xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision 8440bb9b)
1 /*
2  * Machine check handler.
3  *
4  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5  * Rest from unknown author(s).
6  * 2004 Andi Kleen. Rewrote most of it.
7  * Copyright 2008 Intel Corporation
8  * Author: Andi Kleen
9  */
10 
11 #include <linux/thread_info.h>
12 #include <linux/capability.h>
13 #include <linux/miscdevice.h>
14 #include <linux/ratelimit.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/device.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/ras.h>
36 #include <linux/smp.h>
37 #include <linux/fs.h>
38 #include <linux/mm.h>
39 #include <linux/debugfs.h>
40 #include <linux/irq_work.h>
41 #include <linux/export.h>
42 #include <linux/jump_label.h>
43 #include <linux/set_memory.h>
44 
45 #include <asm/intel-family.h>
46 #include <asm/processor.h>
47 #include <asm/traps.h>
48 #include <asm/tlbflush.h>
49 #include <asm/mce.h>
50 #include <asm/msr.h>
51 #include <asm/reboot.h>
52 
53 #include "internal.h"
54 
55 static DEFINE_MUTEX(mce_log_mutex);
56 
57 /* sysfs synchronization */
58 static DEFINE_MUTEX(mce_sysfs_mutex);
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/mce.h>
62 
63 #define SPINUNIT		100	/* 100ns */
64 
65 DEFINE_PER_CPU(unsigned, mce_exception_count);
66 
67 struct mce_bank *mce_banks __read_mostly;
68 struct mce_vendor_flags mce_flags __read_mostly;
69 
70 struct mca_config mca_cfg __read_mostly = {
71 	.bootlog  = -1,
72 	/*
73 	 * Tolerant levels:
74 	 * 0: always panic on uncorrected errors, log corrected errors
75 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
76 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
77 	 * 3: never panic or SIGBUS, log all errors (for testing only)
78 	 */
79 	.tolerant = 1,
80 	.monarch_timeout = -1
81 };
82 
83 static DEFINE_PER_CPU(struct mce, mces_seen);
84 static unsigned long mce_need_notify;
85 static int cpu_missing;
86 
87 /*
88  * MCA banks polled by the period polling timer for corrected events.
89  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
90  */
91 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
92 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
93 };
94 
95 /*
96  * MCA banks controlled through firmware first for corrected errors.
97  * This is a global list of banks for which we won't enable CMCI and we
98  * won't poll. Firmware controls these banks and is responsible for
99  * reporting corrected errors through GHES. Uncorrected/recoverable
100  * errors are still notified through a machine check.
101  */
102 mce_banks_t mce_banks_ce_disabled;
103 
104 static struct work_struct mce_work;
105 static struct irq_work mce_irq_work;
106 
107 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
108 
109 /*
110  * CPU/chipset specific EDAC code can register a notifier call here to print
111  * MCE errors in a human-readable form.
112  */
113 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
114 
115 /* Do initial initialization of a struct mce */
116 void mce_setup(struct mce *m)
117 {
118 	memset(m, 0, sizeof(struct mce));
119 	m->cpu = m->extcpu = smp_processor_id();
120 	/* need the internal __ version to avoid deadlocks */
121 	m->time = __ktime_get_real_seconds();
122 	m->cpuvendor = boot_cpu_data.x86_vendor;
123 	m->cpuid = cpuid_eax(1);
124 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
125 	m->apicid = cpu_data(m->extcpu).initial_apicid;
126 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127 
128 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
129 		rdmsrl(MSR_PPIN, m->ppin);
130 
131 	m->microcode = boot_cpu_data.microcode;
132 }
133 
134 DEFINE_PER_CPU(struct mce, injectm);
135 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
136 
137 void mce_log(struct mce *m)
138 {
139 	if (!mce_gen_pool_add(m))
140 		irq_work_queue(&mce_irq_work);
141 }
142 
143 void mce_inject_log(struct mce *m)
144 {
145 	mutex_lock(&mce_log_mutex);
146 	mce_log(m);
147 	mutex_unlock(&mce_log_mutex);
148 }
149 EXPORT_SYMBOL_GPL(mce_inject_log);
150 
151 static struct notifier_block mce_srao_nb;
152 
153 /*
154  * We run the default notifier if we have only the SRAO, the first and the
155  * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
156  * notifiers registered on the chain.
