1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 48 #include <asm/intel-family.h> 49 #include <asm/processor.h> 50 #include <asm/traps.h> 51 #include <asm/tlbflush.h> 52 #include <asm/mce.h> 53 #include <asm/msr.h> 54 #include <asm/reboot.h> 55 56 #include "internal.h" 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 struct mce_bank { 71 u64 ctl; /* subevents to enable */ 72 bool init; /* initialise bank? */ 73 }; 74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 75 76 #define ATTR_LEN 16 77 /* One object for each MCE bank, shared by all CPUs */ 78 struct mce_bank_dev { 79 struct device_attribute attr; /* device attribute */ 80 char attrname[ATTR_LEN]; /* attribute name */ 81 u8 bank; /* bank number */ 82 }; 83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 84 85 struct mce_vendor_flags mce_flags __read_mostly; 86 87 struct mca_config mca_cfg __read_mostly = { 88 .bootlog = -1, 89 .monarch_timeout = -1 90 }; 91 92 static DEFINE_PER_CPU(struct mce, mces_seen); 93 static unsigned long mce_need_notify; 94 95 /* 96 * MCA banks polled by the period polling timer for corrected events. 97 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 98 */ 99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 100 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 101 }; 102 103 /* 104 * MCA banks controlled through firmware first for corrected errors. 105 * This is a global list of banks for which we won't enable CMCI and we 106 * won't poll. Firmware controls these banks and is responsible for 107 * reporting corrected errors through GHES. Uncorrected/recoverable 108 * errors are still notified through a machine check. 109 */ 110 mce_banks_t mce_banks_ce_disabled; 111 112 static struct work_struct mce_work; 113 static struct irq_work mce_irq_work; 114 115 /* 116 * CPU/chipset specific EDAC code can register a notifier call here to print 117 * MCE errors in a human-readable form. 118 */ 119 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 120 121 /* Do initial initialization of a struct mce */ 122 void mce_setup(struct mce *m) 123 { 124 memset(m, 0, sizeof(struct mce)); 125 m->cpu = m->extcpu = smp_processor_id(); 126 /* need the internal __ version to avoid deadlocks */ 127 m->time = __ktime_get_real_seconds(); 128 m->cpuvendor = boot_cpu_data.x86_vendor; 129 m->cpuid = cpuid_eax(1); 130 m->socketid = cpu_data(m->extcpu).phys_proc_id; 131 m->apicid = cpu_data(m->extcpu).initial_apicid; 132 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 133 m->ppin = cpu_data(m->extcpu).ppin; 134 m->microcode = boot_cpu_data.microcode; 135 } 136 137 DEFINE_PER_CPU(struct mce, injectm); 138 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 139 140 void mce_log(struct mce *m) 141 { 142 if (!mce_gen_pool_add(m)) 143 irq_work_queue(&mce_irq_work); 144 } 145 EXPORT_SYMBOL_GPL(mce_log); 146 147 void mce_register_decode_chain(struct notifier_block *nb) 148 { 149 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 150 nb->priority > MCE_PRIO_HIGHEST)) 151 return; 152 153 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 154 } 155 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 156 157 void mce_unregister_decode_chain(struct notifier_block *nb) 158 { 159 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 160 } 161 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 162 163 static void __print_mce(struct mce *m) 164 { 165 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 166 m->extcpu, 167 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 168 m->mcgstatus, m->bank, m->status); 169 170 if (m->ip) { 171 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 172 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 173 m->cs, m->ip); 174 175 if (m->cs == __KERNEL_CS) 176 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 177 pr_cont("\n"); 178 } 179 180 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 181 if (m->addr) 182 pr_cont("ADDR %llx ", m->addr); 183 if (m->misc) 184 pr_cont("MISC %llx ", m->misc); 185 if (m->ppin) 186 pr_cont("PPIN %llx ", m->ppin); 187 188 if (mce_flags.smca) { 189 if (m->synd) 190 pr_cont("SYND %llx ", m->synd); 191 if (m->ipid) 192 pr_cont("IPID %llx ", m->ipid); 193 } 194 195 pr_cont("\n"); 196 197 /* 198 * Note this output is parsed by external tools and old fields 199 * should not be changed. 200 */ 201 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 202 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 203 m->microcode); 204 } 205 206 static void print_mce(struct mce *m) 207 { 208 __print_mce(m); 209 210 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 211 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 212 } 213 214 #define PANIC_TIMEOUT 5 /* 5 seconds */ 215 216 static atomic_t mce_panicked; 217 218 static int fake_panic; 219 static atomic_t mce_fake_panicked; 220 221 /* Panic in progress. Enable interrupts and wait for final IPI */ 222 static void wait_for_panic(void) 223 { 224 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 225 226 preempt_disable(); 227 local_irq_enable(); 228 while (timeout-- > 0) 229 udelay(1); 230 if (panic_timeout == 0) 231 panic_timeout = mca_cfg.panic_timeout; 232 panic("Panicing machine check CPU died"); 233 } 234 235 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp) 236 { 237 struct llist_node *pending; 238 struct mce_evt_llist *l; 239 int apei_err = 0; 240 241 /* 242 * Allow instrumentation around external facilities usage. Not that it 243 * matters a whole lot since the machine is going to panic anyway. 244 */ 245 instrumentation_begin(); 246 247 if (!fake_panic) { 248 /* 249 * Make sure only one CPU runs in machine check panic 250 */ 251 if (atomic_inc_return(&mce_panicked) > 1) 252 wait_for_panic(); 253 barrier(); 254 255 bust_spinlocks(1); 256 console_verbose(); 257 } else { 258 /* Don't log too much for fake panic */ 259 if (atomic_inc_return(&mce_fake_panicked) > 1) 260 goto out; 261 } 262 pending = mce_gen_pool_prepare_records(); 263 /* First print corrected ones that are still unlogged */ 264 llist_for_each_entry(l, pending, llnode) { 265 struct mce *m = &l->mce; 266 if (!(m->status & MCI_STATUS_UC)) { 267 print_mce(m); 268 if (!apei_err) 269 apei_err = apei_write_mce(m); 270 } 271 } 272 /* Now print uncorrected but with the final one last */ 273 llist_for_each_entry(l, pending, llnode) { 274 struct mce *m = &l->mce; 275 if (!(m->status & MCI_STATUS_UC)) 276 continue; 277 if (!final || mce_cmp(m, final)) { 278 print_mce(m); 279 if (!apei_err) 280 apei_err = apei_write_mce(m); 281 } 282 } 283 if (final) { 284 print_mce(final); 285 if (!apei_err) 286 apei_err = apei_write_mce(final); 287 } 288 if (exp) 289 pr_emerg(HW_ERR "Machine check: %s\n", exp); 290 if (!fake_panic) { 291 if (panic_timeout == 0) 292 panic_timeout = mca_cfg.panic_timeout; 293 panic(msg); 294 } else 295 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 296 297 out: 298 instrumentation_end(); 299 } 300 301 /* Support code for software error injection */ 302 303 static int msr_to_offset(u32 msr) 304 { 305 unsigned bank = __this_cpu_read(injectm.bank); 306 307 if (msr == mca_cfg.rip_msr) 308 return offsetof(struct mce, ip); 309 if (msr == mca_msr_reg(bank, MCA_STATUS)) 310 return offsetof(struct mce, status); 311 if (msr == mca_msr_reg(bank, MCA_ADDR)) 312 return offsetof(struct mce, addr); 313 if (msr == mca_msr_reg(bank, MCA_MISC)) 314 return offsetof(struct mce, misc); 315 if (msr == MSR_IA32_MCG_STATUS) 316 return offsetof(struct mce, mcgstatus); 317 return -1; 318 } 319 320 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) 321 { 322 if (wrmsr) { 323 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 324 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 325 regs->ip, (void *)regs->ip); 326 } else { 327 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 328 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 329 } 330 331 show_stack_regs(regs); 332 333 panic("MCA architectural violation!\n"); 334 335 while (true) 336 cpu_relax(); 337 } 338 339 /* MSR access wrappers used for error injection */ 340 noinstr u64 mce_rdmsrl(u32 msr) 341 { 342 DECLARE_ARGS(val, low, high); 343 344 if (__this_cpu_read(injectm.finished)) { 345 int offset; 346 u64 ret; 347 348 instrumentation_begin(); 349 350 offset = msr_to_offset(msr); 351 if (offset < 0) 352 ret = 0; 353 else 354 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 355 356 instrumentation_end(); 357 358 return ret; 359 } 360 361 /* 362 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 363 * architectural violation and needs to be reported to hw vendor. Panic 364 * the box to not allow any further progress. 365 */ 366 asm volatile("1: rdmsr\n" 367 "2:\n" 368 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE) 369 : EAX_EDX_RET(val, low, high) : "c" (msr)); 370 371 372 return EAX_EDX_VAL(val, low, high); 373 } 374 375 static noinstr void mce_wrmsrl(u32 msr, u64 v) 376 { 377 u32 low, high; 378 379 if (__this_cpu_read(injectm.finished)) { 380 int offset; 381 382 instrumentation_begin(); 383 384 offset = msr_to_offset(msr); 385 if (offset >= 0) 386 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 387 388 instrumentation_end(); 389 390 return; 391 } 392 393 low = (u32)v; 394 high = (u32)(v >> 32); 395 396 /* See comment in mce_rdmsrl() */ 397 asm volatile("1: wrmsr\n" 398 "2:\n" 399 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE) 400 : : "c" (msr), "a"(low), "d" (high) : "memory"); 401 } 402 403 /* 404 * Collect all global (w.r.t. this processor) status about this machine 405 * check into our "mce" struct so that we can use it later to assess 406 * the severity of the problem as we read per-bank specific details. 