1 /* 2 * Machine check handler. 3 * 4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 5 * Rest from unknown author(s). 6 * 2004 Andi Kleen. Rewrote most of it. 7 * Copyright 2008 Intel Corporation 8 * Author: Andi Kleen 9 */ 10 11 #include <linux/thread_info.h> 12 #include <linux/capability.h> 13 #include <linux/miscdevice.h> 14 #include <linux/ratelimit.h> 15 #include <linux/rcupdate.h> 16 #include <linux/kobject.h> 17 #include <linux/uaccess.h> 18 #include <linux/kdebug.h> 19 #include <linux/kernel.h> 20 #include <linux/percpu.h> 21 #include <linux/string.h> 22 #include <linux/device.h> 23 #include <linux/syscore_ops.h> 24 #include <linux/delay.h> 25 #include <linux/ctype.h> 26 #include <linux/sched.h> 27 #include <linux/sysfs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/init.h> 31 #include <linux/kmod.h> 32 #include <linux/poll.h> 33 #include <linux/nmi.h> 34 #include <linux/cpu.h> 35 #include <linux/ras.h> 36 #include <linux/smp.h> 37 #include <linux/fs.h> 38 #include <linux/mm.h> 39 #include <linux/debugfs.h> 40 #include <linux/irq_work.h> 41 #include <linux/export.h> 42 #include <linux/jump_label.h> 43 #include <linux/set_memory.h> 44 45 #include <asm/intel-family.h> 46 #include <asm/processor.h> 47 #include <asm/traps.h> 48 #include <asm/tlbflush.h> 49 #include <asm/mce.h> 50 #include <asm/msr.h> 51 #include <asm/reboot.h> 52 53 #include "internal.h" 54 55 static DEFINE_MUTEX(mce_log_mutex); 56 57 /* sysfs synchronization */ 58 static DEFINE_MUTEX(mce_sysfs_mutex); 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/mce.h> 62 63 #define SPINUNIT 100 /* 100ns */ 64 65 DEFINE_PER_CPU(unsigned, mce_exception_count); 66 67 struct mce_bank *mce_banks __read_mostly; 68 struct mce_vendor_flags mce_flags __read_mostly; 69 70 struct mca_config mca_cfg __read_mostly = { 71 .bootlog = -1, 72 /* 73 * Tolerant levels: 74 * 0: always panic on uncorrected errors, log corrected errors 75 * 1: panic or SIGBUS on uncorrected errors, log corrected errors 76 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors 77 * 3: never panic or SIGBUS, log all errors (for testing only) 78 */ 79 .tolerant = 1, 80 .monarch_timeout = -1 81 }; 82 83 static DEFINE_PER_CPU(struct mce, mces_seen); 84 static unsigned long mce_need_notify; 85 static int cpu_missing; 86 87 /* 88 * MCA banks polled by the period polling timer for corrected events. 89 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 90 */ 91 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 92 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 93 }; 94 95 /* 96 * MCA banks controlled through firmware first for corrected errors. 97 * This is a global list of banks for which we won't enable CMCI and we 98 * won't poll. Firmware controls these banks and is responsible for 99 * reporting corrected errors through GHES. Uncorrected/recoverable 100 * errors are still notified through a machine check. 101 */ 102 mce_banks_t mce_banks_ce_disabled; 103 104 static struct work_struct mce_work; 105 static struct irq_work mce_irq_work; 106 107 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); 108 109 /* 110 * CPU/chipset specific EDAC code can register a notifier call here to print 111 * MCE errors in a human-readable form. 112 */ 113 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 114 115 /* Do initial initialization of a struct mce */ 116 void mce_setup(struct mce *m) 117 { 118 memset(m, 0, sizeof(struct mce)); 119 m->cpu = m->extcpu = smp_processor_id(); 120 /* need the internal __ version to avoid deadlocks */ 121 m->time = __ktime_get_real_seconds(); 122 m->cpuvendor = boot_cpu_data.x86_vendor; 123 m->cpuid = cpuid_eax(1); 124 m->socketid = cpu_data(m->extcpu).phys_proc_id; 125 m->apicid = cpu_data(m->extcpu).initial_apicid; 126 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap); 127 128 if (this_cpu_has(X86_FEATURE_INTEL_PPIN)) 129 rdmsrl(MSR_PPIN, m->ppin); 130 131 m->microcode = boot_cpu_data.microcode; 132 } 133 134 DEFINE_PER_CPU(struct mce, injectm); 135 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 136 137 void mce_log(struct mce *m) 138 { 139 if (!mce_gen_pool_add(m)) 140 irq_work_queue(&mce_irq_work); 141 } 142 143 void mce_inject_log(struct mce *m) 144 { 145 mutex_lock(&mce_log_mutex); 146 mce_log(m); 147 mutex_unlock(&mce_log_mutex); 148 } 149 EXPORT_SYMBOL_GPL(mce_inject_log); 150 151 static struct notifier_block mce_srao_nb; 152 153 /* 154 * We run the default notifier if we have only the SRAO, the first and the 155 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS 156 * notifiers registered on the chain. 157 */ 158 #define NUM_DEFAULT_NOTIFIERS 3 159 static atomic_t num_notifiers; 160 161 void mce_register_decode_chain(struct notifier_block *nb) 162 { 163 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC)) 164 return; 165 166 atomic_inc(&num_notifiers); 167 168 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 169 } 170 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 171 172 void mce_unregister_decode_chain(struct notifier_block *nb) 173 { 174 atomic_dec(&num_notifiers); 175 176 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 177 } 178 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 179 180 static inline u32 ctl_reg(int bank) 181 { 182 return MSR_IA32_MCx_CTL(bank); 183 } 184 185 static inline u32 status_reg(int bank) 186 { 187 return MSR_IA32_MCx_STATUS(bank); 188 } 189 190 static inline u32 addr_reg(int bank) 191 { 192 return MSR_IA32_MCx_ADDR(bank); 193 } 194 195 static inline u32 misc_reg(int bank) 196 { 197 return MSR_IA32_MCx_MISC(bank); 198 } 199 200 static inline u32 smca_ctl_reg(int bank) 201 { 202 return MSR_AMD64_SMCA_MCx_CTL(bank); 203 } 204 205 static inline u32 smca_status_reg(int bank) 206 { 207 return MSR_AMD64_SMCA_MCx_STATUS(bank); 208 } 209 210 static inline u32 smca_addr_reg(int bank) 211 { 212 return MSR_AMD64_SMCA_MCx_ADDR(bank); 213 } 214 215 static inline u32 smca_misc_reg(int bank) 216 { 217 return MSR_AMD64_SMCA_MCx_MISC(bank); 218 } 219 220 struct mca_msr_regs msr_ops = { 221 .ctl = ctl_reg, 222 .status = status_reg, 223 .addr = addr_reg, 224 .misc = misc_reg 225 }; 226 227 static void __print_mce(struct mce *m) 228 { 229 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 230 m->extcpu, 231 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 232 m->mcgstatus, m->bank, m->status); 233 234 if (m->ip) { 235 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 236 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 237 m->cs, m->ip); 238 239 if (m->cs == __KERNEL_CS) 240 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 241 pr_cont("\n"); 242 } 243 244 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 245 if (m->addr) 246 pr_cont("ADDR %llx ", m->addr); 247 if (m->misc) 248 pr_cont("MISC %llx ", m->misc); 249 250 if (mce_flags.smca) { 251 if (m->synd) 252 pr_cont("SYND %llx ", m->synd); 253 if (m->ipid) 254 pr_cont("IPID %llx ", m->ipid); 255 } 256 257 pr_cont("\n"); 258 /* 259 * Note this output is parsed by external tools and old fields 260 * should not be changed. 261 */ 262 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 263 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 264 m->microcode); 265 } 266 267 static void print_mce(struct mce *m) 268 { 269 __print_mce(m); 270 271 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 272 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 273 } 274 275 #define PANIC_TIMEOUT 5 /* 5 seconds */ 276 277 static atomic_t mce_panicked; 278 279 static int fake_panic; 280 static atomic_t mce_fake_panicked; 281 282 /* Panic in progress. Enable interrupts and wait for final IPI */ 283 static void wait_for_panic(void) 284 { 285 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 286 287 preempt_disable(); 288 local_irq_enable(); 289 while (timeout-- > 0) 290 udelay(1); 291 if (panic_timeout == 0) 292 panic_timeout = mca_cfg.panic_timeout; 293 panic("Panicing machine check CPU died"); 294 } 295 296 static void mce_panic(const char *msg, struct mce *final, char *exp) 297 { 298 int apei_err = 0; 299 struct llist_node *pending; 300 struct mce_evt_llist *l; 301 302 if (!fake_panic) { 303 /* 304 * Make sure only one CPU runs in machine check panic 305 */ 306 if (atomic_inc_return(&mce_panicked) > 1) 307 wait_for_panic(); 308 barrier(); 309 310 bust_spinlocks(1); 311 console_verbose(); 312 } else { 313 /* Don't log too much for fake panic */ 314 if (atomic_inc_return(&mce_fake_panicked) > 1) 315 return; 316 } 317 pending = mce_gen_pool_prepare_records(); 318 /* First print corrected ones that are still unlogged */ 319 llist_for_each_entry(l, pending, llnode) { 320 struct mce *m = &l->mce; 321 if (!