MCE broadcast. However some CPUs might be broken beyond repair,
1216  * so be always careful when synchronizing with others.
1217  */
1218 void do_machine_check(struct pt_regs *regs, long error_code)
1219 {
1220 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1221 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1222 	struct mca_config *cfg = &mca_cfg;
1223 	int cpu = smp_processor_id();
1224 	char *msg = "Unknown";
1225 	struct mce m, *final;
1226 	int worst = 0;
1227 
1228 	/*
1229 	 * Establish sequential order between the CPUs entering the machine
1230 	 * check handler.
1231 	 */
1232 	int order = -1;
1233 
1234 	/*
1235 	 * If no_way_out gets set, there is no safe way to recover from this
1236 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1237 	 */
1238 	int no_way_out = 0;
1239 
1240 	/*
1241 	 * If kill_it gets set, there might be a way to recover from this
1242 	 * error.
1243 	 */
1244 	int kill_it = 0;
1245 
1246 	/*
1247 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1248 	 * on Intel.
1249 	 */
1250 	int lmce = 1;
1251 
1252 	if (__mc_check_crashing_cpu(cpu))
1253 		return;
1254 
1255 	ist_enter(regs);
1256 
1257 	this_cpu_inc(mce_exception_count);
1258 
1259 	mce_gather_info(&m, regs);
1260 	m.tsc = rdtsc();
1261 
1262 	final = this_cpu_ptr(&mces_seen);
1263 	*final = m;
1264 
1265 	memset(valid_banks, 0, sizeof(valid_banks));
1266 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1267 
1268 	barrier();
1269 
1270 	/*
1271 	 * When no restart IP might need to kill or panic.
1272 	 * Assume the worst for now, but if we find the
1273 	 * severity is MCE_AR_SEVERITY we have other options.
1274 	 */
1275 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1276 		kill_it = 1;
1277 
1278 	/*
1279 	 * Check if this MCE is signaled to only this logical processor,
1280 	 * on Intel only.
1281 	 */
1282 	if (m.cpuvendor == X86_VENDOR_INTEL)
1283 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1284 
1285 	/*
1286 	 * Local machine check may already know that we have to panic.
1287 	 * Broadcast machine check begins rendezvous in mce_start()
1288 	 * Go through all banks in exclusion of the other CPUs. This way we
1289 	 * don't report duplicated events on shared banks because the first one
1290 	 * to see it will clear it.
1291 	 */
1292 	if (lmce) {
1293 		if (no_way_out)
1294 			mce_panic("Fatal local machine check", &m, msg);
1295 	} else {
1296 		order = mce_start(&no_way_out);
1297 	}
1298 
1299 	__mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst);
1300 
1301 	if (!no_way_out)
1302 		mce_clear_state(toclear);
1303 
1304 	/*
1305 	 * Do most of the synchronization with other CPUs.
1306 	 * When there's any problem use only local no_way_out state.
1307 	 */
1308 	if (!lmce) {
1309 		if (mce_end(order) < 0)
1310 			no_way_out = worst >= MCE_PANIC_SEVERITY;
1311 	} else {
1312 		/*
1313 		 * If there was a fatal machine check we should have
1314 		 * already called mce_panic earlier in this function.
1315 		 * Since we re-read the banks, we might have found
1316 		 * something new. Check again to see if we found a
1317 		 * fatal error. We call "mce_severity()" again to
1318 		 * make sure we have the right "msg".
1319 		 */
1320 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1321 			mce_severity(&m, cfg->tolerant, &msg, true);
1322 			mce_panic("Local fatal machine check!", &m, msg);
1323 		}
1324 	}
1325 
1326 	/*
1327 	 * If tolerant is at an insane level we drop requests to kill
1328 	 * processes and continue even when there is no way out.
1329 	 */
1330 	if (cfg->tolerant == 3)
1331 		kill_it = 0;
1332 	else if (no_way_out)
1333 		mce_panic("Fatal machine check on current CPU", &m, msg);
1334 
1335 	if (worst > 0)
1336 		irq_work_queue(&mce_irq_work);
1337 
1338 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1339 
1340 	sync_core();
1341 
1342 	if (worst != MCE_AR_SEVERITY && !kill_it)
1343 		goto out_ist;
1344 
1345 	/* Fault was in user mode and we need to take some action */
1346 	if ((m.cs & 3) == 3) {
1347 		ist_begin_non_atomic(regs);
1348 		local_irq_enable();
1349 
1350 		if (kill_it || do_memory_failure(&m))
1351 			force_sig(SIGBUS);
1352 		local_irq_disable();
1353 		ist_end_non_atomic();
1354 	} else {
1355 		if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0))
1356 			mce_panic("Failed kernel mode recovery", &m, NULL);
1357 	}
1358 
1359 out_ist:
1360 	ist_exit(regs);
1361 }
1362 EXPORT_SYMBOL_GPL(do_machine_check);
1363 
1364 #ifndef CONFIG_MEMORY_FAILURE
1365 int memory_failure(unsigned long pfn, int flags)
1366 {
1367 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1368 	BUG_ON(flags & MF_ACTION_REQUIRED);
1369 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1370 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1371 	       pfn);
1372 
1373 	return 0;
1374 }
1375 #endif
1376 
1377 /*
1378  * Periodic polling timer for "silent" machine check errors.  If the
1379  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1380  * errors, poll 2x slower (up to check_interval seconds).
