1 /* 2 * Machine check handler. 3 * 4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 5 * Rest from unknown author(s). 6 * 2004 Andi Kleen. Rewrote most of it. 7 * Copyright 2008 Intel Corporation 8 * Author: Andi Kleen 9 */ 10 11 #include <linux/thread_info.h> 12 #include <linux/capability.h> 13 #include <linux/miscdevice.h> 14 #include <linux/ratelimit.h> 15 #include <linux/rcupdate.h> 16 #include <linux/kobject.h> 17 #include <linux/uaccess.h> 18 #include <linux/kdebug.h> 19 #include <linux/kernel.h> 20 #include <linux/percpu.h> 21 #include <linux/string.h> 22 #include <linux/device.h> 23 #include <linux/syscore_ops.h> 24 #include <linux/delay.h> 25 #include <linux/ctype.h> 26 #include <linux/sched.h> 27 #include <linux/sysfs.h> 28 #include <linux/types.h> 29 #include <linux/slab.h> 30 #include <linux/init.h> 31 #include <linux/kmod.h> 32 #include <linux/poll.h> 33 #include <linux/nmi.h> 34 #include <linux/cpu.h> 35 #include <linux/ras.h> 36 #include <linux/smp.h> 37 #include <linux/fs.h> 38 #include <linux/mm.h> 39 #include <linux/debugfs.h> 40 #include <linux/irq_work.h> 41 #include <linux/export.h> 42 #include <linux/jump_label.h> 43 #include <linux/set_memory.h> 44 45 #include <asm/intel-family.h> 46 #include <asm/processor.h> 47 #include <asm/traps.h> 48 #include <asm/tlbflush.h> 49 #include <asm/mce.h> 50 #include <asm/msr.h> 51 #include <asm/reboot.h> 52 53 #include "internal.h" 54 55 static DEFINE_MUTEX(mce_log_mutex); 56 57 /* sysfs synchronization */ 58 static DEFINE_MUTEX(mce_sysfs_mutex); 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/mce.h> 62 63 #define SPINUNIT 100 /* 100ns */ 64 65 DEFINE_PER_CPU(unsigned, mce_exception_count); 66 67 struct mce_bank *mce_banks __read_mostly; 68 struct mce_vendor_flags mce_flags __read_mostly; 69 70 struct mca_config mca_cfg __read_mostly = { 71 .bootlog = -1, 72 /* 73 * Tolerant levels: 74 * 0: always panic on uncorrected errors, log corrected errors 75 * 1: panic or SIGBUS on uncorrected errors, log corrected errors 76 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors 77 * 3: never panic or SIGBUS, log all errors (for testing only) 78 */ 79 .tolerant = 1, 80 .monarch_timeout = -1 81 }; 82 83 static DEFINE_PER_CPU(struct mce, mces_seen); 84 static unsigned long mce_need_notify; 85 static int cpu_missing; 86 87 /* 88 * MCA banks polled by the period polling timer for corrected events. 89 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 90 */ 91 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 92 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 93 }; 94 95 /* 96 * MCA banks controlled through firmware first for corrected errors. 97 * This is a global list of banks for which we won't enable CMCI and we 98 * won't poll. Firmware controls these banks and is responsible for 99 * reporting corrected errors through GHES. Uncorrected/recoverable 100 * errors are still notified through a machine check. 101 */ 102 mce_banks_t mce_banks_ce_disabled; 103 104 static struct work_struct mce_work; 105 static struct irq_work mce_irq_work; 106 107 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); 108 109 /* 110 * CPU/chipset specific EDAC code can register a notifier call here to print 111 * MCE errors in a human-readable form. 112 */ 113 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 114 115 /* Do initial initialization of a struct mce */ 116 void mce_setup(struct mce *m) 117 { 118 memset(m, 0, sizeof(struct mce)); 119 m->cpu = m->extcpu = smp_processor_id(); 120 /* need the internal __ version to avoid deadlocks */ 121 m->time = __ktime_get_real_seconds(); 122 m->cpuvendor = boot_cpu_data.x86_vendor; 123 m->cpuid = cpuid_eax(1); 124 m->socketid = cpu_data(m->extcpu).phys_proc_id; 125 m->apicid = cpu_data(m->extcpu).initial_apicid; 126 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap); 127 128 if (this_cpu_has(X86_FEATURE_INTEL_PPIN)) 129 rdmsrl(MSR_PPIN, m->ppin); 130 131 m->microcode = boot_cpu_data.microcode; 132 } 133 134 DEFINE_PER_CPU(struct mce, injectm); 135 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 136 137 void mce_log(struct mce *m) 138 { 139 if (!mce_gen_pool_add(m)) 140 irq_work_queue(&mce_irq_work); 141 } 142 143 void mce_inject_log(struct mce *m) 144 { 145 mutex_lock(&mce_log_mutex); 146 mce_log(m); 147 mutex_unlock(&mce_log_mutex); 148 } 149 EXPORT_SYMBOL_GPL(mce_inject_log); 150 151 static struct notifier_block mce_srao_nb; 152 153 /* 154 * We run the default notifier if we have only the SRAO, the first and the 155 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS 156 * notifiers registered on the chain. 157 */ 158 #define NUM_DEFAULT_NOTIFIERS 3 159 static atomic_t num_notifiers; 160 161 void mce_register_decode_chain(struct notifier_block *nb) 162 { 163 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC)) 164 return; 165 166 atomic_inc(&num_notifiers); 167 168 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 169 } 170 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 171 172 void mce_unregister_decode_chain(struct notifier_block *nb) 173 { 174 atomic_dec(&num_notifiers); 175 176 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 177 } 178 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 179 180 static inline u32 ctl_reg(int bank) 181 { 182 return MSR_IA32_MCx_CTL(bank); 183 } 184 185 static inline u32 status_reg(int bank) 186 { 187 return MSR_IA32_MCx_STATUS(bank); 188 } 189 190 static inline u32 addr_reg(int bank) 191 { 192 return MSR_IA32_MCx_ADDR(bank); 193 } 194 195 static inline u32 misc_reg(int bank) 196 { 197 return MSR_IA32_MCx_MISC(bank); 198 } 199 200 static inline u32 smca_ctl_reg(int bank) 201 { 202 return MSR_AMD64_SMCA_MCx_CTL(bank); 203 } 204 205 static inline u32 smca_status_reg(int bank) 206 { 207 return MSR_AMD64_SMCA_MCx_STATUS(bank); 208 } 209 210 static inline u32 smca_addr_reg(int bank) 211 { 212 return MSR_AMD64_SMCA_MCx_ADDR(bank); 213 } 214 215 static inline u32 smca_misc_reg(int bank) 216 { 217 return MSR_AMD64_SMCA_MCx_MISC(bank); 218 } 219 220 struct mca_msr_regs msr_ops = { 221 .ctl = ctl_reg, 222 .status = status_reg, 223 .addr = addr_reg, 224 .misc = misc_reg 225 }; 226 227 static void __print_mce(struct mce *m) 228 { 229 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 230 m->extcpu, 231 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 232 m->mcgstatus, m->bank, m->status); 233 234 if (m->ip) { 235 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 236 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 237 m->cs, m->ip); 238 239 if (m->cs == __KERNEL_CS) 240 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 241 pr_cont("\n"); 242 } 243 244 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 245 if (m->addr) 246 pr_cont("ADDR %llx ", m->addr); 247 if (m->misc) 248 pr_cont("MISC %llx ", m->misc); 249 250 if (mce_flags.smca) { 251 if (m->synd) 252 pr_cont("SYND %llx ", m->synd); 253 if (m->ipid) 254 pr_cont("IPID %llx ", m->ipid); 255 } 256 257 pr_cont("\n"); 258 /* 259 * Note this output is parsed by external tools and old fields 260 * should not be changed. 261 */ 262 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 263 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 264 m->microcode); 265 } 266 267 static void print_mce(struct mce *m) 268 { 269 __print_mce(m); 270 271 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 272 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 273 } 274 275 #define PANIC_TIMEOUT 5 /* 5 seconds */ 276 277 static atomic_t mce_panicked; 278 279 static int fake_panic; 280 static atomic_t mce_fake_panicked; 281 282 /* Panic in progress. Enable interrupts and wait for final IPI */ 283 static void wait_for_panic(void) 284 { 285 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 286 287 preempt_disable(); 288 local_irq_enable(); 289 while (timeout-- > 0) 290 udelay(1); 291 if (panic_timeout == 0) 292 panic_timeout = mca_cfg.panic_timeout; 293 panic("Panicing machine check CPU died"); 294 } 295 296 static void mce_panic(const char *msg, struct mce *final, char *exp) 297 { 298 int apei_err = 0; 299 struct llist_node *pending; 300 struct mce_evt_llist *l; 301 302 if (!fake_panic) { 303 /* 304 * Make sure only one CPU runs in machine check panic 305 */ 306 if (atomic_inc_return(&mce_panicked) > 1) 307 wait_for_panic(); 308 barrier(); 309 310 bust_spinlocks(1); 311 console_verbose(); 312 } else { 313 /* Don't log too much for fake panic */ 314 if (atomic_inc_return(&mce_fake_panicked) > 1) 315 return; 316 } 317 pending = mce_gen_pool_prepare_records(); 318 /* First print corrected ones that are still unlogged */ 319 llist_for_each_entry(l, pending, llnode) { 320 struct mce *m = &l->mce; 321 if (!