407 */ 408 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs) 409 { 410 /* 411 * Enable instrumentation around mce_setup() which calls external 412 * facilities. 413 */ 414 instrumentation_begin(); 415 mce_setup(m); 416 instrumentation_end(); 417 418 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 419 if (regs) { 420 /* 421 * Get the address of the instruction at the time of 422 * the machine check error. 423 */ 424 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 425 m->ip = regs->ip; 426 m->cs = regs->cs; 427 428 /* 429 * When in VM86 mode make the cs look like ring 3 430 * always. This is a lie, but it's better than passing 431 * the additional vm86 bit around everywhere. 432 */ 433 if (v8086_mode(regs)) 434 m->cs |= 3; 435 } 436 /* Use accurate RIP reporting if available. */ 437 if (mca_cfg.rip_msr) 438 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 439 } 440 } 441 442 int mce_available(struct cpuinfo_x86 *c) 443 { 444 if (mca_cfg.disabled) 445 return 0; 446 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 447 } 448 449 static void mce_schedule_work(void) 450 { 451 if (!mce_gen_pool_empty()) 452 schedule_work(&mce_work); 453 } 454 455 static void mce_irq_work_cb(struct irq_work *entry) 456 { 457 mce_schedule_work(); 458 } 459 460 /* 461 * Check if the address reported by the CPU is in a format we can parse. 462 * It would be possible to add code for most other cases, but all would 463 * be somewhat complicated (e.g. segment offset would require an instruction 464 * parser). So only support physical addresses up to page granularity for now. 465 */ 466 int mce_usable_address(struct mce *m) 467 { 468 if (!(m->status & MCI_STATUS_ADDRV)) 469 return 0; 470 471 /* Checks after this one are Intel/Zhaoxin-specific: */ 472 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 473 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 474 return 1; 475 476 if (!(m->status & MCI_STATUS_MISCV)) 477 return 0; 478 479 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 480 return 0; 481 482 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 483 return 0; 484 485 return 1; 486 } 487 EXPORT_SYMBOL_GPL(mce_usable_address); 488 489 bool mce_is_memory_error(struct mce *m) 490 { 491 switch (m->cpuvendor) { 492 case X86_VENDOR_AMD: 493 case X86_VENDOR_HYGON: 494 return amd_mce_is_memory_error(m); 495 496 case X86_VENDOR_INTEL: 497 case X86_VENDOR_ZHAOXIN: 498 /* 499 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 500 * 501 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 502 * indicating a memory error. Bit 8 is used for indicating a 503 * cache hierarchy error. The combination of bit 2 and bit 3 504 * is used for indicating a `generic' cache hierarchy error 505 * But we can't just blindly check the above bits, because if 506 * bit 11 is set, then it is a bus/interconnect error - and 507 * either way the above bits just gives more detail on what 508 * bus/interconnect error happened. Note that bit 12 can be 509 * ignored, as it's the "filter" bit. 510 */ 511 return (m->status & 0xef80) == BIT(7) || 512 (m->status & 0xef00) == BIT(8) || 513 (m->status & 0xeffc) == 0xc; 514 515 default: 516 return false; 517 } 518 } 519 EXPORT_SYMBOL_GPL(mce_is_memory_error); 520 521 static bool whole_page(struct mce *m) 522 { 523 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 524 return true; 525 526 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 527 } 528 529 bool mce_is_correctable(struct mce *m) 530 { 531 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 532 return false; 533 534 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 535 return false; 536 537 if (m->status & MCI_STATUS_UC) 538 return false; 539 540 return true; 541 } 542 EXPORT_SYMBOL_GPL(mce_is_correctable); 543 544 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 545 void *data) 546 { 547 struct mce *m = (struct mce *)data; 548 549 if (!m) 550 return NOTIFY_DONE; 551 552 /* Emit the trace record: */ 553 trace_mce_record(m); 554 555 set_bit(0, &mce_need_notify); 556 557 mce_notify_irq(); 558 559 return NOTIFY_DONE; 560 } 561 562 static struct notifier_block early_nb = { 563 .notifier_call = mce_early_notifier, 564 .priority = MCE_PRIO_EARLY, 565 }; 566 567 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 568 void *data) 569 { 570 struct mce *mce = (struct mce *)data; 571 unsigned long pfn; 572 573 if (!mce || !mce_usable_address(mce)) 574 return NOTIFY_DONE; 575 576 if (mce->severity != MCE_AO_SEVERITY && 577 mce->severity != MCE_DEFERRED_SEVERITY) 578 return NOTIFY_DONE; 579 580 pfn = mce->addr >> PAGE_SHIFT; 581 if (!memory_failure(pfn, 0)) { 582 set_mce_nospec(pfn, whole_page(mce)); 583 mce->kflags |= MCE_HANDLED_UC; 584 } 585 586 return NOTIFY_OK; 587 } 588 589 static struct notifier_block mce_uc_nb = { 590 .notifier_call = uc_decode_notifier, 591 .priority = MCE_PRIO_UC, 592 }; 593 594 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 595 void *data) 596 { 597 struct mce *m = (struct mce *)data; 598 599 if (!m) 600 return NOTIFY_DONE; 601 602 if (mca_cfg.print_all || !m->kflags) 603 __print_mce(m); 604 605 return NOTIFY_DONE; 606 } 607 608 static struct notifier_block mce_default_nb = { 609 .notifier_call = mce_default_notifier, 610 /* lowest prio, we want it to run last. */ 611 .priority = MCE_PRIO_LOWEST, 612 }; 613 614 /* 615 * Read ADDR and MISC registers. 616 */ 617 static noinstr void mce_read_aux(struct mce *m, int i) 618 { 619 if (m->status & MCI_STATUS_MISCV) 620 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC)); 621 622 if (m->status & MCI_STATUS_ADDRV) { 623 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR)); 624 625 /* 626 * Mask the reported address by the reported granularity. 627 */ 628 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 629 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 630 m->addr >>= shift; 631 m->addr <<= shift; 632 } 633 634 /* 635 * Extract [55:<lsb>] where lsb is the least significant 636 * *valid* bit of the address bits. 637 */ 638 if (mce_flags.smca) { 639 u8 lsb = (m->addr >> 56) & 0x3f; 640 641 m->addr &= GENMASK_ULL(55, lsb); 642 } 643 } 644 645 if (mce_flags.smca) { 646 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 647 648 if (m->status & MCI_STATUS_SYNDV) 649 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 650 } 651 } 652 653 DEFINE_PER_CPU(unsigned, mce_poll_count); 654 655 /* 656 * Poll for corrected events or events that happened before reset. 657 * Those are just logged through /dev/mcelog. 658 * 659 * This is executed in standard interrupt context. 660 * 661 * Note: spec recommends to panic for fatal unsignalled 662 * errors here. However this would be quite problematic -- 663 * we would need to reimplement the Monarch handling and 664 * it would mess up the exclusion between exception handler 665 * and poll handler -- * so we skip this for now. 666 * These cases should not happen anyways, or only when the CPU 667 * is already totally * confused. In this case it's likely it will 668 * not fully execute the machine check handler either. 669 */ 670 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 671 { 672 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 673 bool error_seen = false; 674 struct mce m; 675 int i; 676 677 this_cpu_inc(mce_poll_count); 678 679 mce_gather_info(&m, NULL); 680 681 if (flags & MCP_TIMESTAMP) 682 m.tsc = rdtsc(); 683 684 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 685 if (!mce_banks[i].ctl || !test_bit(i, *b)) 686 continue; 687 688 m.misc = 0; 689 m.addr = 0; 690 m.bank = i; 691 692 barrier(); 693 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 694 695 /* If this entry is not valid, ignore it */ 696 if (!(m.status & MCI_STATUS_VAL)) 697 continue; 698 699 /* 700 * If we are logging everything (at CPU online) or this 701 * is a corrected error, then we must log it. 702 */ 703 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 704 goto log_it; 705 706 /* 707 * Newer Intel systems that support software error 708 * recovery need to make additional checks. Other 709 * CPUs should skip over uncorrected errors, but log 710 * everything else. 711 */ 712 if (!mca_cfg.ser) { 713 if (m.status & MCI_STATUS_UC) 714 continue; 715 goto log_it; 716 } 717 718 /* Log "not enabled" (speculative) errors */ 719 if (!(m.status & MCI_STATUS_EN)) 720 goto log_it; 721 722 /* 723 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 724 * UC == 1 && PCC == 0 && S == 0 725 */ 726 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 727 goto log_it; 728 729 /* 730 * Skip anything else. Presumption is that our read of this 731 * bank is racing with a machine check. Leave the log alone 732 * for do_machine_check() to deal with it. 733 */ 734 continue; 735 736 log_it: 737 error_seen = true; 738 739 if (flags & MCP_DONTLOG) 740 goto clear_it; 741 742 mce_read_aux(&m, i); 743 m.severity = mce_severity(&m, NULL, NULL, false); 744 /* 745 * Don't get the IP here because it's unlikely to 746 * have anything to do with the actual error location. 747 */ 748 749 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 750 goto clear_it; 751 752 if (flags & MCP_QUEUE_LOG) 753 mce_gen_pool_add(&m); 754 else 755 mce_log(&m); 756 757 clear_it: 758 /* 759 * Clear state for this bank. 760 */ 761 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 762 } 763 764 /* 765 * Don't clear MCG_STATUS here because it's only defined for 766 * exceptions. 