1381  */
1382 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1383 
1384 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1385 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1386 
1387 static unsigned long mce_adjust_timer_default(unsigned long interval)
1388 {
1389 	return interval;
1390 }
1391 
1392 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1393 
1394 static void __start_timer(struct timer_list *t, unsigned long interval)
1395 {
1396 	unsigned long when = jiffies + interval;
1397 	unsigned long flags;
1398 
1399 	local_irq_save(flags);
1400 
1401 	if (!timer_pending(t) || time_before(when, t->expires))
1402 		mod_timer(t, round_jiffies(when));
1403 
1404 	local_irq_restore(flags);
1405 }
1406 
1407 static void mce_timer_fn(struct timer_list *t)
1408 {
1409 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1410 	unsigned long iv;
1411 
1412 	WARN_ON(cpu_t != t);
1413 
1414 	iv = __this_cpu_read(mce_next_interval);
1415 
1416 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1417 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1418 
1419 		if (mce_intel_cmci_poll()) {
1420 			iv = mce_adjust_timer(iv);
1421 			goto done;
1422 		}
1423 	}
1424 
1425 	/*
1426 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1427 	 * interval, otherwise increase the polling interval.
1428 	 */
1429 	if (mce_notify_irq())
1430 		iv = max(iv / 2, (unsigned long) HZ/100);
1431 	else
1432 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1433 
1434 done:
1435 	__this_cpu_write(mce_next_interval, iv);
1436 	__start_timer(t, iv);
1437 }
1438 
1439 /*
1440  * Ensure that the timer is firing in @interval from now.
1441  */
1442 void mce_timer_kick(unsigned long interval)
1443 {
1444 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1445 	unsigned long iv = __this_cpu_read(mce_next_interval);
1446 
1447 	__start_timer(t, interval);
1448 
1449 	if (interval < iv)
1450 		__this_cpu_write(mce_next_interval, interval);
1451 }
1452 
1453 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1454 static void mce_timer_delete_all(void)
1455 {
1456 	int cpu;
1457 
1458 	for_each_online_cpu(cpu)
1459 		del_timer_sync(&per_cpu(mce_timer, cpu));
1460 }
1461 
1462 /*
1463  * Notify the user(s) about new machine check events.
1464  * Can be called from interrupt context, but not from machine check/NMI
1465  * context.
1466  */
1467 int mce_notify_irq(void)
1468 {
1469 	/* Not more than two messages every minute */
1470 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1471 
1472 	if (test_and_clear_bit(0, &mce_need_notify)) {
1473 		mce_work_trigger();
1474 
1475 		if (__ratelimit(&ratelimit))
1476 			pr_info(HW_ERR "Machine check events logged\n");
1477 
1478 		return 1;
1479 	}
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL_GPL(mce_notify_irq);
1483 
1484 static void __mcheck_cpu_mce_banks_init(void)
1485 {
1486 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1487 	u8 n_banks = this_cpu_read(mce_num_banks);
1488 	int i;
1489 
1490 	for (i = 0; i < n_banks; i++) {
1491 		struct mce_bank *b = &mce_banks[i];
1492 
1493 		/*
1494 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1495 		 * the required vendor quirks before
1496 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1497 		 */
1498 		b->ctl = -1ULL;
1499 		b->init = 1;
1500 	}
1501 }
1502 
1503 /*
1504  * Initialize Machine Checks for a CPU.
1505  */
1506 static void __mcheck_cpu_cap_init(void)
1507 {
1508 	u64 cap;
1509 	u8 b;
1510 
1511 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1512 
1513 	b = cap & MCG_BANKCNT_MASK;
1514 
1515 	if (b > MAX_NR_BANKS) {
1516 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1517 			smp_processor_id(), MAX_NR_BANKS, b);
1518 		b = MAX_NR_BANKS;
1519 	}
1520 
1521 	this_cpu_write(mce_num_banks, b);
1522 
1523 	__mcheck_cpu_mce_banks_init();
1524 
1525 	/* Use accurate RIP reporting if available. */
1526 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1527 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1528 
1529 	if (cap & MCG_SER_P)
1530 		mca_cfg.ser = 1;
1531 }
1532 
1533 static void __mcheck_cpu_init_generic(void)
1534 {
1535 	enum mcp_flags m_fl = 0;
1536 	mce_banks_t all_banks;
1537 	u64 cap;
1538 
1539 	if (!mca_cfg.bootlog)
1540 		m_fl = MCP_DONTLOG;
1541 
1542 	/*
1543 	 * Log the machine checks left over from the previous reset.