(m->status & MCI_STATUS_UC)) { 322 print_mce(m); 323 if (!apei_err) 324 apei_err = apei_write_mce(m); 325 } 326 } 327 /* Now print uncorrected but with the final one last */ 328 llist_for_each_entry(l, pending, llnode) { 329 struct mce *m = &l->mce; 330 if (!(m->status & MCI_STATUS_UC)) 331 continue; 332 if (!final || mce_cmp(m, final)) { 333 print_mce(m); 334 if (!apei_err) 335 apei_err = apei_write_mce(m); 336 } 337 } 338 if (final) { 339 print_mce(final); 340 if (!apei_err) 341 apei_err = apei_write_mce(final); 342 } 343 if (cpu_missing) 344 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); 345 if (exp) 346 pr_emerg(HW_ERR "Machine check: %s\n", exp); 347 if (!fake_panic) { 348 if (panic_timeout == 0) 349 panic_timeout = mca_cfg.panic_timeout; 350 panic(msg); 351 } else 352 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 353 } 354 355 /* Support code for software error injection */ 356 357 static int msr_to_offset(u32 msr) 358 { 359 unsigned bank = __this_cpu_read(injectm.bank); 360 361 if (msr == mca_cfg.rip_msr) 362 return offsetof(struct mce, ip); 363 if (msr == msr_ops.status(bank)) 364 return offsetof(struct mce, status); 365 if (msr == msr_ops.addr(bank)) 366 return offsetof(struct mce, addr); 367 if (msr == msr_ops.misc(bank)) 368 return offsetof(struct mce, misc); 369 if (msr == MSR_IA32_MCG_STATUS) 370 return offsetof(struct mce, mcgstatus); 371 return -1; 372 } 373 374 /* MSR access wrappers used for error injection */ 375 static u64 mce_rdmsrl(u32 msr) 376 { 377 u64 v; 378 379 if (__this_cpu_read(injectm.finished)) { 380 int offset = msr_to_offset(msr); 381 382 if (offset < 0) 383 return 0; 384 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 385 } 386 387 if (rdmsrl_safe(msr, &v)) { 388 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr); 389 /* 390 * Return zero in case the access faulted. This should 391 * not happen normally but can happen if the CPU does 392 * something weird, or if the code is buggy. 393 */ 394 v = 0; 395 } 396 397 return v; 398 } 399 400 static void mce_wrmsrl(u32 msr, u64 v) 401 { 402 if (__this_cpu_read(injectm.finished)) { 403 int offset = msr_to_offset(msr); 404 405 if (offset >= 0) 406 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 407 return; 408 } 409 wrmsrl(msr, v); 410 } 411 412 /* 413 * Collect all global (w.r.t. this processor) status about this machine 414 * check into our "mce" struct so that we can use it later to assess 415 * the severity of the problem as we read per-bank specific details. 416 */ 417 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) 418 { 419 mce_setup(m); 420 421 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 422 if (regs) { 423 /* 424 * Get the address of the instruction at the time of 425 * the machine check error. 426 */ 427 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 428 m->ip = regs->ip; 429 m->cs = regs->cs; 430 431 /* 432 * When in VM86 mode make the cs look like ring 3 433 * always. This is a lie, but it's better than passing 434 * the additional vm86 bit around everywhere. 435 */ 436 if (v8086_mode(regs)) 437 m->cs |= 3; 438 } 439 /* Use accurate RIP reporting if available. */ 440 if (mca_cfg.rip_msr) 441 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 442 } 443 } 444 445 int mce_available(struct cpuinfo_x86 *c) 446 { 447 if (mca_cfg.disabled) 448 return 0; 449 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 450 } 451 452 static void mce_schedule_work(void) 453 { 454 if (!mce_gen_pool_empty()) 455 schedule_work(&mce_work); 456 } 457 458 static void mce_irq_work_cb(struct irq_work *entry) 459 { 460 mce_schedule_work(); 461 } 462 463 static void mce_report_event(struct pt_regs *regs) 464 { 465 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) { 466 mce_notify_irq(); 467 /* 468 * Triggering the work queue here is just an insurance 469 * policy in case the syscall exit notify handler 470 * doesn't run soon enough or ends up running on the 471 * wrong CPU (can happen when audit sleeps) 472 */ 473 mce_schedule_work(); 474 return; 475 } 476 477 irq_work_queue(&mce_irq_work); 478 } 479 480 /* 481 * Check if the address reported by the CPU is in a format we can parse. 482 * It would be possible to add code for most other cases, but all would 483 * be somewhat complicated (e.g. segment offset would require an instruction 484 * parser). So only support physical addresses up to page granuality for now. 485 */ 486 int mce_usable_address(struct mce *m) 487 { 488 if (!(m->status & MCI_STATUS_ADDRV)) 489 return 0; 490 491 /* Checks after this one are Intel-specific: */ 492 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 493 return 1; 494 495 if (!(m->status & MCI_STATUS_MISCV)) 496 return 0; 497 498 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 499 return 0; 500 501 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 502 return 0; 503 504 return 1; 505 } 506 EXPORT_SYMBOL_GPL(mce_usable_address); 507 508 bool mce_is_memory_error(struct mce *m) 509 { 510 if (m->cpuvendor == X86_VENDOR_AMD || 511 m->cpuvendor == X86_VENDOR_HYGON) { 512 return amd_mce_is_memory_error(m); 513 } else if (m->cpuvendor == X86_VENDOR_INTEL) { 514 /* 515 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 516 * 517 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 518 * indicating a memory error. Bit 8 is used for indicating a 519 * cache hierarchy error. The combination of bit 2 and bit 3 520 * is used for indicating a `generic' cache hierarchy error 521 * But we can't just blindly check the above bits, because if 522 * bit 11 is set, then it is a bus/interconnect error - and 523 * either way the above bits just gives more detail on what 524 * bus/interconnect error happened. Note that bit 12 can be 525 * ignored, as it's the "filter" bit. 526 */ 527 return (m->status & 0xef80) == BIT(7) || 528 (m->status & 0xef00) == BIT(8) || 529 (m->status & 0xeffc) == 0xc; 530 } 531 532 return false; 533 } 534 EXPORT_SYMBOL_GPL(mce_is_memory_error); 535 536 bool mce_is_correctable(struct mce *m) 537 { 538 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 539 return false; 540 541 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 542 return false; 543 544 if (m->status & MCI_STATUS_UC) 545 return false; 546 547 return true; 548 } 549 EXPORT_SYMBOL_GPL(mce_is_correctable); 550 551 static bool cec_add_mce(struct mce *m) 552 { 553 if (!m) 554 return false; 555 556 /* We eat only correctable DRAM errors with usable addresses. */ 557 if (mce_is_memory_error(m) && 558 mce_is_correctable(m) && 559 mce_usable_address(m)) 560 if (!cec_add_elem(m->addr >> PAGE_SHIFT)) 561 return true; 562 563 return false; 564 } 565 566 static int mce_first_notifier(struct notifier_block *nb, unsigned long val, 567 void *data) 568 { 569 struct mce *m = (struct mce *)data; 570 571 if (!m) 572 return NOTIFY_DONE; 573 574 if (cec_add_mce(m)) 575 return NOTIFY_STOP; 576 577 /* Emit the trace record: */ 578 trace_mce_record(m); 579 580 set_bit(0, &mce_need_notify); 581 582 mce_notify_irq(); 583 584 return NOTIFY_DONE; 585 } 586 587 static struct notifier_block first_nb = { 588 .notifier_call = mce_first_notifier, 589 .priority = MCE_PRIO_FIRST, 590 }; 591 592 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val, 593 void *data) 594 { 595 struct mce *mce = (struct mce *)data; 596 unsigned long pfn; 597 598 if (!mce) 599 return NOTIFY_DONE; 600 601 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) { 602 pfn = mce->addr >> PAGE_SHIFT; 603 if (!memory_failure(pfn, 0)) 604 set_mce_nospec(pfn); 605 } 606 607 return NOTIFY_OK; 608 } 609 static struct notifier_block mce_srao_nb = { 610 .notifier_call = srao_decode_notifier, 611 .priority = MCE_PRIO_SRAO, 612 }; 613 614 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 615 void *data) 616 { 617 struct mce *m = (struct mce *)data; 618 619 if (!m) 620 return NOTIFY_DONE; 621 622 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS) 623 return NOTIFY_DONE; 624 625 __print_mce(m); 626 627 return NOTIFY_DONE; 628 } 629 630 static struct notifier_block mce_default_nb = { 631 .notifier_call = mce_default_notifier, 632 /* lowest prio, we want it to run last. */ 633 .priority = MCE_PRIO_LOWEST, 634 }; 635 636 /* 637 * Read ADDR and MISC registers. 