767 */ 768 769 sync_core(); 770 771 return error_seen; 772 } 773 EXPORT_SYMBOL_GPL(machine_check_poll); 774 775 /* 776 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 777 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 778 * Vol 3B Table 15-20). But this confuses both the code that determines 779 * whether the machine check occurred in kernel or user mode, and also 780 * the severity assessment code. Pretend that EIPV was set, and take the 781 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 782 */ 783 static __always_inline void 784 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 785 { 786 if (bank != 0) 787 return; 788 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 789 return; 790 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 791 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 792 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 793 MCACOD)) != 794 (MCI_STATUS_UC|MCI_STATUS_EN| 795 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 796 MCI_STATUS_AR|MCACOD_INSTR)) 797 return; 798 799 m->mcgstatus |= MCG_STATUS_EIPV; 800 m->ip = regs->ip; 801 m->cs = regs->cs; 802 } 803 804 /* 805 * Disable fast string copy and return from the MCE handler upon the first SRAR 806 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake 807 * CPUs. 808 * The fast string copy instructions ("REP; MOVS*") could consume an 809 * uncorrectable memory error in the cache line _right after_ the desired region 810 * to copy and raise an MCE with RIP pointing to the instruction _after_ the 811 * "REP; MOVS*". 812 * This mitigation addresses the issue completely with the caveat of performance 813 * degradation on the CPU affected. This is still better than the OS crashing on 814 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a 815 * kernel context (e.g., copy_page). 816 * 817 * Returns true when fast string copy on CPU has been disabled. 818 */ 819 static noinstr bool quirk_skylake_repmov(void) 820 { 821 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 822 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE); 823 u64 mc1_status; 824 825 /* 826 * Apply the quirk only to local machine checks, i.e., no broadcast 827 * sync is needed. 828 */ 829 if (!(mcgstatus & MCG_STATUS_LMCES) || 830 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) 831 return false; 832 833 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1)); 834 835 /* Check for a software-recoverable data fetch error. */ 836 if ((mc1_status & 837 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN | 838 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC | 839 MCI_STATUS_AR | MCI_STATUS_S)) == 840 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | 841 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | 842 MCI_STATUS_AR | MCI_STATUS_S)) { 843 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING; 844 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable); 845 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0); 846 847 instrumentation_begin(); 848 pr_err_once("Erratum detected, disable fast string copy instructions.\n"); 849 instrumentation_end(); 850 851 return true; 852 } 853 854 return false; 855 } 856 857 /* 858 * Do a quick check if any of the events requires a panic. 859 * This decides if we keep the events around or clear them. 860 */ 861 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 862 struct pt_regs *regs) 863 { 864 char *tmp = *msg; 865 int i; 866 867 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 868 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 869 if (!(m->status & MCI_STATUS_VAL)) 870 continue; 871 872 arch___set_bit(i, validp); 873 if (mce_flags.snb_ifu_quirk) 874 quirk_sandybridge_ifu(i, m, regs); 875 876 m->bank = i; 877 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) { 878 mce_read_aux(m, i); 879 *msg = tmp; 880 return 1; 881 } 882 } 883 return 0; 884 } 885 886 /* 887 * Variable to establish order between CPUs while scanning. 888 * Each CPU spins initially until executing is equal its number. 889 */ 890 static atomic_t mce_executing; 891 892 /* 893 * Defines order of CPUs on entry. First CPU becomes Monarch. 894 */ 895 static atomic_t mce_callin; 896 897 /* 898 * Track which CPUs entered the MCA broadcast synchronization and which not in 899 * order to print holdouts. 900 */ 901 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 902 903 /* 904 * Check if a timeout waiting for other CPUs happened. 905 */ 906 static noinstr int mce_timed_out(u64 *t, const char *msg) 907 { 908 int ret = 0; 909 910 /* Enable instrumentation around calls to external facilities */ 911 instrumentation_begin(); 912 913 /* 914 * The others already did panic for some reason. 915 * Bail out like in a timeout. 916 * rmb() to tell the compiler that system_state 917 * might have been modified by someone else. 918 */ 919 rmb(); 920 if (atomic_read(&mce_panicked)) 921 wait_for_panic(); 922 if (!mca_cfg.monarch_timeout) 923 goto out; 924 if ((s64)*t < SPINUNIT) { 925 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 926 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 927 cpumask_pr_args(&mce_missing_cpus)); 928 mce_panic(msg, NULL, NULL); 929 930 ret = 1; 931 goto out; 932 } 933 *t -= SPINUNIT; 934 935 out: 936 touch_nmi_watchdog(); 937 938 instrumentation_end(); 939 940 return ret; 941 } 942 943 /* 944 * The Monarch's reign. The Monarch is the CPU who entered 945 * the machine check handler first. It waits for the others to 946 * raise the exception too and then grades them. When any 947 * error is fatal panic. Only then let the others continue. 948 * 949 * The other CPUs entering the MCE handler will be controlled by the 950 * Monarch. They are called Subjects. 951 * 952 * This way we prevent any potential data corruption in a unrecoverable case 953 * and also makes sure always all CPU's errors are examined. 954 * 955 * Also this detects the case of a machine check event coming from outer 956 * space (not detected by any CPUs) In this case some external agent wants 957 * us to shut down, so panic too. 958 * 959 * The other CPUs might still decide to panic if the handler happens 960 * in a unrecoverable place, but in this case the system is in a semi-stable 961 * state and won't corrupt anything by itself. It's ok to let the others 962 * continue for a bit first. 963 * 964 * All the spin loops have timeouts; when a timeout happens a CPU 965 * typically elects itself to be Monarch. 966 */ 967 static void mce_reign(void) 968 { 969 int cpu; 970 struct mce *m = NULL; 971 int global_worst = 0; 972 char *msg = NULL; 973 974 /* 975 * This CPU is the Monarch and the other CPUs have run 976 * through their handlers. 977 * Grade the severity of the errors of all the CPUs. 978 */ 979 for_each_possible_cpu(cpu) { 980 struct mce *mtmp = &per_cpu(mces_seen, cpu); 981 982 if (mtmp->severity > global_worst) { 983 global_worst = mtmp->severity; 984 m = &per_cpu(mces_seen, cpu); 985 } 986 } 987 988 /* 989 * Cannot recover? Panic here then. 990 * This dumps all the mces in the log buffer and stops the 991 * other CPUs. 992 */ 993 if (m && global_worst >= MCE_PANIC_SEVERITY) { 994 /* call mce_severity() to get "msg" for panic */ 995 mce_severity(m, NULL, &msg, true); 996 mce_panic("Fatal machine check", m, msg); 997 } 998 999 /* 1000 * For UC somewhere we let the CPU who detects it handle it. 1001 * Also must let continue the others, otherwise the handling 1002 * CPU could deadlock on a lock. 1003 */ 1004 1005 /* 1006 * No machine check event found. Must be some external 1007 * source or one CPU is hung. Panic. 1008 */ 1009 if (global_worst <= MCE_KEEP_SEVERITY) 1010 mce_panic("Fatal machine check from unknown source", NULL, NULL); 1011 1012 /* 1013 * Now clear all the mces_seen so that they don't reappear on 1014 * the next mce. 1015 */ 1016 for_each_possible_cpu(cpu) 1017 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 1018 } 1019 1020 static atomic_t global_nwo; 1021 1022 /* 1023 * Start of Monarch synchronization. This waits until all CPUs have 1024 * entered the exception handler and then determines if any of them 1025 * saw a fatal event that requires panic. Then it executes them 1026 * in the entry order. 1027 * TBD double check parallel CPU hotunplug 1028 */ 1029 static noinstr int mce_start(int *no_way_out) 1030 { 1031 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1032 int order, ret = -1; 1033 1034 if (!timeout) 1035 return ret; 1036 1037 arch_atomic_add(*no_way_out, &global_nwo); 1038 /* 1039 * Rely on the implied barrier below, such that global_nwo 1040 * is updated before mce_callin. 1041 */ 1042 order = arch_atomic_inc_return(&mce_callin); 1043 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1044 1045 /* Enable instrumentation around calls to external facilities */ 1046 instrumentation_begin(); 1047 1048 /* 1049 * Wait for everyone. 1050 */ 1051 while (arch_atomic_read(&mce_callin) != num_online_cpus()) { 1052 if (mce_timed_out(&timeout, 1053 "Timeout: Not all CPUs entered broadcast exception handler")) { 1054 arch_atomic_set(&global_nwo, 0); 1055 goto out; 1056 } 1057 ndelay(SPINUNIT); 1058 } 1059 1060 /* 1061 * mce_callin should be read before global_nwo 1062 */ 1063 smp_rmb(); 1064 1065 if (order == 1) { 1066 /* 1067 * Monarch: Starts executing now, the others wait. 1068 */ 1069 arch_atomic_set(&mce_executing, 1); 1070 } else { 1071 /* 1072 * Subject: Now start the scanning loop one by one in 1073 * the original callin order. 