xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * Machine check handler.
3  *
4  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5  * Rest from unknown author(s).
6  * 2004 Andi Kleen. Rewrote most of it.
7  * Copyright 2008 Intel Corporation
8  * Author: Andi Kleen
9  */
10 
11 #include <linux/thread_info.h>
12 #include <linux/capability.h>
13 #include <linux/miscdevice.h>
14 #include <linux/ratelimit.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/device.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/ras.h>
36 #include <linux/smp.h>
37 #include <linux/fs.h>
38 #include <linux/mm.h>
39 #include <linux/debugfs.h>
40 #include <linux/irq_work.h>
41 #include <linux/export.h>
42 #include <linux/jump_label.h>
43 #include <linux/set_memory.h>
44 
45 #include <asm/intel-family.h>
46 #include <asm/processor.h>
47 #include <asm/traps.h>
48 #include <asm/tlbflush.h>
49 #include <asm/mce.h>
50 #include <asm/msr.h>
51 #include <asm/reboot.h>
52 
53 #include "internal.h"
54 
55 static DEFINE_MUTEX(mce_log_mutex);
56 
57 /* sysfs synchronization */
58 static DEFINE_MUTEX(mce_sysfs_mutex);
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/mce.h>
62 
63 #define SPINUNIT		100	/* 100ns */
64 
65 DEFINE_PER_CPU(unsigned, mce_exception_count);
66 
67 struct mce_bank *mce_banks __read_mostly;
68 struct mce_vendor_flags mce_flags __read_mostly;
69 
70 struct mca_config mca_cfg __read_mostly = {
71 	.bootlog  = -1,
72 	/*
73 	 * Tolerant levels:
74 	 * 0: always panic on uncorrected errors, log corrected errors
75 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
76 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
77 	 * 3: never panic or SIGBUS, log all errors (for testing only)
78 	 */
79 	.tolerant = 1,
80 	.monarch_timeout = -1
81 };
82 
83 static DEFINE_PER_CPU(struct mce, mces_seen);
84 static unsigned long mce_need_notify;
85 static int cpu_missing;
86 
87 /*
88  * MCA banks polled by the period polling timer for corrected events.
89  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
90  */
91 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
92 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
93 };
94 
95 /*
96  * MCA banks controlled through firmware first for corrected errors.
97  * This is a global list of banks for which we won't enable CMCI and we
98  * won't poll. Firmware controls these banks and is responsible for
99  * reporting corrected errors through GHES. Uncorrected/recoverable
100  * errors are still notified through a machine check.
101  */
102 mce_banks_t mce_banks_ce_disabled;
103 
104 static struct work_struct mce_work;
105 static struct irq_work mce_irq_work;
106 
107 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
108 
109 /*
110  * CPU/chipset specific EDAC code can register a notifier call here to print
111  * MCE errors in a human-readable form.
112  */
113 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
114 
115 /* Do initial initialization of a struct mce */
116 void mce_setup(struct mce *m)
117 {
118 	memset(m, 0, sizeof(struct mce));
119 	m->cpu = m->extcpu = smp_processor_id();
120 	/* need the internal __ version to avoid deadlocks */
121 	m->time = __ktime_get_real_seconds();
122 	m->cpuvendor = boot_cpu_data.x86_vendor;
123 	m->cpuid = cpuid_eax(1);
124 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
125 	m->apicid = cpu_data(m->extcpu).initial_apicid;
126 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127 
128 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
129 		rdmsrl(MSR_PPIN, m->ppin);
130 
131 	m->microcode = boot_cpu_data.microcode;
132 }
133 
134 DEFINE_PER_CPU(struct mce, injectm);
135 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
136 
137 void mce_log(struct mce *m)
138 {
139 	if (!mce_gen_pool_add(m))
140 		irq_work_queue(&mce_irq_work);
141 }
142 
143 void mce_inject_log(struct mce *m)
144 {
145 	mutex_lock(&mce_log_mutex);
146 	mce_log(m);
147 	mutex_unlock(&mce_log_mutex);
148 }
149 EXPORT_SYMBOL_GPL(mce_inject_log);
150 
151 static struct notifier_block mce_srao_nb;
152 
153 /*
154  * We run the default notifier if we have only the SRAO, the first and the
155  * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
156  * notifiers registered on the chain.
157  */
158 #define NUM_DEFAULT_NOTIFIERS	3
159 static atomic_t num_notifiers;
160 
161 void mce_register_decode_chain(struct notifier_block *nb)
162 {
163 	if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
164 		return;
165 
166 	atomic_inc(&num_notifiers);
167 
168 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
169 }
170 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
171 
172 void mce_unregister_decode_chain(struct notifier_block *nb)
173 {
174 	atomic_dec(&num_notifiers);
175 
176 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
177 }
178 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
179 
180 static inline u32 ctl_reg(int bank)
181 {
182 	return MSR_IA32_MCx_CTL(bank);
183 }
184 
185 static inline u32 status_reg(int bank)
186 {
187 	return MSR_IA32_MCx_STATUS(bank);
188 }
189 
190 static inline u32 addr_reg(int bank)
191 {
192 	return MSR_IA32_MCx_ADDR(bank);
193 }
194 
195 static inline u32 misc_reg(int bank)
196 {
197 	return MSR_IA32_MCx_MISC(bank);
198 }
199 
200 static inline u32 smca_ctl_reg(int bank)
201 {
202 	return MSR_AMD64_SMCA_MCx_CTL(bank);
203 }
204 
205 static inline u32 smca_status_reg(int bank)
206 {
207 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
208 }
209 
210 static inline u32 smca_addr_reg(int bank)
211 {
212 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
213 }
214 
215 static inline u32 smca_misc_reg(int bank)
216 {
217 	return MSR_AMD64_SMCA_MCx_MISC(bank);
218 }
219 
220 struct mca_msr_regs msr_ops = {
221 	.ctl	= ctl_reg,
222 	.status	= status_reg,
223 	.addr	= addr_reg,
224 	.misc	= misc_reg
225 };
226 
227 static void __print_mce(struct mce *m)
228 {
229 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
230 		 m->extcpu,
231 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
232 		 m->mcgstatus, m->bank, m->status);
233 
234 	if (m->ip) {
235 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
236 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
237 			m->cs, m->ip);
238 
239 		if (m->cs == __KERNEL_CS)
240 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
241 		pr_cont("\n");
242 	}
243 
244 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
245 	if (m->addr)
246 		pr_cont("ADDR %llx ", m->addr);
247 	if (m->misc)
248 		pr_cont("MISC %llx ", m->misc);
249 
250 	if (mce_flags.smca) {
251 		if (m->synd)
252 			pr_cont("SYND %llx ", m->synd);
253 		if (m->ipid)
254 			pr_cont("IPID %llx ", m->ipid);
255 	}
256 
257 	pr_cont("\n");
258 	/*
259 	 * Note this output is parsed by external tools and old fields
260 	 * should not be changed.
261 	 */
262 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
263 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
264 		m->microcode);
265 }
266 
267 static void print_mce(struct mce *m)
268 {
269 	__print_mce(m);
270 
271 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
272 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
273 }
274 
275 #define PANIC_TIMEOUT 5 /* 5 seconds */
276 
277 static atomic_t mce_panicked;
278 
279 static int fake_panic;
280 static atomic_t mce_fake_panicked;
281 
282 /* Panic in progress. Enable interrupts and wait for final IPI */
283 static void wait_for_panic(void)
284 {
285 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
286 
287 	preempt_disable();
288 	local_irq_enable();
289 	while (timeout-- > 0)
290 		udelay(1);
291 	if (panic_timeout == 0)
292 		panic_timeout = mca_cfg.panic_timeout;
293 	panic("Panicing machine check CPU died");
294 }
295 
296 static void mce_panic(const char *msg, struct mce *final, char *exp)
297 {
298 	int apei_err = 0;
299 	struct llist_node *pending;
300 	struct mce_evt_llist *l;
301 
302 	if (!fake_panic) {
303 		/*
304 		 * Make sure only one CPU runs in machine check panic
305 		 */
306 		if (atomic_inc_return(&mce_panicked) > 1)
307 			wait_for_panic();
308 		barrier();
309 
310 		bust_spinlocks(1);
311 		console_verbose();
312 	} else {
313 		/* Don't log too much for fake panic */
314 		if (atomic_inc_return(&mce_fake_panicked) > 1)
315 			return;
316 	}
317 	pending = mce_gen_pool_prepare_records();
318 	/* First print corrected ones that are still unlogged */
319 	llist_for_each_entry(l, pending, llnode) {
320 		struct mce *m = &l->mce;
321 		if (!(m->status & MCI_STATUS_UC)) {
322 			print_mce(m);
323 			if (!apei_err)
324 				apei_err = apei_write_mce(m);
325 		}
326 	}
327 	/* Now print uncorrected but with the final one last */
328 	llist_for_each_entry(l, pending, llnode) {
329 		struct mce *m = &l->mce;
330 		if (!(m->status & MCI_STATUS_UC))
331 			continue;
332 		if (!final || mce_cmp(m, final)) {
333 			print_mce(m);
334 			if (!apei_err)
335 				apei_err = apei_write_mce(m);
336 		}
337 	}
338 	if (final) {
339 		print_mce(final);
340 		if (!apei_err)
341 			apei_err = apei_write_mce(final);
342 	}
343 	if (cpu_missing)
344 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
345 	if (exp)
346 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
347 	if (!fake_panic) {
348 		if (panic_timeout == 0)
349 			panic_timeout = mca_cfg.panic_timeout;
350 		panic(msg);
351 	} else
352 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
353 }
354 
355 /* Support code for software error injection */
356 
357 static int msr_to_offset(u32 msr)
358 {
359 	unsigned bank = __this_cpu_read(injectm.bank);
360 
361 	if (msr == mca_cfg.rip_msr)
362 		return offsetof(struct mce, ip);
363 	if (msr == msr_ops.status(bank))
364 		return offsetof(struct mce, status);
365 	if (msr == msr_ops.addr(bank))
366 		return offsetof(struct mce, addr);
367 	if (msr == msr_ops.misc(bank))
368 		return offsetof(struct mce, misc);
369 	if (msr == MSR_IA32_MCG_STATUS)
370 		return offsetof(struct mce, mcgstatus);
371 	return -1;
372 }
373 
374 /* MSR access wrappers used for error injection */
375 static u64 mce_rdmsrl(u32 msr)
376 {
377 	u64 v;
378 
379 	if (__this_cpu_read(injectm.finished)) {
380 		int offset = msr_to_offset(msr);
381 
382 		if (offset < 0)
383 			return 0;
384 		return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
385 	}
386 
387 	if (rdmsrl_safe(msr, &v)) {
388 		WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
389 		/*
390 		 * Return zero in case the access faulted. This should
391 		 * not happen normally but can happen if the CPU does
392 		 * something weird, or if the code is buggy.