(m->status & MCI_STATUS_UC)) { 322 print_mce(m); 323 if (!apei_err) 324 apei_err = apei_write_mce(m); 325 } 326 } 327 /* Now print uncorrected but with the final one last */ 328 llist_for_each_entry(l, pending, llnode) { 329 struct mce *m = &l->mce; 330 if (!(m->status & MCI_STATUS_UC)) 331 continue; 332 if (!final || mce_cmp(m, final)) { 333 print_mce(m); 334 if (!apei_err) 335 apei_err = apei_write_mce(m); 336 } 337 } 338 if (final) { 339 print_mce(final); 340 if (!apei_err) 341 apei_err = apei_write_mce(final); 342 } 343 if (cpu_missing) 344 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); 345 if (exp) 346 pr_emerg(HW_ERR "Machine check: %s\n", exp); 347 if (!fake_panic) { 348 if (panic_timeout == 0) 349 panic_timeout = mca_cfg.panic_timeout; 350 panic(msg); 351 } else 352 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 353 } 354 355 /* Support code for software error injection */ 356 357 static int msr_to_offset(u32 msr) 358 { 359 unsigned bank = __this_cpu_read(injectm.bank); 360 361 if (msr == mca_cfg.rip_msr) 362 return offsetof(struct mce, ip); 363 if (msr == msr_ops.status(bank)) 364 return offsetof(struct mce, status); 365 if (msr == msr_ops.addr(bank)) 366 return offsetof(struct mce, addr); 367 if (msr == msr_ops.misc(bank)) 368 return offsetof(struct mce, misc); 369 if (msr == MSR_IA32_MCG_STATUS) 370 return offsetof(struct mce, mcgstatus); 371 return -1; 372 } 373 374 /* MSR access wrappers used for error injection */ 375 static u64 mce_rdmsrl(u32 msr) 376 { 377 u64 v; 378 379 if (__this_cpu_read(injectm.finished)) { 380 int offset = msr_to_offset(msr); 381 382 if (offset < 0) 383 return 0; 384 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 385 } 386 387 if (rdmsrl_safe(msr, &v)) { 388 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr); 389 /* 390 * Return zero in case the access faulted. This should 391 * not happen normally but can happen if the CPU does 392 * something weird, or if the code is buggy. 393 */ 394 v = 0; 395 } 396 397 return v; 398 } 399 400 static void mce_wrmsrl(u32 msr, u64 v) 401 { 402 if (__this_cpu_read(injectm.finished)) { 403 int offset = msr_to_offset(msr); 404 405 if (offset >= 0) 406 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 407 return; 408 } 409 wrmsrl(msr, v); 410 } 411 412 /* 413 * Collect all global (w.r.t. this processor) status about this machine 414 * check into our "mce" struct so that we can use it later to assess 415 * the severity of the problem as we read per-bank specific details. 416 */ 417 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) 418 { 419 mce_setup(m); 420 421 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 422 if (regs) { 423 /* 424 * Get the address of the instruction at the time of 425 * the machine check error. 426 */ 427 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 428 m->ip = regs->ip; 429 m->cs = regs->cs; 430 431 /* 432 * When in VM86 mode make the cs look like ring 3 433 * always. This is a lie, but it's better than passing 434 * the additional vm86 bit around everywhere. 435 */ 436 if (v8086_mode(regs)) 437 m->cs |= 3; 438 } 439 /* Use accurate RIP reporting if available. */ 440 if (mca_cfg.rip_msr) 441 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 442 } 443 } 444 445 int mce_available(struct cpuinfo_x86 *c) 446 { 447 if (mca_cfg.disabled) 448 return 0; 449 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 450 } 451 452 static void mce_schedule_work(void) 453 { 454 if (!mce_gen_pool_empty()) 455 schedule_work(&mce_work); 456 } 457 458 static void mce_irq_work_cb(struct irq_work *entry) 459 { 460 mce_schedule_work(); 461 } 462 463 static void mce_report_event(struct pt_regs *regs) 464 { 465 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) { 466 mce_notify_irq(); 467 /* 468 * Triggering the work queue here is just an insurance 469 * policy in case the syscall exit notify handler 470 * doesn't run soon enough or ends up running on the 471 * wrong CPU (can happen when audit sleeps) 472 */ 473 mce_schedule_work(); 474 return; 475 } 476 477 irq_work_queue(&mce_irq_work); 478 } 479 480 /* 481 * Check if the address reported by the CPU is in a format we can parse. 482 * It would be possible to add code for most other cases, but all would 483 * be somewhat complicated (e.g. segment offset would require an instruction 484 * parser). So only support physical addresses up to page granuality for now. 485 */ 486 int mce_usable_address(struct mce *m) 487 { 488 if (!(m->status & MCI_STATUS_ADDRV)) 489 return 0; 490 491 /* Checks after this one are Intel-specific: */ 492 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 493 return 1; 494 495 if (!(m->status & MCI_STATUS_MISCV)) 496 return 0; 497 498 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 499 return 0; 500 501 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 502 return 0; 503 504 return 1; 505 } 506 EXPORT_SYMBOL_GPL(mce_usable_address); 507 508 bool mce_is_memory_error(struct mce *m) 509 { 510 if (m->cpuvendor == X86_VENDOR_AMD || 511 m->cpuvendor == X86_VENDOR_HYGON) { 512 return amd_mce_is_memory_error(m); 513 } else if (m->cpuvendor == X86_VENDOR_INTEL) { 514 /* 515 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 516 * 517 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 518 * indicating a memory error. Bit 8 is used for indicating a 519 * cache hierarchy error. The combination of bit 2 and bit 3 520 * is used for indicating a `generic' cache hierarchy error 521 * But we can't just blindly check the above bits, because if 522 * bit 11 is set, then it is a bus/interconnect error - and 523 * either way the above bits just gives more detail on what 524 * bus/interconnect error happened. Note that bit 12 can be 525 * ignored, as it's the "filter" bit. 526 */ 527 return (m->status & 0xef80) == BIT(7) || 528 (m->status & 0xef00) == BIT(8) || 529 (m->status & 0xeffc) == 0xc; 530 } 531 532 return false; 533 } 534 EXPORT_SYMBOL_GPL(mce_is_memory_error); 535 536 bool mce_is_correctable(struct mce *m) 537 { 538 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 539 return false; 540 541 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 542 return false; 543 544 if (m->status & MCI_STATUS_UC) 545 return false; 546 547 return true; 548 } 549 EXPORT_SYMBOL_GPL(mce_is_correctable); 550 551 static bool cec_add_mce(struct mce *m) 552 { 553 if (!m) 554 return false; 555 556 /* We eat only correctable DRAM errors with usable addresses. */ 557 if (mce_is_memory_error(m) && 558 mce_is_correctable(m) && 559 mce_usable_address(m)) 560 if (!cec_add_elem(m->addr >> PAGE_SHIFT)) 561 return true; 562 563 return false; 564 } 565 566 static int mce_first_notifier(struct notifier_block *nb, unsigned long val, 567 void *data) 568 { 569 struct mce *m = (struct mce *)data; 570 571 if (!m) 572 return NOTIFY_DONE; 573 574 if (cec_add_mce(m)) 575 return NOTIFY_STOP; 576 577 /* Emit the trace record: */ 578 trace_mce_record(m); 579 580 set_bit(0, &mce_need_notify); 581 582 mce_notify_irq(); 583 584 return NOTIFY_DONE; 585 } 586 587 static struct notifier_block first_nb = { 588 .notifier_call = mce_first_notifier, 589 .priority = MCE_PRIO_FIRST, 590 }; 591 592 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val, 593 void *data) 594 { 595 struct mce *mce = (struct mce *)data; 596 unsigned long pfn; 597 598 if (!mce) 599 return NOTIFY_DONE; 600 601 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) { 602 pfn = mce->addr >> PAGE_SHIFT; 603 if (!memory_failure(pfn, 0)) 604 set_mce_nospec(pfn); 605 } 606 607 return NOTIFY_OK; 608 } 609 static struct notifier_block mce_srao_nb = { 610 .notifier_call = srao_decode_notifier, 611 .priority = MCE_PRIO_SRAO, 612 }; 613 614 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 615 void *data) 616 { 617 struct mce *m = (struct mce *)data; 618 619 if (!m) 620 return NOTIFY_DONE; 621 622 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS) 623 return NOTIFY_DONE; 624 625 __print_mce(m); 626 627 return NOTIFY_DONE; 628 } 629 630 static struct notifier_block mce_default_nb = { 631 .notifier_call = mce_default_notifier, 632 /* lowest prio, we want it to run last. */ 633 .priority = MCE_PRIO_LOWEST, 634 }; 635 636 /* 637 * Read ADDR and MISC registers. 