638 */ 639 static void mce_read_aux(struct mce *m, int i) 640 { 641 if (m->status & MCI_STATUS_MISCV) 642 m->misc = mce_rdmsrl(msr_ops.misc(i)); 643 644 if (m->status & MCI_STATUS_ADDRV) { 645 m->addr = mce_rdmsrl(msr_ops.addr(i)); 646 647 /* 648 * Mask the reported address by the reported granularity. 649 */ 650 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 651 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 652 m->addr >>= shift; 653 m->addr <<= shift; 654 } 655 656 /* 657 * Extract [55:<lsb>] where lsb is the least significant 658 * *valid* bit of the address bits. 659 */ 660 if (mce_flags.smca) { 661 u8 lsb = (m->addr >> 56) & 0x3f; 662 663 m->addr &= GENMASK_ULL(55, lsb); 664 } 665 } 666 667 if (mce_flags.smca) { 668 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 669 670 if (m->status & MCI_STATUS_SYNDV) 671 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 672 } 673 } 674 675 DEFINE_PER_CPU(unsigned, mce_poll_count); 676 677 /* 678 * Poll for corrected events or events that happened before reset. 679 * Those are just logged through /dev/mcelog. 680 * 681 * This is executed in standard interrupt context. 682 * 683 * Note: spec recommends to panic for fatal unsignalled 684 * errors here. However this would be quite problematic -- 685 * we would need to reimplement the Monarch handling and 686 * it would mess up the exclusion between exception handler 687 * and poll handler -- * so we skip this for now. 688 * These cases should not happen anyways, or only when the CPU 689 * is already totally * confused. In this case it's likely it will 690 * not fully execute the machine check handler either. 691 */ 692 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 693 { 694 bool error_seen = false; 695 struct mce m; 696 int i; 697 698 this_cpu_inc(mce_poll_count); 699 700 mce_gather_info(&m, NULL); 701 702 if (flags & MCP_TIMESTAMP) 703 m.tsc = rdtsc(); 704 705 for (i = 0; i < mca_cfg.banks; i++) { 706 if (!mce_banks[i].ctl || !test_bit(i, *b)) 707 continue; 708 709 m.misc = 0; 710 m.addr = 0; 711 m.bank = i; 712 713 barrier(); 714 m.status = mce_rdmsrl(msr_ops.status(i)); 715 if (!(m.status & MCI_STATUS_VAL)) 716 continue; 717 718 /* 719 * Uncorrected or signalled events are handled by the exception 720 * handler when it is enabled, so don't process those here. 721 * 722 * TBD do the same check for MCI_STATUS_EN here? 723 */ 724 if (!(flags & MCP_UC) && 725 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC))) 726 continue; 727 728 error_seen = true; 729 730 mce_read_aux(&m, i); 731 732 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false); 733 734 /* 735 * Don't get the IP here because it's unlikely to 736 * have anything to do with the actual error location. 737 */ 738 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce) 739 mce_log(&m); 740 else if (mce_usable_address(&m)) { 741 /* 742 * Although we skipped logging this, we still want 743 * to take action. Add to the pool so the registered 744 * notifiers will see it. 745 */ 746 if (!mce_gen_pool_add(&m)) 747 mce_schedule_work(); 748 } 749 750 /* 751 * Clear state for this bank. 752 */ 753 mce_wrmsrl(msr_ops.status(i), 0); 754 } 755 756 /* 757 * Don't clear MCG_STATUS here because it's only defined for 758 * exceptions. 759 */ 760 761 sync_core(); 762 763 return error_seen; 764 } 765 EXPORT_SYMBOL_GPL(machine_check_poll); 766 767 /* 768 * Do a quick check if any of the events requires a panic. 769 * This decides if we keep the events around or clear them. 770 */ 771 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 772 struct pt_regs *regs) 773 { 774 char *tmp; 775 int i; 776 777 for (i = 0; i < mca_cfg.banks; i++) { 778 m->status = mce_rdmsrl(msr_ops.status(i)); 779 if (!(m->status & MCI_STATUS_VAL)) 780 continue; 781 782 __set_bit(i, validp); 783 if (quirk_no_way_out) 784 quirk_no_way_out(i, m, regs); 785 786 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) { 787 m->bank = i; 788 mce_read_aux(m, i); 789 *msg = tmp; 790 return 1; 791 } 792 } 793 return 0; 794 } 795 796 /* 797 * Variable to establish order between CPUs while scanning. 798 * Each CPU spins initially until executing is equal its number. 799 */ 800 static atomic_t mce_executing; 801 802 /* 803 * Defines order of CPUs on entry. First CPU becomes Monarch. 804 */ 805 static atomic_t mce_callin; 806 807 /* 808 * Check if a timeout waiting for other CPUs happened. 809 */ 810 static int mce_timed_out(u64 *t, const char *msg) 811 { 812 /* 813 * The others already did panic for some reason. 814 * Bail out like in a timeout. 815 * rmb() to tell the compiler that system_state 816 * might have been modified by someone else. 817 */ 818 rmb(); 819 if (atomic_read(&mce_panicked)) 820 wait_for_panic(); 821 if (!mca_cfg.monarch_timeout) 822 goto out; 823 if ((s64)*t < SPINUNIT) { 824 if (mca_cfg.tolerant <= 1) 825 mce_panic(msg, NULL, NULL); 826 cpu_missing = 1; 827 return 1; 828 } 829 *t -= SPINUNIT; 830 out: 831 touch_nmi_watchdog(); 832 return 0; 833 } 834 835 /* 836 * The Monarch's reign. The Monarch is the CPU who entered 837 * the machine check handler first. It waits for the others to 838 * raise the exception too and then grades them. When any 839 * error is fatal panic. Only then let the others continue. 840 * 841 * The other CPUs entering the MCE handler will be controlled by the 842 * Monarch. They are called Subjects. 843 * 844 * This way we prevent any potential data corruption in a unrecoverable case 845 * and also makes sure always all CPU's errors are examined. 846 * 847 * Also this detects the case of a machine check event coming from outer 848 * space (not detected by any CPUs) In this case some external agent wants 849 * us to shut down, so panic too. 850 * 851 * The other CPUs might still decide to panic if the handler happens 852 * in a unrecoverable place, but in this case the system is in a semi-stable 853 * state and won't corrupt anything by itself. It's ok to let the others 854 * continue for a bit first. 855 * 856 * All the spin loops have timeouts; when a timeout happens a CPU 857 * typically elects itself to be Monarch. 858 */ 859 static void mce_reign(void) 860 { 861 int cpu; 862 struct mce *m = NULL; 863 int global_worst = 0; 864 char *msg = NULL; 865 char *nmsg = NULL; 866 867 /* 868 * This CPU is the Monarch and the other CPUs have run 869 * through their handlers. 870 * Grade the severity of the errors of all the CPUs. 871 */ 872 for_each_possible_cpu(cpu) { 873 int severity = mce_severity(&per_cpu(mces_seen, cpu), 874 mca_cfg.tolerant, 875 &nmsg, true); 876 if (severity > global_worst) { 877 msg = nmsg; 878 global_worst = severity; 879 m = &per_cpu(mces_seen, cpu); 880 } 881 } 882 883 /* 884 * Cannot recover? Panic here then. 885 * This dumps all the mces in the log buffer and stops the 886 * other CPUs. 887 */ 888 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) 889 mce_panic("Fatal machine check", m, msg); 890 891 /* 892 * For UC somewhere we let the CPU who detects it handle it. 893 * Also must let continue the others, otherwise the handling 894 * CPU could deadlock on a lock. 895 */ 896 897 /* 898 * No machine check event found. Must be some external 899 * source or one CPU is hung. Panic. 