1544 	 */
1545 	bitmap_fill(all_banks, MAX_NR_BANKS);
1546 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1547 
1548 	cr4_set_bits(X86_CR4_MCE);
1549 
1550 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1551 	if (cap & MCG_CTL_P)
1552 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1553 }
1554 
1555 static void __mcheck_cpu_init_clear_banks(void)
1556 {
1557 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1558 	int i;
1559 
1560 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1561 		struct mce_bank *b = &mce_banks[i];
1562 
1563 		if (!b->init)
1564 			continue;
1565 		wrmsrl(msr_ops.ctl(i), b->ctl);
1566 		wrmsrl(msr_ops.status(i), 0);
1567 	}
1568 }
1569 
1570 /*
1571  * Do a final check to see if there are any unused/RAZ banks.
1572  *
1573  * This must be done after the banks have been initialized and any quirks have
1574  * been applied.
1575  *
1576  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1577  * Otherwise, a user who disables a bank will not be able to re-enable it
1578  * without a system reboot.
1579  */
1580 static void __mcheck_cpu_check_banks(void)
1581 {
1582 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1583 	u64 msrval;
1584 	int i;
1585 
1586 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1587 		struct mce_bank *b = &mce_banks[i];
1588 
1589 		if (!b->init)
1590 			continue;
1591 
1592 		rdmsrl(msr_ops.ctl(i), msrval);
1593 		b->init = !!msrval;
1594 	}
1595 }
1596 
1597 /*
1598  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1599  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1600  * Vol 3B Table 15-20). But this confuses both the code that determines
1601  * whether the machine check occurred in kernel or user mode, and also
1602  * the severity assessment code. Pretend that EIPV was set, and take the
1603  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1604  */
1605 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1606 {
1607 	if (bank != 0)
1608 		return;
1609 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1610 		return;
1611 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1612 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1613 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1614 			  MCACOD)) !=
1615 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1616 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1617 			  MCI_STATUS_AR|MCACOD_INSTR))
1618 		return;
1619 
1620 	m->mcgstatus |= MCG_STATUS_EIPV;
1621 	m->ip = regs->ip;
1622 	m->cs = regs->cs;
1623 }
1624 
1625 /* Add per CPU specific workarounds here */
1626 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1627 {
1628 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1629 	struct mca_config *cfg = &mca_cfg;
1630 
1631 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1632 		pr_info("unknown CPU type - not enabling MCE support\n");
1633 		return -EOPNOTSUPP;
1634 	}
1635 
1636 	/* This should be disabled by the BIOS, but isn't always */
1637 	if (c->x86_vendor == X86_VENDOR_AMD) {
1638 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1639 			/*
1640 			 * disable GART TBL walk error reporting, which
1641 			 * trips off incorrectly with the IOMMU & 3ware
1642 			 * & Cerberus:
1643 			 */
1644 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1645 		}
1646 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1647 			/*
1648 			 * Lots of broken BIOS around that don't clear them
1649 			 * by default and leave crap in there. Don't log:
1650 			 */
1651 			cfg->bootlog = 0;
1652 		}
1653 		/*
1654 		 * Various K7s with broken bank 0 around. Always disable
1655 		 * by default.
1656 		 */
1657 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1658 			mce_banks[0].ctl = 0;
1659 
1660 		/*
1661 		 * overflow_recov is supported for F15h Models 00h-0fh
1662 		 * even though we don't have a CPUID bit for it.
1663 		 */
1664 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1665 			mce_flags.overflow_recov = 1;
1666 
1667 	}
1668 
1669 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1670 		/*
1671 		 * SDM documents that on family 6 bank 0 should not be written
1672 		 * because it aliases to another special BIOS controlled
1673 		 * register.
1674 		 * But it's not aliased anymore on model 0x1a+
1675 		 * Don't ignore bank 0 completely because there could be a
1676 		 * valid event later, merely don't write CTL0.
1677 		 */
1678 
1679 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1680 			mce_banks[0].init = 0;
1681 
1682 		/*
1683 		 * All newer Intel systems support MCE broadcasting. Enable
1684 		 * synchronization with a one second timeout.
1685 		 */
1686 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1687 			cfg->monarch_timeout < 0)
1688 			cfg->monarch_timeout = USEC_PER_SEC;
1689 
1690 		/*
1691 		 * There are also broken BIOSes on some Pentium M and
1692 		 * earlier systems:
1693 		 */
1694 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1695 			cfg->bootlog = 0;
1696 
1697 		if (c->x86 == 6 && c->x86_model == 45)
1698 			quirk_no_way_out = quirk_sandybridge_ifu;
1699 	}
1700 	if (cfg->monarch_timeout < 0)
1701 		cfg->monarch_timeout = 0;
1702 	if (cfg->bootlog != 0)
1703 		cfg->panic_timeout = 30;
1704 
1705 	return 0;
1706 }
1707 
1708 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1709 {
1710 	if (c->x86 != 5)
1711 		return 0;
1712 
1713 	switch (c->x86_vendor) {
1714 	case X86_VENDOR_INTEL:
1715 		intel_p5_mcheck_init(c);
1716 		return 1;
1717 		break;
1718 	case X86_VENDOR_CENTAUR:
1719 		winchip_mcheck_init(c);
1720 		return 1;
1721 		break;
1722 	default:
1723 		return 0;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 /*
1730  * Init basic CPU features needed for early decoding of MCEs.