1074 * This way when there are any shared banks it will be 1075 * only seen by one CPU before cleared, avoiding duplicates. 1076 */ 1077 while (arch_atomic_read(&mce_executing) < order) { 1078 if (mce_timed_out(&timeout, 1079 "Timeout: Subject CPUs unable to finish machine check processing")) { 1080 arch_atomic_set(&global_nwo, 0); 1081 goto out; 1082 } 1083 ndelay(SPINUNIT); 1084 } 1085 } 1086 1087 /* 1088 * Cache the global no_way_out state. 1089 */ 1090 *no_way_out = arch_atomic_read(&global_nwo); 1091 1092 ret = order; 1093 1094 out: 1095 instrumentation_end(); 1096 1097 return ret; 1098 } 1099 1100 /* 1101 * Synchronize between CPUs after main scanning loop. 1102 * This invokes the bulk of the Monarch processing. 1103 */ 1104 static noinstr int mce_end(int order) 1105 { 1106 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1107 int ret = -1; 1108 1109 /* Allow instrumentation around external facilities. */ 1110 instrumentation_begin(); 1111 1112 if (!timeout) 1113 goto reset; 1114 if (order < 0) 1115 goto reset; 1116 1117 /* 1118 * Allow others to run. 1119 */ 1120 atomic_inc(&mce_executing); 1121 1122 if (order == 1) { 1123 /* 1124 * Monarch: Wait for everyone to go through their scanning 1125 * loops. 1126 */ 1127 while (atomic_read(&mce_executing) <= num_online_cpus()) { 1128 if (mce_timed_out(&timeout, 1129 "Timeout: Monarch CPU unable to finish machine check processing")) 1130 goto reset; 1131 ndelay(SPINUNIT); 1132 } 1133 1134 mce_reign(); 1135 barrier(); 1136 ret = 0; 1137 } else { 1138 /* 1139 * Subject: Wait for Monarch to finish. 1140 */ 1141 while (atomic_read(&mce_executing) != 0) { 1142 if (mce_timed_out(&timeout, 1143 "Timeout: Monarch CPU did not finish machine check processing")) 1144 goto reset; 1145 ndelay(SPINUNIT); 1146 } 1147 1148 /* 1149 * Don't reset anything. That's done by the Monarch. 1150 */ 1151 ret = 0; 1152 goto out; 1153 } 1154 1155 /* 1156 * Reset all global state. 1157 */ 1158 reset: 1159 atomic_set(&global_nwo, 0); 1160 atomic_set(&mce_callin, 0); 1161 cpumask_setall(&mce_missing_cpus); 1162 barrier(); 1163 1164 /* 1165 * Let others run again. 1166 */ 1167 atomic_set(&mce_executing, 0); 1168 1169 out: 1170 instrumentation_end(); 1171 1172 return ret; 1173 } 1174 1175 static __always_inline void mce_clear_state(unsigned long *toclear) 1176 { 1177 int i; 1178 1179 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1180 if (arch_test_bit(i, toclear)) 1181 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1182 } 1183 } 1184 1185 /* 1186 * Cases where we avoid rendezvous handler timeout: 1187 * 1) If this CPU is offline. 1188 * 1189 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1190 * skip those CPUs which remain looping in the 1st kernel - see 1191 * crash_nmi_callback(). 1192 * 1193 * Note: there still is a small window between kexec-ing and the new, 1194 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1195 * might not get handled properly. 1196 */ 1197 static noinstr bool mce_check_crashing_cpu(void) 1198 { 1199 unsigned int cpu = smp_processor_id(); 1200 1201 if (arch_cpu_is_offline(cpu) || 1202 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1203 u64 mcgstatus; 1204 1205 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1206 1207 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1208 if (mcgstatus & MCG_STATUS_LMCES) 1209 return false; 1210 } 1211 1212 if (mcgstatus & MCG_STATUS_RIPV) { 1213 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1214 return true; 1215 } 1216 } 1217 return false; 1218 } 1219 1220 static __always_inline int 1221 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, 1222 unsigned long *toclear, unsigned long *valid_banks, int no_way_out, 1223 int *worst) 1224 { 1225 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1226 struct mca_config *cfg = &mca_cfg; 1227 int severity, i, taint = 0; 1228 1229 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1230 arch___clear_bit(i, toclear); 1231 if (!arch_test_bit(i, valid_banks)) 1232 continue; 1233 1234 if (!mce_banks[i].ctl) 1235 continue; 1236 1237 m->misc = 0; 1238 m->addr = 0; 1239 m->bank = i; 1240 1241 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS)); 1242 if (!(m->status & MCI_STATUS_VAL)) 1243 continue; 1244 1245 /* 1246 * Corrected or non-signaled errors are handled by 1247 * machine_check_poll(). Leave them alone, unless this panics. 1248 */ 1249 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1250 !no_way_out) 1251 continue; 1252 1253 /* Set taint even when machine check was not enabled. */ 1254 taint++; 1255 1256 severity = mce_severity(m, regs, NULL, true); 1257 1258 /* 1259 * When machine check was for corrected/deferred handler don't 1260 * touch, unless we're panicking. 1261 */ 1262 if ((severity == MCE_KEEP_SEVERITY || 1263 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1264 continue; 1265 1266 arch___set_bit(i, toclear); 1267 1268 /* Machine check event was not enabled. Clear, but ignore. */ 1269 if (severity == MCE_NO_SEVERITY) 1270 continue; 1271 1272 mce_read_aux(m, i); 1273 1274 /* assuming valid severity level != 0 */ 1275 m->severity = severity; 1276 1277 /* 1278 * Enable instrumentation around the mce_log() call which is 1279 * done in #MC context, where instrumentation is disabled. 1280 */ 1281 instrumentation_begin(); 1282 mce_log(m); 1283 instrumentation_end(); 1284 1285 if (severity > *worst) { 1286 *final = *m; 1287 *worst = severity; 1288 } 1289 } 1290 1291 /* mce_clear_state will clear *final, save locally for use later */ 1292 *m = *final; 1293 1294 return taint; 1295 } 1296 1297 static void kill_me_now(struct callback_head *ch) 1298 { 1299 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me); 1300 1301 p->mce_count = 0; 1302 force_sig(SIGBUS); 1303 } 1304 1305 static void kill_me_maybe(struct callback_head *cb) 1306 { 1307 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1308 int flags = MF_ACTION_REQUIRED; 1309 int ret; 1310 1311 p->mce_count = 0; 1312 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1313 1314 if (!p->mce_ripv) 1315 flags |= MF_MUST_KILL; 1316 1317 ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags); 1318 if (!ret) { 1319 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page); 1320 sync_core(); 1321 return; 1322 } 1323 1324 /* 1325 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1326 * to the current process with the proper error info, 1327 * -EOPNOTSUPP means hwpoison_filter() filtered the error event, 1328 * 1329 * In both cases, no further processing is required. 1330 */ 1331 if (ret == -EHWPOISON || ret == -EOPNOTSUPP) 1332 return; 1333 1334 pr_err("Memory error not recovered"); 1335 kill_me_now(cb); 1336 } 1337 1338 static void kill_me_never(struct callback_head *cb) 1339 { 1340 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1341 1342 p->mce_count = 0; 1343 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr); 1344 if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0)) 1345 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page); 1346 } 1347 1348 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *)) 1349 { 1350 int count = ++current->mce_count; 1351 1352 /* First call, save all the details */ 1353 if (count == 1) { 1354 current->mce_addr = m->addr; 1355 current->mce_kflags = m->kflags; 1356 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1357 current->mce_whole_page = whole_page(m); 1358 current->mce_kill_me.func = func; 1359 } 1360 1361 /* Ten is likely overkill. Don't expect more than two faults before task_work() */ 1362 if (count > 10) 1363 mce_panic("Too many consecutive machine checks while accessing user data", m, msg); 1364 1365 /* Second or later call, make sure page address matches the one from first call */ 1366 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT)) 1367 mce_panic("Consecutive machine checks to different user pages", m, msg); 1368 1369 /* Do not call task_work_add() more than once */ 1370 if (count > 1) 1371 return; 1372 1373 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1374 } 1375 1376 /* Handle unconfigured int18 (should never happen) */ 1377 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1378 { 1379 instrumentation_begin(); 1380 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1381 smp_processor_id()); 1382 instrumentation_end(); 1383 } 1384 1385 /* 1386 * The actual machine check handler. This only handles real exceptions when 1387 * something got corrupted coming in through int 18. 1388 * 1389 * This is executed in #MC context not subject to normal locking rules. 1390 * This implies that most kernel services cannot be safely used. Don't even 1391 * think about putting a printk in there! 1392 * 1393 * On Intel systems this is entered on all CPUs in parallel through 1394 * MCE broadcast. However some CPUs might be broken beyond repair, 1395 * so be always careful when synchronizing with others. 1396 * 1397 * Tracing and kprobes are disabled: if we interrupted a kernel context 1398 * with IF=1, we need to minimize stack usage. There are also recursion 1399 * issues: if the machine check was due to a failure of the memory 1400 * backing the user stack, tracing that reads the user stack will cause 1401 * potentially infinite recursion. 