900 */ 901 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) 902 mce_panic("Fatal machine check from unknown source", NULL, NULL); 903 904 /* 905 * Now clear all the mces_seen so that they don't reappear on 906 * the next mce. 907 */ 908 for_each_possible_cpu(cpu) 909 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 910 } 911 912 static atomic_t global_nwo; 913 914 /* 915 * Start of Monarch synchronization. This waits until all CPUs have 916 * entered the exception handler and then determines if any of them 917 * saw a fatal event that requires panic. Then it executes them 918 * in the entry order. 919 * TBD double check parallel CPU hotunplug 920 */ 921 static int mce_start(int *no_way_out) 922 { 923 int order; 924 int cpus = num_online_cpus(); 925 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 926 927 if (!timeout) 928 return -1; 929 930 atomic_add(*no_way_out, &global_nwo); 931 /* 932 * Rely on the implied barrier below, such that global_nwo 933 * is updated before mce_callin. 934 */ 935 order = atomic_inc_return(&mce_callin); 936 937 /* 938 * Wait for everyone. 939 */ 940 while (atomic_read(&mce_callin) != cpus) { 941 if (mce_timed_out(&timeout, 942 "Timeout: Not all CPUs entered broadcast exception handler")) { 943 atomic_set(&global_nwo, 0); 944 return -1; 945 } 946 ndelay(SPINUNIT); 947 } 948 949 /* 950 * mce_callin should be read before global_nwo 951 */ 952 smp_rmb(); 953 954 if (order == 1) { 955 /* 956 * Monarch: Starts executing now, the others wait. 957 */ 958 atomic_set(&mce_executing, 1); 959 } else { 960 /* 961 * Subject: Now start the scanning loop one by one in 962 * the original callin order. 963 * This way when there are any shared banks it will be 964 * only seen by one CPU before cleared, avoiding duplicates. 965 */ 966 while (atomic_read(&mce_executing) < order) { 967 if (mce_timed_out(&timeout, 968 "Timeout: Subject CPUs unable to finish machine check processing")) { 969 atomic_set(&global_nwo, 0); 970 return -1; 971 } 972 ndelay(SPINUNIT); 973 } 974 } 975 976 /* 977 * Cache the global no_way_out state. 978 */ 979 *no_way_out = atomic_read(&global_nwo); 980 981 return order; 982 } 983 984 /* 985 * Synchronize between CPUs after main scanning loop. 986 * This invokes the bulk of the Monarch processing. 987 */ 988 static int mce_end(int order) 989 { 990 int ret = -1; 991 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 992 993 if (!timeout) 994 goto reset; 995 if (order < 0) 996 goto reset; 997 998 /* 999 * Allow others to run. 1000 */ 1001 atomic_inc(&mce_executing); 1002 1003 if (order == 1) { 1004 /* CHECKME: Can this race with a parallel hotplug? */ 1005 int cpus = num_online_cpus(); 1006 1007 /* 1008 * Monarch: Wait for everyone to go through their scanning 1009 * loops. 1010 */ 1011 while (atomic_read(&mce_executing) <= cpus) { 1012 if (mce_timed_out(&timeout, 1013 "Timeout: Monarch CPU unable to finish machine check processing")) 1014 goto reset; 1015 ndelay(SPINUNIT); 1016 } 1017 1018 mce_reign(); 1019 barrier(); 1020 ret = 0; 1021 } else { 1022 /* 1023 * Subject: Wait for Monarch to finish. 1024 */ 1025 while (atomic_read(&mce_executing) != 0) { 1026 if (mce_timed_out(&timeout, 1027 "Timeout: Monarch CPU did not finish machine check processing")) 1028 goto reset; 1029 ndelay(SPINUNIT); 1030 } 1031 1032 /* 1033 * Don't reset anything. That's done by the Monarch. 1034 */ 1035 return 0; 1036 } 1037 1038 /* 1039 * Reset all global state. 1040 */ 1041 reset: 1042 atomic_set(&global_nwo, 0); 1043 atomic_set(&mce_callin, 0); 1044 barrier(); 1045 1046 /* 1047 * Let others run again. 1048 */ 1049 atomic_set(&mce_executing, 0); 1050 return ret; 1051 } 1052 1053 static void mce_clear_state(unsigned long *toclear) 1054 { 1055 int i; 1056 1057 for (i = 0; i < mca_cfg.banks; i++) { 1058 if (test_bit(i, toclear)) 1059 mce_wrmsrl(msr_ops.status(i), 0); 1060 } 1061 } 1062 1063 static int do_memory_failure(struct mce *m) 1064 { 1065 int flags = MF_ACTION_REQUIRED; 1066 int ret; 1067 1068 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr); 1069 if (!(m->mcgstatus & MCG_STATUS_RIPV)) 1070 flags |= MF_MUST_KILL; 1071 ret = memory_failure(m->addr >> PAGE_SHIFT, flags); 1072 if (ret) 1073 pr_err("Memory error not recovered"); 1074 else 1075 set_mce_nospec(m->addr >> PAGE_SHIFT); 1076 return ret; 1077 } 1078 1079 1080 /* 1081 * Cases where we avoid rendezvous handler timeout: 1082 * 1) If this CPU is offline. 1083 * 1084 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1085 * skip those CPUs which remain looping in the 1st kernel - see 1086 * crash_nmi_callback(). 1087 * 1088 * Note: there still is a small window between kexec-ing and the new, 1089 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1090 * might not get handled properly. 1091 */ 1092 static bool __mc_check_crashing_cpu(int cpu) 1093 { 1094 if (cpu_is_offline(cpu) || 1095 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1096 u64 mcgstatus; 1097 1098 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 1099 if (mcgstatus & MCG_STATUS_RIPV) { 1100 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1101 return true; 1102 } 1103 } 1104 return false; 1105 } 1106 1107 static void __mc_scan_banks(struct mce *m, struct mce *final, 1108 unsigned long *toclear, unsigned long *valid_banks, 1109 int no_way_out, int *worst) 1110 { 1111 struct mca_config *cfg = &mca_cfg; 1112 int severity, i; 1113 1114 for (i = 0; i < cfg->banks; i++) { 1115 __clear_bit(i, toclear); 1116 if (!test_bit(i, valid_banks)) 1117 continue; 1118 1119 if (!mce_banks[i].ctl) 1120 continue; 1121 1122 m->misc = 0; 1123 m->addr = 0; 1124 m->bank = i; 1125 1126 m->status = mce_rdmsrl(msr_ops.status(i)); 1127 if (!(m->status & MCI_STATUS_VAL)) 1128 continue; 1129 1130 /* 1131 * Corrected or non-signaled errors are handled by 1132 * machine_check_poll(). Leave them alone, unless this panics. 1133 */ 1134 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1135 !no_way_out) 1136 continue; 1137 1138 /* Set taint even when machine check was not enabled. */ 1139 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1140 1141 severity = mce_severity(m, cfg->tolerant, NULL, true); 1142 1143 /* 1144 * When machine check was for corrected/deferred handler don't 1145 * touch, unless we're panicking. 1146 */ 1147 if ((severity == MCE_KEEP_SEVERITY || 1148 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1149 continue; 1150 1151 __set_bit(i, toclear); 1152 1153 /* Machine check event was not enabled. Clear, but ignore. */ 1154 if (severity == MCE_NO_SEVERITY) 1155 continue; 1156 1157 mce_read_aux(m, i); 1158 1159 /* assuming valid severity level != 0 */ 1160 m->severity = severity; 1161 1162 mce_log(m); 1163 1164 if (severity > *worst) { 1165 *final = *m; 1166 *worst = severity; 1167 } 1168 } 1169 1170 /* mce_clear_state will clear *final, save locally for use later */ 1171 *m = *final; 1172 } 1173 1174 /* 1175 * The actual machine check handler. This only handles real 1176 * exceptions when something got corrupted coming in through int 18. 1177 * 1178 * This is executed in NMI context not subject to normal locking rules. This 1179 * implies that most kernel services cannot be safely used. Don't even 1180 * think about putting a printk in there! 1181 * 1182 * On Intel systems this is entered on all CPUs in parallel through 1183 * MCE broadcast. However some CPUs might be broken beyond repair, 1184 * so be always careful when synchronizing with others. 1185 */ 1186 void do_machine_check(struct pt_regs *regs, long error_code) 1187 { 1188 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); 1189 DECLARE_BITMAP(toclear, MAX_NR_BANKS); 1190 struct mca_config *cfg = &mca_cfg; 1191 int cpu = smp_processor_id(); 1192 char *msg = "Unknown"; 1193 struct mce m, *final; 1194 int worst = 0; 1195 1196 /* 1197 * Establish sequential order between the CPUs entering the machine 1198 * check handler. 1199 */ 1200 int order = -1; 1201 1202 /* 1203 * If no_way_out gets set, there is no safe way to recover from this 1204 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. 1205 */ 1206 int no_way_out = 0; 1207 1208 /* 1209 * If kill_it gets set, there might be a way to recover from this 1210 * error. 1211 */ 1212 int kill_it = 0; 1213 1214 /* 1215 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1216 * on Intel. 