1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 48 #include <asm/intel-family.h> 49 #include <asm/processor.h> 50 #include <asm/traps.h> 51 #include <asm/tlbflush.h> 52 #include <asm/mce.h> 53 #include <asm/msr.h> 54 #include <asm/reboot.h> 55 56 #include "internal.h" 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 struct mce_bank { 71 u64 ctl; /* subevents to enable */ 72 73 __u64 init : 1, /* initialise bank? */ 74 __reserved_1 : 63; 75 }; 76 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 77 78 #define ATTR_LEN 16 79 /* One object for each MCE bank, shared by all CPUs */ 80 struct mce_bank_dev { 81 struct device_attribute attr; /* device attribute */ 82 char attrname[ATTR_LEN]; /* attribute name */ 83 u8 bank; /* bank number */ 84 }; 85 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 86 87 struct mce_vendor_flags mce_flags __read_mostly; 88 89 struct mca_config mca_cfg __read_mostly = { 90 .bootlog = -1, 91 .monarch_timeout = -1 92 }; 93 94 static DEFINE_PER_CPU(struct mce, mces_seen); 95 static unsigned long mce_need_notify; 96 97 /* 98 * MCA banks polled by the period polling timer for corrected events. 99 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 100 */ 101 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 102 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 103 }; 104 105 /* 106 * MCA banks controlled through firmware first for corrected errors. 107 * This is a global list of banks for which we won't enable CMCI and we 108 * won't poll. Firmware controls these banks and is responsible for 109 * reporting corrected errors through GHES. Uncorrected/recoverable 110 * errors are still notified through a machine check. 111 */ 112 mce_banks_t mce_banks_ce_disabled; 113 114 static struct work_struct mce_work; 115 static struct irq_work mce_irq_work; 116 117 /* 118 * CPU/chipset specific EDAC code can register a notifier call here to print 119 * MCE errors in a human-readable form. 120 */ 121 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 122 123 /* Do initial initialization of a struct mce */ 124 void mce_setup(struct mce *m) 125 { 126 memset(m, 0, sizeof(struct mce)); 127 m->cpu = m->extcpu = smp_processor_id(); 128 /* need the internal __ version to avoid deadlocks */ 129 m->time = __ktime_get_real_seconds(); 130 m->cpuvendor = boot_cpu_data.x86_vendor; 131 m->cpuid = cpuid_eax(1); 132 m->socketid = cpu_data(m->extcpu).phys_proc_id; 133 m->apicid = cpu_data(m->extcpu).initial_apicid; 134 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 135 m->ppin = cpu_data(m->extcpu).ppin; 136 m->microcode = boot_cpu_data.microcode; 137 } 138 139 DEFINE_PER_CPU(struct mce, injectm); 140 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 141 142 void mce_log(struct mce *m) 143 { 144 if (!mce_gen_pool_add(m)) 145 irq_work_queue(&mce_irq_work); 146 } 147 EXPORT_SYMBOL_GPL(mce_log); 148 149 void mce_register_decode_chain(struct notifier_block *nb) 150 { 151 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 152 nb->priority > MCE_PRIO_HIGHEST)) 153 return; 154 155 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 156 } 157 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 158 159 void mce_unregister_decode_chain(struct notifier_block *nb) 160 { 161 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 162 } 163 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 164 165 static void __print_mce(struct mce *m) 166 { 167 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 168 m->extcpu, 169 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 170 m->mcgstatus, m->bank, m->status); 171 172 if (m->ip) { 173 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 174 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 175 m->cs, m->ip); 176 177 if (m->cs == __KERNEL_CS) 178 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 179 pr_cont("\n"); 180 } 181 182 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 183 if (m->addr) 184 pr_cont("ADDR %llx ", m->addr); 185 if (m->misc) 186 pr_cont("MISC %llx ", m->misc); 187 if (m->ppin) 188 pr_cont("PPIN %llx ", m->ppin); 189 190 if (mce_flags.smca) { 191 if (m->synd) 192 pr_cont("SYND %llx ", m->synd); 193 if (m->ipid) 194 pr_cont("IPID %llx ", m->ipid); 195 } 196 197 pr_cont("\n"); 198 199 /* 200 * Note this output is parsed by external tools and old fields 201 * should not be changed. 202 */ 203 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 204 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 205 m->microcode); 206 } 207 208 static void print_mce(struct mce *m) 209 { 210 __print_mce(m); 211 212 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 213 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 214 } 215 216 #define PANIC_TIMEOUT 5 /* 5 seconds */ 217 218 static atomic_t mce_panicked; 219 220 static int fake_panic; 221 static atomic_t mce_fake_panicked; 222 223 /* Panic in progress. Enable interrupts and wait for final IPI */ 224 static void wait_for_panic(void) 225 { 226 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 227 228 preempt_disable(); 229 local_irq_enable(); 230 while (timeout-- > 0) 231 udelay(1); 232 if (panic_timeout == 0) 233 panic_timeout = mca_cfg.panic_timeout; 234 panic("Panicing machine check CPU died"); 235 } 236 237 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp) 238 { 239 struct llist_node *pending; 240 struct mce_evt_llist *l; 241 int apei_err = 0; 242 243 /* 244 * Allow instrumentation around external facilities usage. Not that it 245 * matters a whole lot since the machine is going to panic anyway. 246 */ 247 instrumentation_begin(); 248 249 if (!fake_panic) { 250 /* 251 * Make sure only one CPU runs in machine check panic 252 */ 253 if (atomic_inc_return(&mce_panicked) > 1) 254 wait_for_panic(); 255 barrier(); 256 257 bust_spinlocks(1); 258 console_verbose(); 259 } else { 260 /* Don't log too much for fake panic */ 261 if (atomic_inc_return(&mce_fake_panicked) > 1) 262 goto out; 263 } 264 pending = mce_gen_pool_prepare_records(); 265 /* First print corrected ones that are still unlogged */ 266 llist_for_each_entry(l, pending, llnode) { 267 struct mce *m = &l->mce; 268 if (!(m->status & MCI_STATUS_UC)) { 269 print_mce(m); 270 if (!apei_err) 271 apei_err = apei_write_mce(m); 272 } 273 } 274 /* Now print uncorrected but with the final one last */ 275 llist_for_each_entry(l, pending, llnode) { 276 struct mce *m = &l->mce; 277 if (!(m->status & MCI_STATUS_UC)) 278 continue; 279 if (!final || mce_cmp(m, final)) { 280 print_mce(m); 281 if (!apei_err) 282 apei_err = apei_write_mce(m); 283 } 284 } 285 if (final) { 286 print_mce(final); 287 if (!apei_err) 288 apei_err = apei_write_mce(final); 289 } 290 if (exp) 291 pr_emerg(HW_ERR "Machine check: %s\n", exp); 292 if (!fake_panic) { 293 if (panic_timeout == 0) 294 panic_timeout = mca_cfg.panic_timeout; 295 panic(msg); 296 } else 297 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 298 299 out: 300 instrumentation_end(); 301 } 302 303 /* Support code for software error injection */ 304 305 static int msr_to_offset(u32 msr) 306 { 307 unsigned bank = __this_cpu_read(injectm.bank); 308 309 if (msr == mca_cfg.rip_msr) 310 return offsetof(struct mce, ip); 311 if (msr == mca_msr_reg(bank, MCA_STATUS)) 312 return offsetof(struct mce, status); 313 if (msr == mca_msr_reg(bank, MCA_ADDR)) 314 return offsetof(struct mce, addr); 315 if (msr == mca_msr_reg(bank, MCA_MISC)) 316 return offsetof(struct mce, misc); 317 if (msr == MSR_IA32_MCG_STATUS) 318 return offsetof(struct mce, mcgstatus); 319 return -1; 320 } 321 322 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) 323 { 324 if (wrmsr) { 325 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 326 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 327 regs->ip, (void *)regs->ip); 328 } else { 329 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 330 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 331 } 332 333 show_stack_regs(regs); 334 335 panic("MCA architectural violation!\n"); 336 337 while (true) 338 cpu_relax(); 339 } 340 341 /* MSR access wrappers used for error injection */ 342 noinstr u64 mce_rdmsrl(u32 msr) 343 { 344 DECLARE_ARGS(val, low, high); 345 346 if (__this_cpu_read(injectm.finished)) { 347 int offset; 348 u64 ret; 349 350 instrumentation_begin(); 351 352 offset = msr_to_offset(msr); 353 if (offset < 0) 354 ret = 0; 355 else 356 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 357 358 instrumentation_end(); 359 360 return ret; 361 } 362 363 /* 364 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 365 * architectural violation and needs to be reported to hw vendor. Panic 366 * the box to not allow any further progress. 367 */ 368 asm volatile("1: rdmsr\n" 369 "2:\n" 370 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE) 371 : EAX_EDX_RET(val, low, high) : "c" (msr)); 372 373 374 return EAX_EDX_VAL(val, low, high); 375 } 376 377 static noinstr void mce_wrmsrl(u32 msr, u64 v) 378 { 379 u32 low, high; 380 381 if (__this_cpu_read(injectm.finished)) { 382 int offset; 383 384 instrumentation_begin(); 385 386 offset = msr_to_offset(msr); 387 if (offset >= 0) 388 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 389 390 instrumentation_end(); 391 392 return; 393 } 394 395 low = (u32)v; 396 high = (u32)(v >> 32); 397 398 /* See comment in mce_rdmsrl() */ 399 asm volatile("1: wrmsr\n" 400 "2:\n" 401 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE) 402 : : "c" (msr), "a"(low), "d" (high) : "memory"); 403 } 404 405 /* 406 * Collect all global (w.r.t. this processor) status about this machine 407 * check into our "mce" struct so that we can use it later to assess 408 * the severity of the problem as we read per-bank specific details. 