1402 * 1403 * Currently, the #MC handler calls out to a number of external facilities 1404 * and, therefore, allows instrumentation around them. The optimal thing to 1405 * have would be to do the absolutely minimal work required in #MC context 1406 * and have instrumentation disabled only around that. Further processing can 1407 * then happen in process context where instrumentation is allowed. Achieving 1408 * that requires careful auditing and modifications. Until then, the code 1409 * allows instrumentation temporarily, where required. * 1410 */ 1411 noinstr void do_machine_check(struct pt_regs *regs) 1412 { 1413 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0; 1414 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 }; 1415 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 }; 1416 struct mce m, *final; 1417 char *msg = NULL; 1418 1419 if (unlikely(mce_flags.p5)) 1420 return pentium_machine_check(regs); 1421 else if (unlikely(mce_flags.winchip)) 1422 return winchip_machine_check(regs); 1423 else if (unlikely(!mca_cfg.initialized)) 1424 return unexpected_machine_check(regs); 1425 1426 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov()) 1427 goto clear; 1428 1429 /* 1430 * Establish sequential order between the CPUs entering the machine 1431 * check handler. 1432 */ 1433 order = -1; 1434 1435 /* 1436 * If no_way_out gets set, there is no safe way to recover from this 1437 * MCE. 1438 */ 1439 no_way_out = 0; 1440 1441 /* 1442 * If kill_current_task is not set, there might be a way to recover from this 1443 * error. 1444 */ 1445 kill_current_task = 0; 1446 1447 /* 1448 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1449 * on Intel. 1450 */ 1451 lmce = 1; 1452 1453 this_cpu_inc(mce_exception_count); 1454 1455 mce_gather_info(&m, regs); 1456 m.tsc = rdtsc(); 1457 1458 final = this_cpu_ptr(&mces_seen); 1459 *final = m; 1460 1461 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1462 1463 barrier(); 1464 1465 /* 1466 * When no restart IP might need to kill or panic. 1467 * Assume the worst for now, but if we find the 1468 * severity is MCE_AR_SEVERITY we have other options. 1469 */ 1470 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1471 kill_current_task = 1; 1472 /* 1473 * Check if this MCE is signaled to only this logical processor, 1474 * on Intel, Zhaoxin only. 1475 */ 1476 if (m.cpuvendor == X86_VENDOR_INTEL || 1477 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1478 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1479 1480 /* 1481 * Local machine check may already know that we have to panic. 1482 * Broadcast machine check begins rendezvous in mce_start() 1483 * Go through all banks in exclusion of the other CPUs. This way we 1484 * don't report duplicated events on shared banks because the first one 1485 * to see it will clear it. 1486 */ 1487 if (lmce) { 1488 if (no_way_out) 1489 mce_panic("Fatal local machine check", &m, msg); 1490 } else { 1491 order = mce_start(&no_way_out); 1492 } 1493 1494 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); 1495 1496 if (!no_way_out) 1497 mce_clear_state(toclear); 1498 1499 /* 1500 * Do most of the synchronization with other CPUs. 1501 * When there's any problem use only local no_way_out state. 1502 */ 1503 if (!lmce) { 1504 if (mce_end(order) < 0) { 1505 if (!no_way_out) 1506 no_way_out = worst >= MCE_PANIC_SEVERITY; 1507 1508 if (no_way_out) 1509 mce_panic("Fatal machine check on current CPU", &m, msg); 1510 } 1511 } else { 1512 /* 1513 * If there was a fatal machine check we should have 1514 * already called mce_panic earlier in this function. 1515 * Since we re-read the banks, we might have found 1516 * something new. Check again to see if we found a 1517 * fatal error. We call "mce_severity()" again to 1518 * make sure we have the right "msg". 1519 */ 1520 if (worst >= MCE_PANIC_SEVERITY) { 1521 mce_severity(&m, regs, &msg, true); 1522 mce_panic("Local fatal machine check!", &m, msg); 1523 } 1524 } 1525 1526 /* 1527 * Enable instrumentation around the external facilities like task_work_add() 1528 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this 1529 * properly would need a lot more involved reorganization. 1530 */ 1531 instrumentation_begin(); 1532 1533 if (taint) 1534 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1535 1536 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1537 goto out; 1538 1539 /* Fault was in user mode and we need to take some action */ 1540 if ((m.cs & 3) == 3) { 1541 /* If this triggers there is no way to recover. Die hard. */ 1542 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1543 1544 if (kill_current_task) 1545 queue_task_work(&m, msg, kill_me_now); 1546 else 1547 queue_task_work(&m, msg, kill_me_maybe); 1548 1549 } else { 1550 /* 1551 * Handle an MCE which has happened in kernel space but from 1552 * which the kernel can recover: ex_has_fault_handler() has 1553 * already verified that the rIP at which the error happened is 1554 * a rIP from which the kernel can recover (by jumping to 1555 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1556 * corresponding exception handler which would do that is the 1557 * proper one. 1558 */ 1559 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1560 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1561 mce_panic("Failed kernel mode recovery", &m, msg); 1562 } 1563 1564 if (m.kflags & MCE_IN_KERNEL_COPYIN) 1565 queue_task_work(&m, msg, kill_me_never); 1566 } 1567 1568 out: 1569 instrumentation_end(); 1570 1571 clear: 1572 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1573 } 1574 EXPORT_SYMBOL_GPL(do_machine_check); 1575 1576 #ifndef CONFIG_MEMORY_FAILURE 1577 int memory_failure(unsigned long pfn, int flags) 1578 { 1579 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1580 BUG_ON(flags & MF_ACTION_REQUIRED); 1581 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1582 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1583 pfn); 1584 1585 return 0; 1586 } 1587 #endif 1588 1589 /* 1590 * Periodic polling timer for "silent" machine check errors. If the 1591 * poller finds an MCE, poll 2x faster. When the poller finds no more 1592 * errors, poll 2x slower (up to check_interval seconds). 1593 */ 1594 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1595 1596 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1597 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1598 1599 static unsigned long mce_adjust_timer_default(unsigned long interval) 1600 { 1601 return interval; 1602 } 1603 1604 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1605 1606 static void __start_timer(struct timer_list *t, unsigned long interval) 1607 { 1608 unsigned long when = jiffies + interval; 1609 unsigned long flags; 1610 1611 local_irq_save(flags); 1612 1613 if (!timer_pending(t) || time_before(when, t->expires)) 1614 mod_timer(t, round_jiffies(when)); 1615 1616 local_irq_restore(flags); 1617 } 1618 1619 static void mce_timer_fn(struct timer_list *t) 1620 { 1621 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1622 unsigned long iv; 1623 1624 WARN_ON(cpu_t != t); 1625 1626 iv = __this_cpu_read(mce_next_interval); 1627 1628 if (mce_available(this_cpu_ptr(&cpu_info))) { 1629 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1630 1631 if (mce_intel_cmci_poll()) { 1632 iv = mce_adjust_timer(iv); 1633 goto done; 1634 } 1635 } 1636 1637 /* 1638 * Alert userspace if needed. If we logged an MCE, reduce the polling 1639 * interval, otherwise increase the polling interval. 1640 */ 1641 if (mce_notify_irq()) 1642 iv = max(iv / 2, (unsigned long) HZ/100); 1643 else 1644 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1645 1646 done: 1647 __this_cpu_write(mce_next_interval, iv); 1648 __start_timer(t, iv); 1649 } 1650 1651 /* 1652 * Ensure that the timer is firing in @interval from now. 1653 */ 1654 void mce_timer_kick(unsigned long interval) 1655 { 1656 struct timer_list *t = this_cpu_ptr(&mce_timer); 1657 unsigned long iv = __this_cpu_read(mce_next_interval); 1658 1659 __start_timer(t, interval); 1660 1661 if (interval < iv) 1662 __this_cpu_write(mce_next_interval, interval); 1663 } 1664 1665 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1666 static void mce_timer_delete_all(void) 1667 { 1668 int cpu; 1669 1670 for_each_online_cpu(cpu) 1671 del_timer_sync(&per_cpu(mce_timer, cpu)); 1672 } 1673 1674 /* 1675 * Notify the user(s) about new machine check events. 1676 * Can be called from interrupt context, but not from machine check/NMI 1677 * context. 1678 */ 1679 int mce_notify_irq(void) 1680 { 1681 /* Not more than two messages every minute */ 1682 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1683 1684 if (test_and_clear_bit(0, &mce_need_notify)) { 1685 mce_work_trigger(); 1686 1687 if (__ratelimit(&ratelimit)) 1688 pr_info(HW_ERR "Machine check events logged\n"); 1689 1690 return 1; 1691 } 1692 return 0; 1693 } 1694 EXPORT_SYMBOL_GPL(mce_notify_irq); 1695 1696 static void __mcheck_cpu_mce_banks_init(void) 1697 { 1698 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1699 u8 n_banks = this_cpu_read(mce_num_banks); 1700 int i; 1701 1702 for (i = 0; i < n_banks; i++) { 1703 struct mce_bank *b = &mce_banks[i]; 1704 1705 /* 1706 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1707 * the required vendor quirks before 1708 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1709 */ 1710 b->ctl = -1ULL; 1711 b->init = true; 1712 } 1713 } 1714 1715 /* 1716 * Initialize Machine Checks for a CPU. 1717 */ 1718 static void __mcheck_cpu_cap_init(void) 1719 { 1720 u64 cap; 1721 u8 b; 1722 1723 rdmsrl(MSR_IA32_MCG_CAP, cap); 1724 1725 b = cap & MCG_BANKCNT_MASK; 1726 1727 if (b > MAX_NR_BANKS) { 1728 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1729 smp_processor_id(), MAX_NR_BANKS, b); 1730 b = MAX_NR_BANKS; 1731 } 1732 1733 this_cpu_write(mce_num_banks, b); 1734 1735 __mcheck_cpu_mce_banks_init(); 1736 1737 /* Use accurate RIP reporting if available. */ 1738 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1739 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1740 1741 if (cap & MCG_SER_P) 1742 mca_cfg.ser = 1; 1743 } 1744 1745 static void __mcheck_cpu_init_generic(void) 1746 { 1747 enum mcp_flags m_fl = 0; 1748 mce_banks_t all_banks; 1749 u64 cap; 1750 1751 if (!mca_cfg.bootlog) 1752 m_fl = MCP_DONTLOG; 1753 1754 /* 1755 * Log the machine checks left over from the previous reset. Log them 1756 * only, do not start processing them. That will happen in mcheck_late_init() 1757 * when all consumers have been registered on the notifier chain. 