1217 */ 1218 int lmce = 1; 1219 1220 if (__mc_check_crashing_cpu(cpu)) 1221 return; 1222 1223 ist_enter(regs); 1224 1225 this_cpu_inc(mce_exception_count); 1226 1227 mce_gather_info(&m, regs); 1228 m.tsc = rdtsc(); 1229 1230 final = this_cpu_ptr(&mces_seen); 1231 *final = m; 1232 1233 memset(valid_banks, 0, sizeof(valid_banks)); 1234 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1235 1236 barrier(); 1237 1238 /* 1239 * When no restart IP might need to kill or panic. 1240 * Assume the worst for now, but if we find the 1241 * severity is MCE_AR_SEVERITY we have other options. 1242 */ 1243 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1244 kill_it = 1; 1245 1246 /* 1247 * Check if this MCE is signaled to only this logical processor, 1248 * on Intel only. 1249 */ 1250 if (m.cpuvendor == X86_VENDOR_INTEL) 1251 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1252 1253 /* 1254 * Local machine check may already know that we have to panic. 1255 * Broadcast machine check begins rendezvous in mce_start() 1256 * Go through all banks in exclusion of the other CPUs. This way we 1257 * don't report duplicated events on shared banks because the first one 1258 * to see it will clear it. 1259 */ 1260 if (lmce) { 1261 if (no_way_out) 1262 mce_panic("Fatal local machine check", &m, msg); 1263 } else { 1264 order = mce_start(&no_way_out); 1265 } 1266 1267 __mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst); 1268 1269 if (!no_way_out) 1270 mce_clear_state(toclear); 1271 1272 /* 1273 * Do most of the synchronization with other CPUs. 1274 * When there's any problem use only local no_way_out state. 1275 */ 1276 if (!lmce) { 1277 if (mce_end(order) < 0) 1278 no_way_out = worst >= MCE_PANIC_SEVERITY; 1279 } else { 1280 /* 1281 * If there was a fatal machine check we should have 1282 * already called mce_panic earlier in this function. 1283 * Since we re-read the banks, we might have found 1284 * something new. Check again to see if we found a 1285 * fatal error. We call "mce_severity()" again to 1286 * make sure we have the right "msg". 1287 */ 1288 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 1289 mce_severity(&m, cfg->tolerant, &msg, true); 1290 mce_panic("Local fatal machine check!", &m, msg); 1291 } 1292 } 1293 1294 /* 1295 * If tolerant is at an insane level we drop requests to kill 1296 * processes and continue even when there is no way out. 1297 */ 1298 if (cfg->tolerant == 3) 1299 kill_it = 0; 1300 else if (no_way_out) 1301 mce_panic("Fatal machine check on current CPU", &m, msg); 1302 1303 if (worst > 0) 1304 mce_report_event(regs); 1305 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1306 1307 sync_core(); 1308 1309 if (worst != MCE_AR_SEVERITY && !kill_it) 1310 goto out_ist; 1311 1312 /* Fault was in user mode and we need to take some action */ 1313 if ((m.cs & 3) == 3) { 1314 ist_begin_non_atomic(regs); 1315 local_irq_enable(); 1316 1317 if (kill_it || do_memory_failure(&m)) 1318 force_sig(SIGBUS, current); 1319 local_irq_disable(); 1320 ist_end_non_atomic(); 1321 } else { 1322 if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0)) 1323 mce_panic("Failed kernel mode recovery", &m, NULL); 1324 } 1325 1326 out_ist: 1327 ist_exit(regs); 1328 } 1329 EXPORT_SYMBOL_GPL(do_machine_check); 1330 1331 #ifndef CONFIG_MEMORY_FAILURE 1332 int memory_failure(unsigned long pfn, int flags) 1333 { 1334 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1335 BUG_ON(flags & MF_ACTION_REQUIRED); 1336 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1337 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1338 pfn); 1339 1340 return 0; 1341 } 1342 #endif 1343 1344 /* 1345 * Periodic polling timer for "silent" machine check errors. If the 1346 * poller finds an MCE, poll 2x faster. When the poller finds no more 1347 * errors, poll 2x slower (up to check_interval seconds). 1348 */ 1349 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1350 1351 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1352 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1353 1354 static unsigned long mce_adjust_timer_default(unsigned long interval) 1355 { 1356 return interval; 1357 } 1358 1359 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1360 1361 static void __start_timer(struct timer_list *t, unsigned long interval) 1362 { 1363 unsigned long when = jiffies + interval; 1364 unsigned long flags; 1365 1366 local_irq_save(flags); 1367 1368 if (!timer_pending(t) || time_before(when, t->expires)) 1369 mod_timer(t, round_jiffies(when)); 1370 1371 local_irq_restore(flags); 1372 } 1373 1374 static void mce_timer_fn(struct timer_list *t) 1375 { 1376 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1377 unsigned long iv; 1378 1379 WARN_ON(cpu_t != t); 1380 1381 iv = __this_cpu_read(mce_next_interval); 1382 1383 if (mce_available(this_cpu_ptr(&cpu_info))) { 1384 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1385 1386 if (mce_intel_cmci_poll()) { 1387 iv = mce_adjust_timer(iv); 1388 goto done; 1389 } 1390 } 1391 1392 /* 1393 * Alert userspace if needed. If we logged an MCE, reduce the polling 1394 * interval, otherwise increase the polling interval. 1395 */ 1396 if (mce_notify_irq()) 1397 iv = max(iv / 2, (unsigned long) HZ/100); 1398 else 1399 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1400 1401 done: 1402 __this_cpu_write(mce_next_interval, iv); 1403 __start_timer(t, iv); 1404 } 1405 1406 /* 1407 * Ensure that the timer is firing in @interval from now. 1408 */ 1409 void mce_timer_kick(unsigned long interval) 1410 { 1411 struct timer_list *t = this_cpu_ptr(&mce_timer); 1412 unsigned long iv = __this_cpu_read(mce_next_interval); 1413 1414 __start_timer(t, interval); 1415 1416 if (interval < iv) 1417 __this_cpu_write(mce_next_interval, interval); 1418 } 1419 1420 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1421 static void mce_timer_delete_all(void) 1422 { 1423 int cpu; 1424 1425 for_each_online_cpu(cpu) 1426 del_timer_sync(&per_cpu(mce_timer, cpu)); 1427 } 1428 1429 /* 1430 * Notify the user(s) about new machine check events. 1431 * Can be called from interrupt context, but not from machine check/NMI 1432 * context. 1433 */ 1434 int mce_notify_irq(void) 1435 { 1436 /* Not more than two messages every minute */ 1437 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1438 1439 if (test_and_clear_bit(0, &mce_need_notify)) { 1440 mce_work_trigger(); 1441 1442 if (__ratelimit(&ratelimit)) 1443 pr_info(HW_ERR "Machine check events logged\n"); 1444 1445 return 1; 1446 } 1447 return 0; 1448 } 1449 EXPORT_SYMBOL_GPL(mce_notify_irq); 1450 1451 static int __mcheck_cpu_mce_banks_init(void) 1452 { 1453 int i; 1454 u8 num_banks = mca_cfg.banks; 1455 1456 mce_banks = kcalloc(num_banks, sizeof(struct mce_bank), GFP_KERNEL); 1457 if (!mce_banks) 1458 return -ENOMEM; 1459 1460 for (i = 0; i < num_banks; i++) { 1461 struct mce_bank *b = &mce_banks[i]; 1462 1463 b->ctl = -1ULL; 1464 b->init = 1; 1465 } 1466 return 0; 1467 } 1468 1469 /* 1470 * Initialize Machine Checks for a CPU. 1471 */ 1472 static int __mcheck_cpu_cap_init(void) 1473 { 1474 unsigned b; 1475 u64 cap; 1476 1477 rdmsrl(MSR_IA32_MCG_CAP, cap); 1478 1479 b = cap & MCG_BANKCNT_MASK; 1480 if (!mca_cfg.banks) 1481 pr_info("CPU supports %d MCE banks\n", b); 1482 1483 if (b > MAX_NR_BANKS) { 1484 pr_warn("Using only %u machine check banks out of %u\n", 1485 MAX_NR_BANKS, b); 1486 b = MAX_NR_BANKS; 1487 } 1488 1489 /* Don't support asymmetric configurations today */ 1490 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks); 1491 mca_cfg.banks = b; 1492 1493 if (!mce_banks) { 1494 int err = __mcheck_cpu_mce_banks_init(); 1495 1496 if (err) 1497 return err; 1498 } 1499 1500 /* Use accurate RIP reporting if available. */ 1501 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1502 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1503 1504 if (cap & MCG_SER_P) 1505 mca_cfg.ser = 1; 1506 1507 return 0; 1508 } 1509 1510 static void __mcheck_cpu_init_generic(void) 1511 { 1512 enum mcp_flags m_fl = 0; 1513 mce_banks_t all_banks; 1514 u64 cap; 1515 1516 if (!mca_cfg.bootlog) 1517 m_fl = MCP_DONTLOG; 1518 1519 /* 1520 * Log the machine checks left over from the previous reset. 