409 */ 410 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs) 411 { 412 /* 413 * Enable instrumentation around mce_setup() which calls external 414 * facilities. 415 */ 416 instrumentation_begin(); 417 mce_setup(m); 418 instrumentation_end(); 419 420 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 421 if (regs) { 422 /* 423 * Get the address of the instruction at the time of 424 * the machine check error. 425 */ 426 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 427 m->ip = regs->ip; 428 m->cs = regs->cs; 429 430 /* 431 * When in VM86 mode make the cs look like ring 3 432 * always. This is a lie, but it's better than passing 433 * the additional vm86 bit around everywhere. 434 */ 435 if (v8086_mode(regs)) 436 m->cs |= 3; 437 } 438 /* Use accurate RIP reporting if available. */ 439 if (mca_cfg.rip_msr) 440 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 441 } 442 } 443 444 int mce_available(struct cpuinfo_x86 *c) 445 { 446 if (mca_cfg.disabled) 447 return 0; 448 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 449 } 450 451 static void mce_schedule_work(void) 452 { 453 if (!mce_gen_pool_empty()) 454 schedule_work(&mce_work); 455 } 456 457 static void mce_irq_work_cb(struct irq_work *entry) 458 { 459 mce_schedule_work(); 460 } 461 462 /* 463 * Check if the address reported by the CPU is in a format we can parse. 464 * It would be possible to add code for most other cases, but all would 465 * be somewhat complicated (e.g. segment offset would require an instruction 466 * parser). So only support physical addresses up to page granularity for now. 467 */ 468 int mce_usable_address(struct mce *m) 469 { 470 if (!(m->status & MCI_STATUS_ADDRV)) 471 return 0; 472 473 /* Checks after this one are Intel/Zhaoxin-specific: */ 474 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 475 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 476 return 1; 477 478 if (!(m->status & MCI_STATUS_MISCV)) 479 return 0; 480 481 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 482 return 0; 483 484 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 485 return 0; 486 487 return 1; 488 } 489 EXPORT_SYMBOL_GPL(mce_usable_address); 490 491 bool mce_is_memory_error(struct mce *m) 492 { 493 switch (m->cpuvendor) { 494 case X86_VENDOR_AMD: 495 case X86_VENDOR_HYGON: 496 return amd_mce_is_memory_error(m); 497 498 case X86_VENDOR_INTEL: 499 case X86_VENDOR_ZHAOXIN: 500 /* 501 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 502 * 503 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 504 * indicating a memory error. Bit 8 is used for indicating a 505 * cache hierarchy error. The combination of bit 2 and bit 3 506 * is used for indicating a `generic' cache hierarchy error 507 * But we can't just blindly check the above bits, because if 508 * bit 11 is set, then it is a bus/interconnect error - and 509 * either way the above bits just gives more detail on what 510 * bus/interconnect error happened. Note that bit 12 can be 511 * ignored, as it's the "filter" bit. 512 */ 513 return (m->status & 0xef80) == BIT(7) || 514 (m->status & 0xef00) == BIT(8) || 515 (m->status & 0xeffc) == 0xc; 516 517 default: 518 return false; 519 } 520 } 521 EXPORT_SYMBOL_GPL(mce_is_memory_error); 522 523 static bool whole_page(struct mce *m) 524 { 525 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 526 return true; 527 528 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 529 } 530 531 bool mce_is_correctable(struct mce *m) 532 { 533 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 534 return false; 535 536 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 537 return false; 538 539 if (m->status & MCI_STATUS_UC) 540 return false; 541 542 return true; 543 } 544 EXPORT_SYMBOL_GPL(mce_is_correctable); 545 546 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 547 void *data) 548 { 549 struct mce *m = (struct mce *)data; 550 551 if (!m) 552 return NOTIFY_DONE; 553 554 /* Emit the trace record: */ 555 trace_mce_record(m); 556 557 set_bit(0, &mce_need_notify); 558 559 mce_notify_irq(); 560 561 return NOTIFY_DONE; 562 } 563 564 static struct notifier_block early_nb = { 565 .notifier_call = mce_early_notifier, 566 .priority = MCE_PRIO_EARLY, 567 }; 568 569 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 570 void *data) 571 { 572 struct mce *mce = (struct mce *)data; 573 unsigned long pfn; 574 575 if (!mce || !mce_usable_address(mce)) 576 return NOTIFY_DONE; 577 578 if (mce->severity != MCE_AO_SEVERITY && 579 mce->severity != MCE_DEFERRED_SEVERITY) 580 return NOTIFY_DONE; 581 582 pfn = mce->addr >> PAGE_SHIFT; 583 if (!memory_failure(pfn, 0)) { 584 set_mce_nospec(pfn); 585 mce->kflags |= MCE_HANDLED_UC; 586 } 587 588 return NOTIFY_OK; 589 } 590 591 static struct notifier_block mce_uc_nb = { 592 .notifier_call = uc_decode_notifier, 593 .priority = MCE_PRIO_UC, 594 }; 595 596 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 597 void *data) 598 { 599 struct mce *m = (struct mce *)data; 600 601 if (!m) 602 return NOTIFY_DONE; 603 604 if (mca_cfg.print_all || !m->kflags) 605 __print_mce(m); 606 607 return NOTIFY_DONE; 608 } 609 610 static struct notifier_block mce_default_nb = { 611 .notifier_call = mce_default_notifier, 612 /* lowest prio, we want it to run last. */ 613 .priority = MCE_PRIO_LOWEST, 614 }; 615 616 /* 617 * Read ADDR and MISC registers. 618 */ 619 static noinstr void mce_read_aux(struct mce *m, int i) 620 { 621 if (m->status & MCI_STATUS_MISCV) 622 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC)); 623 624 if (m->status & MCI_STATUS_ADDRV) { 625 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR)); 626 627 /* 628 * Mask the reported address by the reported granularity. 629 */ 630 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 631 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 632 m->addr >>= shift; 633 m->addr <<= shift; 634 } 635 636 /* 637 * Extract [55:<lsb>] where lsb is the least significant 638 * *valid* bit of the address bits. 639 */ 640 if (mce_flags.smca) { 641 u8 lsb = (m->addr >> 56) & 0x3f; 642 643 m->addr &= GENMASK_ULL(55, lsb); 644 } 645 } 646 647 if (mce_flags.smca) { 648 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 649 650 if (m->status & MCI_STATUS_SYNDV) 651 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 652 } 653 } 654 655 DEFINE_PER_CPU(unsigned, mce_poll_count); 656 657 /* 658 * Poll for corrected events or events that happened before reset. 659 * Those are just logged through /dev/mcelog. 660 * 661 * This is executed in standard interrupt context. 662 * 663 * Note: spec recommends to panic for fatal unsignalled 664 * errors here. However this would be quite problematic -- 665 * we would need to reimplement the Monarch handling and 666 * it would mess up the exclusion between exception handler 667 * and poll handler -- * so we skip this for now. 668 * These cases should not happen anyways, or only when the CPU 669 * is already totally * confused. In this case it's likely it will 670 * not fully execute the machine check handler either. 671 */ 672 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 673 { 674 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 675 bool error_seen = false; 676 struct mce m; 677 int i; 678 679 this_cpu_inc(mce_poll_count); 680 681 mce_gather_info(&m, NULL); 682 683 if (flags & MCP_TIMESTAMP) 684 m.tsc = rdtsc(); 685 686 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 687 if (!mce_banks[i].ctl || !test_bit(i, *b)) 688 continue; 689 690 m.misc = 0; 691 m.addr = 0; 692 m.bank = i; 693 694 barrier(); 695 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 696 697 /* If this entry is not valid, ignore it */ 698 if (!(m.status & MCI_STATUS_VAL)) 699 continue; 700 701 /* 702 * If we are logging everything (at CPU online) or this 703 * is a corrected error, then we must log it. 704 */ 705 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 706 goto log_it; 707 708 /* 709 * Newer Intel systems that support software error 710 * recovery need to make additional checks. Other 711 * CPUs should skip over uncorrected errors, but log 712 * everything else. 713 */ 714 if (!mca_cfg.ser) { 715 if (m.status & MCI_STATUS_UC) 716 continue; 717 goto log_it; 718 } 719 720 /* Log "not enabled" (speculative) errors */ 721 if (!(m.status & MCI_STATUS_EN)) 722 goto log_it; 723 724 /* 725 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 726 * UC == 1 && PCC == 0 && S == 0 727 */ 728 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 729 goto log_it; 730 731 /* 732 * Skip anything else. Presumption is that our read of this 733 * bank is racing with a machine check. Leave the log alone 734 * for do_machine_check() to deal with it. 735 */ 736 continue; 737 738 log_it: 739 error_seen = true; 740 741 if (flags & MCP_DONTLOG) 742 goto clear_it; 743 744 mce_read_aux(&m, i); 745 m.severity = mce_severity(&m, NULL, NULL, false); 746 /* 747 * Don't get the IP here because it's unlikely to 748 * have anything to do with the actual error location. 749 */ 750 751 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 752 goto clear_it; 753 754 if (flags & MCP_QUEUE_LOG) 755 mce_gen_pool_add(&m); 756 else 757 mce_log(&m); 758 759 clear_it: 760 /* 761 * Clear state for this bank. 762 */ 763 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 764 } 765 766 /* 767 * Don't clear MCG_STATUS here because it's only defined for 768 * exceptions. 