1758 */ 1759 bitmap_fill(all_banks, MAX_NR_BANKS); 1760 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1761 1762 cr4_set_bits(X86_CR4_MCE); 1763 1764 rdmsrl(MSR_IA32_MCG_CAP, cap); 1765 if (cap & MCG_CTL_P) 1766 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1767 } 1768 1769 static void __mcheck_cpu_init_clear_banks(void) 1770 { 1771 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1772 int i; 1773 1774 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1775 struct mce_bank *b = &mce_banks[i]; 1776 1777 if (!b->init) 1778 continue; 1779 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 1780 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0); 1781 } 1782 } 1783 1784 /* 1785 * Do a final check to see if there are any unused/RAZ banks. 1786 * 1787 * This must be done after the banks have been initialized and any quirks have 1788 * been applied. 1789 * 1790 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1791 * Otherwise, a user who disables a bank will not be able to re-enable it 1792 * without a system reboot. 1793 */ 1794 static void __mcheck_cpu_check_banks(void) 1795 { 1796 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1797 u64 msrval; 1798 int i; 1799 1800 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1801 struct mce_bank *b = &mce_banks[i]; 1802 1803 if (!b->init) 1804 continue; 1805 1806 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval); 1807 b->init = !!msrval; 1808 } 1809 } 1810 1811 /* Add per CPU specific workarounds here */ 1812 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1813 { 1814 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1815 struct mca_config *cfg = &mca_cfg; 1816 1817 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1818 pr_info("unknown CPU type - not enabling MCE support\n"); 1819 return -EOPNOTSUPP; 1820 } 1821 1822 /* This should be disabled by the BIOS, but isn't always */ 1823 if (c->x86_vendor == X86_VENDOR_AMD) { 1824 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1825 /* 1826 * disable GART TBL walk error reporting, which 1827 * trips off incorrectly with the IOMMU & 3ware 1828 * & Cerberus: 1829 */ 1830 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1831 } 1832 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1833 /* 1834 * Lots of broken BIOS around that don't clear them 1835 * by default and leave crap in there. Don't log: 1836 */ 1837 cfg->bootlog = 0; 1838 } 1839 /* 1840 * Various K7s with broken bank 0 around. Always disable 1841 * by default. 1842 */ 1843 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1844 mce_banks[0].ctl = 0; 1845 1846 /* 1847 * overflow_recov is supported for F15h Models 00h-0fh 1848 * even though we don't have a CPUID bit for it. 1849 */ 1850 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1851 mce_flags.overflow_recov = 1; 1852 1853 } 1854 1855 if (c->x86_vendor == X86_VENDOR_INTEL) { 1856 /* 1857 * SDM documents that on family 6 bank 0 should not be written 1858 * because it aliases to another special BIOS controlled 1859 * register. 1860 * But it's not aliased anymore on model 0x1a+ 1861 * Don't ignore bank 0 completely because there could be a 1862 * valid event later, merely don't write CTL0. 1863 */ 1864 1865 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1866 mce_banks[0].init = false; 1867 1868 /* 1869 * All newer Intel systems support MCE broadcasting. Enable 1870 * synchronization with a one second timeout. 1871 */ 1872 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1873 cfg->monarch_timeout < 0) 1874 cfg->monarch_timeout = USEC_PER_SEC; 1875 1876 /* 1877 * There are also broken BIOSes on some Pentium M and 1878 * earlier systems: 1879 */ 1880 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1881 cfg->bootlog = 0; 1882 1883 if (c->x86 == 6 && c->x86_model == 45) 1884 mce_flags.snb_ifu_quirk = 1; 1885 1886 /* 1887 * Skylake, Cascacde Lake and Cooper Lake require a quirk on 1888 * rep movs. 1889 */ 1890 if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X) 1891 mce_flags.skx_repmov_quirk = 1; 1892 } 1893 1894 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1895 /* 1896 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1897 * synchronization with a one second timeout. 1898 */ 1899 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1900 if (cfg->monarch_timeout < 0) 1901 cfg->monarch_timeout = USEC_PER_SEC; 1902 } 1903 } 1904 1905 if (cfg->monarch_timeout < 0) 1906 cfg->monarch_timeout = 0; 1907 if (cfg->bootlog != 0) 1908 cfg->panic_timeout = 30; 1909 1910 return 0; 1911 } 1912 1913 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1914 { 1915 if (c->x86 != 5) 1916 return 0; 1917 1918 switch (c->x86_vendor) { 1919 case X86_VENDOR_INTEL: 1920 intel_p5_mcheck_init(c); 1921 mce_flags.p5 = 1; 1922 return 1; 1923 case X86_VENDOR_CENTAUR: 1924 winchip_mcheck_init(c); 1925 mce_flags.winchip = 1; 1926 return 1; 1927 default: 1928 return 0; 1929 } 1930 1931 return 0; 1932 } 1933 1934 /* 1935 * Init basic CPU features needed for early decoding of MCEs. 1936 */ 1937 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1938 { 1939 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1940 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1941 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1942 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1943 mce_flags.amd_threshold = 1; 1944 } 1945 } 1946 1947 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1948 { 1949 struct mca_config *cfg = &mca_cfg; 1950 1951 /* 1952 * All newer Centaur CPUs support MCE broadcasting. Enable 1953 * synchronization with a one second timeout. 1954 */ 1955 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1956 c->x86 > 6) { 1957 if (cfg->monarch_timeout < 0) 1958 cfg->monarch_timeout = USEC_PER_SEC; 1959 } 1960 } 1961 1962 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1963 { 1964 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1965 1966 /* 1967 * These CPUs have MCA bank 8 which reports only one error type called 1968 * SVAD (System View Address Decoder). The reporting of that error is 1969 * controlled by IA32_MC8.CTL.0. 1970 * 1971 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1972 * virtual machines start and result in a system panic. Always disable 1973 * bank 8 SVAD error by default. 1974 */ 1975 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1976 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1977 if (this_cpu_read(mce_num_banks) > 8) 1978 mce_banks[8].ctl = 0; 1979 } 1980 1981 intel_init_cmci(); 1982 intel_init_lmce(); 1983 mce_adjust_timer = cmci_intel_adjust_timer; 1984 } 1985 1986 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 1987 { 1988 intel_clear_lmce(); 1989 } 1990 1991 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1992 { 1993 switch (c->x86_vendor) { 1994 case X86_VENDOR_INTEL: 1995 mce_intel_feature_init(c); 1996 mce_adjust_timer = cmci_intel_adjust_timer; 1997 break; 1998 1999 case X86_VENDOR_AMD: { 2000 mce_amd_feature_init(c); 2001 break; 2002 } 2003 2004 case X86_VENDOR_HYGON: 2005 mce_hygon_feature_init(c); 2006 break; 2007 2008 case X86_VENDOR_CENTAUR: 2009 mce_centaur_feature_init(c); 2010 break; 2011 2012 case X86_VENDOR_ZHAOXIN: 2013 mce_zhaoxin_feature_init(c); 2014 break; 2015 2016 default: 2017 break; 2018 } 2019 } 2020 2021 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 2022 { 2023 switch (c->x86_vendor) { 2024 case X86_VENDOR_INTEL: 2025 mce_intel_feature_clear(c); 2026 break; 2027 2028 case X86_VENDOR_ZHAOXIN: 2029 mce_zhaoxin_feature_clear(c); 2030 break; 2031 2032 default: 2033 break; 2034 } 2035 } 2036 2037 static void mce_start_timer(struct timer_list *t) 2038 { 2039 unsigned long iv = check_interval * HZ; 2040 2041 if (mca_cfg.ignore_ce || !iv) 2042 return; 2043 2044 this_cpu_write(mce_next_interval, iv); 2045 __start_timer(t, iv); 2046 } 2047 2048 static void __mcheck_cpu_setup_timer(void) 2049 { 2050 struct timer_list *t = this_cpu_ptr(&mce_timer); 2051 2052 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2053 } 2054 2055 static void __mcheck_cpu_init_timer(void) 2056 { 2057 struct timer_list *t = this_cpu_ptr(&mce_timer); 2058 2059 timer_setup(t, mce_timer_fn, TIMER_PINNED); 2060 mce_start_timer(t); 2061 } 2062 2063 bool filter_mce(struct mce *m) 2064 { 2065 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 2066 return amd_filter_mce(m); 2067 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2068 return intel_filter_mce(m); 2069 2070 return false; 2071 } 2072 2073 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2074 { 2075 irqentry_state_t irq_state; 2076 2077 WARN_ON_ONCE(user_mode(regs)); 2078 2079 /* 2080 * Only required when from kernel mode. See 2081 * mce_check_crashing_cpu() for details. 