1521 */ 1522 bitmap_fill(all_banks, MAX_NR_BANKS); 1523 machine_check_poll(MCP_UC | m_fl, &all_banks); 1524 1525 cr4_set_bits(X86_CR4_MCE); 1526 1527 rdmsrl(MSR_IA32_MCG_CAP, cap); 1528 if (cap & MCG_CTL_P) 1529 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1530 } 1531 1532 static void __mcheck_cpu_init_clear_banks(void) 1533 { 1534 int i; 1535 1536 for (i = 0; i < mca_cfg.banks; i++) { 1537 struct mce_bank *b = &mce_banks[i]; 1538 1539 if (!b->init) 1540 continue; 1541 wrmsrl(msr_ops.ctl(i), b->ctl); 1542 wrmsrl(msr_ops.status(i), 0); 1543 } 1544 } 1545 1546 /* 1547 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 1548 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 1549 * Vol 3B Table 15-20). But this confuses both the code that determines 1550 * whether the machine check occurred in kernel or user mode, and also 1551 * the severity assessment code. Pretend that EIPV was set, and take the 1552 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 1553 */ 1554 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 1555 { 1556 if (bank != 0) 1557 return; 1558 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 1559 return; 1560 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 1561 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 1562 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 1563 MCACOD)) != 1564 (MCI_STATUS_UC|MCI_STATUS_EN| 1565 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 1566 MCI_STATUS_AR|MCACOD_INSTR)) 1567 return; 1568 1569 m->mcgstatus |= MCG_STATUS_EIPV; 1570 m->ip = regs->ip; 1571 m->cs = regs->cs; 1572 } 1573 1574 /* Add per CPU specific workarounds here */ 1575 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1576 { 1577 struct mca_config *cfg = &mca_cfg; 1578 1579 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1580 pr_info("unknown CPU type - not enabling MCE support\n"); 1581 return -EOPNOTSUPP; 1582 } 1583 1584 /* This should be disabled by the BIOS, but isn't always */ 1585 if (c->x86_vendor == X86_VENDOR_AMD) { 1586 if (c->x86 == 15 && cfg->banks > 4) { 1587 /* 1588 * disable GART TBL walk error reporting, which 1589 * trips off incorrectly with the IOMMU & 3ware 1590 * & Cerberus: 1591 */ 1592 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1593 } 1594 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1595 /* 1596 * Lots of broken BIOS around that don't clear them 1597 * by default and leave crap in there. Don't log: 1598 */ 1599 cfg->bootlog = 0; 1600 } 1601 /* 1602 * Various K7s with broken bank 0 around. Always disable 1603 * by default. 1604 */ 1605 if (c->x86 == 6 && cfg->banks > 0) 1606 mce_banks[0].ctl = 0; 1607 1608 /* 1609 * overflow_recov is supported for F15h Models 00h-0fh 1610 * even though we don't have a CPUID bit for it. 1611 */ 1612 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1613 mce_flags.overflow_recov = 1; 1614 1615 } 1616 1617 if (c->x86_vendor == X86_VENDOR_INTEL) { 1618 /* 1619 * SDM documents that on family 6 bank 0 should not be written 1620 * because it aliases to another special BIOS controlled 1621 * register. 1622 * But it's not aliased anymore on model 0x1a+ 1623 * Don't ignore bank 0 completely because there could be a 1624 * valid event later, merely don't write CTL0. 1625 */ 1626 1627 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0) 1628 mce_banks[0].init = 0; 1629 1630 /* 1631 * All newer Intel systems support MCE broadcasting. Enable 1632 * synchronization with a one second timeout. 1633 */ 1634 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1635 cfg->monarch_timeout < 0) 1636 cfg->monarch_timeout = USEC_PER_SEC; 1637 1638 /* 1639 * There are also broken BIOSes on some Pentium M and 1640 * earlier systems: 1641 */ 1642 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1643 cfg->bootlog = 0; 1644 1645 if (c->x86 == 6 && c->x86_model == 45) 1646 quirk_no_way_out = quirk_sandybridge_ifu; 1647 } 1648 if (cfg->monarch_timeout < 0) 1649 cfg->monarch_timeout = 0; 1650 if (cfg->bootlog != 0) 1651 cfg->panic_timeout = 30; 1652 1653 return 0; 1654 } 1655 1656 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1657 { 1658 if (c->x86 != 5) 1659 return 0; 1660 1661 switch (c->x86_vendor) { 1662 case X86_VENDOR_INTEL: 1663 intel_p5_mcheck_init(c); 1664 return 1; 1665 break; 1666 case X86_VENDOR_CENTAUR: 1667 winchip_mcheck_init(c); 1668 return 1; 1669 break; 1670 default: 1671 return 0; 1672 } 1673 1674 return 0; 1675 } 1676 1677 /* 1678 * Init basic CPU features needed for early decoding of MCEs. 1679 */ 1680 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1681 { 1682 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1683 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1684 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1685 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1686 1687 if (mce_flags.smca) { 1688 msr_ops.ctl = smca_ctl_reg; 1689 msr_ops.status = smca_status_reg; 1690 msr_ops.addr = smca_addr_reg; 1691 msr_ops.misc = smca_misc_reg; 1692 } 1693 } 1694 } 1695 1696 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1697 { 1698 struct mca_config *cfg = &mca_cfg; 1699 1700 /* 1701 * All newer Centaur CPUs support MCE broadcasting. Enable 1702 * synchronization with a one second timeout. 1703 */ 1704 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1705 c->x86 > 6) { 1706 if (cfg->monarch_timeout < 0) 1707 cfg->monarch_timeout = USEC_PER_SEC; 1708 } 1709 } 1710 1711 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1712 { 1713 switch (c->x86_vendor) { 1714 case X86_VENDOR_INTEL: 1715 mce_intel_feature_init(c); 1716 mce_adjust_timer = cmci_intel_adjust_timer; 1717 break; 1718 1719 case X86_VENDOR_AMD: { 1720 mce_amd_feature_init(c); 1721 break; 1722 } 1723 1724 case X86_VENDOR_HYGON: 1725 mce_hygon_feature_init(c); 1726 break; 1727 1728 case X86_VENDOR_CENTAUR: 1729 mce_centaur_feature_init(c); 1730 break; 1731 1732 default: 1733 break; 1734 } 1735 } 1736 1737 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 1738 { 1739 switch (c->x86_vendor) { 1740 case X86_VENDOR_INTEL: 1741 mce_intel_feature_clear(c); 1742 break; 1743 default: 1744 break; 1745 } 1746 } 1747 1748 static void mce_start_timer(struct timer_list *t) 1749 { 1750 unsigned long iv = check_interval * HZ; 1751 1752 if (mca_cfg.ignore_ce || !iv) 1753 return; 1754 1755 this_cpu_write(mce_next_interval, iv); 1756 __start_timer(t, iv); 1757 } 1758 1759 static void __mcheck_cpu_setup_timer(void) 1760 { 1761 struct timer_list *t = this_cpu_ptr(&mce_timer); 1762 1763 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1764 } 1765 1766 static void __mcheck_cpu_init_timer(void) 1767 { 1768 struct timer_list *t = this_cpu_ptr(&mce_timer); 1769 1770 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1771 mce_start_timer(t); 1772 } 1773 1774 /* Handle unconfigured int18 (should never happen) */ 1775 static void unexpected_machine_check(struct pt_regs *regs, long error_code) 1776 { 1777 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1778 smp_processor_id()); 1779 } 1780 1781 /* Call the installed machine check handler for this CPU setup. */ 1782 void (*machine_check_vector)(struct pt_regs *, long error_code) = 1783 unexpected_machine_check; 1784 1785 dotraplinkage void do_mce(struct pt_regs *regs, long error_code) 1786 { 1787 machine_check_vector(regs, error_code); 1788 } 1789 1790 /* 1791 * Called for each booted CPU to set up machine checks. 1792 * Must be called with preempt off: 1793 */ 1794 void mcheck_cpu_init(struct cpuinfo_x86 *c) 1795 { 1796 if (mca_cfg.disabled) 1797 return; 1798 1799 if (__mcheck_cpu_ancient_init(c)) 1800 return; 1801 1802 if (!mce_available(c)) 1803 return; 1804 1805 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) { 1806 mca_cfg.disabled = 1; 1807 return; 1808 } 1809 1810 if (mce_gen_pool_init()) { 1811 mca_cfg.disabled = 1; 1812 pr_emerg("Couldn't allocate MCE records pool!