769 */ 770 771 sync_core(); 772 773 return error_seen; 774 } 775 EXPORT_SYMBOL_GPL(machine_check_poll); 776 777 /* 778 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 779 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 780 * Vol 3B Table 15-20). But this confuses both the code that determines 781 * whether the machine check occurred in kernel or user mode, and also 782 * the severity assessment code. Pretend that EIPV was set, and take the 783 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 784 */ 785 static __always_inline void 786 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 787 { 788 if (bank != 0) 789 return; 790 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 791 return; 792 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 793 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 794 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 795 MCACOD)) != 796 (MCI_STATUS_UC|MCI_STATUS_EN| 797 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 798 MCI_STATUS_AR|MCACOD_INSTR)) 799 return; 800 801 m->mcgstatus |= MCG_STATUS_EIPV; 802 m->ip = regs->ip; 803 m->cs = regs->cs; 804 } 805 806 /* 807 * Disable fast string copy and return from the MCE handler upon the first SRAR 808 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake 809 * CPUs. 810 * The fast string copy instructions ("REP; MOVS*") could consume an 811 * uncorrectable memory error in the cache line _right after_ the desired region 812 * to copy and raise an MCE with RIP pointing to the instruction _after_ the 813 * "REP; MOVS*". 814 * This mitigation addresses the issue completely with the caveat of performance 815 * degradation on the CPU affected. This is still better than the OS crashing on 816 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a 817 * kernel context (e.g., copy_page). 818 * 819 * Returns true when fast string copy on CPU has been disabled. 820 */ 821 static noinstr bool quirk_skylake_repmov(void) 822 { 823 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 824 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE); 825 u64 mc1_status; 826 827 /* 828 * Apply the quirk only to local machine checks, i.e., no broadcast 829 * sync is needed. 830 */ 831 if (!(mcgstatus & MCG_STATUS_LMCES) || 832 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) 833 return false; 834 835 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1)); 836 837 /* Check for a software-recoverable data fetch error. */ 838 if ((mc1_status & 839 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN | 840 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC | 841 MCI_STATUS_AR | MCI_STATUS_S)) == 842 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 843 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | 844 MCI_STATUS_AR | MCI_STATUS_S)) { 845 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING; 846 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 847 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0); 848 849 instrumentation_begin(); 850 pr_err_once("Erratum detected, disable fast string copy instructions.\n"); 851 instrumentation_end(); 852 853 return true; 854 } 855 856 return false; 857 } 858 859 /* 860 * Do a quick check if any of the events requires a panic. 861 * This decides if we keep the events around or clear them. 862 */ 863 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 864 struct pt_regs *regs) 865 { 866 char *tmp = *msg; 867 int i; 868 869 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 870 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 871 if (!(m->status & MCI_STATUS_VAL)) 872 continue; 873 874 arch___set_bit(i, validp); 875 if (mce_flags.snb_ifu_quirk) 876 quirk_sandybridge_ifu(i, m, regs); 877 878 m->bank = i; 879 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) { 880 mce_read_aux(m, i); 881 *msg = tmp; 882 return 1; 883 } 884 } 885 return 0; 886 } 887 888 /* 889 * Variable to establish order between CPUs while scanning. 890 * Each CPU spins initially until executing is equal its number. 891 */ 892 static atomic_t mce_executing; 893 894 /* 895 * Defines order of CPUs on entry. First CPU becomes Monarch. 896 */ 897 static atomic_t mce_callin; 898 899 /* 900 * Track which CPUs entered the MCA broadcast synchronization and which not in 901 * order to print holdouts. 902 */ 903 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 904 905 /* 906 * Check if a timeout waiting for other CPUs happened. 907 */ 908 static noinstr int mce_timed_out(u64 *t, const char *msg) 909 { 910 int ret = 0; 911 912 /* Enable instrumentation around calls to external facilities */ 913 instrumentation_begin(); 914 915 /* 916 * The others already did panic for some reason. 917 * Bail out like in a timeout. 918 * rmb() to tell the compiler that system_state 919 * might have been modified by someone else. 920 */ 921 rmb(); 922 if (atomic_read(&mce_panicked)) 923 wait_for_panic(); 924 if (!mca_cfg.monarch_timeout) 925 goto out; 926 if ((s64)*t < SPINUNIT) { 927 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 928 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 929 cpumask_pr_args(&mce_missing_cpus)); 930 mce_panic(msg, NULL, NULL); 931 932 ret = 1; 933 goto out; 934 } 935 *t -= SPINUNIT; 936 937 out: 938 touch_nmi_watchdog(); 939 940 instrumentation_end(); 941 942 return ret; 943 } 944 945 /* 946 * The Monarch's reign. The Monarch is the CPU who entered 947 * the machine check handler first. It waits for the others to 948 * raise the exception too and then grades them. When any 949 * error is fatal panic. Only then let the others continue. 950 * 951 * The other CPUs entering the MCE handler will be controlled by the 952 * Monarch. They are called Subjects. 953 * 954 * This way we prevent any potential data corruption in a unrecoverable case 955 * and also makes sure always all CPU's errors are examined. 956 * 957 * Also this detects the case of a machine check event coming from outer 958 * space (not detected by any CPUs) In this case some external agent wants 959 * us to shut down, so panic too. 960 * 961 * The other CPUs might still decide to panic if the handler happens 962 * in a unrecoverable place, but in this case the system is in a semi-stable 963 * state and won't corrupt anything by itself. It's ok to let the others 964 * continue for a bit first. 965 * 966 * All the spin loops have timeouts; when a timeout happens a CPU 967 * typically elects itself to be Monarch. 968 */ 969 static void mce_reign(void) 970 { 971 int cpu; 972 struct mce *m = NULL; 973 int global_worst = 0; 974 char *msg = NULL; 975 976 /* 977 * This CPU is the Monarch and the other CPUs have run 978 * through their handlers. 979 * Grade the severity of the errors of all the CPUs. 980 */ 981 for_each_possible_cpu(cpu) { 982 struct mce *mtmp = &per_cpu(mces_seen, cpu); 983 984 if (mtmp->severity > global_worst) { 985 global_worst = mtmp->severity; 986 m = &per_cpu(mces_seen, cpu); 987 } 988 } 989 990 /* 991 * Cannot recover? Panic here then. 992 * This dumps all the mces in the log buffer and stops the 993 * other CPUs. 994 */ 995 if (m && global_worst >= MCE_PANIC_SEVERITY) { 996 /* call mce_severity() to get "msg" for panic */ 997 mce_severity(m, NULL, &msg, true); 998 mce_panic("Fatal machine check", m, msg); 999 } 1000 1001 /* 1002 * For UC somewhere we let the CPU who detects it handle it. 1003 * Also must let continue the others, otherwise the handling 1004 * CPU could deadlock on a lock. 1005 */ 1006 1007 /* 1008 * No machine check event found. Must be some external 1009 * source or one CPU is hung. Panic. 1010 */ 1011 if (global_worst <= MCE_KEEP_SEVERITY) 1012 mce_panic("Fatal machine check from unknown source", NULL, NULL); 1013 1014 /* 1015 * Now clear all the mces_seen so that they don't reappear on 1016 * the next mce. 1017 */ 1018 for_each_possible_cpu(cpu) 1019 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 1020 } 1021 1022 static atomic_t global_nwo; 1023 1024 /* 1025 * Start of Monarch synchronization. This waits until all CPUs have 1026 * entered the exception handler and then determines if any of them 1027 * saw a fatal event that requires panic. Then it executes them 1028 * in the entry order. 1029 * TBD double check parallel CPU hotunplug 1030 */ 1031 static noinstr int mce_start(int *no_way_out) 1032 { 1033 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1034 int order, ret = -1; 1035 1036 if (!timeout) 1037 return ret; 1038 1039 arch_atomic_add(*no_way_out, &global_nwo); 1040 /* 1041 * Rely on the implied barrier below, such that global_nwo 1042 * is updated before mce_callin. 1043 */ 1044 order = arch_atomic_inc_return(&mce_callin); 1045 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1046 1047 /* Enable instrumentation around calls to external facilities */ 1048 instrumentation_begin(); 1049 1050 /* 1051 * Wait for everyone. 1052 */ 1053 while (arch_atomic_read(&mce_callin) != num_online_cpus()) { 1054 if (mce_timed_out(&timeout, 1055 "Timeout: Not all CPUs entered broadcast exception handler")) { 1056 arch_atomic_set(&global_nwo, 0); 1057 goto out; 1058 } 1059 ndelay(SPINUNIT); 1060 } 1061 1062 /* 1063 * mce_callin should be read before global_nwo 1064 */ 1065 smp_rmb(); 1066 1067 if (order == 1) { 1068 /* 1069 * Monarch: Starts executing now, the others wait. 1070 */ 1071 arch_atomic_set(&mce_executing, 1); 1072 } else { 1073 /* 1074 * Subject: Now start the scanning loop one by one in 1075 * the original callin order. 