1731  */
1732 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1733 {
1734 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1735 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1736 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1737 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1738 
1739 		if (mce_flags.smca) {
1740 			msr_ops.ctl	= smca_ctl_reg;
1741 			msr_ops.status	= smca_status_reg;
1742 			msr_ops.addr	= smca_addr_reg;
1743 			msr_ops.misc	= smca_misc_reg;
1744 		}
1745 	}
1746 }
1747 
1748 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1749 {
1750 	struct mca_config *cfg = &mca_cfg;
1751 
1752 	 /*
1753 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1754 	  * synchronization with a one second timeout.
1755 	  */
1756 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1757 	     c->x86 > 6) {
1758 		if (cfg->monarch_timeout < 0)
1759 			cfg->monarch_timeout = USEC_PER_SEC;
1760 	}
1761 }
1762 
1763 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1764 {
1765 	switch (c->x86_vendor) {
1766 	case X86_VENDOR_INTEL:
1767 		mce_intel_feature_init(c);
1768 		mce_adjust_timer = cmci_intel_adjust_timer;
1769 		break;
1770 
1771 	case X86_VENDOR_AMD: {
1772 		mce_amd_feature_init(c);
1773 		break;
1774 		}
1775 
1776 	case X86_VENDOR_HYGON:
1777 		mce_hygon_feature_init(c);
1778 		break;
1779 
1780 	case X86_VENDOR_CENTAUR:
1781 		mce_centaur_feature_init(c);
1782 		break;
1783 
1784 	default:
1785 		break;
1786 	}
1787 }
1788 
1789 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1790 {
1791 	switch (c->x86_vendor) {
1792 	case X86_VENDOR_INTEL:
1793 		mce_intel_feature_clear(c);
1794 		break;
1795 	default:
1796 		break;
1797 	}
1798 }
1799 
1800 static void mce_start_timer(struct timer_list *t)
1801 {
1802 	unsigned long iv = check_interval * HZ;
1803 
1804 	if (mca_cfg.ignore_ce || !iv)
1805 		return;
1806 
1807 	this_cpu_write(mce_next_interval, iv);
1808 	__start_timer(t, iv);
1809 }
1810 
1811 static void __mcheck_cpu_setup_timer(void)
1812 {
1813 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1814 
1815 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1816 }
1817 
1818 static void __mcheck_cpu_init_timer(void)
1819 {
1820 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1821 
1822 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1823 	mce_start_timer(t);
1824 }
1825 
1826 bool filter_mce(struct mce *m)
1827 {
1828 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1829 		return amd_filter_mce(m);
1830 
1831 	return false;
1832 }
1833 
1834 /* Handle unconfigured int18 (should never happen) */
1835 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1836 {
1837 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1838 	       smp_processor_id());
1839 }
1840 
1841 /* Call the installed machine check handler for this CPU setup. */
1842 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1843 						unexpected_machine_check;
1844 
1845 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1846 {
1847 	machine_check_vector(regs, error_code);
1848 }
1849 
1850 /*
1851  * Called for each booted CPU to set up machine checks.
1852  * Must be called with preempt off:
1853  */
1854 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1855 {
1856 	if (mca_cfg.disabled)
1857 		return;
1858 
1859 	if (__mcheck_cpu_ancient_init(c))
1860 		return;
1861 
1862 	if (!mce_available(c))
1863 		return;
1864 
1865 	__mcheck_cpu_cap_init();
1866 
1867 	if (__mcheck_cpu_apply_quirks(c) < 0) {
1868 		mca_cfg.disabled = 1;
1869 		return;
1870 	}
1871 
1872 	if (mce_gen_pool_init()) {
1873 		mca_cfg.disabled = 1;
1874 		pr_emerg("Couldn't allocate MCE records pool!\n");
1875 		return;
1876 	}
1877 
1878 	machine_check_vector = do_machine_check;
1879 
1880 	__mcheck_cpu_init_early(c);
1881 	__mcheck_cpu_init_generic();
1882 	__mcheck_cpu_init_vendor(c);
1883 	__mcheck_cpu_init_clear_banks();
1884 	__mcheck_cpu_check_banks();
1885 	__mcheck_cpu_setup_timer();
1886 }
1887 
1888 /*
1889  * Called for each booted CPU to clear some machine checks opt-ins
1890  */
1891 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1892 {
1893 	if (mca_cfg.disabled)
1894 		return;
1895 
1896 	if (!mce_available(c))
1897 		return;
1898 
1899 	/*
1900 	 * Possibly to clear general settings generic to x86
1901 	 * __mcheck_cpu_clear_generic(c);
1902 	 */
1903 	__mcheck_cpu_clear_vendor(c);
1904 
1905 }
1906 
1907 static void __mce_disable_bank(void *arg)
1908 {
1909 	int bank = *((int *)arg);
1910 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1911 	cmci_disable_bank(bank);
1912 }
1913 
1914 void mce_disable_bank(int bank)
1915 {
1916 	if (bank >= this_cpu_read(mce_num_banks)) {
1917 		pr_warn(FW_BUG
1918 			"Ignoring request to disable invalid MCA bank %d.\n",
1919 			bank);
1920 		return;
1921 	}
1922 	set_bit(bank, mce_banks_ce_disabled);
1923 	on_each_cpu(__mce_disable_bank, &bank, 1);
1924 }
1925 
1926 /*
1927  * mce=off Disables machine check
1928  * mce=no_cmci Disables CMCI
1929  * mce=no_lmce Disables LMCE
1930  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1931  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1932  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1933  *	monarchtimeout is how long to wait for other CPUs on machine
1934  *	check, or 0 to not wait
1935  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1936 	and older.