\n"); 1813 return; 1814 } 1815 1816 machine_check_vector = do_machine_check; 1817 1818 __mcheck_cpu_init_early(c); 1819 __mcheck_cpu_init_generic(); 1820 __mcheck_cpu_init_vendor(c); 1821 __mcheck_cpu_init_clear_banks(); 1822 __mcheck_cpu_setup_timer(); 1823 } 1824 1825 /* 1826 * Called for each booted CPU to clear some machine checks opt-ins 1827 */ 1828 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 1829 { 1830 if (mca_cfg.disabled) 1831 return; 1832 1833 if (!mce_available(c)) 1834 return; 1835 1836 /* 1837 * Possibly to clear general settings generic to x86 1838 * __mcheck_cpu_clear_generic(c); 1839 */ 1840 __mcheck_cpu_clear_vendor(c); 1841 1842 } 1843 1844 static void __mce_disable_bank(void *arg) 1845 { 1846 int bank = *((int *)arg); 1847 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 1848 cmci_disable_bank(bank); 1849 } 1850 1851 void mce_disable_bank(int bank) 1852 { 1853 if (bank >= mca_cfg.banks) { 1854 pr_warn(FW_BUG 1855 "Ignoring request to disable invalid MCA bank %d.\n", 1856 bank); 1857 return; 1858 } 1859 set_bit(bank, mce_banks_ce_disabled); 1860 on_each_cpu(__mce_disable_bank, &bank, 1); 1861 } 1862 1863 /* 1864 * mce=off Disables machine check 1865 * mce=no_cmci Disables CMCI 1866 * mce=no_lmce Disables LMCE 1867 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 1868 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 1869 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 1870 * monarchtimeout is how long to wait for other CPUs on machine 1871 * check, or 0 to not wait 1872 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 1873 and older. 1874 * mce=nobootlog Don't log MCEs from before booting. 1875 * mce=bios_cmci_threshold Don't program the CMCI threshold 1876 * mce=recovery force enable memcpy_mcsafe() 1877 */ 1878 static int __init mcheck_enable(char *str) 1879 { 1880 struct mca_config *cfg = &mca_cfg; 1881 1882 if (*str == 0) { 1883 enable_p5_mce(); 1884 return 1; 1885 } 1886 if (*str == '=') 1887 str++; 1888 if (!strcmp(str, "off")) 1889 cfg->disabled = 1; 1890 else if (!strcmp(str, "no_cmci")) 1891 cfg->cmci_disabled = true; 1892 else if (!strcmp(str, "no_lmce")) 1893 cfg->lmce_disabled = 1; 1894 else if (!strcmp(str, "dont_log_ce")) 1895 cfg->dont_log_ce = true; 1896 else if (!strcmp(str, "ignore_ce")) 1897 cfg->ignore_ce = true; 1898 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 1899 cfg->bootlog = (str[0] == 'b'); 1900 else if (!strcmp(str, "bios_cmci_threshold")) 1901 cfg->bios_cmci_threshold = 1; 1902 else if (!strcmp(str, "recovery")) 1903 cfg->recovery = 1; 1904 else if (isdigit(str[0])) { 1905 if (get_option(&str, &cfg->tolerant) == 2) 1906 get_option(&str, &(cfg->monarch_timeout)); 1907 } else { 1908 pr_info("mce argument %s ignored. Please use /sys\n", str); 1909 return 0; 1910 } 1911 return 1; 1912 } 1913 __setup("mce", mcheck_enable); 1914 1915 int __init mcheck_init(void) 1916 { 1917 mcheck_intel_therm_init(); 1918 mce_register_decode_chain(&first_nb); 1919 mce_register_decode_chain(&mce_srao_nb); 1920 mce_register_decode_chain(&mce_default_nb); 1921 mcheck_vendor_init_severity(); 1922 1923 INIT_WORK(&mce_work, mce_gen_pool_process); 1924 init_irq_work(&mce_irq_work, mce_irq_work_cb); 1925 1926 return 0; 1927 } 1928 1929 /* 1930 * mce_syscore: PM support 1931 */ 1932 1933 /* 1934 * Disable machine checks on suspend and shutdown. We can't really handle 1935 * them later. 1936 */ 1937 static void mce_disable_error_reporting(void) 1938 { 1939 int i; 1940 1941 for (i = 0; i < mca_cfg.banks; i++) { 1942 struct mce_bank *b = &mce_banks[i]; 1943 1944 if (b->init) 1945 wrmsrl(msr_ops.ctl(i), 0); 1946 } 1947 return; 1948 } 1949 1950 static void vendor_disable_error_reporting(void) 1951 { 1952 /* 1953 * Don't clear on Intel or AMD or Hygon CPUs. Some of these MSRs 1954 * are socket-wide. 1955 * Disabling them for just a single offlined CPU is bad, since it will 1956 * inhibit reporting for all shared resources on the socket like the 1957 * last level cache (LLC), the integrated memory controller (iMC), etc. 1958 */ 1959 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 1960 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 1961 boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1962 return; 1963 1964 mce_disable_error_reporting(); 1965 } 1966 1967 static int mce_syscore_suspend(void) 1968 { 1969 vendor_disable_error_reporting(); 1970 return 0; 1971 } 1972 1973 static void mce_syscore_shutdown(void) 1974 { 1975 vendor_disable_error_reporting(); 1976 } 1977 1978 /* 1979 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 1980 * Only one CPU is active at this time, the others get re-added later using 1981 * CPU hotplug: 1982 */ 1983 static void mce_syscore_resume(void) 1984 { 1985 __mcheck_cpu_init_generic(); 1986 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 1987 __mcheck_cpu_init_clear_banks(); 1988 } 1989 1990 static struct syscore_ops mce_syscore_ops = { 1991 .suspend = mce_syscore_suspend, 1992 .shutdown = mce_syscore_shutdown, 1993 .resume = mce_syscore_resume, 1994 }; 1995 1996 /* 1997 * mce_device: Sysfs support 1998 */ 1999 2000 static void mce_cpu_restart(void *data) 2001 { 2002 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2003 return; 2004 __mcheck_cpu_init_generic(); 2005 __mcheck_cpu_init_clear_banks(); 2006 __mcheck_cpu_init_timer(); 2007 } 2008 2009 /* Reinit MCEs after user configuration changes */ 2010 static void mce_restart(void) 2011 { 2012 mce_timer_delete_all(); 2013 on_each_cpu(mce_cpu_restart, NULL, 1); 2014 } 2015 2016 /* Toggle features for corrected errors */ 2017 static void mce_disable_cmci(void *data) 2018 { 2019 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2020 return; 2021 cmci_clear(); 2022 } 2023 2024 static void mce_enable_ce(void *all) 2025 { 2026 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2027 return; 2028 cmci_reenable(); 2029 cmci_recheck(); 2030 if (all) 2031 __mcheck_cpu_init_timer(); 2032 } 2033 2034 static struct bus_type mce_subsys = { 2035 .name = "machinecheck", 2036 .dev_name = "machinecheck", 2037 }; 2038 2039 DEFINE_PER_CPU(struct device *, mce_device); 2040 2041 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr) 2042 { 2043 return container_of(attr, struct mce_bank, attr); 2044 } 2045 2046 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2047 char *buf) 2048 { 2049 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl); 2050 } 2051 2052 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2053 const char *buf, size_t size) 2054 { 2055 u64 new; 2056 2057 if (kstrtou64(buf, 0, &new) < 0) 2058 return -EINVAL; 2059 2060 attr_to_bank(attr)->ctl = new; 2061 mce_restart(); 2062 2063 return size; 2064 } 2065 2066 static ssize_t set_ignore_ce(struct device *s, 2067 struct device_attribute *attr, 2068 const char *buf, size_t size) 2069 { 2070 u64 new; 2071 2072 if (kstrtou64(buf, 0, &new) < 0) 2073 return -EINVAL; 2074 2075 mutex_lock(&mce_sysfs_mutex); 2076 if (mca_cfg.ignore_ce ^ !!new) { 2077 if (new) { 2078 /* disable ce features */ 2079 mce_timer_delete_all(); 2080 on_each_cpu(mce_disable_cmci, NULL, 1); 2081 mca_cfg.ignore_ce = true; 2082 } else { 2083 /* enable ce features */ 2084 mca_cfg.ignore_ce = false; 2085 on_each_cpu(mce_enable_ce, (void *)1, 1); 2086 } 2087 } 2088 mutex_unlock(&mce_sysfs_mutex); 2089 2090 return size; 2091 } 2092 2093 static ssize_t set_cmci_disabled(struct device *s, 2094 struct device_attribute *attr, 2095 const char *buf, size_t size) 2096 { 2097 u64 new; 2098 2099 if (kstrtou64(buf, 0, &new) < 0) 2100 return -EINVAL; 2101 2102 mutex_lock(&mce_sysfs_mutex); 2103 if (mca_cfg.cmci_disabled ^ !!new) { 2104 if (new) { 2105 /* disable cmci */ 2106 on_each_cpu(mce_disable_cmci, NULL, 1); 2107 mca_cfg.cmci_disabled = true; 2108 } else { 2109 /* enable cmci */ 2110 mca_cfg.cmci_disabled = false; 2111 on_each_cpu(mce_enable_ce, NULL, 1); 2112 } 2113 } 2114 mutex_unlock(&mce_sysfs_mutex); 2115 2116 return size; 2117 } 2118 2119 static ssize_t store_int_with_restart(struct device *s, 2120 struct device_attribute *attr, 2121 const char *buf, size_t size) 2122 { 2123 unsigned long old_check_interval = check_interval; 2124 ssize_t ret = device_store_ulong(s, attr, buf, size); 2125 2126 if (check_interval == old_check_interval) 2127 return ret; 2128 2129 mutex_lock(&mce_sysfs_mutex); 