638 */ 639 static void mce_read_aux(struct mce *m, int i) 640 { 641 if (m->status & MCI_STATUS_MISCV) 642 m->misc = mce_rdmsrl(msr_ops.misc(i)); 643 644 if (m->status & MCI_STATUS_ADDRV) { 645 m->addr = mce_rdmsrl(msr_ops.addr(i)); 646 647 /* 648 * Mask the reported address by the reported granularity. 649 */ 650 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 651 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 652 m->addr >>= shift; 653 m->addr <<= shift; 654 } 655 656 /* 657 * Extract [55:<lsb>] where lsb is the least significant 658 * *valid* bit of the address bits. 659 */ 660 if (mce_flags.smca) { 661 u8 lsb = (m->addr >> 56) & 0x3f; 662 663 m->addr &= GENMASK_ULL(55, lsb); 664 } 665 } 666 667 if (mce_flags.smca) { 668 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 669 670 if (m->status & MCI_STATUS_SYNDV) 671 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 672 } 673 } 674 675 DEFINE_PER_CPU(unsigned, mce_poll_count); 676 677 /* 678 * Poll for corrected events or events that happened before reset. 679 * Those are just logged through /dev/mcelog. 680 * 681 * This is executed in standard interrupt context. 682 * 683 * Note: spec recommends to panic for fatal unsignalled 684 * errors here. However this would be quite problematic -- 685 * we would need to reimplement the Monarch handling and 686 * it would mess up the exclusion between exception handler 687 * and poll handler -- * so we skip this for now. 688 * These cases should not happen anyways, or only when the CPU 689 * is already totally * confused. In this case it's likely it will 690 * not fully execute the machine check handler either. 691 */ 692 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 693 { 694 bool error_seen = false; 695 struct mce m; 696 int i; 697 698 this_cpu_inc(mce_poll_count); 699 700 mce_gather_info(&m, NULL); 701 702 if (flags & MCP_TIMESTAMP) 703 m.tsc = rdtsc(); 704 705 for (i = 0; i < mca_cfg.banks; i++) { 706 if (!mce_banks[i].ctl || !test_bit(i, *b)) 707 continue; 708 709 m.misc = 0; 710 m.addr = 0; 711 m.bank = i; 712 713 barrier(); 714 m.status = mce_rdmsrl(msr_ops.status(i)); 715 if (!(m.status & MCI_STATUS_VAL)) 716 continue; 717 718 /* 719 * Uncorrected or signalled events are handled by the exception 720 * handler when it is enabled, so don't process those here. 721 * 722 * TBD do the same check for MCI_STATUS_EN here? 723 */ 724 if (!(flags & MCP_UC) && 725 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC))) 726 continue; 727 728 error_seen = true; 729 730 mce_read_aux(&m, i); 731 732 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false); 733 734 /* 735 * Don't get the IP here because it's unlikely to 736 * have anything to do with the actual error location. 737 */ 738 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce) 739 mce_log(&m); 740 else if (mce_usable_address(&m)) { 741 /* 742 * Although we skipped logging this, we still want 743 * to take action. Add to the pool so the registered 744 * notifiers will see it. 745 */ 746 if (!mce_gen_pool_add(&m)) 747 mce_schedule_work(); 748 } 749 750 /* 751 * Clear state for this bank. 752 */ 753 mce_wrmsrl(msr_ops.status(i), 0); 754 } 755 756 /* 757 * Don't clear MCG_STATUS here because it's only defined for 758 * exceptions. 759 */ 760 761 sync_core(); 762 763 return error_seen; 764 } 765 EXPORT_SYMBOL_GPL(machine_check_poll); 766 767 /* 768 * Do a quick check if any of the events requires a panic. 769 * This decides if we keep the events around or clear them. 770 */ 771 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 772 struct pt_regs *regs) 773 { 774 char *tmp; 775 int i; 776 777 for (i = 0; i < mca_cfg.banks; i++) { 778 m->status = mce_rdmsrl(msr_ops.status(i)); 779 if (!(m->status & MCI_STATUS_VAL)) 780 continue; 781 782 __set_bit(i, validp); 783 if (quirk_no_way_out) 784 quirk_no_way_out(i, m, regs); 785 786 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) { 787 mce_read_aux(m, i); 788 *msg = tmp; 789 return 1; 790 } 791 } 792 return 0; 793 } 794 795 /* 796 * Variable to establish order between CPUs while scanning. 797 * Each CPU spins initially until executing is equal its number. 798 */ 799 static atomic_t mce_executing; 800 801 /* 802 * Defines order of CPUs on entry. First CPU becomes Monarch. 803 */ 804 static atomic_t mce_callin; 805 806 /* 807 * Check if a timeout waiting for other CPUs happened. 808 */ 809 static int mce_timed_out(u64 *t, const char *msg) 810 { 811 /* 812 * The others already did panic for some reason. 813 * Bail out like in a timeout. 814 * rmb() to tell the compiler that system_state 815 * might have been modified by someone else. 816 */ 817 rmb(); 818 if (atomic_read(&mce_panicked)) 819 wait_for_panic(); 820 if (!mca_cfg.monarch_timeout) 821 goto out; 822 if ((s64)*t < SPINUNIT) { 823 if (mca_cfg.tolerant <= 1) 824 mce_panic(msg, NULL, NULL); 825 cpu_missing = 1; 826 return 1; 827 } 828 *t -= SPINUNIT; 829 out: 830 touch_nmi_watchdog(); 831 return 0; 832 } 833 834 /* 835 * The Monarch's reign. The Monarch is the CPU who entered 836 * the machine check handler first. It waits for the others to 837 * raise the exception too and then grades them. When any 838 * error is fatal panic. Only then let the others continue. 839 * 840 * The other CPUs entering the MCE handler will be controlled by the 841 * Monarch. They are called Subjects. 842 * 843 * This way we prevent any potential data corruption in a unrecoverable case 844 * and also makes sure always all CPU's errors are examined. 845 * 846 * Also this detects the case of a machine check event coming from outer 847 * space (not detected by any CPUs) In this case some external agent wants 848 * us to shut down, so panic too. 849 * 850 * The other CPUs might still decide to panic if the handler happens 851 * in a unrecoverable place, but in this case the system is in a semi-stable 852 * state and won't corrupt anything by itself. It's ok to let the others 853 * continue for a bit first. 854 * 855 * All the spin loops have timeouts; when a timeout happens a CPU 856 * typically elects itself to be Monarch. 857 */ 858 static void mce_reign(void) 859 { 860 int cpu; 861 struct mce *m = NULL; 862 int global_worst = 0; 863 char *msg = NULL; 864 char *nmsg = NULL; 865 866 /* 867 * This CPU is the Monarch and the other CPUs have run 868 * through their handlers. 869 * Grade the severity of the errors of all the CPUs. 870 */ 871 for_each_possible_cpu(cpu) { 872 int severity = mce_severity(&per_cpu(mces_seen, cpu), 873 mca_cfg.tolerant, 874 &nmsg, true); 875 if (severity > global_worst) { 876 msg = nmsg; 877 global_worst = severity; 878 m = &per_cpu(mces_seen, cpu); 879 } 880 } 881 882 /* 883 * Cannot recover? Panic here then. 884 * This dumps all the mces in the log buffer and stops the 885 * other CPUs. 886 */ 887 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) 888 mce_panic("Fatal machine check", m, msg); 889 890 /* 891 * For UC somewhere we let the CPU who detects it handle it. 892 * Also must let continue the others, otherwise the handling 893 * CPU could deadlock on a lock. 894 */ 895 896 /* 897 * No machine check event found. Must be some external 898 * source or one CPU is hung. Panic. 899 */ 900 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) 901 mce_panic("Fatal machine check from unknown source", NULL, NULL); 902 903 /* 904 * Now clear all the mces_seen so that they don't reappear on 905 * the next mce. 906 */ 907 for_each_possible_cpu(cpu) 908 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 909 } 910 911 static atomic_t global_nwo; 912 913 /* 914 * Start of Monarch synchronization. This waits until all CPUs have 915 * entered the exception handler and then determines if any of them 916 * saw a fatal event that requires panic. Then it executes them 917 * in the entry order. 