393 		 */
394 		v = 0;
395 	}
396 
397 	return v;
398 }
399 
400 static void mce_wrmsrl(u32 msr, u64 v)
401 {
402 	if (__this_cpu_read(injectm.finished)) {
403 		int offset = msr_to_offset(msr);
404 
405 		if (offset >= 0)
406 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
407 		return;
408 	}
409 	wrmsrl(msr, v);
410 }
411 
412 /*
413  * Collect all global (w.r.t. this processor) status about this machine
414  * check into our "mce" struct so that we can use it later to assess
415  * the severity of the problem as we read per-bank specific details.
416  */
417 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
418 {
419 	mce_setup(m);
420 
421 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
422 	if (regs) {
423 		/*
424 		 * Get the address of the instruction at the time of
425 		 * the machine check error.
426 		 */
427 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
428 			m->ip = regs->ip;
429 			m->cs = regs->cs;
430 
431 			/*
432 			 * When in VM86 mode make the cs look like ring 3
433 			 * always. This is a lie, but it's better than passing
434 			 * the additional vm86 bit around everywhere.
435 			 */
436 			if (v8086_mode(regs))
437 				m->cs |= 3;
438 		}
439 		/* Use accurate RIP reporting if available. */
440 		if (mca_cfg.rip_msr)
441 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
442 	}
443 }
444 
445 int mce_available(struct cpuinfo_x86 *c)
446 {
447 	if (mca_cfg.disabled)
448 		return 0;
449 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
450 }
451 
452 static void mce_schedule_work(void)
453 {
454 	if (!mce_gen_pool_empty())
455 		schedule_work(&mce_work);
456 }
457 
458 static void mce_irq_work_cb(struct irq_work *entry)
459 {
460 	mce_schedule_work();
461 }
462 
463 static void mce_report_event(struct pt_regs *regs)
464 {
465 	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
466 		mce_notify_irq();
467 		/*
468 		 * Triggering the work queue here is just an insurance
469 		 * policy in case the syscall exit notify handler
470 		 * doesn't run soon enough or ends up running on the
471 		 * wrong CPU (can happen when audit sleeps)
472 		 */
473 		mce_schedule_work();
474 		return;
475 	}
476 
477 	irq_work_queue(&mce_irq_work);
478 }
479 
480 /*
481  * Check if the address reported by the CPU is in a format we can parse.
482  * It would be possible to add code for most other cases, but all would
483  * be somewhat complicated (e.g. segment offset would require an instruction
484  * parser). So only support physical addresses up to page granuality for now.
485  */
486 int mce_usable_address(struct mce *m)
487 {
488 	if (!(m->status & MCI_STATUS_ADDRV))
489 		return 0;
490 
491 	/* Checks after this one are Intel-specific: */
492 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
493 		return 1;
494 
495 	if (!(m->status & MCI_STATUS_MISCV))
496 		return 0;
497 
498 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
499 		return 0;
500 
501 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
502 		return 0;
503 
504 	return 1;
505 }
506 EXPORT_SYMBOL_GPL(mce_usable_address);
507 
508 bool mce_is_memory_error(struct mce *m)
509 {
510 	if (m->cpuvendor == X86_VENDOR_AMD ||
511 	    m->cpuvendor == X86_VENDOR_HYGON) {
512 		return amd_mce_is_memory_error(m);
513 	} else if (m->cpuvendor == X86_VENDOR_INTEL) {
514 		/*
515 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
516 		 *
517 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
518 		 * indicating a memory error. Bit 8 is used for indicating a
519 		 * cache hierarchy error. The combination of bit 2 and bit 3
520 		 * is used for indicating a `generic' cache hierarchy error
521 		 * But we can't just blindly check the above bits, because if
522 		 * bit 11 is set, then it is a bus/interconnect error - and
523 		 * either way the above bits just gives more detail on what
524 		 * bus/interconnect error happened. Note that bit 12 can be
525 		 * ignored, as it's the "filter" bit.
526 		 */
527 		return (m->status & 0xef80) == BIT(7) ||
528 		       (m->status & 0xef00) == BIT(8) ||
529 		       (m->status & 0xeffc) == 0xc;
530 	}
531 
532 	return false;
533 }
534 EXPORT_SYMBOL_GPL(mce_is_memory_error);
535 
536 bool mce_is_correctable(struct mce *m)
537 {
538 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
539 		return false;
540 
541 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
542 		return false;
543 
544 	if (m->status & MCI_STATUS_UC)
545 		return false;
546 
547 	return true;
548 }
549 EXPORT_SYMBOL_GPL(mce_is_correctable);
550 
551 static bool cec_add_mce(struct mce *m)
552 {
553 	if (!m)
554 		return false;
555 
556 	/* We eat only correctable DRAM errors with usable addresses. */
557 	if (mce_is_memory_error(m) &&
558 	    mce_is_correctable(m)  &&
559 	    mce_usable_address(m))
560 		if (!cec_add_elem(m->addr >> PAGE_SHIFT))
561 			return true;
562 
563 	return false;
564 }
565 
566 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
567 			      void *data)
568 {
569 	struct mce *m = (struct mce *)data;
570 
571 	if (!m)
572 		return NOTIFY_DONE;
573 
574 	if (cec_add_mce(m))
575 		return NOTIFY_STOP;
576 
577 	/* Emit the trace record: */
578 	trace_mce_record(m);
579 
580 	set_bit(0, &mce_need_notify);
581 
582 	mce_notify_irq();
583 
584 	return NOTIFY_DONE;
585 }
586 
587 static struct notifier_block first_nb = {
588 	.notifier_call	= mce_first_notifier,
589 	.priority	= MCE_PRIO_FIRST,
590 };
591 
592 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
593 				void *data)
594 {
595 	struct mce *mce = (struct mce *)data;
596 	unsigned long pfn;
597 
598 	if (!mce)
599 		return NOTIFY_DONE;
600 
601 	if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
602 		pfn = mce->addr >> PAGE_SHIFT;
603 		if (!memory_failure(pfn, 0))
604 			set_mce_nospec(pfn);
605 	}
606 
607 	return NOTIFY_OK;
608 }
609 static struct notifier_block mce_srao_nb = {
610 	.notifier_call	= srao_decode_notifier,
611 	.priority	= MCE_PRIO_SRAO,
612 };
613 
614 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
615 				void *data)
616 {
617 	struct mce *m = (struct mce *)data;
618 
619 	if (!m)
620 		return NOTIFY_DONE;
621 
622 	if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
623 		return NOTIFY_DONE;
624 
625 	__print_mce(m);
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static struct notifier_block mce_default_nb = {
631 	.notifier_call	= mce_default_notifier,
632 	/* lowest prio, we want it to run last. */
633 	.priority	= MCE_PRIO_LOWEST,
634 };
635 
636 /*
637  * Read ADDR and MISC registers.
638  */
639 static void mce_read_aux(struct mce *m, int i)
640 {
641 	if (m->status & MCI_STATUS_MISCV)
642 		m->misc = mce_rdmsrl(msr_ops.misc(i));
643 
644 	if (m->status & MCI_STATUS_ADDRV) {
645 		m->addr = mce_rdmsrl(msr_ops.addr(i));
646 
647 		/*
648 		 * Mask the reported address by the reported granularity.
649 		 */
650 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
651 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
652 			m->addr >>= shift;
653 			m->addr <<= shift;
654 		}
655 
656 		/*
657 		 * Extract [55:<lsb>] where lsb is the least significant
658 		 * *valid* bit of the address bits.