1076 * This way when there are any shared banks it will be 1077 * only seen by one CPU before cleared, avoiding duplicates. 1078 */ 1079 while (arch_atomic_read(&mce_executing) < order) { 1080 if (mce_timed_out(&timeout, 1081 "Timeout: Subject CPUs unable to finish machine check processing")) { 1082 arch_atomic_set(&global_nwo, 0); 1083 goto out; 1084 } 1085 ndelay(SPINUNIT); 1086 } 1087 } 1088 1089 /* 1090 * Cache the global no_way_out state. 1091 */ 1092 *no_way_out = arch_atomic_read(&global_nwo); 1093 1094 ret = order; 1095 1096 out: 1097 instrumentation_end(); 1098 1099 return ret; 1100 } 1101 1102 /* 1103 * Synchronize between CPUs after main scanning loop. 1104 * This invokes the bulk of the Monarch processing. 1105 */ 1106 static noinstr int mce_end(int order) 1107 { 1108 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1109 int ret = -1; 1110 1111 /* Allow instrumentation around external facilities. */ 1112 instrumentation_begin(); 1113 1114 if (!timeout) 1115 goto reset; 1116 if (order < 0) 1117 goto reset; 1118 1119 /* 1120 * Allow others to run. 1121 */ 1122 atomic_inc(&mce_executing); 1123 1124 if (order == 1) { 1125 /* 1126 * Monarch: Wait for everyone to go through their scanning 1127 * loops. 1128 */ 1129 while (atomic_read(&mce_executing) <= num_online_cpus()) { 1130 if (mce_timed_out(&timeout, 1131 "Timeout: Monarch CPU unable to finish machine check processing")) 1132 goto reset; 1133 ndelay(SPINUNIT); 1134 } 1135 1136 mce_reign(); 1137 barrier(); 1138 ret = 0; 1139 } else { 1140 /* 1141 * Subject: Wait for Monarch to finish. 1142 */ 1143 while (atomic_read(&mce_executing) != 0) { 1144 if (mce_timed_out(&timeout, 1145 "Timeout: Monarch CPU did not finish machine check processing")) 1146 goto reset; 1147 ndelay(SPINUNIT); 1148 } 1149 1150 /* 1151 * Don't reset anything. That's done by the Monarch. 1152 */ 1153 ret = 0; 1154 goto out; 1155 } 1156 1157 /* 1158 * Reset all global state. 1159 */ 1160 reset: 1161 atomic_set(&global_nwo, 0); 1162 atomic_set(&mce_callin, 0); 1163 cpumask_setall(&mce_missing_cpus); 1164 barrier(); 1165 1166 /* 1167 * Let others run again. 1168 */ 1169 atomic_set(&mce_executing, 0); 1170 1171 out: 1172 instrumentation_end(); 1173 1174 return ret; 1175 } 1176 1177 static __always_inline void mce_clear_state(unsigned long *toclear) 1178 { 1179 int i; 1180 1181 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1182 if (arch_test_bit(i, toclear)) 1183 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1184 } 1185 } 1186 1187 /* 1188 * Cases where we avoid rendezvous handler timeout: 1189 * 1) If this CPU is offline. 1190 * 1191 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1192 * skip those CPUs which remain looping in the 1st kernel - see 1193 * crash_nmi_callback(). 1194 * 1195 * Note: there still is a small window between kexec-ing and the new, 1196 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1197 * might not get handled properly. 1198 */ 1199 static noinstr bool mce_check_crashing_cpu(void) 1200 { 1201 unsigned int cpu = smp_processor_id(); 1202 1203 if (arch_cpu_is_offline(cpu) || 1204 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1205 u64 mcgstatus; 1206 1207 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1208 1209 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1210 if (mcgstatus & MCG_STATUS_LMCES) 1211 return false; 1212 } 1213 1214 if (mcgstatus & MCG_STATUS_RIPV) { 1215 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1216 return true; 1217 } 1218 } 1219 return false; 1220 } 1221 1222 static __always_inline int 1223 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, 1224 unsigned long *toclear, unsigned long *valid_banks, int no_way_out, 1225 int *worst) 1226 { 1227 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1228 struct mca_config *cfg = &mca_cfg; 1229 int severity, i, taint = 0; 1230 1231 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1232 arch___clear_bit(i, toclear); 1233 if (!arch_test_bit(i, valid_banks)) 1234 continue; 1235 1236 if (!mce_banks[i].ctl) 1237 continue; 1238 1239 m->misc = 0; 1240 m->addr = 0; 1241 m->bank = i; 1242 1243 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 1244 if (!(m->status & MCI_STATUS_VAL)) 1245 continue; 1246 1247 /* 1248 * Corrected or non-signaled errors are handled by 1249 * machine_check_poll(). Leave them alone, unless this panics. 1250 */ 1251 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1252 !no_way_out) 1253 continue; 1254 1255 /* Set taint even when machine check was not enabled. */ 1256 taint++; 1257 1258 severity = mce_severity(m, regs, NULL, true); 1259 1260 /* 1261 * When machine check was for corrected/deferred handler don't 1262 * touch, unless we're panicking. 1263 */ 1264 if ((severity == MCE_KEEP_SEVERITY || 1265 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1266 continue; 1267 1268 arch___set_bit(i, toclear); 1269 1270 /* Machine check event was not enabled. Clear, but ignore. */ 1271 if (severity == MCE_NO_SEVERITY) 1272 continue; 1273 1274 mce_read_aux(m, i); 1275 1276 /* assuming valid severity level != 0 */ 1277 m->severity = severity; 1278 1279 /* 1280 * Enable instrumentation around the mce_log() call which is 1281 * done in #MC context, where instrumentation is disabled. 1282 */ 1283 instrumentation_begin(); 1284 mce_log(m); 1285 instrumentation_end(); 1286 1287 if (severity > *worst) { 1288 *final = *m; 1289 *worst = severity; 1290 } 1291 } 1292 1293 /* mce_clear_state will clear *final, save locally for use later */ 1294 *m = *final; 1295 1296 return taint; 1297 } 1298 1299 static void kill_me_now(struct callback_head *ch) 1300 { 1301 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); 1302 1303 p->mce_count = 0; 1304 force_sig(SIGBUS); 1305 } 1306 1307 static void kill_me_maybe(struct callback_head *cb) 1308 { 1309 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1310 int flags = MF_ACTION_REQUIRED; 1311 int ret; 1312 1313 p->mce_count = 0; 1314 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1315 1316 if (!p->mce_ripv) 1317 flags |= MF_MUST_KILL; 1318 1319 ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags); 1320 if (!ret) { 1321 set_mce_nospec(p->mce_addr >> PAGE_SHIFT); 1322 sync_core(); 1323 return; 1324 } 1325 1326 /* 1327 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1328 * to the current process with the proper error info, 1329 * -EOPNOTSUPP means hwpoison_filter() filtered the error event, 1330 * 1331 * In both cases, no further processing is required. 1332 */ 1333 if (ret == -EHWPOISON || ret == -EOPNOTSUPP) 1334 return; 1335 1336 pr_err("Memory error not recovered"); 1337 kill_me_now(cb); 1338 } 1339 1340 static void kill_me_never(struct callback_head *cb) 1341 { 1342 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1343 1344 p->mce_count = 0; 1345 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr); 1346 if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0)) 1347 set_mce_nospec(p->mce_addr >> PAGE_SHIFT); 1348 } 1349 1350 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *)) 1351 { 1352 int count = ++current->mce_count; 1353 1354 /* First call, save all the details */ 1355 if (count == 1) { 1356 current->mce_addr = m->addr; 1357 current->mce_kflags = m->kflags; 1358 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1359 current->mce_whole_page = whole_page(m); 1360 current->mce_kill_me.func = func; 1361 } 1362 1363 /* Ten is likely overkill. Don't expect more than two faults before task_work() */ 1364 if (count > 10) 1365 mce_panic("Too many consecutive machine checks while accessing user data", m, msg); 1366 1367 /* Second or later call, make sure page address matches the one from first call */ 1368 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) 1369 mce_panic("Consecutive machine checks to different user pages", m, msg); 1370 1371 /* Do not call task_work_add() more than once */ 1372 if (count > 1) 1373 return; 1374 1375 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1376 } 1377 1378 /* Handle unconfigured int18 (should never happen) */ 1379 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1380 { 1381 instrumentation_begin(); 1382 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1383 smp_processor_id()); 1384 instrumentation_end(); 1385 } 1386 1387 /* 1388 * The actual machine check handler. This only handles real exceptions when 1389 * something got corrupted coming in through int 18. 1390 * 1391 * This is executed in #MC context not subject to normal locking rules. 1392 * This implies that most kernel services cannot be safely used. Don't even 1393 * think about putting a printk in there! 1394 * 1395 * On Intel systems this is entered on all CPUs in parallel through 1396 * MCE broadcast. However some CPUs might be broken beyond repair, 1397 * so be always careful when synchronizing with others. 1398 * 1399 * Tracing and kprobes are disabled: if we interrupted a kernel context 1400 * with IF=1, we need to minimize stack usage. There are also recursion 1401 * issues: if the machine check was due to a failure of the memory 1402 * backing the user stack, tracing that reads the user stack will cause 1403 * potentially infinite recursion. 