918 * TBD double check parallel CPU hotunplug 919 */ 920 static int mce_start(int *no_way_out) 921 { 922 int order; 923 int cpus = num_online_cpus(); 924 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 925 926 if (!timeout) 927 return -1; 928 929 atomic_add(*no_way_out, &global_nwo); 930 /* 931 * Rely on the implied barrier below, such that global_nwo 932 * is updated before mce_callin. 933 */ 934 order = atomic_inc_return(&mce_callin); 935 936 /* 937 * Wait for everyone. 938 */ 939 while (atomic_read(&mce_callin) != cpus) { 940 if (mce_timed_out(&timeout, 941 "Timeout: Not all CPUs entered broadcast exception handler")) { 942 atomic_set(&global_nwo, 0); 943 return -1; 944 } 945 ndelay(SPINUNIT); 946 } 947 948 /* 949 * mce_callin should be read before global_nwo 950 */ 951 smp_rmb(); 952 953 if (order == 1) { 954 /* 955 * Monarch: Starts executing now, the others wait. 956 */ 957 atomic_set(&mce_executing, 1); 958 } else { 959 /* 960 * Subject: Now start the scanning loop one by one in 961 * the original callin order. 962 * This way when there are any shared banks it will be 963 * only seen by one CPU before cleared, avoiding duplicates. 964 */ 965 while (atomic_read(&mce_executing) < order) { 966 if (mce_timed_out(&timeout, 967 "Timeout: Subject CPUs unable to finish machine check processing")) { 968 atomic_set(&global_nwo, 0); 969 return -1; 970 } 971 ndelay(SPINUNIT); 972 } 973 } 974 975 /* 976 * Cache the global no_way_out state. 977 */ 978 *no_way_out = atomic_read(&global_nwo); 979 980 return order; 981 } 982 983 /* 984 * Synchronize between CPUs after main scanning loop. 985 * This invokes the bulk of the Monarch processing. 986 */ 987 static int mce_end(int order) 988 { 989 int ret = -1; 990 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 991 992 if (!timeout) 993 goto reset; 994 if (order < 0) 995 goto reset; 996 997 /* 998 * Allow others to run. 999 */ 1000 atomic_inc(&mce_executing); 1001 1002 if (order == 1) { 1003 /* CHECKME: Can this race with a parallel hotplug? */ 1004 int cpus = num_online_cpus(); 1005 1006 /* 1007 * Monarch: Wait for everyone to go through their scanning 1008 * loops. 1009 */ 1010 while (atomic_read(&mce_executing) <= cpus) { 1011 if (mce_timed_out(&timeout, 1012 "Timeout: Monarch CPU unable to finish machine check processing")) 1013 goto reset; 1014 ndelay(SPINUNIT); 1015 } 1016 1017 mce_reign(); 1018 barrier(); 1019 ret = 0; 1020 } else { 1021 /* 1022 * Subject: Wait for Monarch to finish. 1023 */ 1024 while (atomic_read(&mce_executing) != 0) { 1025 if (mce_timed_out(&timeout, 1026 "Timeout: Monarch CPU did not finish machine check processing")) 1027 goto reset; 1028 ndelay(SPINUNIT); 1029 } 1030 1031 /* 1032 * Don't reset anything. That's done by the Monarch. 1033 */ 1034 return 0; 1035 } 1036 1037 /* 1038 * Reset all global state. 1039 */ 1040 reset: 1041 atomic_set(&global_nwo, 0); 1042 atomic_set(&mce_callin, 0); 1043 barrier(); 1044 1045 /* 1046 * Let others run again. 1047 */ 1048 atomic_set(&mce_executing, 0); 1049 return ret; 1050 } 1051 1052 static void mce_clear_state(unsigned long *toclear) 1053 { 1054 int i; 1055 1056 for (i = 0; i < mca_cfg.banks; i++) { 1057 if (test_bit(i, toclear)) 1058 mce_wrmsrl(msr_ops.status(i), 0); 1059 } 1060 } 1061 1062 static int do_memory_failure(struct mce *m) 1063 { 1064 int flags = MF_ACTION_REQUIRED; 1065 int ret; 1066 1067 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr); 1068 if (!(m->mcgstatus & MCG_STATUS_RIPV)) 1069 flags |= MF_MUST_KILL; 1070 ret = memory_failure(m->addr >> PAGE_SHIFT, flags); 1071 if (ret) 1072 pr_err("Memory error not recovered"); 1073 else 1074 set_mce_nospec(m->addr >> PAGE_SHIFT); 1075 return ret; 1076 } 1077 1078 1079 /* 1080 * Cases where we avoid rendezvous handler timeout: 1081 * 1) If this CPU is offline. 1082 * 1083 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1084 * skip those CPUs which remain looping in the 1st kernel - see 1085 * crash_nmi_callback(). 1086 * 1087 * Note: there still is a small window between kexec-ing and the new, 1088 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1089 * might not get handled properly. 1090 */ 1091 static bool __mc_check_crashing_cpu(int cpu) 1092 { 1093 if (cpu_is_offline(cpu) || 1094 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1095 u64 mcgstatus; 1096 1097 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 1098 if (mcgstatus & MCG_STATUS_RIPV) { 1099 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1100 return true; 1101 } 1102 } 1103 return false; 1104 } 1105 1106 static void __mc_scan_banks(struct mce *m, struct mce *final, 1107 unsigned long *toclear, unsigned long *valid_banks, 1108 int no_way_out, int *worst) 1109 { 1110 struct mca_config *cfg = &mca_cfg; 1111 int severity, i; 1112 1113 for (i = 0; i < cfg->banks; i++) { 1114 __clear_bit(i, toclear); 1115 if (!test_bit(i, valid_banks)) 1116 continue; 1117 1118 if (!mce_banks[i].ctl) 1119 continue; 1120 1121 m->misc = 0; 1122 m->addr = 0; 1123 m->bank = i; 1124 1125 m->status = mce_rdmsrl(msr_ops.status(i)); 1126 if (!(m->status & MCI_STATUS_VAL)) 1127 continue; 1128 1129 /* 1130 * Corrected or non-signaled errors are handled by 1131 * machine_check_poll(). Leave them alone, unless this panics. 1132 */ 1133 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1134 !no_way_out) 1135 continue; 1136 1137 /* Set taint even when machine check was not enabled. */ 1138 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1139 1140 severity = mce_severity(m, cfg->tolerant, NULL, true); 1141 1142 /* 1143 * When machine check was for corrected/deferred handler don't 1144 * touch, unless we're panicking. 1145 */ 1146 if ((severity == MCE_KEEP_SEVERITY || 1147 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1148 continue; 1149 1150 __set_bit(i, toclear); 1151 1152 /* Machine check event was not enabled. Clear, but ignore. */ 1153 if (severity == MCE_NO_SEVERITY) 1154 continue; 1155 1156 mce_read_aux(m, i); 1157 1158 /* assuming valid severity level != 0 */ 1159 m->severity = severity; 1160 1161 mce_log(m); 1162 1163 if (severity > *worst) { 1164 *final = *m; 1165 *worst = severity; 1166 } 1167 } 1168 1169 /* mce_clear_state will clear *final, save locally for use later */ 1170 *m = *final; 1171 } 1172 1173 /* 1174 * The actual machine check handler. This only handles real 1175 * exceptions when something got corrupted coming in through int 18. 1176 * 1177 * This is executed in NMI context not subject to normal locking rules. This 1178 * implies that most kernel services cannot be safely used. Don't even 1179 * think about putting a printk in there! 1180 * 1181 * On Intel systems this is entered on all CPUs in parallel through 1182 * MCE broadcast. However some CPUs might be broken beyond repair, 1183 * so be always careful when synchronizing with others. 1184 */ 1185 void do_machine_check(struct pt_regs *regs, long error_code) 1186 { 1187 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); 1188 DECLARE_BITMAP(toclear, MAX_NR_BANKS); 1189 struct mca_config *cfg = &mca_cfg; 1190 int cpu = smp_processor_id(); 1191 char *msg = "Unknown"; 1192 struct mce m, *final; 1193 int worst = 0; 1194 1195 /* 1196 * Establish sequential order between the CPUs entering the machine 1197 * check handler. 1198 */ 1199 int order = -1; 1200 1201 /* 1202 * If no_way_out gets set, there is no safe way to recover from this 1203 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. 1204 */ 1205 int no_way_out = 0; 1206 1207 /* 1208 * If kill_it gets set, there might be a way to recover from this 1209 * error. 1210 */ 1211 int kill_it = 0; 1212 1213 /* 1214 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1215 * on Intel. 1216 */ 1217 int lmce = 1; 1218 1219 if (__mc_check_crashing_cpu(cpu)) 1220 return; 1221 1222 ist_enter(regs); 1223 1224 this_cpu_inc(mce_exception_count); 1225 1226 mce_gather_info(&m, regs); 1227 m.tsc = rdtsc(); 1228 1229 final = this_cpu_ptr(&mces_seen); 1230 *final = m; 1231 1232 memset(valid_banks, 0, sizeof(valid_banks)); 1233 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1234 1235 barrier(); 1236 1237 /* 1238 * When no restart IP might need to kill or panic. 