2082 */ 2083 if (mca_cfg.initialized && mce_check_crashing_cpu()) 2084 return; 2085 2086 irq_state = irqentry_nmi_enter(regs); 2087 2088 do_machine_check(regs); 2089 2090 irqentry_nmi_exit(regs, irq_state); 2091 } 2092 2093 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2094 { 2095 irqentry_enter_from_user_mode(regs); 2096 2097 do_machine_check(regs); 2098 2099 irqentry_exit_to_user_mode(regs); 2100 } 2101 2102 #ifdef CONFIG_X86_64 2103 /* MCE hit kernel mode */ 2104 DEFINE_IDTENTRY_MCE(exc_machine_check) 2105 { 2106 unsigned long dr7; 2107 2108 dr7 = local_db_save(); 2109 exc_machine_check_kernel(regs); 2110 local_db_restore(dr7); 2111 } 2112 2113 /* The user mode variant. */ 2114 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2115 { 2116 unsigned long dr7; 2117 2118 dr7 = local_db_save(); 2119 exc_machine_check_user(regs); 2120 local_db_restore(dr7); 2121 } 2122 #else 2123 /* 32bit unified entry point */ 2124 DEFINE_IDTENTRY_RAW(exc_machine_check) 2125 { 2126 unsigned long dr7; 2127 2128 dr7 = local_db_save(); 2129 if (user_mode(regs)) 2130 exc_machine_check_user(regs); 2131 else 2132 exc_machine_check_kernel(regs); 2133 local_db_restore(dr7); 2134 } 2135 #endif 2136 2137 /* 2138 * Called for each booted CPU to set up machine checks. 2139 * Must be called with preempt off: 2140 */ 2141 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2142 { 2143 if (mca_cfg.disabled) 2144 return; 2145 2146 if (__mcheck_cpu_ancient_init(c)) 2147 return; 2148 2149 if (!mce_available(c)) 2150 return; 2151 2152 __mcheck_cpu_cap_init(); 2153 2154 if (__mcheck_cpu_apply_quirks(c) < 0) { 2155 mca_cfg.disabled = 1; 2156 return; 2157 } 2158 2159 if (mce_gen_pool_init()) { 2160 mca_cfg.disabled = 1; 2161 pr_emerg("Couldn't allocate MCE records pool!\n"); 2162 return; 2163 } 2164 2165 mca_cfg.initialized = 1; 2166 2167 __mcheck_cpu_init_early(c); 2168 __mcheck_cpu_init_generic(); 2169 __mcheck_cpu_init_vendor(c); 2170 __mcheck_cpu_init_clear_banks(); 2171 __mcheck_cpu_check_banks(); 2172 __mcheck_cpu_setup_timer(); 2173 } 2174 2175 /* 2176 * Called for each booted CPU to clear some machine checks opt-ins 2177 */ 2178 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2179 { 2180 if (mca_cfg.disabled) 2181 return; 2182 2183 if (!mce_available(c)) 2184 return; 2185 2186 /* 2187 * Possibly to clear general settings generic to x86 2188 * __mcheck_cpu_clear_generic(c); 2189 */ 2190 __mcheck_cpu_clear_vendor(c); 2191 2192 } 2193 2194 static void __mce_disable_bank(void *arg) 2195 { 2196 int bank = *((int *)arg); 2197 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2198 cmci_disable_bank(bank); 2199 } 2200 2201 void mce_disable_bank(int bank) 2202 { 2203 if (bank >= this_cpu_read(mce_num_banks)) { 2204 pr_warn(FW_BUG 2205 "Ignoring request to disable invalid MCA bank %d.\n", 2206 bank); 2207 return; 2208 } 2209 set_bit(bank, mce_banks_ce_disabled); 2210 on_each_cpu(__mce_disable_bank, &bank, 1); 2211 } 2212 2213 /* 2214 * mce=off Disables machine check 2215 * mce=no_cmci Disables CMCI 2216 * mce=no_lmce Disables LMCE 2217 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2218 * mce=print_all Print all machine check logs to console 2219 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2220 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2221 * monarchtimeout is how long to wait for other CPUs on machine 2222 * check, or 0 to not wait 2223 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2224 and older. 2225 * mce=nobootlog Don't log MCEs from before booting. 2226 * mce=bios_cmci_threshold Don't program the CMCI threshold 2227 * mce=recovery force enable copy_mc_fragile() 2228 */ 2229 static int __init mcheck_enable(char *str) 2230 { 2231 struct mca_config *cfg = &mca_cfg; 2232 2233 if (*str == 0) { 2234 enable_p5_mce(); 2235 return 1; 2236 } 2237 if (*str == '=') 2238 str++; 2239 if (!strcmp(str, "off")) 2240 cfg->disabled = 1; 2241 else if (!strcmp(str, "no_cmci")) 2242 cfg->cmci_disabled = true; 2243 else if (!strcmp(str, "no_lmce")) 2244 cfg->lmce_disabled = 1; 2245 else if (!strcmp(str, "dont_log_ce")) 2246 cfg->dont_log_ce = true; 2247 else if (!strcmp(str, "print_all")) 2248 cfg->print_all = true; 2249 else if (!strcmp(str, "ignore_ce")) 2250 cfg->ignore_ce = true; 2251 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2252 cfg->bootlog = (str[0] == 'b'); 2253 else if (!strcmp(str, "bios_cmci_threshold")) 2254 cfg->bios_cmci_threshold = 1; 2255 else if (!strcmp(str, "recovery")) 2256 cfg->recovery = 1; 2257 else if (isdigit(str[0])) 2258 get_option(&str, &(cfg->monarch_timeout)); 2259 else { 2260 pr_info("mce argument %s ignored. Please use /sys\n", str); 2261 return 0; 2262 } 2263 return 1; 2264 } 2265 __setup("mce", mcheck_enable); 2266 2267 int __init mcheck_init(void) 2268 { 2269 mce_register_decode_chain(&early_nb); 2270 mce_register_decode_chain(&mce_uc_nb); 2271 mce_register_decode_chain(&mce_default_nb); 2272 2273 INIT_WORK(&mce_work, mce_gen_pool_process); 2274 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2275 2276 return 0; 2277 } 2278 2279 /* 2280 * mce_syscore: PM support 2281 */ 2282 2283 /* 2284 * Disable machine checks on suspend and shutdown. We can't really handle 2285 * them later. 2286 */ 2287 static void mce_disable_error_reporting(void) 2288 { 2289 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2290 int i; 2291 2292 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2293 struct mce_bank *b = &mce_banks[i]; 2294 2295 if (b->init) 2296 wrmsrl(mca_msr_reg(i, MCA_CTL), 0); 2297 } 2298 return; 2299 } 2300 2301 static void vendor_disable_error_reporting(void) 2302 { 2303 /* 2304 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2305 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2306 * is bad, since it will inhibit reporting for all shared resources on 2307 * the socket like the last level cache (LLC), the integrated memory 2308 * controller (iMC), etc. 2309 */ 2310 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2311 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2312 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2313 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2314 return; 2315 2316 mce_disable_error_reporting(); 2317 } 2318 2319 static int mce_syscore_suspend(void) 2320 { 2321 vendor_disable_error_reporting(); 2322 return 0; 2323 } 2324 2325 static void mce_syscore_shutdown(void) 2326 { 2327 vendor_disable_error_reporting(); 2328 } 2329 2330 /* 2331 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2332 * Only one CPU is active at this time, the others get re-added later using 2333 * CPU hotplug: 2334 */ 2335 static void mce_syscore_resume(void) 2336 { 2337 __mcheck_cpu_init_generic(); 2338 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2339 __mcheck_cpu_init_clear_banks(); 2340 } 2341 2342 static struct syscore_ops mce_syscore_ops = { 2343 .suspend = mce_syscore_suspend, 2344 .shutdown = mce_syscore_shutdown, 2345 .resume = mce_syscore_resume, 2346 }; 2347 2348 /* 2349 * mce_device: Sysfs support 2350 */ 2351 2352 static void mce_cpu_restart(void *data) 2353 { 2354 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2355 return; 2356 __mcheck_cpu_init_generic(); 2357 __mcheck_cpu_init_clear_banks(); 2358 __mcheck_cpu_init_timer(); 2359 } 2360 2361 /* Reinit MCEs after user configuration changes */ 2362 static void mce_restart(void) 2363 { 2364 mce_timer_delete_all(); 2365 on_each_cpu(mce_cpu_restart, NULL, 1); 2366 } 2367 2368 /* Toggle features for corrected errors */ 2369 static void mce_disable_cmci(void *data) 2370 { 2371 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2372 return; 2373 cmci_clear(); 2374 } 2375 2376 static void mce_enable_ce(void *all) 2377 { 2378 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2379 return; 2380 cmci_reenable(); 2381 cmci_recheck(); 2382 if (all) 2383 __mcheck_cpu_init_timer(); 2384 } 2385 2386 static struct bus_type mce_subsys = { 2387 .name = "machinecheck", 2388 .dev_name = "machinecheck", 2389 }; 2390 2391 DEFINE_PER_CPU(struct device *, mce_device); 2392 2393 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2394 { 2395 return container_of(attr, struct mce_bank_dev, attr); 2396 } 2397 2398 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2399 char *buf) 2400 { 2401 u8 bank = attr_to_bank(attr)->bank; 2402 struct mce_bank *b; 2403 2404 if (bank >= per_cpu(mce_num_banks, s->id)) 2405 return -EINVAL; 2406 2407 b = &per_cpu(mce_banks_array, s->id)[bank]; 2408 2409 if (!b->init) 2410 return -ENODEV; 2411 2412 return sprintf(buf, "%llx\n", b->ctl); 2413 } 2414 2415 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2416 const char *buf, size_t size) 2417 { 2418 u8 bank = attr_to_bank(attr)->bank; 2419 struct mce_bank *b; 2420 u64 new; 2421 2422 if (kstrtou64(buf, 0, &new) < 0) 2423 return -EINVAL; 2424 2425 if (bank >= per_cpu(mce_num_banks, s->id)) 2426 return -EINVAL; 2427 2428 b = &per_cpu(mce_banks_array, s->id)[bank]; 2429 2430 if (!b->init) 2431 return -ENODEV; 2432 2433 b->ctl = new; 2434 mce_restart(); 2435 2436 return size; 2437 } 2438 2439 static ssize_t set_ignore_ce(struct device *s, 2440 struct device_attribute *attr, 2441 const char *buf, size_t size) 2442 { 2443 u64 new; 2444 2445 if (kstrtou64(buf, 0, &new) < 0) 2446 return -EINVAL; 2447 2448 mutex_lock(&mce_sysfs_mutex); 2449 if (mca_cfg.ignore_ce ^ !!new) { 2450 if (new) { 2451 /* disable ce features */ 2452 mce_timer_delete_all(); 2453 on_each_cpu(mce_disable_cmci, NULL, 1); 2454 mca_cfg.ignore_ce = true; 2455 } else { 