1937  * mce=nobootlog Don't log MCEs from before booting.
1938  * mce=bios_cmci_threshold Don't program the CMCI threshold
1939  * mce=recovery force enable memcpy_mcsafe()
1940  */
1941 static int __init mcheck_enable(char *str)
1942 {
1943 	struct mca_config *cfg = &mca_cfg;
1944 
1945 	if (*str == 0) {
1946 		enable_p5_mce();
1947 		return 1;
1948 	}
1949 	if (*str == '=')
1950 		str++;
1951 	if (!strcmp(str, "off"))
1952 		cfg->disabled = 1;
1953 	else if (!strcmp(str, "no_cmci"))
1954 		cfg->cmci_disabled = true;
1955 	else if (!strcmp(str, "no_lmce"))
1956 		cfg->lmce_disabled = 1;
1957 	else if (!strcmp(str, "dont_log_ce"))
1958 		cfg->dont_log_ce = true;
1959 	else if (!strcmp(str, "ignore_ce"))
1960 		cfg->ignore_ce = true;
1961 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1962 		cfg->bootlog = (str[0] == 'b');
1963 	else if (!strcmp(str, "bios_cmci_threshold"))
1964 		cfg->bios_cmci_threshold = 1;
1965 	else if (!strcmp(str, "recovery"))
1966 		cfg->recovery = 1;
1967 	else if (isdigit(str[0])) {
1968 		if (get_option(&str, &cfg->tolerant) == 2)
1969 			get_option(&str, &(cfg->monarch_timeout));
1970 	} else {
1971 		pr_info("mce argument %s ignored. Please use /sys\n", str);
1972 		return 0;
1973 	}
1974 	return 1;
1975 }
1976 __setup("mce", mcheck_enable);
1977 
1978 int __init mcheck_init(void)
1979 {
1980 	mcheck_intel_therm_init();
1981 	mce_register_decode_chain(&first_nb);
1982 	mce_register_decode_chain(&mce_srao_nb);
1983 	mce_register_decode_chain(&mce_default_nb);
1984 	mcheck_vendor_init_severity();
1985 
1986 	INIT_WORK(&mce_work, mce_gen_pool_process);
1987 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
1988 
1989 	return 0;
1990 }
1991 
1992 /*
1993  * mce_syscore: PM support
1994  */
1995 
1996 /*
1997  * Disable machine checks on suspend and shutdown. We can't really handle
1998  * them later.
1999  */
2000 static void mce_disable_error_reporting(void)
2001 {
2002 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2003 	int i;
2004 
2005 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2006 		struct mce_bank *b = &mce_banks[i];
2007 
2008 		if (b->init)
2009 			wrmsrl(msr_ops.ctl(i), 0);
2010 	}
2011 	return;
2012 }
2013 
2014 static void vendor_disable_error_reporting(void)
2015 {
2016 	/*
2017 	 * Don't clear on Intel or AMD or Hygon CPUs. Some of these MSRs
2018 	 * are socket-wide.
2019 	 * Disabling them for just a single offlined CPU is bad, since it will
2020 	 * inhibit reporting for all shared resources on the socket like the
2021 	 * last level cache (LLC), the integrated memory controller (iMC), etc.