1239 * Assume the worst for now, but if we find the 1240 * severity is MCE_AR_SEVERITY we have other options. 1241 */ 1242 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1243 kill_it = 1; 1244 1245 /* 1246 * Check if this MCE is signaled to only this logical processor, 1247 * on Intel only. 1248 */ 1249 if (m.cpuvendor == X86_VENDOR_INTEL) 1250 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1251 1252 /* 1253 * Local machine check may already know that we have to panic. 1254 * Broadcast machine check begins rendezvous in mce_start() 1255 * Go through all banks in exclusion of the other CPUs. This way we 1256 * don't report duplicated events on shared banks because the first one 1257 * to see it will clear it. 1258 */ 1259 if (lmce) { 1260 if (no_way_out) 1261 mce_panic("Fatal local machine check", &m, msg); 1262 } else { 1263 order = mce_start(&no_way_out); 1264 } 1265 1266 __mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst); 1267 1268 if (!no_way_out) 1269 mce_clear_state(toclear); 1270 1271 /* 1272 * Do most of the synchronization with other CPUs. 1273 * When there's any problem use only local no_way_out state. 1274 */ 1275 if (!lmce) { 1276 if (mce_end(order) < 0) 1277 no_way_out = worst >= MCE_PANIC_SEVERITY; 1278 } else { 1279 /* 1280 * If there was a fatal machine check we should have 1281 * already called mce_panic earlier in this function. 1282 * Since we re-read the banks, we might have found 1283 * something new. Check again to see if we found a 1284 * fatal error. We call "mce_severity()" again to 1285 * make sure we have the right "msg". 1286 */ 1287 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 1288 mce_severity(&m, cfg->tolerant, &msg, true); 1289 mce_panic("Local fatal machine check!", &m, msg); 1290 } 1291 } 1292 1293 /* 1294 * If tolerant is at an insane level we drop requests to kill 1295 * processes and continue even when there is no way out. 1296 */ 1297 if (cfg->tolerant == 3) 1298 kill_it = 0; 1299 else if (no_way_out) 1300 mce_panic("Fatal machine check on current CPU", &m, msg); 1301 1302 if (worst > 0) 1303 mce_report_event(regs); 1304 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1305 1306 sync_core(); 1307 1308 if (worst != MCE_AR_SEVERITY && !kill_it) 1309 goto out_ist; 1310 1311 /* Fault was in user mode and we need to take some action */ 1312 if ((m.cs & 3) == 3) { 1313 ist_begin_non_atomic(regs); 1314 local_irq_enable(); 1315 1316 if (kill_it || do_memory_failure(&m)) 1317 force_sig(SIGBUS, current); 1318 local_irq_disable(); 1319 ist_end_non_atomic(); 1320 } else { 1321 if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0)) 1322 mce_panic("Failed kernel mode recovery", &m, NULL); 1323 } 1324 1325 out_ist: 1326 ist_exit(regs); 1327 } 1328 EXPORT_SYMBOL_GPL(do_machine_check); 1329 1330 #ifndef CONFIG_MEMORY_FAILURE 1331 int memory_failure(unsigned long pfn, int flags) 1332 { 1333 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1334 BUG_ON(flags & MF_ACTION_REQUIRED); 1335 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1336 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1337 pfn); 1338 1339 return 0; 1340 } 1341 #endif 1342 1343 /* 1344 * Periodic polling timer for "silent" machine check errors. If the 1345 * poller finds an MCE, poll 2x faster. When the poller finds no more 1346 * errors, poll 2x slower (up to check_interval seconds). 1347 */ 1348 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1349 1350 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1351 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1352 1353 static unsigned long mce_adjust_timer_default(unsigned long interval) 1354 { 1355 return interval; 1356 } 1357 1358 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1359 1360 static void __start_timer(struct timer_list *t, unsigned long interval) 1361 { 1362 unsigned long when = jiffies + interval; 1363 unsigned long flags; 1364 1365 local_irq_save(flags); 1366 1367 if (!timer_pending(t) || time_before(when, t->expires)) 1368 mod_timer(t, round_jiffies(when)); 1369 1370 local_irq_restore(flags); 1371 } 1372 1373 static void mce_timer_fn(struct timer_list *t) 1374 { 1375 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1376 unsigned long iv; 1377 1378 WARN_ON(cpu_t != t); 1379 1380 iv = __this_cpu_read(mce_next_interval); 1381 1382 if (mce_available(this_cpu_ptr(&cpu_info))) { 1383 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1384 1385 if (mce_intel_cmci_poll()) { 1386 iv = mce_adjust_timer(iv); 1387 goto done; 1388 } 1389 } 1390 1391 /* 1392 * Alert userspace if needed. If we logged an MCE, reduce the polling 1393 * interval, otherwise increase the polling interval. 1394 */ 1395 if (mce_notify_irq()) 1396 iv = max(iv / 2, (unsigned long) HZ/100); 1397 else 1398 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1399 1400 done: 1401 __this_cpu_write(mce_next_interval, iv); 1402 __start_timer(t, iv); 1403 } 1404 1405 /* 1406 * Ensure that the timer is firing in @interval from now. 1407 */ 1408 void mce_timer_kick(unsigned long interval) 1409 { 1410 struct timer_list *t = this_cpu_ptr(&mce_timer); 1411 unsigned long iv = __this_cpu_read(mce_next_interval); 1412 1413 __start_timer(t, interval); 1414 1415 if (interval < iv) 1416 __this_cpu_write(mce_next_interval, interval); 1417 } 1418 1419 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1420 static void mce_timer_delete_all(void) 1421 { 1422 int cpu; 1423 1424 for_each_online_cpu(cpu) 1425 del_timer_sync(&per_cpu(mce_timer, cpu)); 1426 } 1427 1428 /* 1429 * Notify the user(s) about new machine check events. 1430 * Can be called from interrupt context, but not from machine check/NMI 1431 * context. 1432 */ 1433 int mce_notify_irq(void) 1434 { 1435 /* Not more than two messages every minute */ 1436 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1437 1438 if (test_and_clear_bit(0, &mce_need_notify)) { 1439 mce_work_trigger(); 1440 1441 if (__ratelimit(&ratelimit)) 1442 pr_info(HW_ERR "Machine check events logged\n"); 1443 1444 return 1; 1445 } 1446 return 0; 1447 } 1448 EXPORT_SYMBOL_GPL(mce_notify_irq); 1449 1450 static int __mcheck_cpu_mce_banks_init(void) 1451 { 1452 int i; 1453 u8 num_banks = mca_cfg.banks; 1454 1455 mce_banks = kcalloc(num_banks, sizeof(struct mce_bank), GFP_KERNEL); 1456 if (!mce_banks) 1457 return -ENOMEM; 1458 1459 for (i = 0; i < num_banks; i++) { 1460 struct mce_bank *b = &mce_banks[i]; 1461 1462 b->ctl = -1ULL; 1463 b->init = 1; 1464 } 1465 return 0; 1466 } 1467 1468 /* 1469 * Initialize Machine Checks for a CPU. 1470 */ 1471 static int __mcheck_cpu_cap_init(void) 1472 { 1473 unsigned b; 1474 u64 cap; 1475 1476 rdmsrl(MSR_IA32_MCG_CAP, cap); 1477 1478 b = cap & MCG_BANKCNT_MASK; 1479 if (!mca_cfg.banks) 1480 pr_info("CPU supports %d MCE banks\n", b); 1481 1482 if (b > MAX_NR_BANKS) { 1483 pr_warn("Using only %u machine check banks out of %u\n", 1484 MAX_NR_BANKS, b); 1485 b = MAX_NR_BANKS; 1486 } 1487 1488 /* Don't support asymmetric configurations today */ 1489 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks); 1490 mca_cfg.banks = b; 1491 1492 if (!mce_banks) { 1493 int err = __mcheck_cpu_mce_banks_init(); 1494 1495 if (err) 1496 return err; 1497 } 1498 1499 /* Use accurate RIP reporting if available. */ 1500 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1501 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1502 1503 if (cap & MCG_SER_P) 1504 mca_cfg.ser = 1; 1505 1506 return 0; 1507 } 1508 1509 static void __mcheck_cpu_init_generic(void) 1510 { 1511 enum mcp_flags m_fl = 0; 1512 mce_banks_t all_banks; 1513 u64 cap; 1514 1515 if (!mca_cfg.bootlog) 1516 m_fl = MCP_DONTLOG; 1517 1518 /* 1519 * Log the machine checks left over from the previous reset. 