659 		 */
660 		if (mce_flags.smca) {
661 			u8 lsb = (m->addr >> 56) & 0x3f;
662 
663 			m->addr &= GENMASK_ULL(55, lsb);
664 		}
665 	}
666 
667 	if (mce_flags.smca) {
668 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
669 
670 		if (m->status & MCI_STATUS_SYNDV)
671 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
672 	}
673 }
674 
675 DEFINE_PER_CPU(unsigned, mce_poll_count);
676 
677 /*
678  * Poll for corrected events or events that happened before reset.
679  * Those are just logged through /dev/mcelog.
680  *
681  * This is executed in standard interrupt context.
682  *
683  * Note: spec recommends to panic for fatal unsignalled
684  * errors here. However this would be quite problematic --
685  * we would need to reimplement the Monarch handling and
686  * it would mess up the exclusion between exception handler
687  * and poll handler -- * so we skip this for now.
688  * These cases should not happen anyways, or only when the CPU
689  * is already totally * confused. In this case it's likely it will
690  * not fully execute the machine check handler either.
691  */
692 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
693 {
694 	bool error_seen = false;
695 	struct mce m;
696 	int i;
697 
698 	this_cpu_inc(mce_poll_count);
699 
700 	mce_gather_info(&m, NULL);
701 
702 	if (flags & MCP_TIMESTAMP)
703 		m.tsc = rdtsc();
704 
705 	for (i = 0; i < mca_cfg.banks; i++) {
706 		if (!mce_banks[i].ctl || !test_bit(i, *b))
707 			continue;
708 
709 		m.misc = 0;
710 		m.addr = 0;
711 		m.bank = i;
712 
713 		barrier();
714 		m.status = mce_rdmsrl(msr_ops.status(i));
715 		if (!(m.status & MCI_STATUS_VAL))
716 			continue;
717 
718 		/*
719 		 * Uncorrected or signalled events are handled by the exception
720 		 * handler when it is enabled, so don't process those here.
721 		 *
722 		 * TBD do the same check for MCI_STATUS_EN here?
723 		 */
724 		if (!(flags & MCP_UC) &&
725 		    (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
726 			continue;
727 
728 		error_seen = true;
729 
730 		mce_read_aux(&m, i);
731 
732 		m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
733 
734 		/*
735 		 * Don't get the IP here because it's unlikely to
736 		 * have anything to do with the actual error location.
737 		 */
738 		if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
739 			mce_log(&m);
740 		else if (mce_usable_address(&m)) {
741 			/*
742 			 * Although we skipped logging this, we still want
743 			 * to take action. Add to the pool so the registered
744 			 * notifiers will see it.
745 			 */
746 			if (!mce_gen_pool_add(&m))
747 				mce_schedule_work();
748 		}
749 
750 		/*
751 		 * Clear state for this bank.
752 		 */
753 		mce_wrmsrl(msr_ops.status(i), 0);
754 	}
755 
756 	/*
757 	 * Don't clear MCG_STATUS here because it's only defined for
758 	 * exceptions.
759 	 */
760 
761 	sync_core();
762 
763 	return error_seen;
764 }
765 EXPORT_SYMBOL_GPL(machine_check_poll);
766 
767 /*
768  * Do a quick check if any of the events requires a panic.
769  * This decides if we keep the events around or clear them.
770  */
771 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
772 			  struct pt_regs *regs)
773 {
774 	char *tmp;
775 	int i;
776 
777 	for (i = 0; i < mca_cfg.banks; i++) {
778 		m->status = mce_rdmsrl(msr_ops.status(i));
779 		if (!(m->status & MCI_STATUS_VAL))
780 			continue;
781 
782 		__set_bit(i, validp);
783 		if (quirk_no_way_out)
784 			quirk_no_way_out(i, m, regs);
785 
786 		if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
787 			mce_read_aux(m, i);
788 			*msg = tmp;
789 			return 1;
790 		}
791 	}
792 	return 0;
793 }
794 
795 /*
796  * Variable to establish order between CPUs while scanning.
797  * Each CPU spins initially until executing is equal its number.
798  */
799 static atomic_t mce_executing;
800 
801 /*
802  * Defines order of CPUs on entry. First CPU becomes Monarch.
803  */
804 static atomic_t mce_callin;
805 
806 /*
807  * Check if a timeout waiting for other CPUs happened.
808  */
809 static int mce_timed_out(u64 *t, const char *msg)
810 {
811 	/*
812 	 * The others already did panic for some reason.
813 	 * Bail out like in a timeout.
814 	 * rmb() to tell the compiler that system_state
815 	 * might have been modified by someone else.
816 	 */
817 	rmb();
818 	if (atomic_read(&mce_panicked))
819 		wait_for_panic();
820 	if (!mca_cfg.monarch_timeout)
821 		goto out;
822 	if ((s64)*t < SPINUNIT) {
823 		if (mca_cfg.tolerant <= 1)
824 			mce_panic(msg, NULL, NULL);
825 		cpu_missing = 1;
826 		return 1;
827 	}
828 	*t -= SPINUNIT;
829 out:
830 	touch_nmi_watchdog();
831 	return 0;
832 }
833 
834 /*
835  * The Monarch's reign.  The Monarch is the CPU who entered
836  * the machine check handler first. It waits for the others to
837  * raise the exception too and then grades them. When any
838  * error is fatal panic. Only then let the others continue.
839  *
840  * The other CPUs entering the MCE handler will be controlled by the
841  * Monarch. They are called Subjects.
842  *
843  * This way we prevent any potential data corruption in a unrecoverable case
844  * and also makes sure always all CPU's errors are examined.
845  *
846  * Also this detects the case of a machine check event coming from outer
847  * space (not detected by any CPUs) In this case some external agent wants
848  * us to shut down, so panic too.
849  *
850  * The other CPUs might still decide to panic if the handler happens
851  * in a unrecoverable place, but in this case the system is in a semi-stable
852  * state and won't corrupt anything by itself. It's ok to let the others
853  * continue for a bit first.
854  *
855  * All the spin loops have timeouts; when a timeout happens a CPU
856  * typically elects itself to be Monarch.
857  */
858 static void mce_reign(void)
859 {
860 	int cpu;
861 	struct mce *m = NULL;
862 	int global_worst = 0;
863 	char *msg = NULL;
864 	char *nmsg = NULL;
865 
866 	/*
867 	 * This CPU is the Monarch and the other CPUs have run
868 	 * through their handlers.
869 	 * Grade the severity of the errors of all the CPUs.
870 	 */
871 	for_each_possible_cpu(cpu) {
872 		int severity = mce_severity(&per_cpu(mces_seen, cpu),
873 					    mca_cfg.tolerant,
874 					    &nmsg, true);
875 		if (severity > global_worst) {
876 			msg = nmsg;
877 			global_worst = severity;
878 			m = &per_cpu(mces_seen, cpu);
879 		}
880 	}
881 
882 	/*
883 	 * Cannot recover? Panic here then.
884 	 * This dumps all the mces in the log buffer and stops the
885 	 * other CPUs.
886 	 */
887 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
888 		mce_panic("Fatal machine check", m, msg);
889 
890 	/*
891 	 * For UC somewhere we let the CPU who detects it handle it.
892 	 * Also must let continue the others, otherwise the handling
893 	 * CPU could deadlock on a lock.
894 	 */
895 
896 	/*
897 	 * No machine check event found. Must be some external
898 	 * source or one CPU is hung. Panic.
899 	 */
900 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
901 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
902 
903 	/*
904 	 * Now clear all the mces_seen so that they don't reappear on
905 	 * the next mce.
906 	 */
907 	for_each_possible_cpu(cpu)
908 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
909 }
910 
911 static atomic_t global_nwo;
912 
913 /*
914  * Start of Monarch synchronization. This waits until all CPUs have
915  * entered the exception handler and then determines if any of them
916  * saw a fatal event that requires panic. Then it executes them
917  * in the entry order.
918  * TBD double check parallel CPU hotunplug
919  */
920 static int mce_start(int *no_way_out)
921 {
922 	int order;
923 	int cpus = num_online_cpus();
924 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
925 
926 	if (!timeout)
927 		return -1;
928 
929 	atomic_add(*no_way_out, &global_nwo);
930 	/*
931 	 * Rely on the implied barrier below, such that global_nwo
932 	 * is updated before mce_callin.
933 	 */
934 	order = atomic_inc_return(&mce_callin);
935 
936 	/*
937 	 * Wait for everyone.
938 	 */
939 	while (atomic_read(&mce_callin) != cpus) {
940 		if (mce_timed_out(&timeout,
941 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
942 			atomic_set(&global_nwo, 0);
943 			return -1;
944 		}
945 		ndelay(SPINUNIT);
946 	}
947 
948 	/*
949 	 * mce_callin should be read before global_nwo
950 	 */
951 	smp_rmb();
952 
953 	if (order == 1) {
954 		/*
955 		 * Monarch: Starts executing now, the others wait.
956 		 */
957 		atomic_set(&mce_executing, 1);
958 	} else {
959 		/*
960 		 * Subject: Now start the scanning loop one by one in
961 		 * the original callin order.