2022 	 */
2023 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2024 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2025 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2026 		return;
2027 
2028 	mce_disable_error_reporting();
2029 }
2030 
2031 static int mce_syscore_suspend(void)
2032 {
2033 	vendor_disable_error_reporting();
2034 	return 0;
2035 }
2036 
2037 static void mce_syscore_shutdown(void)
2038 {
2039 	vendor_disable_error_reporting();
2040 }
2041 
2042 /*
2043  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2044  * Only one CPU is active at this time, the others get re-added later using
2045  * CPU hotplug:
2046  */
2047 static void mce_syscore_resume(void)
2048 {
2049 	__mcheck_cpu_init_generic();
2050 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2051 	__mcheck_cpu_init_clear_banks();
2052 }
2053 
2054 static struct syscore_ops mce_syscore_ops = {
2055 	.suspend	= mce_syscore_suspend,
2056 	.shutdown	= mce_syscore_shutdown,
2057 	.resume		= mce_syscore_resume,
2058 };
2059 
2060 /*
2061  * mce_device: Sysfs support
2062  */
2063 
2064 static void mce_cpu_restart(void *data)
2065 {
2066 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2067 		return;
2068 	__mcheck_cpu_init_generic();
2069 	__mcheck_cpu_init_clear_banks();
2070 	__mcheck_cpu_init_timer();
2071 }
2072 
2073 /* Reinit MCEs after user configuration changes */
2074 static void mce_restart(void)
2075 {
2076 	mce_timer_delete_all();
2077 	on_each_cpu(mce_cpu_restart, NULL, 1);
2078 }
2079 
2080 /* Toggle features for corrected errors */
2081 static void mce_disable_cmci(void *data)
2082 {
2083 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2084 		return;
2085 	cmci_clear();
2086 }
2087 
2088 static void mce_enable_ce(void *all)
2089 {
2090 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2091 		return;
2092 	cmci_reenable();
2093 	cmci_recheck();
2094 	if (all)
2095 		__mcheck_cpu_init_timer();
2096 }
2097 
2098 static struct bus_type mce_subsys = {
2099 	.name		= "machinecheck",
2100 	.dev_name	= "machinecheck",
2101 };
2102 
2103 DEFINE_PER_CPU(struct device *, mce_device);
2104 
2105 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2106 {
2107 	return container_of(attr, struct mce_bank_dev, attr);
2108 }
2109 
2110 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2111 			 char *buf)
2112 {
2113 	u8 bank = attr_to_bank(attr)->bank;
2114 	struct mce_bank *b;
2115 
2116 	if (bank >= per_cpu(mce_num_banks, s->id))
2117 		return -EINVAL;
2118 
2119 	b = &per_cpu(mce_banks_array, s->id)[bank];
2120 
2121 	if (!b->init)
2122 		return -ENODEV;
2123 
2124 	return sprintf(buf, "%llx\n", b->ctl);
2125 }
2126 
2127 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2128 			const char *buf, size_t size)
2129 {
2130 	u8 bank = attr_to_bank(attr)->bank;
2131 	struct mce_bank *b;
2132 	u64 new;
2133 
2134 	if (kstrtou64(buf, 0, &new) < 0)
2135 		return -EINVAL;
2136 
2137 	if (bank >= per_cpu(mce_num_banks, s->id))
2138 		return -EINVAL;
2139 
2140 	b = &per_cpu(mce_banks_array, s->id)[bank];
2141 
2142 	if (!b->init)
2143 		return -ENODEV;
2144 
2145 	b->ctl = new;
2146 	mce_restart();
2147 
2148 	return size;
2149 }
2150 
2151 static ssize_t set_ignore_ce(struct device *s,
2152 			     struct device_attribute *attr,
2153 			     const char *buf, size_t size)
2154 {
2155 	u64 new;
2156 
2157 	if (kstrtou64(buf, 0, &new) < 0)
2158 		return -EINVAL;
2159 
2160 	mutex_lock(&mce_sysfs_mutex);
2161 	if (mca_cfg.ignore_ce ^ !!new) {
2162 		if (new) {
2163 			/* disable ce features */
2164 			mce_timer_delete_all();
2165 			on_each_cpu(mce_disable_cmci, NULL, 1);
2166 			mca_cfg.ignore_ce = true;
2167 		} else {
2168 			/* enable ce features */
2169 			mca_cfg.ignore_ce = false;
2170 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2171 		}
2172 	}
2173 	mutex_unlock(&mce_sysfs_mutex);
2174 
2175 	return size;
2176 }
2177 
2178 static ssize_t set_cmci_disabled(struct device *s,
2179 				 struct device_attribute *attr,
2180 				 const char *buf, size_t size)
2181 {
2182 	u64 new;
2183 
2184 	if (kstrtou64(buf, 0, &new) < 0)
2185 		return -EINVAL;
2186 
2187 	mutex_lock(&mce_sysfs_mutex);
2188 	if (mca_cfg.cmci_disabled ^ !!new) {
2189 		if (new) {
2190 			/* disable cmci */
2191 			on_each_cpu(mce_disable_cmci, NULL, 1);
2192 			mca_cfg.cmci_disabled = true;
2193 		} else {
2194 			/* enable cmci */
2195 			mca_cfg.cmci_disabled = false;
2196 			on_each_cpu(mce_enable_ce, NULL, 1);