1520 */ 1521 bitmap_fill(all_banks, MAX_NR_BANKS); 1522 machine_check_poll(MCP_UC | m_fl, &all_banks); 1523 1524 cr4_set_bits(X86_CR4_MCE); 1525 1526 rdmsrl(MSR_IA32_MCG_CAP, cap); 1527 if (cap & MCG_CTL_P) 1528 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1529 } 1530 1531 static void __mcheck_cpu_init_clear_banks(void) 1532 { 1533 int i; 1534 1535 for (i = 0; i < mca_cfg.banks; i++) { 1536 struct mce_bank *b = &mce_banks[i]; 1537 1538 if (!b->init) 1539 continue; 1540 wrmsrl(msr_ops.ctl(i), b->ctl); 1541 wrmsrl(msr_ops.status(i), 0); 1542 } 1543 } 1544 1545 /* 1546 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 1547 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 1548 * Vol 3B Table 15-20). But this confuses both the code that determines 1549 * whether the machine check occurred in kernel or user mode, and also 1550 * the severity assessment code. Pretend that EIPV was set, and take the 1551 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 1552 */ 1553 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 1554 { 1555 if (bank != 0) 1556 return; 1557 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 1558 return; 1559 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 1560 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 1561 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 1562 MCACOD)) != 1563 (MCI_STATUS_UC|MCI_STATUS_EN| 1564 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 1565 MCI_STATUS_AR|MCACOD_INSTR)) 1566 return; 1567 1568 m->mcgstatus |= MCG_STATUS_EIPV; 1569 m->ip = regs->ip; 1570 m->cs = regs->cs; 1571 } 1572 1573 /* Add per CPU specific workarounds here */ 1574 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1575 { 1576 struct mca_config *cfg = &mca_cfg; 1577 1578 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1579 pr_info("unknown CPU type - not enabling MCE support\n"); 1580 return -EOPNOTSUPP; 1581 } 1582 1583 /* This should be disabled by the BIOS, but isn't always */ 1584 if (c->x86_vendor == X86_VENDOR_AMD) { 1585 if (c->x86 == 15 && cfg->banks > 4) { 1586 /* 1587 * disable GART TBL walk error reporting, which 1588 * trips off incorrectly with the IOMMU & 3ware 1589 * & Cerberus: 1590 */ 1591 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1592 } 1593 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1594 /* 1595 * Lots of broken BIOS around that don't clear them 1596 * by default and leave crap in there. Don't log: 1597 */ 1598 cfg->bootlog = 0; 1599 } 1600 /* 1601 * Various K7s with broken bank 0 around. Always disable 1602 * by default. 1603 */ 1604 if (c->x86 == 6 && cfg->banks > 0) 1605 mce_banks[0].ctl = 0; 1606 1607 /* 1608 * overflow_recov is supported for F15h Models 00h-0fh 1609 * even though we don't have a CPUID bit for it. 1610 */ 1611 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1612 mce_flags.overflow_recov = 1; 1613 1614 /* 1615 * Turn off MC4_MISC thresholding banks on those models since 1616 * they're not supported there. 1617 */ 1618 if (c->x86 == 0x15 && 1619 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) { 1620 int i; 1621 u64 hwcr; 1622 bool need_toggle; 1623 u32 msrs[] = { 1624 0x00000413, /* MC4_MISC0 */ 1625 0xc0000408, /* MC4_MISC1 */ 1626 }; 1627 1628 rdmsrl(MSR_K7_HWCR, hwcr); 1629 1630 /* McStatusWrEn has to be set */ 1631 need_toggle = !(hwcr & BIT(18)); 1632 1633 if (need_toggle) 1634 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18)); 1635 1636 /* Clear CntP bit safely */ 1637 for (i = 0; i < ARRAY_SIZE(msrs); i++) 1638 msr_clear_bit(msrs[i], 62); 1639 1640 /* restore old settings */ 1641 if (need_toggle) 1642 wrmsrl(MSR_K7_HWCR, hwcr); 1643 } 1644 } 1645 1646 if (c->x86_vendor == X86_VENDOR_INTEL) { 1647 /* 1648 * SDM documents that on family 6 bank 0 should not be written 1649 * because it aliases to another special BIOS controlled 1650 * register. 1651 * But it's not aliased anymore on model 0x1a+ 1652 * Don't ignore bank 0 completely because there could be a 1653 * valid event later, merely don't write CTL0. 1654 */ 1655 1656 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0) 1657 mce_banks[0].init = 0; 1658 1659 /* 1660 * All newer Intel systems support MCE broadcasting. Enable 1661 * synchronization with a one second timeout. 1662 */ 1663 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1664 cfg->monarch_timeout < 0) 1665 cfg->monarch_timeout = USEC_PER_SEC; 1666 1667 /* 1668 * There are also broken BIOSes on some Pentium M and 1669 * earlier systems: 1670 */ 1671 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1672 cfg->bootlog = 0; 1673 1674 if (c->x86 == 6 && c->x86_model == 45) 1675 quirk_no_way_out = quirk_sandybridge_ifu; 1676 } 1677 if (cfg->monarch_timeout < 0) 1678 cfg->monarch_timeout = 0; 1679 if (cfg->bootlog != 0) 1680 cfg->panic_timeout = 30; 1681 1682 return 0; 1683 } 1684 1685 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1686 { 1687 if (c->x86 != 5) 1688 return 0; 1689 1690 switch (c->x86_vendor) { 1691 case X86_VENDOR_INTEL: 1692 intel_p5_mcheck_init(c); 1693 return 1; 1694 break; 1695 case X86_VENDOR_CENTAUR: 1696 winchip_mcheck_init(c); 1697 return 1; 1698 break; 1699 default: 1700 return 0; 1701 } 1702 1703 return 0; 1704 } 1705 1706 /* 1707 * Init basic CPU features needed for early decoding of MCEs. 1708 */ 1709 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1710 { 1711 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1712 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1713 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1714 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1715 1716 if (mce_flags.smca) { 1717 msr_ops.ctl = smca_ctl_reg; 1718 msr_ops.status = smca_status_reg; 1719 msr_ops.addr = smca_addr_reg; 1720 msr_ops.misc = smca_misc_reg; 1721 } 1722 } 1723 } 1724 1725 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1726 { 1727 struct mca_config *cfg = &mca_cfg; 1728 1729 /* 1730 * All newer Centaur CPUs support MCE broadcasting. Enable 1731 * synchronization with a one second timeout. 1732 */ 1733 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1734 c->x86 > 6) { 1735 if (cfg->monarch_timeout < 0) 1736 cfg->monarch_timeout = USEC_PER_SEC; 1737 } 1738 } 1739 1740 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1741 { 1742 switch (c->x86_vendor) { 1743 case X86_VENDOR_INTEL: 1744 mce_intel_feature_init(c); 1745 mce_adjust_timer = cmci_intel_adjust_timer; 1746 break; 1747 1748 case X86_VENDOR_AMD: { 1749 mce_amd_feature_init(c); 1750 break; 1751 } 1752 1753 case X86_VENDOR_HYGON: 1754 mce_hygon_feature_init(c); 1755 break; 1756 1757 case X86_VENDOR_CENTAUR: 1758 mce_centaur_feature_init(c); 1759 break; 1760 1761 default: 1762 break; 1763 } 1764 } 1765 1766 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 1767 { 1768 switch (c->x86_vendor) { 1769 case X86_VENDOR_INTEL: 1770 mce_intel_feature_clear(c); 1771 break; 1772 default: 1773 break; 1774 } 1775 } 1776 1777 static void mce_start_timer(struct timer_list *t) 1778 { 1779 unsigned long iv = check_interval * HZ; 1780 1781 if (mca_cfg.ignore_ce || !iv) 1782 return; 1783 1784 this_cpu_write(mce_next_interval, iv); 1785 __start_timer(t, iv); 1786 } 1787 1788 static void __mcheck_cpu_setup_timer(void) 1789 { 1790 struct timer_list *t = this_cpu_ptr(&mce_timer); 1791 1792 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1793 } 1794 1795 static void __mcheck_cpu_init_timer(void) 1796 { 1797 struct timer_list *t = this_cpu_ptr(&mce_timer); 1798 1799 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1800 mce_start_timer(t); 1801 } 1802 1803 /* Handle unconfigured int18 (should never happen) */ 1804 static void unexpected_machine_check(struct pt_regs *regs, long error_code) 1805 { 1806 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1807 smp_processor_id()); 1808 } 1809 1810 /* Call the installed machine check handler for this CPU setup. */ 1811 void (*machine_check_vector)(struct pt_regs *, long error_code) = 1812 unexpected_machine_check; 1813 1814 dotraplinkage void do_mce(struct pt_regs *regs, long error_code) 1815 { 1816 machine_check_vector(regs, error_code); 1817 } 1818 1819 /* 1820 * Called for each booted CPU to set up machine checks. 1821 * Must be called with preempt off: 1822 */ 1823 void mcheck_cpu_init(struct cpuinfo_x86 *c) 1824 { 1825 if (mca_cfg.disabled) 1826 return; 1827 1828 if (__mcheck_cpu_ancient_init(c)) 1829 return; 1830 1831 if (!mce_available(c)) 1832 return; 1833 1834 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) { 1835 mca_cfg.disabled = 1; 1836 return; 1837 } 1838 1839 if (mce_gen_pool_init()) { 1840 mca_cfg.disabled = 1; 1841 pr_emerg("Couldn't allocate MCE records pool!