962 		 * This way when there are any shared banks it will be
963 		 * only seen by one CPU before cleared, avoiding duplicates.
964 		 */
965 		while (atomic_read(&mce_executing) < order) {
966 			if (mce_timed_out(&timeout,
967 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
968 				atomic_set(&global_nwo, 0);
969 				return -1;
970 			}
971 			ndelay(SPINUNIT);
972 		}
973 	}
974 
975 	/*
976 	 * Cache the global no_way_out state.
977 	 */
978 	*no_way_out = atomic_read(&global_nwo);
979 
980 	return order;
981 }
982 
983 /*
984  * Synchronize between CPUs after main scanning loop.
985  * This invokes the bulk of the Monarch processing.
986  */
987 static int mce_end(int order)
988 {
989 	int ret = -1;
990 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
991 
992 	if (!timeout)
993 		goto reset;
994 	if (order < 0)
995 		goto reset;
996 
997 	/*
998 	 * Allow others to run.
999 	 */
1000 	atomic_inc(&mce_executing);
1001 
1002 	if (order == 1) {
1003 		/* CHECKME: Can this race with a parallel hotplug? */
1004 		int cpus = num_online_cpus();
1005 
1006 		/*
1007 		 * Monarch: Wait for everyone to go through their scanning
1008 		 * loops.
1009 		 */
1010 		while (atomic_read(&mce_executing) <= cpus) {
1011 			if (mce_timed_out(&timeout,
1012 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1013 				goto reset;
1014 			ndelay(SPINUNIT);
1015 		}
1016 
1017 		mce_reign();
1018 		barrier();
1019 		ret = 0;
1020 	} else {
1021 		/*
1022 		 * Subject: Wait for Monarch to finish.
1023 		 */
1024 		while (atomic_read(&mce_executing) != 0) {
1025 			if (mce_timed_out(&timeout,
1026 					  "Timeout: Monarch CPU did not finish machine check processing"))
1027 				goto reset;
1028 			ndelay(SPINUNIT);
1029 		}
1030 
1031 		/*
1032 		 * Don't reset anything. That's done by the Monarch.
1033 		 */
1034 		return 0;
1035 	}
1036 
1037 	/*
1038 	 * Reset all global state.
1039 	 */
1040 reset:
1041 	atomic_set(&global_nwo, 0);
1042 	atomic_set(&mce_callin, 0);
1043 	barrier();
1044 
1045 	/*
1046 	 * Let others run again.
1047 	 */
1048 	atomic_set(&mce_executing, 0);
1049 	return ret;
1050 }
1051 
1052 static void mce_clear_state(unsigned long *toclear)
1053 {
1054 	int i;
1055 
1056 	for (i = 0; i < mca_cfg.banks; i++) {
1057 		if (test_bit(i, toclear))
1058 			mce_wrmsrl(msr_ops.status(i), 0);
1059 	}
1060 }
1061 
1062 static int do_memory_failure(struct mce *m)
1063 {
1064 	int flags = MF_ACTION_REQUIRED;
1065 	int ret;
1066 
1067 	pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1068 	if (!(m->mcgstatus & MCG_STATUS_RIPV))
1069 		flags |= MF_MUST_KILL;
1070 	ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1071 	if (ret)
1072 		pr_err("Memory error not recovered");
1073 	else
1074 		set_mce_nospec(m->addr >> PAGE_SHIFT);
1075 	return ret;
1076 }
1077 
1078 
1079 /*
1080  * Cases where we avoid rendezvous handler timeout:
1081  * 1) If this CPU is offline.
1082  *
1083  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1084  *  skip those CPUs which remain looping in the 1st kernel - see
1085  *  crash_nmi_callback().
1086  *
1087  * Note: there still is a small window between kexec-ing and the new,
1088  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1089  * might not get handled properly.
1090  */
1091 static bool __mc_check_crashing_cpu(int cpu)
1092 {
1093 	if (cpu_is_offline(cpu) ||
1094 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1095 		u64 mcgstatus;
1096 
1097 		mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1098 		if (mcgstatus & MCG_STATUS_RIPV) {
1099 			mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1100 			return true;
1101 		}
1102 	}
1103 	return false;
1104 }
1105 
1106 static void __mc_scan_banks(struct mce *m, struct mce *final,
1107 			    unsigned long *toclear, unsigned long *valid_banks,
1108 			    int no_way_out, int *worst)
1109 {
1110 	struct mca_config *cfg = &mca_cfg;
1111 	int severity, i;
1112 
1113 	for (i = 0; i < cfg->banks; i++) {
1114 		__clear_bit(i, toclear);
1115 		if (!test_bit(i, valid_banks))
1116 			continue;
1117 
1118 		if (!mce_banks[i].ctl)
1119 			continue;
1120 
1121 		m->misc = 0;
1122 		m->addr = 0;
1123 		m->bank = i;
1124 
1125 		m->status = mce_rdmsrl(msr_ops.status(i));
1126 		if (!(m->status & MCI_STATUS_VAL))
1127 			continue;
1128 
1129 		/*
1130 		 * Corrected or non-signaled errors are handled by
1131 		 * machine_check_poll(). Leave them alone, unless this panics.
1132 		 */
1133 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1134 			!no_way_out)
1135 			continue;
1136 
1137 		/* Set taint even when machine check was not enabled. */
1138 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1139 
1140 		severity = mce_severity(m, cfg->tolerant, NULL, true);
1141 
1142 		/*
1143 		 * When machine check was for corrected/deferred handler don't
1144 		 * touch, unless we're panicking.
1145 		 */
1146 		if ((severity == MCE_KEEP_SEVERITY ||
1147 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1148 			continue;
1149 
1150 		__set_bit(i, toclear);
1151 
1152 		/* Machine check event was not enabled. Clear, but ignore. */
1153 		if (severity == MCE_NO_SEVERITY)
1154 			continue;
1155 
1156 		mce_read_aux(m, i);
1157 
1158 		/* assuming valid severity level != 0 */
1159 		m->severity = severity;
1160 
1161 		mce_log(m);
1162 
1163 		if (severity > *worst) {
1164 			*final = *m;
1165 			*worst = severity;
1166 		}
1167 	}
1168 
1169 	/* mce_clear_state will clear *final, save locally for use later */
1170 	*m = *final;
1171 }
1172 
1173 /*
1174  * The actual machine check handler. This only handles real
1175  * exceptions when something got corrupted coming in through int 18.
1176  *
1177  * This is executed in NMI context not subject to normal locking rules. This
1178  * implies that most kernel services cannot be safely used. Don't even
1179  * think about putting a printk in there!
1180  *
1181  * On Intel systems this is entered on all CPUs in parallel through
1182  * MCE broadcast. However some CPUs might be broken beyond repair,
1183  * so be always careful when synchronizing with others.
1184  */
1185 void do_machine_check(struct pt_regs *regs, long error_code)
1186 {
1187 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1188 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1189 	struct mca_config *cfg = &mca_cfg;
1190 	int cpu = smp_processor_id();
1191 	char *msg = "Unknown";
1192 	struct mce m, *final;
1193 	int worst = 0;
1194 
1195 	/*
1196 	 * Establish sequential order between the CPUs entering the machine
1197 	 * check handler.
1198 	 */
1199 	int order = -1;
1200 
1201 	/*
1202 	 * If no_way_out gets set, there is no safe way to recover from this
1203 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1204 	 */
1205 	int no_way_out = 0;
1206 
1207 	/*
1208 	 * If kill_it gets set, there might be a way to recover from this
1209 	 * error.
1210 	 */
1211 	int kill_it = 0;
1212 
1213 	/*
1214 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1215 	 * on Intel.
1216 	 */
1217 	int lmce = 1;
1218 
1219 	if (__mc_check_crashing_cpu(cpu))
1220 		return;
1221 
1222 	ist_enter(regs);
1223 
1224 	this_cpu_inc(mce_exception_count);
1225 
1226 	mce_gather_info(&m, regs);
1227 	m.tsc = rdtsc();
1228 
1229 	final = this_cpu_ptr(&mces_seen);
1230 	*final = m;
1231 
1232 	memset(valid_banks, 0, sizeof(valid_banks));
1233 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1234 
1235 	barrier();
1236 
1237 	/*
1238 	 * When no restart IP might need to kill or panic.
1239 	 * Assume the worst for now, but if we find the
1240 	 * severity is MCE_AR_SEVERITY we have other options.
1241 	 */
1242 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1243 		kill_it = 1;
1244 
1245 	/*
1246 	 * Check if this MCE is signaled to only this logical processor,
1247 	 * on Intel only.
1248 	 */
1249 	if (m.cpuvendor == X86_VENDOR_INTEL)
1250 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1251 
1252 	/*
1253 	 * Local machine check may already know that we have to panic.
1254 	 * Broadcast machine check begins rendezvous in mce_start()
1255 	 * Go through all banks in exclusion of the other CPUs. This way we
1256 	 * don't report duplicated events on shared banks because the first one
1257 	 * to see it will clear it.
1258 	 */
1259 	if (lmce) {
1260 		if (no_way_out)
1261 			mce_panic("Fatal local machine check", &m, msg);
1262 	} else {
1263 		order = mce_start(&no_way_out);
1264 	}
1265 
1266 	__mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst);
1267 
1268 	if (!no_way_out)
1269 		mce_clear_state(toclear);
1270 
1271 	/*
1272 	 * Do most of the synchronization with other CPUs.