2197 		}
2198 	}
2199 	mutex_unlock(&mce_sysfs_mutex);
2200 
2201 	return size;
2202 }
2203 
2204 static ssize_t store_int_with_restart(struct device *s,
2205 				      struct device_attribute *attr,
2206 				      const char *buf, size_t size)
2207 {
2208 	unsigned long old_check_interval = check_interval;
2209 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2210 
2211 	if (check_interval == old_check_interval)
2212 		return ret;
2213 
2214 	mutex_lock(&mce_sysfs_mutex);
2215 	mce_restart();
2216 	mutex_unlock(&mce_sysfs_mutex);
2217 
2218 	return ret;
2219 }
2220 
2221 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2222 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2223 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2224 
2225 static struct dev_ext_attribute dev_attr_check_interval = {
2226 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2227 	&check_interval
2228 };
2229 
2230 static struct dev_ext_attribute dev_attr_ignore_ce = {
2231 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2232 	&mca_cfg.ignore_ce
2233 };
2234 
2235 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2236 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2237 	&mca_cfg.cmci_disabled
2238 };
2239 
2240 static struct device_attribute *mce_device_attrs[] = {
2241 	&dev_attr_tolerant.attr,
2242 	&dev_attr_check_interval.attr,
2243 #ifdef CONFIG_X86_MCELOG_LEGACY
2244 	&dev_attr_trigger,
2245 #endif
2246 	&dev_attr_monarch_timeout.attr,
2247 	&dev_attr_dont_log_ce.attr,
2248 	&dev_attr_ignore_ce.attr,
2249 	&dev_attr_cmci_disabled.attr,
2250 	NULL
2251 };
2252 
2253 static cpumask_var_t mce_device_initialized;
2254 
2255 static void mce_device_release(struct device *dev)
2256 {
2257 	kfree(dev);
2258 }
2259 
2260 /* Per CPU device init. All of the CPUs still share the same bank device: */
2261 static int mce_device_create(unsigned int cpu)
2262 {
2263 	struct device *dev;
2264 	int err;
2265 	int i, j;
2266 
2267 	if (!mce_available(&boot_cpu_data))
2268 		return -EIO;
2269 
2270 	dev = per_cpu(mce_device, cpu);
2271 	if (dev)
2272 		return 0;
2273 
2274 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2275 	if (!dev)
2276 		return -ENOMEM;
2277 	dev->id  = cpu;
2278 	dev->bus = &mce_subsys;
2279 	dev->release = &mce_device_release;
2280 
2281 	err = device_register(dev);
2282 	if (err) {
2283 		put_device(dev);
2284 		return err;
2285 	}
2286 
2287 	for (i = 0; mce_device_attrs[i]; i++) {
2288 		err = device_create_file(dev, mce_device_attrs[i]);
2289 		if (err)
2290 			goto error;
2291 	}
2292 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2293 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2294 		if (err)
2295 			goto error2;
2296 	}
2297 	cpumask_set_cpu(cpu, mce_device_initialized);
2298 	per_cpu(mce_device, cpu) = dev;
2299 
2300 	return 0;
2301 error2:
2302 	while (--j >= 0)
2303 		device_remove_file(dev, &mce_bank_devs[j].attr);
2304 error:
2305 	while (--i >= 0)
2306 		device_remove_file(dev, mce_device_attrs[i]);
2307 
2308 	device_unregister(dev);
2309 
2310 	return err;
2311 }
2312 
2313 static void mce_device_remove(unsigned int cpu)
2314 {
2315 	struct device *dev = per_cpu(mce_device, cpu);
2316 	int i;
2317 
2318 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2319 		return;
2320 
2321 	for (i = 0; mce_device_attrs[i]; i++)
2322 		device_remove_file(dev, mce_device_attrs[i]);
2323 
2324 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2325 		device_remove_file(dev, &mce_bank_devs[i].attr);
2326 
2327 	device_unregister(dev);
2328 	cpumask_clear_cpu(cpu, mce_device_initialized);
2329 	per_cpu(mce_device, cpu) = NULL;
2330 }
2331 
2332 /* Make sure there are no machine checks on offlined CPUs. */
2333 static void mce_disable_cpu(void)
2334 {
2335 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2336 		return;
2337 
2338 	if (!cpuhp_tasks_frozen)
2339 		cmci_clear();
2340 
2341 	vendor_disable_error_reporting();
2342 }
2343 
2344 static void mce_reenable_cpu(void)
2345 {
2346 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2347 	int i;
2348 
2349 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2350 		return;
2351 
2352 	if (!cpuhp_tasks_frozen)
2353 		cmci_reenable();
2354 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2355 		struct mce_bank *b = &mce_banks[i];
2356 
2357 		if (b->init)
2358 			wrmsrl(msr_ops.ctl(i), b->ctl);
2359 	}
2360 }
2361 
2362 static int mce_cpu_dead(unsigned int cpu)
2363 {