\n"); 1842 return; 1843 } 1844 1845 machine_check_vector = do_machine_check; 1846 1847 __mcheck_cpu_init_early(c); 1848 __mcheck_cpu_init_generic(); 1849 __mcheck_cpu_init_vendor(c); 1850 __mcheck_cpu_init_clear_banks(); 1851 __mcheck_cpu_setup_timer(); 1852 } 1853 1854 /* 1855 * Called for each booted CPU to clear some machine checks opt-ins 1856 */ 1857 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 1858 { 1859 if (mca_cfg.disabled) 1860 return; 1861 1862 if (!mce_available(c)) 1863 return; 1864 1865 /* 1866 * Possibly to clear general settings generic to x86 1867 * __mcheck_cpu_clear_generic(c); 1868 */ 1869 __mcheck_cpu_clear_vendor(c); 1870 1871 } 1872 1873 static void __mce_disable_bank(void *arg) 1874 { 1875 int bank = *((int *)arg); 1876 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 1877 cmci_disable_bank(bank); 1878 } 1879 1880 void mce_disable_bank(int bank) 1881 { 1882 if (bank >= mca_cfg.banks) { 1883 pr_warn(FW_BUG 1884 "Ignoring request to disable invalid MCA bank %d.\n", 1885 bank); 1886 return; 1887 } 1888 set_bit(bank, mce_banks_ce_disabled); 1889 on_each_cpu(__mce_disable_bank, &bank, 1); 1890 } 1891 1892 /* 1893 * mce=off Disables machine check 1894 * mce=no_cmci Disables CMCI 1895 * mce=no_lmce Disables LMCE 1896 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 1897 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 1898 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 1899 * monarchtimeout is how long to wait for other CPUs on machine 1900 * check, or 0 to not wait 1901 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 1902 and older. 1903 * mce=nobootlog Don't log MCEs from before booting. 1904 * mce=bios_cmci_threshold Don't program the CMCI threshold 1905 * mce=recovery force enable memcpy_mcsafe() 1906 */ 1907 static int __init mcheck_enable(char *str) 1908 { 1909 struct mca_config *cfg = &mca_cfg; 1910 1911 if (*str == 0) { 1912 enable_p5_mce(); 1913 return 1; 1914 } 1915 if (*str == '=') 1916 str++; 1917 if (!strcmp(str, "off")) 1918 cfg->disabled = 1; 1919 else if (!strcmp(str, "no_cmci")) 1920 cfg->cmci_disabled = true; 1921 else if (!strcmp(str, "no_lmce")) 1922 cfg->lmce_disabled = 1; 1923 else if (!strcmp(str, "dont_log_ce")) 1924 cfg->dont_log_ce = true; 1925 else if (!strcmp(str, "ignore_ce")) 1926 cfg->ignore_ce = true; 1927 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 1928 cfg->bootlog = (str[0] == 'b'); 1929 else if (!strcmp(str, "bios_cmci_threshold")) 1930 cfg->bios_cmci_threshold = 1; 1931 else if (!strcmp(str, "recovery")) 1932 cfg->recovery = 1; 1933 else if (isdigit(str[0])) { 1934 if (get_option(&str, &cfg->tolerant) == 2) 1935 get_option(&str, &(cfg->monarch_timeout)); 1936 } else { 1937 pr_info("mce argument %s ignored. Please use /sys\n", str); 1938 return 0; 1939 } 1940 return 1; 1941 } 1942 __setup("mce", mcheck_enable); 1943 1944 int __init mcheck_init(void) 1945 { 1946 mcheck_intel_therm_init(); 1947 mce_register_decode_chain(&first_nb); 1948 mce_register_decode_chain(&mce_srao_nb); 1949 mce_register_decode_chain(&mce_default_nb); 1950 mcheck_vendor_init_severity(); 1951 1952 INIT_WORK(&mce_work, mce_gen_pool_process); 1953 init_irq_work(&mce_irq_work, mce_irq_work_cb); 1954 1955 return 0; 1956 } 1957 1958 /* 1959 * mce_syscore: PM support 1960 */ 1961 1962 /* 1963 * Disable machine checks on suspend and shutdown. We can't really handle 1964 * them later. 1965 */ 1966 static void mce_disable_error_reporting(void) 1967 { 1968 int i; 1969 1970 for (i = 0; i < mca_cfg.banks; i++) { 1971 struct mce_bank *b = &mce_banks[i]; 1972 1973 if (b->init) 1974 wrmsrl(msr_ops.ctl(i), 0); 1975 } 1976 return; 1977 } 1978 1979 static void vendor_disable_error_reporting(void) 1980 { 1981 /* 1982 * Don't clear on Intel or AMD or Hygon CPUs. Some of these MSRs 1983 * are socket-wide. 1984 * Disabling them for just a single offlined CPU is bad, since it will 1985 * inhibit reporting for all shared resources on the socket like the 1986 * last level cache (LLC), the integrated memory controller (iMC), etc. 1987 */ 1988 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 1989 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 1990 boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1991 return; 1992 1993 mce_disable_error_reporting(); 1994 } 1995 1996 static int mce_syscore_suspend(void) 1997 { 1998 vendor_disable_error_reporting(); 1999 return 0; 2000 } 2001 2002 static void mce_syscore_shutdown(void) 2003 { 2004 vendor_disable_error_reporting(); 2005 } 2006 2007 /* 2008 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2009 * Only one CPU is active at this time, the others get re-added later using 2010 * CPU hotplug: 2011 */ 2012 static void mce_syscore_resume(void) 2013 { 2014 __mcheck_cpu_init_generic(); 2015 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2016 __mcheck_cpu_init_clear_banks(); 2017 } 2018 2019 static struct syscore_ops mce_syscore_ops = { 2020 .suspend = mce_syscore_suspend, 2021 .shutdown = mce_syscore_shutdown, 2022 .resume = mce_syscore_resume, 2023 }; 2024 2025 /* 2026 * mce_device: Sysfs support 2027 */ 2028 2029 static void mce_cpu_restart(void *data) 2030 { 2031 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2032 return; 2033 __mcheck_cpu_init_generic(); 2034 __mcheck_cpu_init_clear_banks(); 2035 __mcheck_cpu_init_timer(); 2036 } 2037 2038 /* Reinit MCEs after user configuration changes */ 2039 static void mce_restart(void) 2040 { 2041 mce_timer_delete_all(); 2042 on_each_cpu(mce_cpu_restart, NULL, 1); 2043 } 2044 2045 /* Toggle features for corrected errors */ 2046 static void mce_disable_cmci(void *data) 2047 { 2048 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2049 return; 2050 cmci_clear(); 2051 } 2052 2053 static void mce_enable_ce(void *all) 2054 { 2055 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2056 return; 2057 cmci_reenable(); 2058 cmci_recheck(); 2059 if (all) 2060 __mcheck_cpu_init_timer(); 2061 } 2062 2063 static struct bus_type mce_subsys = { 2064 .name = "machinecheck", 2065 .dev_name = "machinecheck", 2066 }; 2067 2068 DEFINE_PER_CPU(struct device *, mce_device); 2069 2070 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr) 2071 { 2072 return container_of(attr, struct mce_bank, attr); 2073 } 2074 2075 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2076 char *buf) 2077 { 2078 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl); 2079 } 2080 2081 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2082 const char *buf, size_t size) 2083 { 2084 u64 new; 2085 2086 if (kstrtou64(buf, 0, &new) < 0) 2087 return -EINVAL; 2088 2089 attr_to_bank(attr)->ctl = new; 2090 mce_restart(); 2091 2092 return size; 2093 } 2094 2095 static ssize_t set_ignore_ce(struct device *s, 2096 struct device_attribute *attr, 2097 const char *buf, size_t size) 2098 { 2099 u64 new; 2100 2101 if (kstrtou64(buf, 0, &new) < 0) 2102 return -EINVAL; 2103 2104 mutex_lock(&mce_sysfs_mutex); 2105 if (mca_cfg.ignore_ce ^ !!new) { 2106 if (new) { 2107 /* disable ce features */ 2108 mce_timer_delete_all(); 2109 on_each_cpu(mce_disable_cmci, NULL, 1); 2110 mca_cfg.ignore_ce = true; 2111 } else { 2112 /* enable ce features */ 2113 mca_cfg.ignore_ce = false; 2114 on_each_cpu(mce_enable_ce, (void *)1, 1); 2115 } 2116 } 2117 mutex_unlock(&mce_sysfs_mutex); 2118 2119 return size; 2120 } 2121 2122 static ssize_t set_cmci_disabled(struct device *s, 2123 struct device_attribute *attr, 2124 const char *buf, size_t size) 2125 { 2126 u64 new; 2127 2128 if (kstrtou64(buf, 0, &new) < 0) 2129 return -EINVAL; 2130 2131 mutex_lock(&mce_sysfs_mutex); 2132 if (mca_cfg.cmci_disabled ^ !!new) { 2133 if (new) { 2134 /* disable cmci */ 2135 on_each_cpu(mce_disable_cmci, NULL, 1); 2136 mca_cfg.cmci_disabled = true; 2137 } else { 2138 /* enable cmci */ 2139 mca_cfg.cmci_disabled = false; 2140 on_each_cpu(mce_enable_ce, NULL, 1); 2141 } 2142 } 2143 mutex_unlock(&mce_sysfs_mutex); 2144 2145 return size; 2146 } 2147 2148 static ssize_t store_int_with_restart(struct device *s, 2149 struct device_attribute *attr, 2150 const char *buf, size_t size) 2151 { 2152 unsigned long old_check_interval = check_interval; 2153 ssize_t ret = device_store_ulong(s, attr, buf, size); 2154 2155 