1273 	 * When there's any problem use only local no_way_out state.
1274 	 */
1275 	if (!lmce) {
1276 		if (mce_end(order) < 0)
1277 			no_way_out = worst >= MCE_PANIC_SEVERITY;
1278 	} else {
1279 		/*
1280 		 * If there was a fatal machine check we should have
1281 		 * already called mce_panic earlier in this function.
1282 		 * Since we re-read the banks, we might have found
1283 		 * something new. Check again to see if we found a
1284 		 * fatal error. We call "mce_severity()" again to
1285 		 * make sure we have the right "msg".
1286 		 */
1287 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1288 			mce_severity(&m, cfg->tolerant, &msg, true);
1289 			mce_panic("Local fatal machine check!", &m, msg);
1290 		}
1291 	}
1292 
1293 	/*
1294 	 * If tolerant is at an insane level we drop requests to kill
1295 	 * processes and continue even when there is no way out.
1296 	 */
1297 	if (cfg->tolerant == 3)
1298 		kill_it = 0;
1299 	else if (no_way_out)
1300 		mce_panic("Fatal machine check on current CPU", &m, msg);
1301 
1302 	if (worst > 0)
1303 		mce_report_event(regs);
1304 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1305 
1306 	sync_core();
1307 
1308 	if (worst != MCE_AR_SEVERITY && !kill_it)
1309 		goto out_ist;
1310 
1311 	/* Fault was in user mode and we need to take some action */
1312 	if ((m.cs & 3) == 3) {
1313 		ist_begin_non_atomic(regs);
1314 		local_irq_enable();
1315 
1316 		if (kill_it || do_memory_failure(&m))
1317 			force_sig(SIGBUS, current);
1318 		local_irq_disable();
1319 		ist_end_non_atomic();
1320 	} else {
1321 		if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0))
1322 			mce_panic("Failed kernel mode recovery", &m, NULL);
1323 	}
1324 
1325 out_ist:
1326 	ist_exit(regs);
1327 }
1328 EXPORT_SYMBOL_GPL(do_machine_check);
1329 
1330 #ifndef CONFIG_MEMORY_FAILURE
1331 int memory_failure(unsigned long pfn, int flags)
1332 {
1333 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1334 	BUG_ON(flags & MF_ACTION_REQUIRED);
1335 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1336 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1337 	       pfn);
1338 
1339 	return 0;
1340 }
1341 #endif
1342 
1343 /*
1344  * Periodic polling timer for "silent" machine check errors.  If the
1345  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1346  * errors, poll 2x slower (up to check_interval seconds).
1347  */
1348 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1349 
1350 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1351 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1352 
1353 static unsigned long mce_adjust_timer_default(unsigned long interval)
1354 {
1355 	return interval;
1356 }
1357 
1358 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1359 
1360 static void __start_timer(struct timer_list *t, unsigned long interval)
1361 {
1362 	unsigned long when = jiffies + interval;
1363 	unsigned long flags;
1364 
1365 	local_irq_save(flags);
1366 
1367 	if (!timer_pending(t) || time_before(when, t->expires))
1368 		mod_timer(t, round_jiffies(when));
1369 
1370 	local_irq_restore(flags);
1371 }
1372 
1373 static void mce_timer_fn(struct timer_list *t)
1374 {
1375 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1376 	unsigned long iv;
1377 
1378 	WARN_ON(cpu_t != t);
1379 
1380 	iv = __this_cpu_read(mce_next_interval);
1381 
1382 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1383 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1384 
1385 		if (mce_intel_cmci_poll()) {
1386 			iv = mce_adjust_timer(iv);
1387 			goto done;
1388 		}
1389 	}
1390 
1391 	/*
1392 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1393 	 * interval, otherwise increase the polling interval.
1394 	 */
1395 	if (mce_notify_irq())
1396 		iv = max(iv / 2, (unsigned long) HZ/100);
1397 	else
1398 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1399 
1400 done:
1401 	__this_cpu_write(mce_next_interval, iv);
1402 	__start_timer(t, iv);
1403 }
1404 
1405 /*
1406  * Ensure that the timer is firing in @interval from now.
1407  */
1408 void mce_timer_kick(unsigned long interval)
1409 {
1410 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1411 	unsigned long iv = __this_cpu_read(mce_next_interval);
1412 
1413 	__start_timer(t, interval);
1414 
1415 	if (interval < iv)
1416 		__this_cpu_write(mce_next_interval, interval);
1417 }
1418 
1419 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1420 static void mce_timer_delete_all(void)
1421 {
1422 	int cpu;
1423 
1424 	for_each_online_cpu(cpu)
1425 		del_timer_sync(&per_cpu(mce_timer, cpu));
1426 }
1427 
1428 /*
1429  * Notify the user(s) about new machine check events.
1430  * Can be called from interrupt context, but not from machine check/NMI
1431  * context.
1432  */
1433 int mce_notify_irq(void)
1434 {
1435 	/* Not more than two messages every minute */
1436 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1437 
1438 	if (test_and_clear_bit(0, &mce_need_notify)) {
1439 		mce_work_trigger();
1440 
1441 		if (__ratelimit(&ratelimit))
1442 			pr_info(HW_ERR "Machine check events logged\n");
1443 
1444 		return 1;
1445 	}
1446 	return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(mce_notify_irq);
1449 
1450 static int __mcheck_cpu_mce_banks_init(void)
1451 {
1452 	int i;
1453 	u8 num_banks = mca_cfg.banks;
1454 
1455 	mce_banks = kcalloc(num_banks, sizeof(struct mce_bank), GFP_KERNEL);
1456 	if (!mce_banks)
1457 		return -ENOMEM;
1458 
1459 	for (i = 0; i < num_banks; i++) {
1460 		struct mce_bank *b = &mce_banks[i];
1461 
1462 		b->ctl = -1ULL;
1463 		b->init = 1;
1464 	}
1465 	return 0;
1466 }
1467 
1468 /*
1469  * Initialize Machine Checks for a CPU.
1470  */
1471 static int __mcheck_cpu_cap_init(void)
1472 {
1473 	unsigned b;
1474 	u64 cap;
1475 
1476 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1477 
1478 	b = cap & MCG_BANKCNT_MASK;
1479 	if (!mca_cfg.banks)
1480 		pr_info("CPU supports %d MCE banks\n", b);
1481 
1482 	if (b > MAX_NR_BANKS) {
1483 		pr_warn("Using only %u machine check banks out of %u\n",
1484 			MAX_NR_BANKS, b);
1485 		b = MAX_NR_BANKS;
1486 	}
1487 
1488 	/* Don't support asymmetric configurations today */
1489 	WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1490 	mca_cfg.banks = b;
1491 
1492 	if (!mce_banks) {
1493 		int err = __mcheck_cpu_mce_banks_init();
1494 
1495 		if (err)
1496 			return err;
1497 	}
1498 
1499 	/* Use accurate RIP reporting if available. */
1500 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1501 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1502 
1503 	if (cap & MCG_SER_P)
1504 		mca_cfg.ser = 1;
1505 
1506 	return 0;
1507 }
1508 
1509 static void __mcheck_cpu_init_generic(void)
1510 {
1511 	enum mcp_flags m_fl = 0;
1512 	mce_banks_t all_banks;
1513 	u64 cap;
1514 
1515 	if (!mca_cfg.bootlog)
1516 		m_fl = MCP_DONTLOG;
1517 
1518 	/*
1519 	 * Log the machine checks left over from the previous reset.
1520 	 */
1521 	bitmap_fill(all_banks, MAX_NR_BANKS);
1522 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1523 
1524 	cr4_set_bits(X86_CR4_MCE);
1525 
1526 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1527 	if (cap & MCG_CTL_P)
1528 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1529 }
1530 
1531 static void __mcheck_cpu_init_clear_banks(void)
1532 {
1533 	int i;
1534 
1535 	for (i = 0; i < mca_cfg.banks; i++) {
1536 		struct mce_bank *b = &mce_banks[i];
1537 
1538 		if (!b->init)
1539 			continue;
1540 		wrmsrl(msr_ops.ctl(i), b->ctl);
1541 		wrmsrl(msr_ops.status(i), 0);
1542 	}
1543 }
1544 
1545 /*
1546  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1547  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1548  * Vol 3B Table 15-20). But this confuses both the code that determines
1549  * whether the machine check occurred in kernel or user mode, and also
1550  * the severity assessment code. Pretend that EIPV was set, and take the
1551  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1552  */
1553 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1554 {
1555 	if (bank != 0)
1556 		return;
1557 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1558 		return;
1559 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1560 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1561 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1562 			  MCACOD)) !=
1563 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1564 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1565 			  MCI_STATUS_AR|MCACOD_INSTR))
1566 		return;
1567 
1568 	m->mcgstatus |= MCG_STATUS_EIPV;
1569 	m->ip = regs->ip;
1570 	m->cs = regs->cs;
1571 }
1572 
1573 /* Add per CPU specific workarounds here */
1574 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1575 {
1576 	struct mca_config *cfg = &mca_cfg;
1577 
1578 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1579 		pr_info("unknown CPU type - not enabling MCE support\n");
1580 		return -EOPNOTSUPP;
1581 	}
1582 
1583 	/* This should be disabled by the BIOS, but isn't always */
1584 	if (c->x86_vendor == X86_VENDOR_AMD) {
1585 		if (c->x86 == 15 && cfg->banks > 4) {
1586 			/*
1587 			 * disable GART TBL walk error reporting, which
1588 			 * trips off incorrectly with the IOMMU & 3ware
1589 			 * & Cerberus:
1590 			 */
1591 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1592 		}
1593 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1594 			/*
1595 			 * Lots of broken BIOS around that don't clear them
1596 			 * by default and leave crap in there. Don't log:
1597 			 */
1598 			cfg->bootlog = 0;
1599 		}
1600 		/*
1601 		 * Various K7s with broken bank 0 around. Always disable
1602 		 * by default.