1404 * 1405 * Currently, the #MC handler calls out to a number of external facilities 1406 * and, therefore, allows instrumentation around them. The optimal thing to 1407 * have would be to do the absolutely minimal work required in #MC context 1408 * and have instrumentation disabled only around that. Further processing can 1409 * then happen in process context where instrumentation is allowed. Achieving 1410 * that requires careful auditing and modifications. Until then, the code 1411 * allows instrumentation temporarily, where required. * 1412 */ 1413 noinstr void do_machine_check(struct pt_regs *regs) 1414 { 1415 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0; 1416 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 }; 1417 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 }; 1418 struct mce m, *final; 1419 char *msg = NULL; 1420 1421 if (unlikely(mce_flags.p5)) 1422 return pentium_machine_check(regs); 1423 else if (unlikely(mce_flags.winchip)) 1424 return winchip_machine_check(regs); 1425 else if (unlikely(!mca_cfg.initialized)) 1426 return unexpected_machine_check(regs); 1427 1428 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov()) 1429 goto clear; 1430 1431 /* 1432 * Establish sequential order between the CPUs entering the machine 1433 * check handler. 1434 */ 1435 order = -1; 1436 1437 /* 1438 * If no_way_out gets set, there is no safe way to recover from this 1439 * MCE. 1440 */ 1441 no_way_out = 0; 1442 1443 /* 1444 * If kill_current_task is not set, there might be a way to recover from this 1445 * error. 1446 */ 1447 kill_current_task = 0; 1448 1449 /* 1450 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1451 * on Intel. 1452 */ 1453 lmce = 1; 1454 1455 this_cpu_inc(mce_exception_count); 1456 1457 mce_gather_info(&m, regs); 1458 m.tsc = rdtsc(); 1459 1460 final = this_cpu_ptr(&mces_seen); 1461 *final = m; 1462 1463 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1464 1465 barrier(); 1466 1467 /* 1468 * When no restart IP might need to kill or panic. 1469 * Assume the worst for now, but if we find the 1470 * severity is MCE_AR_SEVERITY we have other options. 1471 */ 1472 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1473 kill_current_task = 1; 1474 /* 1475 * Check if this MCE is signaled to only this logical processor, 1476 * on Intel, Zhaoxin only. 1477 */ 1478 if (m.cpuvendor == X86_VENDOR_INTEL || 1479 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1480 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1481 1482 /* 1483 * Local machine check may already know that we have to panic. 1484 * Broadcast machine check begins rendezvous in mce_start() 1485 * Go through all banks in exclusion of the other CPUs. This way we 1486 * don't report duplicated events on shared banks because the first one 1487 * to see it will clear it. 1488 */ 1489 if (lmce) { 1490 if (no_way_out) 1491 mce_panic("Fatal local machine check", &m, msg); 1492 } else { 1493 order = mce_start(&no_way_out); 1494 } 1495 1496 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); 1497 1498 if (!no_way_out) 1499 mce_clear_state(toclear); 1500 1501 /* 1502 * Do most of the synchronization with other CPUs. 1503 * When there's any problem use only local no_way_out state. 1504 */ 1505 if (!lmce) { 1506 if (mce_end(order) < 0) { 1507 if (!no_way_out) 1508 no_way_out = worst >= MCE_PANIC_SEVERITY; 1509 1510 if (no_way_out) 1511 mce_panic("Fatal machine check on current CPU", &m, msg); 1512 } 1513 } else { 1514 /* 1515 * If there was a fatal machine check we should have 1516 * already called mce_panic earlier in this function. 1517 * Since we re-read the banks, we might have found 1518 * something new. Check again to see if we found a 1519 * fatal error. We call "mce_severity()" again to 1520 * make sure we have the right "msg". 1521 */ 1522 if (worst >= MCE_PANIC_SEVERITY) { 1523 mce_severity(&m, regs, &msg, true); 1524 mce_panic("Local fatal machine check!", &m, msg); 1525 } 1526 } 1527 1528 /* 1529 * Enable instrumentation around the external facilities like task_work_add() 1530 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this 1531 * properly would need a lot more involved reorganization. 1532 */ 1533 instrumentation_begin(); 1534 1535 if (taint) 1536 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1537 1538 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1539 goto out; 1540 1541 /* Fault was in user mode and we need to take some action */ 1542 if ((m.cs & 3) == 3) { 1543 /* If this triggers there is no way to recover. Die hard. */ 1544 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1545 1546 if (kill_current_task) 1547 queue_task_work(&m, msg, kill_me_now); 1548 else 1549 queue_task_work(&m, msg, kill_me_maybe); 1550 1551 } else { 1552 /* 1553 * Handle an MCE which has happened in kernel space but from 1554 * which the kernel can recover: ex_has_fault_handler() has 1555 * already verified that the rIP at which the error happened is 1556 * a rIP from which the kernel can recover (by jumping to 1557 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1558 * corresponding exception handler which would do that is the 1559 * proper one. 1560 */ 1561 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1562 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1563 mce_panic("Failed kernel mode recovery", &m, msg); 1564 } 1565 1566 if (m.kflags & MCE_IN_KERNEL_COPYIN) 1567 queue_task_work(&m, msg, kill_me_never); 1568 } 1569 1570 out: 1571 instrumentation_end(); 1572 1573 clear: 1574 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1575 } 1576 EXPORT_SYMBOL_GPL(do_machine_check); 1577 1578 #ifndef CONFIG_MEMORY_FAILURE 1579 int memory_failure(unsigned long pfn, int flags) 1580 { 1581 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1582 BUG_ON(flags & MF_ACTION_REQUIRED); 1583 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1584 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1585 pfn); 1586 1587 return 0; 1588 } 1589 #endif 1590 1591 /* 1592 * Periodic polling timer for "silent" machine check errors. If the 1593 * poller finds an MCE, poll 2x faster. When the poller finds no more 1594 * errors, poll 2x slower (up to check_interval seconds). 1595 */ 1596 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1597 1598 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1599 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1600 1601 static unsigned long mce_adjust_timer_default(unsigned long interval) 1602 { 1603 return interval; 1604 } 1605 1606 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1607 1608 static void __start_timer(struct timer_list *t, unsigned long interval) 1609 { 1610 unsigned long when = jiffies + interval; 1611 unsigned long flags; 1612 1613 local_irq_save(flags); 1614 1615 if (!timer_pending(t) || time_before(when, t->expires)) 1616 mod_timer(t, round_jiffies(when)); 1617 1618 local_irq_restore(flags); 1619 } 1620 1621 static void mce_timer_fn(struct timer_list *t) 1622 { 1623 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1624 unsigned long iv; 1625 1626 WARN_ON(cpu_t != t); 1627 1628 iv = __this_cpu_read(mce_next_interval); 1629 1630 if (mce_available(this_cpu_ptr(&cpu_info))) { 1631 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1632 1633 if (mce_intel_cmci_poll()) { 1634 iv = mce_adjust_timer(iv); 1635 goto done; 1636 } 1637 } 1638 1639 /* 1640 * Alert userspace if needed. If we logged an MCE, reduce the polling 1641 * interval, otherwise increase the polling interval. 1642 */ 1643 if (mce_notify_irq()) 1644 iv = max(iv / 2, (unsigned long) HZ/100); 1645 else 1646 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1647 1648 done: 1649 __this_cpu_write(mce_next_interval, iv); 1650 __start_timer(t, iv); 1651 } 1652 1653 /* 1654 * Ensure that the timer is firing in @interval from now. 1655 */ 1656 void mce_timer_kick(unsigned long interval) 1657 { 1658 struct timer_list *t = this_cpu_ptr(&mce_timer); 1659 unsigned long iv = __this_cpu_read(mce_next_interval); 1660 1661 __start_timer(t, interval); 1662 1663 if (interval < iv) 1664 __this_cpu_write(mce_next_interval, interval); 1665 } 1666 1667 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1668 static void mce_timer_delete_all(void) 1669 { 1670 int cpu; 1671 1672 for_each_online_cpu(cpu) 1673 del_timer_sync(&per_cpu(mce_timer, cpu)); 1674 } 1675 1676 /* 1677 * Notify the user(s) about new machine check events. 1678 * Can be called from interrupt context, but not from machine check/NMI 1679 * context. 1680 */ 1681 int mce_notify_irq(void) 1682 { 1683 /* Not more than two messages every minute */ 1684 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1685 1686 if (test_and_clear_bit(0, &mce_need_notify)) { 1687 mce_work_trigger(); 1688 1689 if (__ratelimit(&ratelimit)) 1690 pr_info(HW_ERR "Machine check events logged\n"); 1691 1692 return 1; 1693 } 1694 return 0; 1695 } 1696 EXPORT_SYMBOL_GPL(mce_notify_irq); 1697 1698 static void __mcheck_cpu_mce_banks_init(void) 1699 { 1700 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1701 u8 n_banks = this_cpu_read(mce_num_banks); 1702 int i; 1703 1704 for (i = 0; i < n_banks; i++) { 1705 struct mce_bank *b = &mce_banks[i]; 1706 1707 /* 1708 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1709 * the required vendor quirks before 1710 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1711 */ 1712 b->ctl = -1ULL; 1713 b->init = true; 1714 } 1715 } 1716 1717 /* 1718 * Initialize Machine Checks for a CPU. 1719 */ 1720 static void __mcheck_cpu_cap_init(void) 1721 { 1722 u64 cap; 1723 u8 b; 1724 1725 rdmsrl(MSR_IA32_MCG_CAP, cap); 1726 1727 b = cap & MCG_BANKCNT_MASK; 1728 1729 if (b > MAX_NR_BANKS) { 1730 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1731 smp_processor_id(), MAX_NR_BANKS, b); 1732 b = MAX_NR_BANKS; 1733 } 1734 1735 this_cpu_write(mce_num_banks, b); 1736 1737 __mcheck_cpu_mce_banks_init(); 1738 1739 /* Use accurate RIP reporting if available. */ 1740 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1741 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1742 1743 if (cap & MCG_SER_P) 1744 mca_cfg.ser = 1; 1745 } 1746 1747 static void __mcheck_cpu_init_generic(void) 1748 { 1749 enum mcp_flags m_fl = 0; 1750 mce_banks_t all_banks; 1751 u64 cap; 1752 1753 if (!mca_cfg.bootlog) 1754 m_fl = MCP_DONTLOG; 1755 1756 /* 1757 * Log the machine checks left over from the previous reset. Log them 1758 * only, do not start processing them. That will happen in mcheck_late_init() 1759 * when all consumers have been registered on the notifier chain. 