if (check_interval == old_check_interval) 2156 return ret; 2157 2158 mutex_lock(&mce_sysfs_mutex); 2159 mce_restart(); 2160 mutex_unlock(&mce_sysfs_mutex); 2161 2162 return ret; 2163 } 2164 2165 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); 2166 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2167 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2168 2169 static struct dev_ext_attribute dev_attr_check_interval = { 2170 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2171 &check_interval 2172 }; 2173 2174 static struct dev_ext_attribute dev_attr_ignore_ce = { 2175 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2176 &mca_cfg.ignore_ce 2177 }; 2178 2179 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2180 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2181 &mca_cfg.cmci_disabled 2182 }; 2183 2184 static struct device_attribute *mce_device_attrs[] = { 2185 &dev_attr_tolerant.attr, 2186 &dev_attr_check_interval.attr, 2187 #ifdef CONFIG_X86_MCELOG_LEGACY 2188 &dev_attr_trigger, 2189 #endif 2190 &dev_attr_monarch_timeout.attr, 2191 &dev_attr_dont_log_ce.attr, 2192 &dev_attr_ignore_ce.attr, 2193 &dev_attr_cmci_disabled.attr, 2194 NULL 2195 }; 2196 2197 static cpumask_var_t mce_device_initialized; 2198 2199 static void mce_device_release(struct device *dev) 2200 { 2201 kfree(dev); 2202 } 2203 2204 /* Per cpu device init. All of the cpus still share the same ctrl bank: */ 2205 static int mce_device_create(unsigned int cpu) 2206 { 2207 struct device *dev; 2208 int err; 2209 int i, j; 2210 2211 if (!mce_available(&boot_cpu_data)) 2212 return -EIO; 2213 2214 dev = per_cpu(mce_device, cpu); 2215 if (dev) 2216 return 0; 2217 2218 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2219 if (!dev) 2220 return -ENOMEM; 2221 dev->id = cpu; 2222 dev->bus = &mce_subsys; 2223 dev->release = &mce_device_release; 2224 2225 err = device_register(dev); 2226 if (err) { 2227 put_device(dev); 2228 return err; 2229 } 2230 2231 for (i = 0; mce_device_attrs[i]; i++) { 2232 err = device_create_file(dev, mce_device_attrs[i]); 2233 if (err) 2234 goto error; 2235 } 2236 for (j = 0; j < mca_cfg.banks; j++) { 2237 err = device_create_file(dev, &mce_banks[j].attr); 2238 if (err) 2239 goto error2; 2240 } 2241 cpumask_set_cpu(cpu, mce_device_initialized); 2242 per_cpu(mce_device, cpu) = dev; 2243 2244 return 0; 2245 error2: 2246 while (--j >= 0) 2247 device_remove_file(dev, &mce_banks[j].attr); 2248 error: 2249 while (--i >= 0) 2250 device_remove_file(dev, mce_device_attrs[i]); 2251 2252 device_unregister(dev); 2253 2254 return err; 2255 } 2256 2257 static void mce_device_remove(unsigned int cpu) 2258 { 2259 struct device *dev = per_cpu(mce_device, cpu); 2260 int i; 2261 2262 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2263 return; 2264 2265 for (i = 0; mce_device_attrs[i]; i++) 2266 device_remove_file(dev, mce_device_attrs[i]); 2267 2268 for (i = 0; i < mca_cfg.banks; i++) 2269 device_remove_file(dev, &mce_banks[i].attr); 2270 2271 device_unregister(dev); 2272 cpumask_clear_cpu(cpu, mce_device_initialized); 2273 per_cpu(mce_device, cpu) = NULL; 2274 } 2275 2276 /* Make sure there are no machine checks on offlined CPUs. */ 2277 static void mce_disable_cpu(void) 2278 { 2279 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2280 return; 2281 2282 if (!cpuhp_tasks_frozen) 2283 cmci_clear(); 2284 2285 vendor_disable_error_reporting(); 2286 } 2287 2288 static void mce_reenable_cpu(void) 2289 { 2290 int i; 2291 2292 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2293 return; 2294 2295 if (!cpuhp_tasks_frozen) 2296 cmci_reenable(); 2297 for (i = 0; i < mca_cfg.banks; i++) { 2298 struct mce_bank *b = &mce_banks[i]; 2299 2300 if (b->init) 2301 wrmsrl(msr_ops.ctl(i), b->ctl); 2302 } 2303 } 2304 2305 static int mce_cpu_dead(unsigned int cpu) 2306 { 2307 mce_intel_hcpu_update(cpu); 2308 2309 /* intentionally ignoring frozen here */ 2310 if (!cpuhp_tasks_frozen) 2311 cmci_rediscover(); 2312 return 0; 2313 } 2314 2315 static int mce_cpu_online(unsigned int cpu) 2316 { 2317 struct timer_list *t = this_cpu_ptr(&mce_timer); 2318 int ret; 2319 2320 mce_device_create(cpu); 2321 2322 ret = mce_threshold_create_device(cpu); 2323 if (ret) { 2324 mce_device_remove(cpu); 2325 return ret; 2326 } 2327 mce_reenable_cpu(); 2328 mce_start_timer(t); 2329 return 0; 2330 } 2331 2332 static int mce_cpu_pre_down(unsigned int cpu) 2333 { 2334 struct timer_list *t = this_cpu_ptr(&mce_timer); 2335 2336 mce_disable_cpu(); 2337 del_timer_sync(t); 2338 mce_threshold_remove_device(cpu); 2339 mce_device_remove(cpu); 2340 return 0; 2341 } 2342 2343 static __init void mce_init_banks(void) 2344 { 2345 int i; 2346 2347 for (i = 0; i < mca_cfg.banks; i++) { 2348 struct mce_bank *b = &mce_banks[i]; 2349 struct device_attribute *a = &b->attr; 2350 2351 sysfs_attr_init(&a->attr); 2352 a->attr.name = b->attrname; 2353 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2354 2355 a->attr.mode = 0644; 2356 a->show = show_bank; 2357 a->store = set_bank; 2358 } 2359 } 2360 2361 static __init int mcheck_init_device(void) 2362 { 2363 int err; 2364 2365 /* 2366 * Check if we have a spare virtual bit. This will only become 2367 * a problem if/when we move beyond 5-level page tables. 2368 */ 2369 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2370 2371 if (!mce_available(&boot_cpu_data)) { 2372 err = -EIO; 2373 goto err_out; 2374 } 2375 2376 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2377 err = -ENOMEM; 2378 goto err_out; 2379 } 2380 2381 mce_init_banks(); 2382 2383 err = subsys_system_register(&mce_subsys, NULL); 2384 if (err) 2385 goto err_out_mem; 2386 2387 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2388 mce_cpu_dead); 2389 if (err) 2390 goto err_out_mem; 2391 2392 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2393 mce_cpu_online, mce_cpu_pre_down); 2394 if (err < 0) 2395 goto err_out_online; 2396 2397 register_syscore_ops(&mce_syscore_ops); 2398 2399 return 0; 2400 2401 err_out_online: 2402 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2403 2404 err_out_mem: 2405 free_cpumask_var(mce_device_initialized); 2406 2407 err_out: 2408 pr_err("Unable to init MCE device (rc: %d)\n", err); 2409 2410 return err; 2411 } 2412 device_initcall_sync(mcheck_init_device); 2413 2414 /* 2415 * Old style boot options parsing. Only for compatibility. 2416 */ 2417 static int __init mcheck_disable(char *str) 2418 { 2419 mca_cfg.disabled = 1; 2420 return 1; 2421 } 2422 __setup("nomce", mcheck_disable); 2423 2424 #ifdef CONFIG_DEBUG_FS 2425 struct dentry *mce_get_debugfs_dir(void) 2426 { 2427 static struct dentry *dmce; 2428 2429 if (!dmce) 2430 dmce = debugfs_create_dir("mce", NULL); 2431 2432 return dmce; 2433 } 2434 2435 static void mce_reset(void) 2436 { 2437 cpu_missing = 0; 2438 atomic_set(&mce_fake_panicked, 0); 2439 atomic_set(&mce_executing, 0); 2440 atomic_set(&mce_callin, 0); 2441 atomic_set(&global_nwo, 0); 2442 } 2443 2444 static int fake_panic_get(void *data, u64 *val) 2445 { 2446 *val = fake_panic; 2447 return 0; 2448 } 2449 2450 static int fake_panic_set(void *data, u64 val) 2451 { 2452 mce_reset(); 2453 fake_panic = val; 2454 return 0; 2455 } 2456 2457 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get, 2458 fake_panic_set, "%llu\n"); 2459 2460 static int __init mcheck_debugfs_init(void) 2461 { 2462 struct dentry *dmce, *ffake_panic; 2463 2464 dmce = mce_get_debugfs_dir(); 2465 if (!dmce) 2466 return -ENOMEM; 2467 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL, 2468 &fake_panic_fops); 2469 if (!ffake_panic) 2470 return -ENOMEM; 2471 2472 return 0; 2473 } 2474 #else 2475 static int __init mcheck_debugfs_init(void) { return -EINVAL; } 2476 #endif 2477 2478 DEFINE_STATIC_KEY_FALSE(mcsafe_key); 2479 EXPORT_SYMBOL_GPL(mcsafe_key); 2480 2481 static int __init mcheck_late_init(void) 2482 { 2483 if (mca_cfg.recovery) 2484 static_branch_inc(&mcsafe_key); 2485 2486 mcheck_debugfs_init(); 2487 cec_init(); 2488 2489 /* 2490 * Flush out everything that has been logged during early boot, now that 2491 * everything has been initialized (workqueues, decoders, ...). 2492 */ 2493 mce_schedule_work(); 2494 2495 return 0; 2496 } 2497 late_initcall(mcheck_late_init); 2498