1603 		 */
1604 		if (c->x86 == 6 && cfg->banks > 0)
1605 			mce_banks[0].ctl = 0;
1606 
1607 		/*
1608 		 * overflow_recov is supported for F15h Models 00h-0fh
1609 		 * even though we don't have a CPUID bit for it.
1610 		 */
1611 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1612 			mce_flags.overflow_recov = 1;
1613 
1614 		/*
1615 		 * Turn off MC4_MISC thresholding banks on those models since
1616 		 * they're not supported there.
1617 		 */
1618 		if (c->x86 == 0x15 &&
1619 		    (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1620 			int i;
1621 			u64 hwcr;
1622 			bool need_toggle;
1623 			u32 msrs[] = {
1624 				0x00000413, /* MC4_MISC0 */
1625 				0xc0000408, /* MC4_MISC1 */
1626 			};
1627 
1628 			rdmsrl(MSR_K7_HWCR, hwcr);
1629 
1630 			/* McStatusWrEn has to be set */
1631 			need_toggle = !(hwcr & BIT(18));
1632 
1633 			if (need_toggle)
1634 				wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1635 
1636 			/* Clear CntP bit safely */
1637 			for (i = 0; i < ARRAY_SIZE(msrs); i++)
1638 				msr_clear_bit(msrs[i], 62);
1639 
1640 			/* restore old settings */
1641 			if (need_toggle)
1642 				wrmsrl(MSR_K7_HWCR, hwcr);
1643 		}
1644 	}
1645 
1646 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1647 		/*
1648 		 * SDM documents that on family 6 bank 0 should not be written
1649 		 * because it aliases to another special BIOS controlled
1650 		 * register.
1651 		 * But it's not aliased anymore on model 0x1a+
1652 		 * Don't ignore bank 0 completely because there could be a
1653 		 * valid event later, merely don't write CTL0.
1654 		 */
1655 
1656 		if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1657 			mce_banks[0].init = 0;
1658 
1659 		/*
1660 		 * All newer Intel systems support MCE broadcasting. Enable
1661 		 * synchronization with a one second timeout.
1662 		 */
1663 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1664 			cfg->monarch_timeout < 0)
1665 			cfg->monarch_timeout = USEC_PER_SEC;
1666 
1667 		/*
1668 		 * There are also broken BIOSes on some Pentium M and
1669 		 * earlier systems:
1670 		 */
1671 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1672 			cfg->bootlog = 0;
1673 
1674 		if (c->x86 == 6 && c->x86_model == 45)
1675 			quirk_no_way_out = quirk_sandybridge_ifu;
1676 	}
1677 	if (cfg->monarch_timeout < 0)
1678 		cfg->monarch_timeout = 0;
1679 	if (cfg->bootlog != 0)
1680 		cfg->panic_timeout = 30;
1681 
1682 	return 0;
1683 }
1684 
1685 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1686 {
1687 	if (c->x86 != 5)
1688 		return 0;
1689 
1690 	switch (c->x86_vendor) {
1691 	case X86_VENDOR_INTEL:
1692 		intel_p5_mcheck_init(c);
1693 		return 1;
1694 		break;
1695 	case X86_VENDOR_CENTAUR:
1696 		winchip_mcheck_init(c);
1697 		return 1;
1698 		break;
1699 	default:
1700 		return 0;
1701 	}
1702 
1703 	return 0;
1704 }
1705 
1706 /*
1707  * Init basic CPU features needed for early decoding of MCEs.
1708  */
1709 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1710 {
1711 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1712 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1713 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1714 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1715 
1716 		if (mce_flags.smca) {
1717 			msr_ops.ctl	= smca_ctl_reg;
1718 			msr_ops.status	= smca_status_reg;
1719 			msr_ops.addr	= smca_addr_reg;
1720 			msr_ops.misc	= smca_misc_reg;
1721 		}
1722 	}
1723 }
1724 
1725 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1726 {
1727 	struct mca_config *cfg = &mca_cfg;
1728 
1729 	 /*
1730 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1731 	  * synchronization with a one second timeout.
1732 	  */
1733 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1734 	     c->x86 > 6) {
1735 		if (cfg->monarch_timeout < 0)
1736 			cfg->monarch_timeout = USEC_PER_SEC;
1737 	}
1738 }
1739 
1740 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1741 {
1742 	switch (c->x86_vendor) {
1743 	case X86_VENDOR_INTEL:
1744 		mce_intel_feature_init(c);
1745 		mce_adjust_timer = cmci_intel_adjust_timer;
1746 		break;
1747 
1748 	case X86_VENDOR_AMD: {
1749 		mce_amd_feature_init(c);
1750 		break;
1751 		}
1752 
1753 	case X86_VENDOR_HYGON:
1754 		mce_hygon_feature_init(c);
1755 		break;
1756 
1757 	case X86_VENDOR_CENTAUR:
1758 		mce_centaur_feature_init(c);
1759 		break;
1760 
1761 	default:
1762 		break;
1763 	}
1764 }
1765 
1766 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1767 {
1768 	switch (c->x86_vendor) {
1769 	case X86_VENDOR_INTEL:
1770 		mce_intel_feature_clear(c);
1771 		break;
1772 	default:
1773 		break;
1774 	}
1775 }
1776 
1777 static void mce_start_timer(struct timer_list *t)
1778 {
1779 	unsigned long iv = check_interval * HZ;
1780 
1781 	if (mca_cfg.ignore_ce || !iv)
1782 		return;
1783 
1784 	this_cpu_write(mce_next_interval, iv);
1785 	__start_timer(t, iv);
1786 }
1787 
1788 static void __mcheck_cpu_setup_timer(void)
1789 {
1790 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1791 
1792 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1793 }
1794 
1795 static void __mcheck_cpu_init_timer(void)
1796 {
1797 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1798 
1799 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1800 	mce_start_timer(t);
1801 }
1802 
1803 /* Handle unconfigured int18 (should never happen) */
1804 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1805 {
1806 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1807 	       smp_processor_id());
1808 }
1809 
1810 /* Call the installed machine check handler for this CPU setup. */
1811 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1812 						unexpected_machine_check;
1813 
1814 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1815 {
1816 	machine_check_vector(regs, error_code);
1817 }
1818 
1819 /*
1820  * Called for each booted CPU to set up machine checks.
1821  * Must be called with preempt off:
1822  */
1823 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1824 {
1825 	if (mca_cfg.disabled)
1826 		return;
1827 
1828 	if (__mcheck_cpu_ancient_init(c))
1829 		return;
1830 
1831 	if (!mce_available(c))
1832 		return;
1833 
1834 	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1835 		mca_cfg.disabled = 1;
1836 		return;
1837 	}
1838 
1839 	if (mce_gen_pool_init()) {
1840 		mca_cfg.disabled = 1;
1841 		pr_emerg("Couldn't allocate MCE records pool!\n");
1842 		return;
1843 	}
1844 
1845 	machine_check_vector = do_machine_check;
1846 
1847 	__mcheck_cpu_init_early(c);
1848 	__mcheck_cpu_init_generic();
1849 	__mcheck_cpu_init_vendor(c);
1850 	__mcheck_cpu_init_clear_banks();
1851 	__mcheck_cpu_setup_timer();
1852 }
1853 
1854 /*
1855  * Called for each booted CPU to clear some machine checks opt-ins
1856  */
1857 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1858 {
1859 	if (mca_cfg.disabled)
1860 		return;
1861 
1862 	if (!mce_available(c))
1863 		return;
1864 
1865 	/*
1866 	 * Possibly to clear general settings generic to x86
1867 	 * __mcheck_cpu_clear_generic(c);
1868 	 */
1869 	__mcheck_cpu_clear_vendor(c);
1870 
1871 }
1872 
1873 static void __mce_disable_bank(void *arg)
1874 {
1875 	int bank = *((int *)arg);
1876 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1877 	cmci_disable_bank(bank);
1878 }
1879 
1880 void mce_disable_bank(int bank)
1881 {
1882 	if (bank >= mca_cfg.banks) {
1883 		pr_warn(FW_BUG
1884 			"Ignoring request to disable invalid MCA bank %d.\n",
1885 			bank);
1886 		return;
1887 	}
1888 	set_bit(bank, mce_banks_ce_disabled);
1889 	on_each_cpu(__mce_disable_bank, &bank, 1);
1890 }
1891 
1892 /*
1893  * mce=off Disables machine check
1894  * mce=no_cmci Disables CMCI
1895  * mce=no_lmce Disables LMCE
1896  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1897  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1898  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1899  *	monarchtimeout is how long to wait for other CPUs on machine
1900  *	check, or 0 to not wait
1901  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1902 	and older.