1760 */ 1761 bitmap_fill(all_banks, MAX_NR_BANKS); 1762 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1763 1764 cr4_set_bits(X86_CR4_MCE); 1765 1766 rdmsrl(MSR_IA32_MCG_CAP, cap); 1767 if (cap & MCG_CTL_P) 1768 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1769 } 1770 1771 static void __mcheck_cpu_init_clear_banks(void) 1772 { 1773 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1774 int i; 1775 1776 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1777 struct mce_bank *b = &mce_banks[i]; 1778 1779 if (!b->init) 1780 continue; 1781 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 1782 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1783 } 1784 } 1785 1786 /* 1787 * Do a final check to see if there are any unused/RAZ banks. 1788 * 1789 * This must be done after the banks have been initialized and any quirks have 1790 * been applied. 1791 * 1792 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1793 * Otherwise, a user who disables a bank will not be able to re-enable it 1794 * without a system reboot. 1795 */ 1796 static void __mcheck_cpu_check_banks(void) 1797 { 1798 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1799 u64 msrval; 1800 int i; 1801 1802 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1803 struct mce_bank *b = &mce_banks[i]; 1804 1805 if (!b->init) 1806 continue; 1807 1808 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval); 1809 b->init = !!msrval; 1810 } 1811 } 1812 1813 /* Add per CPU specific workarounds here */ 1814 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1815 { 1816 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1817 struct mca_config *cfg = &mca_cfg; 1818 1819 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1820 pr_info("unknown CPU type - not enabling MCE support\n"); 1821 return -EOPNOTSUPP; 1822 } 1823 1824 /* This should be disabled by the BIOS, but isn't always */ 1825 if (c->x86_vendor == X86_VENDOR_AMD) { 1826 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1827 /* 1828 * disable GART TBL walk error reporting, which 1829 * trips off incorrectly with the IOMMU & 3ware 1830 * & Cerberus: 1831 */ 1832 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1833 } 1834 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1835 /* 1836 * Lots of broken BIOS around that don't clear them 1837 * by default and leave crap in there. Don't log: 1838 */ 1839 cfg->bootlog = 0; 1840 } 1841 /* 1842 * Various K7s with broken bank 0 around. Always disable 1843 * by default. 1844 */ 1845 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1846 mce_banks[0].ctl = 0; 1847 1848 /* 1849 * overflow_recov is supported for F15h Models 00h-0fh 1850 * even though we don't have a CPUID bit for it. 1851 */ 1852 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1853 mce_flags.overflow_recov = 1; 1854 1855 } 1856 1857 if (c->x86_vendor == X86_VENDOR_INTEL) { 1858 /* 1859 * SDM documents that on family 6 bank 0 should not be written 1860 * because it aliases to another special BIOS controlled 1861 * register. 1862 * But it's not aliased anymore on model 0x1a+ 1863 * Don't ignore bank 0 completely because there could be a 1864 * valid event later, merely don't write CTL0. 1865 */ 1866 1867 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1868 mce_banks[0].init = false; 1869 1870 /* 1871 * All newer Intel systems support MCE broadcasting. Enable 1872 * synchronization with a one second timeout. 1873 */ 1874 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1875 cfg->monarch_timeout < 0) 1876 cfg->monarch_timeout = USEC_PER_SEC; 1877 1878 /* 1879 * There are also broken BIOSes on some Pentium M and 1880 * earlier systems: 1881 */ 1882 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1883 cfg->bootlog = 0; 1884 1885 if (c->x86 == 6 && c->x86_model == 45) 1886 mce_flags.snb_ifu_quirk = 1; 1887 1888 /* 1889 * Skylake, Cascacde Lake and Cooper Lake require a quirk on 1890 * rep movs. 1891 */ 1892 if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X) 1893 mce_flags.skx_repmov_quirk = 1; 1894 } 1895 1896 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1897 /* 1898 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1899 * synchronization with a one second timeout. 1900 */ 1901 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1902 if (cfg->monarch_timeout < 0) 1903 cfg->monarch_timeout = USEC_PER_SEC; 1904 } 1905 } 1906 1907 if (cfg->monarch_timeout < 0) 1908 cfg->monarch_timeout = 0; 1909 if (cfg->bootlog != 0) 1910 cfg->panic_timeout = 30; 1911 1912 return 0; 1913 } 1914 1915 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1916 { 1917 if (c->x86 != 5) 1918 return 0; 1919 1920 switch (c->x86_vendor) { 1921 case X86_VENDOR_INTEL: 1922 intel_p5_mcheck_init(c); 1923 mce_flags.p5 = 1; 1924 return 1; 1925 case X86_VENDOR_CENTAUR: 1926 winchip_mcheck_init(c); 1927 mce_flags.winchip = 1; 1928 return 1; 1929 default: 1930 return 0; 1931 } 1932 1933 return 0; 1934 } 1935 1936 /* 1937 * Init basic CPU features needed for early decoding of MCEs. 1938 */ 1939 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1940 { 1941 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1942 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1943 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1944 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1945 mce_flags.amd_threshold = 1; 1946 } 1947 } 1948 1949 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1950 { 1951 struct mca_config *cfg = &mca_cfg; 1952 1953 /* 1954 * All newer Centaur CPUs support MCE broadcasting. Enable 1955 * synchronization with a one second timeout. 1956 */ 1957 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1958 c->x86 > 6) { 1959 if (cfg->monarch_timeout < 0) 1960 cfg->monarch_timeout = USEC_PER_SEC; 1961 } 1962 } 1963 1964 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1965 { 1966 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1967 1968 /* 1969 * These CPUs have MCA bank 8 which reports only one error type called 1970 * SVAD (System View Address Decoder). The reporting of that error is 1971 * controlled by IA32_MC8.CTL.0. 1972 * 1973 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1974 * virtual machines start and result in a system panic. Always disable 1975 * bank 8 SVAD error by default. 1976 */ 1977 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1978 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1979 if (this_cpu_read(mce_num_banks) > 8) 1980 mce_banks[8].ctl = 0; 1981 } 1982 1983 intel_init_cmci(); 1984 intel_init_lmce(); 1985 mce_adjust_timer = cmci_intel_adjust_timer; 1986 } 1987 1988 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 1989 { 1990 intel_clear_lmce(); 1991 } 1992 1993 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1994 { 1995 switch (c->x86_vendor) { 1996 case X86_VENDOR_INTEL: 1997 mce_intel_feature_init(c); 1998 mce_adjust_timer = cmci_intel_adjust_timer; 1999 break; 2000 2001 case X86_VENDOR_AMD: { 2002 mce_amd_feature_init(c); 2003 break; 2004 } 2005 2006 case X86_VENDOR_HYGON: 2007 mce_hygon_feature_init(c); 2008 break; 2009 2010 case X86_VENDOR_CENTAUR: 2011 mce_centaur_feature_init(c); 2012 break; 2013 2014 case X86_VENDOR_ZHAOXIN: 2015 mce_zhaoxin_feature_init(c); 2016 break; 2017 2018 default: 2019 break; 2020 } 2021 } 2022 2023 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 2024 { 2025 switch (c->x86_vendor) { 2026 case X86_VENDOR_INTEL: 2027 mce_intel_feature_clear(c); 2028 break; 2029 2030 case X86_VENDOR_ZHAOXIN: 2031 mce_zhaoxin_feature_clear(c); 2032 break; 2033 2034 default: 2035 break; 2036 } 2037 } 2038 2039 static void mce_start_timer(struct timer_list *t) 2040 { 2041 unsigned long iv = check_interval * HZ; 2042 2043 if (mca_cfg.ignore_ce || !iv) 2044 return; 2045 2046 this_cpu_write(mce_next_interval, iv); 2047 __start_timer(t, iv); 2048 } 2049 2050 static void __mcheck_cpu_setup_timer(void) 2051 { 2052 struct timer_list *t = this_cpu_ptr(&mce_timer); 2053 2054 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2055 } 2056 2057 static void __mcheck_cpu_init_timer(void) 2058 { 2059 struct timer_list *t = this_cpu_ptr(&mce_timer); 2060 2061 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2062 mce_start_timer(t); 2063 } 2064 2065 bool filter_mce(struct mce *m) 2066 { 2067 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 2068 return amd_filter_mce(m); 2069 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2070 return intel_filter_mce(m); 2071 2072 return false; 2073 } 2074 2075 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2076 { 2077 irqentry_state_t irq_state; 2078 2079 WARN_ON_ONCE(user_mode(regs)); 2080 2081 /* 2082 * Only required when from kernel mode. See 2083 * mce_check_crashing_cpu() for details. 