2456 /* enable ce features */ 2457 mca_cfg.ignore_ce = false; 2458 on_each_cpu(mce_enable_ce, (void *)1, 1); 2459 } 2460 } 2461 mutex_unlock(&mce_sysfs_mutex); 2462 2463 return size; 2464 } 2465 2466 static ssize_t set_cmci_disabled(struct device *s, 2467 struct device_attribute *attr, 2468 const char *buf, size_t size) 2469 { 2470 u64 new; 2471 2472 if (kstrtou64(buf, 0, &new) < 0) 2473 return -EINVAL; 2474 2475 mutex_lock(&mce_sysfs_mutex); 2476 if (mca_cfg.cmci_disabled ^ !!new) { 2477 if (new) { 2478 /* disable cmci */ 2479 on_each_cpu(mce_disable_cmci, NULL, 1); 2480 mca_cfg.cmci_disabled = true; 2481 } else { 2482 /* enable cmci */ 2483 mca_cfg.cmci_disabled = false; 2484 on_each_cpu(mce_enable_ce, NULL, 1); 2485 } 2486 } 2487 mutex_unlock(&mce_sysfs_mutex); 2488 2489 return size; 2490 } 2491 2492 static ssize_t store_int_with_restart(struct device *s, 2493 struct device_attribute *attr, 2494 const char *buf, size_t size) 2495 { 2496 unsigned long old_check_interval = check_interval; 2497 ssize_t ret = device_store_ulong(s, attr, buf, size); 2498 2499 if (check_interval == old_check_interval) 2500 return ret; 2501 2502 mutex_lock(&mce_sysfs_mutex); 2503 mce_restart(); 2504 mutex_unlock(&mce_sysfs_mutex); 2505 2506 return ret; 2507 } 2508 2509 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2510 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2511 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2512 2513 static struct dev_ext_attribute dev_attr_check_interval = { 2514 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2515 &check_interval 2516 }; 2517 2518 static struct dev_ext_attribute dev_attr_ignore_ce = { 2519 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2520 &mca_cfg.ignore_ce 2521 }; 2522 2523 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2524 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2525 &mca_cfg.cmci_disabled 2526 }; 2527 2528 static struct device_attribute *mce_device_attrs[] = { 2529 &dev_attr_check_interval.attr, 2530 #ifdef CONFIG_X86_MCELOG_LEGACY 2531 &dev_attr_trigger, 2532 #endif 2533 &dev_attr_monarch_timeout.attr, 2534 &dev_attr_dont_log_ce.attr, 2535 &dev_attr_print_all.attr, 2536 &dev_attr_ignore_ce.attr, 2537 &dev_attr_cmci_disabled.attr, 2538 NULL 2539 }; 2540 2541 static cpumask_var_t mce_device_initialized; 2542 2543 static void mce_device_release(struct device *dev) 2544 { 2545 kfree(dev); 2546 } 2547 2548 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2549 static int mce_device_create(unsigned int cpu) 2550 { 2551 struct device *dev; 2552 int err; 2553 int i, j; 2554 2555 if (!mce_available(&boot_cpu_data)) 2556 return -EIO; 2557 2558 dev = per_cpu(mce_device, cpu); 2559 if (dev) 2560 return 0; 2561 2562 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2563 if (!dev) 2564 return -ENOMEM; 2565 dev->id = cpu; 2566 dev->bus = &mce_subsys; 2567 dev->release = &mce_device_release; 2568 2569 err = device_register(dev); 2570 if (err) { 2571 put_device(dev); 2572 return err; 2573 } 2574 2575 for (i = 0; mce_device_attrs[i]; i++) { 2576 err = device_create_file(dev, mce_device_attrs[i]); 2577 if (err) 2578 goto error; 2579 } 2580 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2581 err = device_create_file(dev, &mce_bank_devs[j].attr); 2582 if (err) 2583 goto error2; 2584 } 2585 cpumask_set_cpu(cpu, mce_device_initialized); 2586 per_cpu(mce_device, cpu) = dev; 2587 2588 return 0; 2589 error2: 2590 while (--j >= 0) 2591 device_remove_file(dev, &mce_bank_devs[j].attr); 2592 error: 2593 while (--i >= 0) 2594 device_remove_file(dev, mce_device_attrs[i]); 2595 2596 device_unregister(dev); 2597 2598 return err; 2599 } 2600 2601 static void mce_device_remove(unsigned int cpu) 2602 { 2603 struct device *dev = per_cpu(mce_device, cpu); 2604 int i; 2605 2606 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2607 return; 2608 2609 for (i = 0; mce_device_attrs[i]; i++) 2610 device_remove_file(dev, mce_device_attrs[i]); 2611 2612 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2613 device_remove_file(dev, &mce_bank_devs[i].attr); 2614 2615 device_unregister(dev); 2616 cpumask_clear_cpu(cpu, mce_device_initialized); 2617 per_cpu(mce_device, cpu) = NULL; 2618 } 2619 2620 /* Make sure there are no machine checks on offlined CPUs. */ 2621 static void mce_disable_cpu(void) 2622 { 2623 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2624 return; 2625 2626 if (!cpuhp_tasks_frozen) 2627 cmci_clear(); 2628 2629 vendor_disable_error_reporting(); 2630 } 2631 2632 static void mce_reenable_cpu(void) 2633 { 2634 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2635 int i; 2636 2637 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2638 return; 2639 2640 if (!cpuhp_tasks_frozen) 2641 cmci_reenable(); 2642 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2643 struct mce_bank *b = &mce_banks[i]; 2644 2645 if (b->init) 2646 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl); 2647 } 2648 } 2649 2650 static int mce_cpu_dead(unsigned int cpu) 2651 { 2652 mce_intel_hcpu_update(cpu); 2653 2654 /* intentionally ignoring frozen here */ 2655 if (!cpuhp_tasks_frozen) 2656 cmci_rediscover(); 2657 return 0; 2658 } 2659 2660 static int mce_cpu_online(unsigned int cpu) 2661 { 2662 struct timer_list *t = this_cpu_ptr(&mce_timer); 2663 int ret; 2664 2665 mce_device_create(cpu); 2666 2667 ret = mce_threshold_create_device(cpu); 2668 if (ret) { 2669 mce_device_remove(cpu); 2670 return ret; 2671 } 2672 mce_reenable_cpu(); 2673 mce_start_timer(t); 2674 return 0; 2675 } 2676 2677 static int mce_cpu_pre_down(unsigned int cpu) 2678 { 2679 struct timer_list *t = this_cpu_ptr(&mce_timer); 2680 2681 mce_disable_cpu(); 2682 del_timer_sync(t); 2683 mce_threshold_remove_device(cpu); 2684 mce_device_remove(cpu); 2685 return 0; 2686 } 2687 2688 static __init void mce_init_banks(void) 2689 { 2690 int i; 2691 2692 for (i = 0; i < MAX_NR_BANKS; i++) { 2693 struct mce_bank_dev *b = &mce_bank_devs[i]; 2694 struct device_attribute *a = &b->attr; 2695 2696 b->bank = i; 2697 2698 sysfs_attr_init(&a->attr); 2699 a->attr.name = b->attrname; 2700 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2701 2702 a->attr.mode = 0644; 2703 a->show = show_bank; 2704 a->store = set_bank; 2705 } 2706 } 2707 2708 /* 2709 * When running on XEN, this initcall is ordered against the XEN mcelog 2710 * initcall: 2711 * 2712 * device_initcall(xen_late_init_mcelog); 2713 * device_initcall_sync(mcheck_init_device); 2714 */ 2715 static __init int mcheck_init_device(void) 2716 { 2717 int err; 2718 2719 /* 2720 * Check if we have a spare virtual bit. This will only become 2721 * a problem if/when we move beyond 5-level page tables. 2722 */ 2723 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2724 2725 if (!mce_available(&boot_cpu_data)) { 2726 err = -EIO; 2727 goto err_out; 2728 } 2729 2730 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2731 err = -ENOMEM; 2732 goto err_out; 2733 } 2734 2735 mce_init_banks(); 2736 2737 err = subsys_system_register(&mce_subsys, NULL); 2738 if (err) 2739 goto err_out_mem; 2740 2741 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2742 mce_cpu_dead); 2743 if (err) 2744 goto err_out_mem; 2745 2746 /* 2747 * Invokes mce_cpu_online() on all CPUs which are online when 2748 * the state is installed. 2749 */ 2750 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2751 mce_cpu_online, mce_cpu_pre_down); 2752 if (err < 0) 2753 goto err_out_online; 2754 2755 register_syscore_ops(&mce_syscore_ops); 2756 2757 return 0; 2758 2759 err_out_online: 2760 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2761 2762 err_out_mem: 2763 free_cpumask_var(mce_device_initialized); 2764 2765 err_out: 2766 pr_err("Unable to init MCE device (rc: %d)\n", err); 2767 2768 return err; 2769 } 2770 device_initcall_sync(mcheck_init_device); 2771 2772 /* 2773 * Old style boot options parsing. Only for compatibility. 2774 */ 2775 static int __init mcheck_disable(char *str) 2776 { 2777 mca_cfg.disabled = 1; 2778 return 1; 2779 } 2780 __setup("nomce", mcheck_disable); 2781 2782 #ifdef CONFIG_DEBUG_FS 2783 struct dentry *mce_get_debugfs_dir(void) 2784 { 2785 static struct dentry *dmce; 2786 2787 if (!dmce) 2788 dmce = debugfs_create_dir("mce", NULL); 2789 2790 return dmce; 2791 } 2792 2793 static void mce_reset(void) 2794 { 2795 atomic_set(&mce_fake_panicked, 0); 2796 atomic_set(&mce_executing, 0); 2797 atomic_set(&mce_callin, 0); 2798 atomic_set(&global_nwo, 0); 2799 cpumask_setall(&mce_missing_cpus); 2800 } 2801 2802 static int fake_panic_get(void *data, u64 *val) 2803 { 2804 *val = fake_panic; 2805 return 0; 2806 } 2807 2808 static int fake_panic_set(void *data, u64 val) 2809 { 2810 mce_reset(); 2811 fake_panic = val; 2812 return 0; 2813 } 2814 2815 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2816 "%llu\n"); 2817 2818 static void __init mcheck_debugfs_init(void) 2819 { 2820 struct dentry *dmce; 2821 2822 dmce = mce_get_debugfs_dir(); 2823 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2824 &fake_panic_fops); 2825 } 2826 #else 2827 static void __init mcheck_debugfs_init(void) { } 2828 #endif 2829 2830 static int __init mcheck_late_init(void) 2831 { 2832 if (mca_cfg.recovery) 2833 enable_copy_mc_fragile(); 2834 2835 mcheck_debugfs_init(); 2836 2837 /* 2838 * Flush out everything that has been logged during early boot, now that 2839 * everything has been initialized (workqueues, decoders, ...). 2840 */ 2841 mce_schedule_work(); 2842 2843 return 0; 2844 } 2845 late_initcall(mcheck_late_init); 2846