1903  * mce=nobootlog Don't log MCEs from before booting.
1904  * mce=bios_cmci_threshold Don't program the CMCI threshold
1905  * mce=recovery force enable memcpy_mcsafe()
1906  */
1907 static int __init mcheck_enable(char *str)
1908 {
1909 	struct mca_config *cfg = &mca_cfg;
1910 
1911 	if (*str == 0) {
1912 		enable_p5_mce();
1913 		return 1;
1914 	}
1915 	if (*str == '=')
1916 		str++;
1917 	if (!strcmp(str, "off"))
1918 		cfg->disabled = 1;
1919 	else if (!strcmp(str, "no_cmci"))
1920 		cfg->cmci_disabled = true;
1921 	else if (!strcmp(str, "no_lmce"))
1922 		cfg->lmce_disabled = 1;
1923 	else if (!strcmp(str, "dont_log_ce"))
1924 		cfg->dont_log_ce = true;
1925 	else if (!strcmp(str, "ignore_ce"))
1926 		cfg->ignore_ce = true;
1927 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1928 		cfg->bootlog = (str[0] == 'b');
1929 	else if (!strcmp(str, "bios_cmci_threshold"))
1930 		cfg->bios_cmci_threshold = 1;
1931 	else if (!strcmp(str, "recovery"))
1932 		cfg->recovery = 1;
1933 	else if (isdigit(str[0])) {
1934 		if (get_option(&str, &cfg->tolerant) == 2)
1935 			get_option(&str, &(cfg->monarch_timeout));
1936 	} else {
1937 		pr_info("mce argument %s ignored. Please use /sys\n", str);
1938 		return 0;
1939 	}
1940 	return 1;
1941 }
1942 __setup("mce", mcheck_enable);
1943 
1944 int __init mcheck_init(void)
1945 {
1946 	mcheck_intel_therm_init();
1947 	mce_register_decode_chain(&first_nb);
1948 	mce_register_decode_chain(&mce_srao_nb);
1949 	mce_register_decode_chain(&mce_default_nb);
1950 	mcheck_vendor_init_severity();
1951 
1952 	INIT_WORK(&mce_work, mce_gen_pool_process);
1953 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
1954 
1955 	return 0;
1956 }
1957 
1958 /*
1959  * mce_syscore: PM support
1960  */
1961 
1962 /*
1963  * Disable machine checks on suspend and shutdown. We can't really handle
1964  * them later.
1965  */
1966 static void mce_disable_error_reporting(void)
1967 {
1968 	int i;
1969 
1970 	for (i = 0; i < mca_cfg.banks; i++) {
1971 		struct mce_bank *b = &mce_banks[i];
1972 
1973 		if (b->init)
1974 			wrmsrl(msr_ops.ctl(i), 0);
1975 	}
1976 	return;
1977 }
1978 
1979 static void vendor_disable_error_reporting(void)
1980 {
1981 	/*
1982 	 * Don't clear on Intel or AMD or Hygon CPUs. Some of these MSRs
1983 	 * are socket-wide.
1984 	 * Disabling them for just a single offlined CPU is bad, since it will
1985 	 * inhibit reporting for all shared resources on the socket like the
1986 	 * last level cache (LLC), the integrated memory controller (iMC), etc.
1987 	 */
1988 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1989 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
1990 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1991 		return;
1992 
1993 	mce_disable_error_reporting();
1994 }
1995 
1996 static int mce_syscore_suspend(void)
1997 {
1998 	vendor_disable_error_reporting();
1999 	return 0;
2000 }
2001 
2002 static void mce_syscore_shutdown(void)
2003 {
2004 	vendor_disable_error_reporting();
2005 }
2006 
2007 /*
2008  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2009  * Only one CPU is active at this time, the others get re-added later using
2010  * CPU hotplug:
2011  */
2012 static void mce_syscore_resume(void)
2013 {
2014 	__mcheck_cpu_init_generic();
2015 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2016 	__mcheck_cpu_init_clear_banks();
2017 }
2018 
2019 static struct syscore_ops mce_syscore_ops = {
2020 	.suspend	= mce_syscore_suspend,
2021 	.shutdown	= mce_syscore_shutdown,
2022 	.resume		= mce_syscore_resume,
2023 };
2024 
2025 /*
2026  * mce_device: Sysfs support
2027  */
2028 
2029 static void mce_cpu_restart(void *data)
2030 {
2031 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2032 		return;
2033 	__mcheck_cpu_init_generic();
2034 	__mcheck_cpu_init_clear_banks();
2035 	__mcheck_cpu_init_timer();
2036 }
2037 
2038 /* Reinit MCEs after user configuration changes */
2039 static void mce_restart(void)
2040 {
2041 	mce_timer_delete_all();
2042 	on_each_cpu(mce_cpu_restart, NULL, 1);
2043 }
2044 
2045 /* Toggle features for corrected errors */
2046 static void mce_disable_cmci(void *data)
2047 {
2048 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2049 		return;
2050 	cmci_clear();
2051 }
2052 
2053 static void mce_enable_ce(void *all)
2054 {
2055 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2056 		return;
2057 	cmci_reenable();
2058 	cmci_recheck();
2059 	if (all)
2060 		__mcheck_cpu_init_timer();
2061 }
2062 
2063 static struct bus_type mce_subsys = {
2064 	.name		= "machinecheck",
2065 	.dev_name	= "machinecheck",
2066 };
2067 
2068 DEFINE_PER_CPU(struct device *, mce_device);
2069 
2070 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2071 {
2072 	return container_of(attr, struct mce_bank, attr);
2073 }
2074 
2075 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2076 			 char *buf)
2077 {
2078 	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2079 }
2080 
2081 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2082 			const char *buf, size_t size)
2083 {
2084 	u64 new;
2085 
2086 	if (kstrtou64(buf, 0, &new) < 0)
2087 		return -EINVAL;
2088 
2089 	attr_to_bank(attr)->ctl = new;
2090 	mce_restart();
2091 
2092 	return size;
2093 }
2094 
2095 static ssize_t set_ignore_ce(struct device *s,
2096 			     struct device_attribute *attr,
2097 			     const char *buf, size_t size)
2098 {
2099 	u64 new;
2100 
2101 	if (kstrtou64(buf, 0, &new) < 0)
2102 		return -EINVAL;
2103 
2104 	mutex_lock(&mce_sysfs_mutex);
2105 	if (mca_cfg.ignore_ce ^ !!new) {
2106 		if (new) {
2107 			/* disable ce features */
2108 			mce_timer_delete_all();
2109 			on_each_cpu(mce_disable_cmci, NULL, 1);
2110 			mca_cfg.ignore_ce = true;
2111 		} else {
2112 			/* enable ce features */
2113 			mca_cfg.ignore_ce = false;
2114 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2115 		}
2116 	}
2117 	mutex_unlock(&mce_sysfs_mutex);
2118 
2119 	return size;
2120 }
2121 
2122 static ssize_t set_cmci_disabled(struct device *s,
2123 				 struct device_attribute *attr,
2124 				 const char *buf, size_t size)
2125 {
2126 	u64 new;
2127 
2128 	if (kstrtou64(buf, 0, &new) < 0)
2129 		return -EINVAL;
2130 
2131 	mutex_lock(&mce_sysfs_mutex);
2132 	if (mca_cfg.cmci_disabled ^ !!new) {
2133 		if (new) {
2134 			/* disable cmci */
2135 			on_each_cpu(mce_disable_cmci, NULL, 1);
2136 			mca_cfg.cmci_disabled = true;
2137 		} else {
2138 			/* enable cmci */
2139 			mca_cfg.cmci_disabled = false;
2140 			on_each_cpu(mce_enable_ce, NULL, 1);
2141 		}
2142 	}
2143 	mutex_unlock(&mce_sysfs_mutex);
2144 
2145 	return size;
2146 }
2147 
2148 static ssize_t store_int_with_restart(struct device *s,
2149 				      struct device_attribute *attr,
2150 				      const char *buf, size_t size)
2151 {
2152 	unsigned long old_check_interval = check_interval;
2153 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2154 
2155 	if (check_interval == old_check_interval)
2156 		return ret;
2157 
2158 	mutex_lock(&mce_sysfs_mutex);
2159 	mce_restart();
2160 	mutex_unlock(&mce_sysfs_mutex);
2161 
2162 	return ret;
2163 }
2164 
2165 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2166 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2167 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2168 
2169 static struct dev_ext_attribute dev_attr_check_interval = {
2170 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2171 	&check_interval
2172 };
2173 
2174 static struct dev_ext_attribute dev_attr_ignore_ce = {
2175 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2176 	&mca_cfg.ignore_ce
2177 };
2178 
2179 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2180 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2181 	&mca_cfg.cmci_disabled