2084 */ 2085 if (mca_cfg.initialized && mce_check_crashing_cpu()) 2086 return; 2087 2088 irq_state = irqentry_nmi_enter(regs); 2089 2090 do_machine_check(regs); 2091 2092 irqentry_nmi_exit(regs, irq_state); 2093 } 2094 2095 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2096 { 2097 irqentry_enter_from_user_mode(regs); 2098 2099 do_machine_check(regs); 2100 2101 irqentry_exit_to_user_mode(regs); 2102 } 2103 2104 #ifdef CONFIG_X86_64 2105 /* MCE hit kernel mode */ 2106 DEFINE_IDTENTRY_MCE(exc_machine_check) 2107 { 2108 unsigned long dr7; 2109 2110 dr7 = local_db_save(); 2111 exc_machine_check_kernel(regs); 2112 local_db_restore(dr7); 2113 } 2114 2115 /* The user mode variant. */ 2116 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2117 { 2118 unsigned long dr7; 2119 2120 dr7 = local_db_save(); 2121 exc_machine_check_user(regs); 2122 local_db_restore(dr7); 2123 } 2124 #else 2125 /* 32bit unified entry point */ 2126 DEFINE_IDTENTRY_RAW(exc_machine_check) 2127 { 2128 unsigned long dr7; 2129 2130 dr7 = local_db_save(); 2131 if (user_mode(regs)) 2132 exc_machine_check_user(regs); 2133 else 2134 exc_machine_check_kernel(regs); 2135 local_db_restore(dr7); 2136 } 2137 #endif 2138 2139 /* 2140 * Called for each booted CPU to set up machine checks. 2141 * Must be called with preempt off: 2142 */ 2143 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2144 { 2145 if (mca_cfg.disabled) 2146 return; 2147 2148 if (__mcheck_cpu_ancient_init(c)) 2149 return; 2150 2151 if (!mce_available(c)) 2152 return; 2153 2154 __mcheck_cpu_cap_init(); 2155 2156 if (__mcheck_cpu_apply_quirks(c) < 0) { 2157 mca_cfg.disabled = 1; 2158 return; 2159 } 2160 2161 if (mce_gen_pool_init()) { 2162 mca_cfg.disabled = 1; 2163 pr_emerg("Couldn't allocate MCE records pool!\n"); 2164 return; 2165 } 2166 2167 mca_cfg.initialized = 1; 2168 2169 __mcheck_cpu_init_early(c); 2170 __mcheck_cpu_init_generic(); 2171 __mcheck_cpu_init_vendor(c); 2172 __mcheck_cpu_init_clear_banks(); 2173 __mcheck_cpu_check_banks(); 2174 __mcheck_cpu_setup_timer(); 2175 } 2176 2177 /* 2178 * Called for each booted CPU to clear some machine checks opt-ins 2179 */ 2180 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2181 { 2182 if (mca_cfg.disabled) 2183 return; 2184 2185 if (!mce_available(c)) 2186 return; 2187 2188 /* 2189 * Possibly to clear general settings generic to x86 2190 * __mcheck_cpu_clear_generic(c); 2191 */ 2192 __mcheck_cpu_clear_vendor(c); 2193 2194 } 2195 2196 static void __mce_disable_bank(void *arg) 2197 { 2198 int bank = *((int *)arg); 2199 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2200 cmci_disable_bank(bank); 2201 } 2202 2203 void mce_disable_bank(int bank) 2204 { 2205 if (bank >= this_cpu_read(mce_num_banks)) { 2206 pr_warn(FW_BUG 2207 "Ignoring request to disable invalid MCA bank %d.\n", 2208 bank); 2209 return; 2210 } 2211 set_bit(bank, mce_banks_ce_disabled); 2212 on_each_cpu(__mce_disable_bank, &bank, 1); 2213 } 2214 2215 /* 2216 * mce=off Disables machine check 2217 * mce=no_cmci Disables CMCI 2218 * mce=no_lmce Disables LMCE 2219 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2220 * mce=print_all Print all machine check logs to console 2221 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2222 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2223 * monarchtimeout is how long to wait for other CPUs on machine 2224 * check, or 0 to not wait 2225 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2226 and older. 2227 * mce=nobootlog Don't log MCEs from before booting. 2228 * mce=bios_cmci_threshold Don't program the CMCI threshold 2229 * mce=recovery force enable copy_mc_fragile() 2230 */ 2231 static int __init mcheck_enable(char *str) 2232 { 2233 struct mca_config *cfg = &mca_cfg; 2234 2235 if (*str == 0) { 2236 enable_p5_mce(); 2237 return 1; 2238 } 2239 if (*str == '=') 2240 str++; 2241 if (!strcmp(str, "off")) 2242 cfg->disabled = 1; 2243 else if (!strcmp(str, "no_cmci")) 2244 cfg->cmci_disabled = true; 2245 else if (!strcmp(str, "no_lmce")) 2246 cfg->lmce_disabled = 1; 2247 else if (!strcmp(str, "dont_log_ce")) 2248 cfg->dont_log_ce = true; 2249 else if (!strcmp(str, "print_all")) 2250 cfg->print_all = true; 2251 else if (!strcmp(str, "ignore_ce")) 2252 cfg->ignore_ce = true; 2253 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2254 cfg->bootlog = (str[0] == 'b'); 2255 else if (!strcmp(str, "bios_cmci_threshold")) 2256 cfg->bios_cmci_threshold = 1; 2257 else if (!strcmp(str, "recovery")) 2258 cfg->recovery = 1; 2259 else if (isdigit(str[0])) 2260 get_option(&str, &(cfg->monarch_timeout)); 2261 else { 2262 pr_info("mce argument %s ignored. Please use /sys\n", str); 2263 return 0; 2264 } 2265 return 1; 2266 } 2267 __setup("mce", mcheck_enable); 2268 2269 int __init mcheck_init(void) 2270 { 2271 mce_register_decode_chain(&early_nb); 2272 mce_register_decode_chain(&mce_uc_nb); 2273 mce_register_decode_chain(&mce_default_nb); 2274 2275 INIT_WORK(&mce_work, mce_gen_pool_process); 2276 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2277 2278 return 0; 2279 } 2280 2281 /* 2282 * mce_syscore: PM support 2283 */ 2284 2285 /* 2286 * Disable machine checks on suspend and shutdown. We can't really handle 2287 * them later. 2288 */ 2289 static void mce_disable_error_reporting(void) 2290 { 2291 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2292 int i; 2293 2294 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2295 struct mce_bank *b = &mce_banks[i]; 2296 2297 if (b->init) 2298 wrmsrl(mca_msr_reg(i, MCA_CTL), 0); 2299 } 2300 return; 2301 } 2302 2303 static void vendor_disable_error_reporting(void) 2304 { 2305 /* 2306 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2307 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2308 * is bad, since it will inhibit reporting for all shared resources on 2309 * the socket like the last level cache (LLC), the integrated memory 2310 * controller (iMC), etc. 2311 */ 2312 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2313 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2314 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2315 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2316 return; 2317 2318 mce_disable_error_reporting(); 2319 } 2320 2321 static int mce_syscore_suspend(void) 2322 { 2323 vendor_disable_error_reporting(); 2324 return 0; 2325 } 2326 2327 static void mce_syscore_shutdown(void) 2328 { 2329 vendor_disable_error_reporting(); 2330 } 2331 2332 /* 2333 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2334 * Only one CPU is active at this time, the others get re-added later using 2335 * CPU hotplug: 2336 */ 2337 static void mce_syscore_resume(void) 2338 { 2339 __mcheck_cpu_init_generic(); 2340 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2341 __mcheck_cpu_init_clear_banks(); 2342 } 2343 2344 static struct syscore_ops mce_syscore_ops = { 2345 .suspend = mce_syscore_suspend, 2346 .shutdown = mce_syscore_shutdown, 2347 .resume = mce_syscore_resume, 2348 }; 2349 2350 /* 2351 * mce_device: Sysfs support 2352 */ 2353 2354 static void mce_cpu_restart(void *data) 2355 { 2356 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2357 return; 2358 __mcheck_cpu_init_generic(); 2359 __mcheck_cpu_init_clear_banks(); 2360 __mcheck_cpu_init_timer(); 2361 } 2362 2363 /* Reinit MCEs after user configuration changes */ 2364 static void mce_restart(void) 2365 { 2366 mce_timer_delete_all(); 2367 on_each_cpu(mce_cpu_restart, NULL, 1); 2368 } 2369 2370 /* Toggle features for corrected errors */ 2371 static void mce_disable_cmci(void *data) 2372 { 2373 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2374 return; 2375 cmci_clear(); 2376 } 2377 2378 static void mce_enable_ce(void *all) 2379 { 2380 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2381 return; 2382 cmci_reenable(); 2383 cmci_recheck(); 2384 if (all) 2385 __mcheck_cpu_init_timer(); 2386 } 2387 2388 static struct bus_type mce_subsys = { 2389 .name = "machinecheck", 2390 .dev_name = "machinecheck", 2391 }; 2392 2393 DEFINE_PER_CPU(struct device *, mce_device); 2394 2395 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2396 { 2397 return container_of(attr, struct mce_bank_dev, attr); 2398 } 2399 2400 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2401 char *buf) 2402 { 2403 u8 bank = attr_to_bank(attr)->bank; 2404 struct mce_bank *b; 2405 2406 if (bank >= per_cpu(mce_num_banks, s->id)) 2407 return -EINVAL; 2408 2409 b = &per_cpu(mce_banks_array, s->id)[bank]; 2410 2411 if (!b->init) 2412 return -ENODEV; 2413 2414 return sprintf(buf, "%llx\n", b->ctl); 2415 } 2416 2417 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2418 const char *buf, size_t size) 2419 { 2420 u8 bank = attr_to_bank(attr)->bank; 2421 struct mce_bank *b; 2422 u64 new; 2423 2424 if (kstrtou64(buf, 0, &new) < 0) 2425 return -EINVAL; 2426 2427 if (bank >= per_cpu(mce_num_banks, s->id)) 2428 return -EINVAL; 2429 2430 b = &per_cpu(mce_banks_array, s->id)[bank]; 2431 2432 if (!b->init) 2433 return -ENODEV; 2434 2435 b->ctl = new; 2436 mce_restart(); 2437 2438 return size; 2439 } 2440 2441 static ssize_t set_ignore_ce(struct device *s, 2442 struct device_attribute *attr, 2443 const char *buf, size_t size) 2444 { 2445 u64 new; 2446 2447 if (kstrtou64(buf, 0, &new) < 0) 2448 return -EINVAL; 2449 2450 mutex_lock(&mce_sysfs_mutex); 2451 if (mca_cfg.ignore_ce ^ !!new) { 2452 if (new) { 2453 /* disable ce features */ 2454 mce_timer_delete_all(); 2455 on_each_cpu(mce_disable_cmci, NULL, 1); 2456 mca_cfg.ignore_ce = true; 2457 } else { 