2130 mce_restart(); 2131 mutex_unlock(&mce_sysfs_mutex); 2132 2133 return ret; 2134 } 2135 2136 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); 2137 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2138 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2139 2140 static struct dev_ext_attribute dev_attr_check_interval = { 2141 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2142 &check_interval 2143 }; 2144 2145 static struct dev_ext_attribute dev_attr_ignore_ce = { 2146 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2147 &mca_cfg.ignore_ce 2148 }; 2149 2150 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2151 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2152 &mca_cfg.cmci_disabled 2153 }; 2154 2155 static struct device_attribute *mce_device_attrs[] = { 2156 &dev_attr_tolerant.attr, 2157 &dev_attr_check_interval.attr, 2158 #ifdef CONFIG_X86_MCELOG_LEGACY 2159 &dev_attr_trigger, 2160 #endif 2161 &dev_attr_monarch_timeout.attr, 2162 &dev_attr_dont_log_ce.attr, 2163 &dev_attr_ignore_ce.attr, 2164 &dev_attr_cmci_disabled.attr, 2165 NULL 2166 }; 2167 2168 static cpumask_var_t mce_device_initialized; 2169 2170 static void mce_device_release(struct device *dev) 2171 { 2172 kfree(dev); 2173 } 2174 2175 /* Per cpu device init. All of the cpus still share the same ctrl bank: */ 2176 static int mce_device_create(unsigned int cpu) 2177 { 2178 struct device *dev; 2179 int err; 2180 int i, j; 2181 2182 if (!mce_available(&boot_cpu_data)) 2183 return -EIO; 2184 2185 dev = per_cpu(mce_device, cpu); 2186 if (dev) 2187 return 0; 2188 2189 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2190 if (!dev) 2191 return -ENOMEM; 2192 dev->id = cpu; 2193 dev->bus = &mce_subsys; 2194 dev->release = &mce_device_release; 2195 2196 err = device_register(dev); 2197 if (err) { 2198 put_device(dev); 2199 return err; 2200 } 2201 2202 for (i = 0; mce_device_attrs[i]; i++) { 2203 err = device_create_file(dev, mce_device_attrs[i]); 2204 if (err) 2205 goto error; 2206 } 2207 for (j = 0; j < mca_cfg.banks; j++) { 2208 err = device_create_file(dev, &mce_banks[j].attr); 2209 if (err) 2210 goto error2; 2211 } 2212 cpumask_set_cpu(cpu, mce_device_initialized); 2213 per_cpu(mce_device, cpu) = dev; 2214 2215 return 0; 2216 error2: 2217 while (--j >= 0) 2218 device_remove_file(dev, &mce_banks[j].attr); 2219 error: 2220 while (--i >= 0) 2221 device_remove_file(dev, mce_device_attrs[i]); 2222 2223 device_unregister(dev); 2224 2225 return err; 2226 } 2227 2228 static void mce_device_remove(unsigned int cpu) 2229 { 2230 struct device *dev = per_cpu(mce_device, cpu); 2231 int i; 2232 2233 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2234 return; 2235 2236 for (i = 0; mce_device_attrs[i]; i++) 2237 device_remove_file(dev, mce_device_attrs[i]); 2238 2239 for (i = 0; i < mca_cfg.banks; i++) 2240 device_remove_file(dev, &mce_banks[i].attr); 2241 2242 device_unregister(dev); 2243 cpumask_clear_cpu(cpu, mce_device_initialized); 2244 per_cpu(mce_device, cpu) = NULL; 2245 } 2246 2247 /* Make sure there are no machine checks on offlined CPUs. */ 2248 static void mce_disable_cpu(void) 2249 { 2250 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2251 return; 2252 2253 if (!cpuhp_tasks_frozen) 2254 cmci_clear(); 2255 2256 vendor_disable_error_reporting(); 2257 } 2258 2259 static void mce_reenable_cpu(void) 2260 { 2261 int i; 2262 2263 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2264 return; 2265 2266 if (!cpuhp_tasks_frozen) 2267 cmci_reenable(); 2268 for (i = 0; i < mca_cfg.banks; i++) { 2269 struct mce_bank *b = &mce_banks[i]; 2270 2271 if (b->init) 2272 wrmsrl(msr_ops.ctl(i), b->ctl); 2273 } 2274 } 2275 2276 static int mce_cpu_dead(unsigned int cpu) 2277 { 2278 mce_intel_hcpu_update(cpu); 2279 2280 /* intentionally ignoring frozen here */ 2281 if (!cpuhp_tasks_frozen) 2282 cmci_rediscover(); 2283 return 0; 2284 } 2285 2286 static int mce_cpu_online(unsigned int cpu) 2287 { 2288 struct timer_list *t = this_cpu_ptr(&mce_timer); 2289 int ret; 2290 2291 mce_device_create(cpu); 2292 2293 ret = mce_threshold_create_device(cpu); 2294 if (ret) { 2295 mce_device_remove(cpu); 2296 return ret; 2297 } 2298 mce_reenable_cpu(); 2299 mce_start_timer(t); 2300 return 0; 2301 } 2302 2303 static int mce_cpu_pre_down(unsigned int cpu) 2304 { 2305 struct timer_list *t = this_cpu_ptr(&mce_timer); 2306 2307 mce_disable_cpu(); 2308 del_timer_sync(t); 2309 mce_threshold_remove_device(cpu); 2310 mce_device_remove(cpu); 2311 return 0; 2312 } 2313 2314 static __init void mce_init_banks(void) 2315 { 2316 int i; 2317 2318 for (i = 0; i < mca_cfg.banks; i++) { 2319 struct mce_bank *b = &mce_banks[i]; 2320 struct device_attribute *a = &b->attr; 2321 2322 sysfs_attr_init(&a->attr); 2323 a->attr.name = b->attrname; 2324 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2325 2326 a->attr.mode = 0644; 2327 a->show = show_bank; 2328 a->store = set_bank; 2329 } 2330 } 2331 2332 static __init int mcheck_init_device(void) 2333 { 2334 int err; 2335 2336 /* 2337 * Check if we have a spare virtual bit. This will only become 2338 * a problem if/when we move beyond 5-level page tables. 2339 */ 2340 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2341 2342 if (!mce_available(&boot_cpu_data)) { 2343 err = -EIO; 2344 goto err_out; 2345 } 2346 2347 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2348 err = -ENOMEM; 2349 goto err_out; 2350 } 2351 2352 mce_init_banks(); 2353 2354 err = subsys_system_register(&mce_subsys, NULL); 2355 if (err) 2356 goto err_out_mem; 2357 2358 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2359 mce_cpu_dead); 2360 if (err) 2361 goto err_out_mem; 2362 2363 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2364 mce_cpu_online, mce_cpu_pre_down); 2365 if (err < 0) 2366 goto err_out_online; 2367 2368 register_syscore_ops(&mce_syscore_ops); 2369 2370 return 0; 2371 2372 err_out_online: 2373 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2374 2375 err_out_mem: 2376 free_cpumask_var(mce_device_initialized); 2377 2378 err_out: 2379 pr_err("Unable to init MCE device (rc: %d)\n", err); 2380 2381 return err; 2382 } 2383 device_initcall_sync(mcheck_init_device); 2384 2385 /* 2386 * Old style boot options parsing. Only for compatibility. 2387 */ 2388 static int __init mcheck_disable(char *str) 2389 { 2390 mca_cfg.disabled = 1; 2391 return 1; 2392 } 2393 __setup("nomce", mcheck_disable); 2394 2395 #ifdef CONFIG_DEBUG_FS 2396 struct dentry *mce_get_debugfs_dir(void) 2397 { 2398 static struct dentry *dmce; 2399 2400 if (!dmce) 2401 dmce = debugfs_create_dir("mce", NULL); 2402 2403 return dmce; 2404 } 2405 2406 static void mce_reset(void) 2407 { 2408 cpu_missing = 0; 2409 atomic_set(&mce_fake_panicked, 0); 2410 atomic_set(&mce_executing, 0); 2411 atomic_set(&mce_callin, 0); 2412 atomic_set(&global_nwo, 0); 2413 } 2414 2415 static int fake_panic_get(void *data, u64 *val) 2416 { 2417 *val = fake_panic; 2418 return 0; 2419 } 2420 2421 static int fake_panic_set(void *data, u64 val) 2422 { 2423 mce_reset(); 2424 fake_panic = val; 2425 return 0; 2426 } 2427 2428 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get, 2429 fake_panic_set, "%llu\n"); 2430 2431 static int __init mcheck_debugfs_init(void) 2432 { 2433 struct dentry *dmce, *ffake_panic; 2434 2435 dmce = mce_get_debugfs_dir(); 2436 if (!dmce) 2437 return -ENOMEM; 2438 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL, 2439 &fake_panic_fops); 2440 if (!ffake_panic) 2441 return -ENOMEM; 2442 2443 return 0; 2444 } 2445 #else 2446 static int __init mcheck_debugfs_init(void) { return -EINVAL; } 2447 #endif 2448 2449 DEFINE_STATIC_KEY_FALSE(mcsafe_key); 2450 EXPORT_SYMBOL_GPL(mcsafe_key); 2451 2452 static int __init mcheck_late_init(void) 2453 { 2454 if (mca_cfg.recovery) 2455 static_branch_inc(&mcsafe_key); 2456 2457 mcheck_debugfs_init(); 2458 cec_init(); 2459 2460 /* 2461 * Flush out everything that has been logged during early boot, now that 2462 * everything has been initialized (workqueues, decoders, ...). 2463 */ 2464 mce_schedule_work(); 2465 2466 return 0; 2467 } 2468 late_initcall(mcheck_late_init); 2469