2182 };
2183 
2184 static struct device_attribute *mce_device_attrs[] = {
2185 	&dev_attr_tolerant.attr,
2186 	&dev_attr_check_interval.attr,
2187 #ifdef CONFIG_X86_MCELOG_LEGACY
2188 	&dev_attr_trigger,
2189 #endif
2190 	&dev_attr_monarch_timeout.attr,
2191 	&dev_attr_dont_log_ce.attr,
2192 	&dev_attr_ignore_ce.attr,
2193 	&dev_attr_cmci_disabled.attr,
2194 	NULL
2195 };
2196 
2197 static cpumask_var_t mce_device_initialized;
2198 
2199 static void mce_device_release(struct device *dev)
2200 {
2201 	kfree(dev);
2202 }
2203 
2204 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2205 static int mce_device_create(unsigned int cpu)
2206 {
2207 	struct device *dev;
2208 	int err;
2209 	int i, j;
2210 
2211 	if (!mce_available(&boot_cpu_data))
2212 		return -EIO;
2213 
2214 	dev = per_cpu(mce_device, cpu);
2215 	if (dev)
2216 		return 0;
2217 
2218 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2219 	if (!dev)
2220 		return -ENOMEM;
2221 	dev->id  = cpu;
2222 	dev->bus = &mce_subsys;
2223 	dev->release = &mce_device_release;
2224 
2225 	err = device_register(dev);
2226 	if (err) {
2227 		put_device(dev);
2228 		return err;
2229 	}
2230 
2231 	for (i = 0; mce_device_attrs[i]; i++) {
2232 		err = device_create_file(dev, mce_device_attrs[i]);
2233 		if (err)
2234 			goto error;
2235 	}
2236 	for (j = 0; j < mca_cfg.banks; j++) {
2237 		err = device_create_file(dev, &mce_banks[j].attr);
2238 		if (err)
2239 			goto error2;
2240 	}
2241 	cpumask_set_cpu(cpu, mce_device_initialized);
2242 	per_cpu(mce_device, cpu) = dev;
2243 
2244 	return 0;
2245 error2:
2246 	while (--j >= 0)
2247 		device_remove_file(dev, &mce_banks[j].attr);
2248 error:
2249 	while (--i >= 0)
2250 		device_remove_file(dev, mce_device_attrs[i]);
2251 
2252 	device_unregister(dev);
2253 
2254 	return err;
2255 }
2256 
2257 static void mce_device_remove(unsigned int cpu)
2258 {
2259 	struct device *dev = per_cpu(mce_device, cpu);
2260 	int i;
2261 
2262 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2263 		return;
2264 
2265 	for (i = 0; mce_device_attrs[i]; i++)
2266 		device_remove_file(dev, mce_device_attrs[i]);
2267 
2268 	for (i = 0; i < mca_cfg.banks; i++)
2269 		device_remove_file(dev, &mce_banks[i].attr);
2270 
2271 	device_unregister(dev);
2272 	cpumask_clear_cpu(cpu, mce_device_initialized);
2273 	per_cpu(mce_device, cpu) = NULL;
2274 }
2275 
2276 /* Make sure there are no machine checks on offlined CPUs. */
2277 static void mce_disable_cpu(void)
2278 {
2279 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2280 		return;
2281 
2282 	if (!cpuhp_tasks_frozen)
2283 		cmci_clear();
2284 
2285 	vendor_disable_error_reporting();
2286 }
2287 
2288 static void mce_reenable_cpu(void)
2289 {
2290 	int i;
2291 
2292 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2293 		return;
2294 
2295 	if (!cpuhp_tasks_frozen)
2296 		cmci_reenable();
2297 	for (i = 0; i < mca_cfg.banks; i++) {
2298 		struct mce_bank *b = &mce_banks[i];
2299 
2300 		if (b->init)
2301 			wrmsrl(msr_ops.ctl(i), b->ctl);
2302 	}
2303 }
2304 
2305 static int mce_cpu_dead(unsigned int cpu)
2306 {
2307 	mce_intel_hcpu_update(cpu);
2308 
2309 	/* intentionally ignoring frozen here */
2310 	if (!cpuhp_tasks_frozen)
2311 		cmci_rediscover();
2312 	return 0;
2313 }
2314 
2315 static int mce_cpu_online(unsigned int cpu)
2316 {
2317 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2318 	int ret;
2319 
2320 	mce_device_create(cpu);
2321 
2322 	ret = mce_threshold_create_device(cpu);
2323 	if (ret) {
2324 		mce_device_remove(cpu);
2325 		return ret;
2326 	}
2327 	mce_reenable_cpu();
2328 	mce_start_timer(t);
2329 	return 0;
2330 }
2331 
2332 static int mce_cpu_pre_down(unsigned int cpu)
2333 {
2334 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2335 
2336 	mce_disable_cpu();
2337 	del_timer_sync(t);
2338 	mce_threshold_remove_device(cpu);
2339 	mce_device_remove(cpu);
2340 	return 0;
2341 }
2342 
2343 static __init void mce_init_banks(void)
2344 {
2345 	int i;
2346 
2347 	for (i = 0; i < mca_cfg.banks; i++) {
2348 		struct mce_bank *b = &mce_banks[i];
2349 		struct device_attribute *a = &b->attr;
2350 
2351 		sysfs_attr_init(&a->attr);
2352 		a->attr.name	= b->attrname;
2353 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2354 
2355 		a->attr.mode	= 0644;
2356 		a->show		= show_bank;
2357 		a->store	= set_bank;
2358 	}
2359 }
2360 
2361 static __init int mcheck_init_device(void)
2362 {
2363 	int err;
2364 
2365 	/*
2366 	 * Check if we have a spare virtual bit. This will only become
2367 	 * a problem if/when we move beyond 5-level page tables.
2368 	 */
2369 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2370 
2371 	if (!mce_available(&boot_cpu_data)) {
2372 		err = -EIO;
2373 		goto err_out;
2374 	}
2375 
2376 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2377 		err = -ENOMEM;
2378 		goto err_out;
2379 	}
2380 
2381 	mce_init_banks();
2382 
2383 	err = subsys_system_register(&mce_subsys, NULL);
2384 	if (err)
2385 		goto err_out_mem;
2386 
2387 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2388 				mce_cpu_dead);
2389 	if (err)
2390 		goto err_out_mem;
2391 
2392 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2393 				mce_cpu_online, mce_cpu_pre_down);
2394 	if (err < 0)
2395 		goto err_out_online;
2396 
2397 	register_syscore_ops(&mce_syscore_ops);
2398 
2399 	return 0;
2400 
2401 err_out_online:
2402 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2403 
2404 err_out_mem:
2405 	free_cpumask_var(mce_device_initialized);
2406 
2407 err_out:
2408 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2409 
2410 	return err;
2411 }
2412 device_initcall_sync(mcheck_init_device);
2413 
2414 /*
2415  * Old style boot options parsing. Only for compatibility.
2416  */
2417 static int __init mcheck_disable(char *str)
2418 {
2419 	mca_cfg.disabled = 1;
2420 	return 1;
2421 }
2422 __setup("nomce", mcheck_disable);
2423 
2424 #ifdef CONFIG_DEBUG_FS
2425 struct dentry *mce_get_debugfs_dir(void)
2426 {
2427 	static struct dentry *dmce;
2428 
2429 	if (!dmce)
2430 		dmce = debugfs_create_dir("mce", NULL);
2431 
2432 	return dmce;
2433 }
2434 
2435 static void mce_reset(void)
2436 {
2437 	cpu_missing = 0;
2438 	atomic_set(&mce_fake_panicked, 0);
2439 	atomic_set(&mce_executing, 0);
2440 	atomic_set(&mce_callin, 0);
2441 	atomic_set(&global_nwo, 0);
2442 }
2443 
2444 static int fake_panic_get(void *data, u64 *val)
2445 {
2446 	*val = fake_panic;
2447 	return 0;
2448 }
2449 
2450 static int fake_panic_set(void *data, u64 val)
2451 {
2452 	mce_reset();
2453 	fake_panic = val;
2454 	return 0;
2455 }
2456 
2457 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2458 			fake_panic_set, "%llu\n");
2459 
2460 static int __init mcheck_debugfs_init(void)
2461 {
2462 	struct dentry *dmce, *ffake_panic;
2463 
2464 	dmce = mce_get_debugfs_dir();
2465 	if (!dmce)
2466 		return -ENOMEM;
2467 	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2468 					  &fake_panic_fops);
2469 	if (!ffake_panic)
2470 		return -ENOMEM;
2471 
2472 	return 0;
2473 }
2474 #else
2475 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2476 #endif
2477 
2478 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2479 EXPORT_SYMBOL_GPL(mcsafe_key);
2480 
2481 static int __init mcheck_late_init(void)
2482 {
2483 	if (mca_cfg.recovery)
2484 		static_branch_inc(&mcsafe_key);
2485 
2486 	mcheck_debugfs_init();
2487 	cec_init();
2488 
2489 	/*
2490 	 * Flush out everything that has been logged during early boot, now that
2491 	 * everything has been initialized (workqueues, decoders, ...).
2492 	 */
2493 	mce_schedule_work();
2494 
2495 	return 0;
2496 }
2497 late_initcall(mcheck_late_init);
2498