2364 	mce_intel_hcpu_update(cpu);
2365 
2366 	/* intentionally ignoring frozen here */
2367 	if (!cpuhp_tasks_frozen)
2368 		cmci_rediscover();
2369 	return 0;
2370 }
2371 
2372 static int mce_cpu_online(unsigned int cpu)
2373 {
2374 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2375 	int ret;
2376 
2377 	mce_device_create(cpu);
2378 
2379 	ret = mce_threshold_create_device(cpu);
2380 	if (ret) {
2381 		mce_device_remove(cpu);
2382 		return ret;
2383 	}
2384 	mce_reenable_cpu();
2385 	mce_start_timer(t);
2386 	return 0;
2387 }
2388 
2389 static int mce_cpu_pre_down(unsigned int cpu)
2390 {
2391 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2392 
2393 	mce_disable_cpu();
2394 	del_timer_sync(t);
2395 	mce_threshold_remove_device(cpu);
2396 	mce_device_remove(cpu);
2397 	return 0;
2398 }
2399 
2400 static __init void mce_init_banks(void)
2401 {
2402 	int i;
2403 
2404 	for (i = 0; i < MAX_NR_BANKS; i++) {
2405 		struct mce_bank_dev *b = &mce_bank_devs[i];
2406 		struct device_attribute *a = &b->attr;
2407 
2408 		b->bank = i;
2409 
2410 		sysfs_attr_init(&a->attr);
2411 		a->attr.name	= b->attrname;
2412 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2413 
2414 		a->attr.mode	= 0644;
2415 		a->show		= show_bank;
2416 		a->store	= set_bank;
2417 	}
2418 }
2419 
2420 static __init int mcheck_init_device(void)
2421 {
2422 	int err;
2423 
2424 	/*
2425 	 * Check if we have a spare virtual bit. This will only become
2426 	 * a problem if/when we move beyond 5-level page tables.
2427 	 */
2428 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2429 
2430 	if (!mce_available(&boot_cpu_data)) {
2431 		err = -EIO;
2432 		goto err_out;
2433 	}
2434 
2435 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2436 		err = -ENOMEM;
2437 		goto err_out;
2438 	}
2439 
2440 	mce_init_banks();
2441 
2442 	err = subsys_system_register(&mce_subsys, NULL);
2443 	if (err)
2444 		goto err_out_mem;
2445 
2446 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2447 				mce_cpu_dead);
2448 	if (err)
2449 		goto err_out_mem;
2450 
2451 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2452 				mce_cpu_online, mce_cpu_pre_down);
2453 	if (err < 0)
2454 		goto err_out_online;
2455 
2456 	register_syscore_ops(&mce_syscore_ops);
2457 
2458 	return 0;
2459 
2460 err_out_online:
2461 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2462 
2463 err_out_mem:
2464 	free_cpumask_var(mce_device_initialized);
2465 
2466 err_out:
2467 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2468 
2469 	return err;
2470 }
2471 device_initcall_sync(mcheck_init_device);
2472 
2473 /*
2474  * Old style boot options parsing. Only for compatibility.
2475  */
2476 static int __init mcheck_disable(char *str)
2477 {
2478 	mca_cfg.disabled = 1;
2479 	return 1;
2480 }
2481 __setup("nomce", mcheck_disable);
2482 
2483 #ifdef CONFIG_DEBUG_FS
2484 struct dentry *mce_get_debugfs_dir(void)
2485 {
2486 	static struct dentry *dmce;
2487 
2488 	if (!dmce)
2489 		dmce = debugfs_create_dir("mce", NULL);
2490 
2491 	return dmce;
2492 }
2493 
2494 static void mce_reset(void)
2495 {
2496 	cpu_missing = 0;
2497 	atomic_set(&mce_fake_panicked, 0);
2498 	atomic_set(&mce_executing, 0);
2499 	atomic_set(&mce_callin, 0);
2500 	atomic_set(&global_nwo, 0);
2501 }
2502 
2503 static int fake_panic_get(void *data, u64 *val)
2504 {
2505 	*val = fake_panic;
2506 	return 0;
2507 }
2508 
2509 static int fake_panic_set(void *data, u64 val)
2510 {
2511 	mce_reset();
2512 	fake_panic = val;
2513 	return 0;
2514 }
2515 
2516 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2517 			 "%llu\n");
2518 
2519 static void __init mcheck_debugfs_init(void)
2520 {
2521 	struct dentry *dmce;
2522 
2523 	dmce = mce_get_debugfs_dir();
2524 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2525 				   &fake_panic_fops);
2526 }
2527 #else
2528 static void __init mcheck_debugfs_init(void) { }
2529 #endif
2530 
2531 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2532 EXPORT_SYMBOL_GPL(mcsafe_key);
2533 
2534 static int __init mcheck_late_init(void)
2535 {
2536 	if (mca_cfg.recovery)
2537 		static_branch_inc(&mcsafe_key);
2538 
2539 	mcheck_debugfs_init();
2540 	cec_init();
2541 
2542 	/*
2543 	 * Flush out everything that has been logged during early boot, now that
2544 	 * everything has been initialized (workqueues, decoders, ...).
2545 	 */
2546 	mce_schedule_work();
2547 
2548 	return 0;
2549 }
2550 late_initcall(mcheck_late_init);
2551