2458 /* enable ce features */ 2459 mca_cfg.ignore_ce = false; 2460 on_each_cpu(mce_enable_ce, (void *)1, 1); 2461 } 2462 } 2463 mutex_unlock(&mce_sysfs_mutex); 2464 2465 return size; 2466 } 2467 2468 static ssize_t set_cmci_disabled(struct device *s, 2469 struct device_attribute *attr, 2470 const char *buf, size_t size) 2471 { 2472 u64 new; 2473 2474 if (kstrtou64(buf, 0, &new) < 0) 2475 return -EINVAL; 2476 2477 mutex_lock(&mce_sysfs_mutex); 2478 if (mca_cfg.cmci_disabled ^ !!new) { 2479 if (new) { 2480 /* disable cmci */ 2481 on_each_cpu(mce_disable_cmci, NULL, 1); 2482 mca_cfg.cmci_disabled = true; 2483 } else { 2484 /* enable cmci */ 2485 mca_cfg.cmci_disabled = false; 2486 on_each_cpu(mce_enable_ce, NULL, 1); 2487 } 2488 } 2489 mutex_unlock(&mce_sysfs_mutex); 2490 2491 return size; 2492 } 2493 2494 static ssize_t store_int_with_restart(struct device *s, 2495 struct device_attribute *attr, 2496 const char *buf, size_t size) 2497 { 2498 unsigned long old_check_interval = check_interval; 2499 ssize_t ret = device_store_ulong(s, attr, buf, size); 2500 2501 if (check_interval == old_check_interval) 2502 return ret; 2503 2504 mutex_lock(&mce_sysfs_mutex); 2505 mce_restart(); 2506 mutex_unlock(&mce_sysfs_mutex); 2507 2508 return ret; 2509 } 2510 2511 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2512 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2513 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2514 2515 static struct dev_ext_attribute dev_attr_check_interval = { 2516 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2517 &check_interval 2518 }; 2519 2520 static struct dev_ext_attribute dev_attr_ignore_ce = { 2521 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2522 &mca_cfg.ignore_ce 2523 }; 2524 2525 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2526 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2527 &mca_cfg.cmci_disabled 2528 }; 2529 2530 static struct device_attribute *mce_device_attrs[] = { 2531 &dev_attr_check_interval.attr, 2532 #ifdef CONFIG_X86_MCELOG_LEGACY 2533 &dev_attr_trigger, 2534 #endif 2535 &dev_attr_monarch_timeout.attr, 2536 &dev_attr_dont_log_ce.attr, 2537 &dev_attr_print_all.attr, 2538 &dev_attr_ignore_ce.attr, 2539 &dev_attr_cmci_disabled.attr, 2540 NULL 2541 }; 2542 2543 static cpumask_var_t mce_device_initialized; 2544 2545 static void mce_device_release(struct device *dev) 2546 { 2547 kfree(dev); 2548 } 2549 2550 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2551 static int mce_device_create(unsigned int cpu) 2552 { 2553 struct device *dev; 2554 int err; 2555 int i, j; 2556 2557 if (!mce_available(&boot_cpu_data)) 2558 return -EIO; 2559 2560 dev = per_cpu(mce_device, cpu); 2561 if (dev) 2562 return 0; 2563 2564 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2565 if (!dev) 2566 return -ENOMEM; 2567 dev->id = cpu; 2568 dev->bus = &mce_subsys; 2569 dev->release = &mce_device_release; 2570 2571 err = device_register(dev); 2572 if (err) { 2573 put_device(dev); 2574 return err; 2575 } 2576 2577 for (i = 0; mce_device_attrs[i]; i++) { 2578 err = device_create_file(dev, mce_device_attrs[i]); 2579 if (err) 2580 goto error; 2581 } 2582 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2583 err = device_create_file(dev, &mce_bank_devs[j].attr); 2584 if (err) 2585 goto error2; 2586 } 2587 cpumask_set_cpu(cpu, mce_device_initialized); 2588 per_cpu(mce_device, cpu) = dev; 2589 2590 return 0; 2591 error2: 2592 while (--j >= 0) 2593 device_remove_file(dev, &mce_bank_devs[j].attr); 2594 error: 2595 while (--i >= 0) 2596 device_remove_file(dev, mce_device_attrs[i]); 2597 2598 device_unregister(dev); 2599 2600 return err; 2601 } 2602 2603 static void mce_device_remove(unsigned int cpu) 2604 { 2605 struct device *dev = per_cpu(mce_device, cpu); 2606 int i; 2607 2608 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2609 return; 2610 2611 for (i = 0; mce_device_attrs[i]; i++) 2612 device_remove_file(dev, mce_device_attrs[i]); 2613 2614 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2615 device_remove_file(dev, &mce_bank_devs[i].attr); 2616 2617 device_unregister(dev); 2618 cpumask_clear_cpu(cpu, mce_device_initialized); 2619 per_cpu(mce_device, cpu) = NULL; 2620 } 2621 2622 /* Make sure there are no machine checks on offlined CPUs. */ 2623 static void mce_disable_cpu(void) 2624 { 2625 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2626 return; 2627 2628 if (!cpuhp_tasks_frozen) 2629 cmci_clear(); 2630 2631 vendor_disable_error_reporting(); 2632 } 2633 2634 static void mce_reenable_cpu(void) 2635 { 2636 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2637 int i; 2638 2639 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2640 return; 2641 2642 if (!cpuhp_tasks_frozen) 2643 cmci_reenable(); 2644 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2645 struct mce_bank *b = &mce_banks[i]; 2646 2647 if (b->init) 2648 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 2649 } 2650 } 2651 2652 static int mce_cpu_dead(unsigned int cpu) 2653 { 2654 mce_intel_hcpu_update(cpu); 2655 2656 /* intentionally ignoring frozen here */ 2657 if (!cpuhp_tasks_frozen) 2658 cmci_rediscover(); 2659 return 0; 2660 } 2661 2662 static int mce_cpu_online(unsigned int cpu) 2663 { 2664 struct timer_list *t = this_cpu_ptr(&mce_timer); 2665 int ret; 2666 2667 mce_device_create(cpu); 2668 2669 ret = mce_threshold_create_device(cpu); 2670 if (ret) { 2671 mce_device_remove(cpu); 2672 return ret; 2673 } 2674 mce_reenable_cpu(); 2675 mce_start_timer(t); 2676 return 0; 2677 } 2678 2679 static int mce_cpu_pre_down(unsigned int cpu) 2680 { 2681 struct timer_list *t = this_cpu_ptr(&mce_timer); 2682 2683 mce_disable_cpu(); 2684 del_timer_sync(t); 2685 mce_threshold_remove_device(cpu); 2686 mce_device_remove(cpu); 2687 return 0; 2688 } 2689 2690 static __init void mce_init_banks(void) 2691 { 2692 int i; 2693 2694 for (i = 0; i < MAX_NR_BANKS; i++) { 2695 struct mce_bank_dev *b = &mce_bank_devs[i]; 2696 struct device_attribute *a = &b->attr; 2697 2698 b->bank = i; 2699 2700 sysfs_attr_init(&a->attr); 2701 a->attr.name = b->attrname; 2702 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2703 2704 a->attr.mode = 0644; 2705 a->show = show_bank; 2706 a->store = set_bank; 2707 } 2708 } 2709 2710 /* 2711 * When running on XEN, this initcall is ordered against the XEN mcelog 2712 * initcall: 2713 * 2714 * device_initcall(xen_late_init_mcelog); 2715 * device_initcall_sync(mcheck_init_device); 2716 */ 2717 static __init int mcheck_init_device(void) 2718 { 2719 int err; 2720 2721 /* 2722 * Check if we have a spare virtual bit. This will only become 2723 * a problem if/when we move beyond 5-level page tables. 2724 */ 2725 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2726 2727 if (!mce_available(&boot_cpu_data)) { 2728 err = -EIO; 2729 goto err_out; 2730 } 2731 2732 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2733 err = -ENOMEM; 2734 goto err_out; 2735 } 2736 2737 mce_init_banks(); 2738 2739 err = subsys_system_register(&mce_subsys, NULL); 2740 if (err) 2741 goto err_out_mem; 2742 2743 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2744 mce_cpu_dead); 2745 if (err) 2746 goto err_out_mem; 2747 2748 /* 2749 * Invokes mce_cpu_online() on all CPUs which are online when 2750 * the state is installed. 2751 */ 2752 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2753 mce_cpu_online, mce_cpu_pre_down); 2754 if (err < 0) 2755 goto err_out_online; 2756 2757 register_syscore_ops(&mce_syscore_ops); 2758 2759 return 0; 2760 2761 err_out_online: 2762 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2763 2764 err_out_mem: 2765 free_cpumask_var(mce_device_initialized); 2766 2767 err_out: 2768 pr_err("Unable to init MCE device (rc: %d)\n", err); 2769 2770 return err; 2771 } 2772 device_initcall_sync(mcheck_init_device); 2773 2774 /* 2775 * Old style boot options parsing. Only for compatibility. 2776 */ 2777 static int __init mcheck_disable(char *str) 2778 { 2779 mca_cfg.disabled = 1; 2780 return 1; 2781 } 2782 __setup("nomce", mcheck_disable); 2783 2784 #ifdef CONFIG_DEBUG_FS 2785 struct dentry *mce_get_debugfs_dir(void) 2786 { 2787 static struct dentry *dmce; 2788 2789 if (!dmce) 2790 dmce = debugfs_create_dir("mce", NULL); 2791 2792 return dmce; 2793 } 2794 2795 static void mce_reset(void) 2796 { 2797 atomic_set(&mce_fake_panicked, 0); 2798 atomic_set(&mce_executing, 0); 2799 atomic_set(&mce_callin, 0); 2800 atomic_set(&global_nwo, 0); 2801 cpumask_setall(&mce_missing_cpus); 2802 } 2803 2804 static int fake_panic_get(void *data, u64 *val) 2805 { 2806 *val = fake_panic; 2807 return 0; 2808 } 2809 2810 static int fake_panic_set(void *data, u64 val) 2811 { 2812 mce_reset(); 2813 fake_panic = val; 2814 return 0; 2815 } 2816 2817 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2818 "%llu\n"); 2819 2820 static void __init mcheck_debugfs_init(void) 2821 { 2822 struct dentry *dmce; 2823 2824 dmce = mce_get_debugfs_dir(); 2825 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2826 &fake_panic_fops); 2827 } 2828 #else 2829 static void __init mcheck_debugfs_init(void) { } 2830 #endif 2831 2832 static int __init mcheck_late_init(void) 2833 { 2834 if (mca_cfg.recovery) 2835 enable_copy_mc_fragile(); 2836 2837 mcheck_debugfs_init(); 2838 2839 /* 2840 * Flush out everything that has been logged during early boot, now that 2841 * everything has been initialized (workqueues, decoders, ...). 2842 */ 2843 mce_schedule_work(); 2844 2845 return 0; 2846 } 2847 late_initcall(mcheck_late_init); 2848