157  */
158 #define NUM_DEFAULT_NOTIFIERS	3
159 static atomic_t num_notifiers;
160 
161 void mce_register_decode_chain(struct notifier_block *nb)
162 {
163 	if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
164 		return;
165 
166 	atomic_inc(&num_notifiers);
167 
168 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
169 }
170 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
171 
172 void mce_unregister_decode_chain(struct notifier_block *nb)
173 {
174 	atomic_dec(&num_notifiers);
175 
176 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
177 }
178 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
179 
180 static inline u32 ctl_reg(int bank)
181 {
182 	return MSR_IA32_MCx_CTL(bank);
183 }
184 
185 static inline u32 status_reg(int bank)
186 {
187 	return MSR_IA32_MCx_STATUS(bank);
188 }
189 
190 static inline u32 addr_reg(int bank)
191 {
192 	return MSR_IA32_MCx_ADDR(bank);
193 }
194 
195 static inline u32 misc_reg(int bank)
196 {
197 	return MSR_IA32_MCx_MISC(bank);
198 }
199 
200 static inline u32 smca_ctl_reg(int bank)
201 {
202 	return MSR_AMD64_SMCA_MCx_CTL(bank);
203 }
204 
205 static inline u32 smca_status_reg(int bank)
206 {
207 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
208 }
209 
210 static inline u32 smca_addr_reg(int bank)
211 {
212 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
213 }
214 
215 static inline u32 smca_misc_reg(int bank)
216 {
217 	return MSR_AMD64_SMCA_MCx_MISC(bank);
218 }
219 
220 struct mca_msr_regs msr_ops = {
221 	.ctl	= ctl_reg,
222 	.status	= status_reg,
223 	.addr	= addr_reg,
224 	.misc	= misc_reg
225 };
226 
227 static void __print_mce(struct mce *m)
228 {
229 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
230 		 m->extcpu,
231 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
232 		 m->mcgstatus, m->bank, m->status);
233 
234 	if (m->ip) {
235 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
236 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
237 			m->cs, m->ip);
238 
239 		if (m->cs == __KERNEL_CS)
240 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
241 		pr_cont("\n");
242 	}
243 
244 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
245 	if (m->addr)
246 		pr_cont("ADDR %llx ", m->addr);
247 	if (m->misc)
248 		pr_cont("MISC %llx ", m->misc);
249 
250 	if (mce_flags.smca) {
251 		if (m->synd)
252 			pr_cont("SYND %llx ", m->synd);
253 		if (m->ipid)
254 			pr_cont("IPID %llx ", m->ipid);
255 	}
256 
257 	pr_cont("\n");
258 	/*
259 	 * Note this output is parsed by external tools and old fields
260 	 * should not be changed.
261 	 */
262 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
263 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
264 		m->microcode);
265 }
266 
267 static void print_mce(struct mce *m)
268 {
269 	__print_mce(m);
270 
271 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
272 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
273 }
274 
275 #define PANIC_TIMEOUT 5 /* 5 seconds */
276 
277 static atomic_t mce_panicked;
278 
279 static int fake_panic;
280 static atomic_t mce_fake_panicked;
281 
282 /* Panic in progress. Enable interrupts and wait for final IPI */
283 static void wait_for_panic(void)
284 {
285 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
286 
287 	preempt_disable();
288 	local_irq_enable();
289 	while (timeout-- > 0)
290 		udelay(1);
291 	if (panic_timeout == 0)
292 		panic_timeout = mca_cfg.panic_timeout;
293 	panic("Panicing machine check CPU died");
294 }
295 
296 static void mce_panic(const char *msg, struct mce *final, char *exp)
297 {
298 	int apei_err = 0;
299 	struct llist_node *pending;
300 	struct mce_evt_llist *l;
301 
302 	if (!fake_panic) {
303 		/*
304 		 * Make sure only one CPU runs in machine check panic
305 		 */
306 		if (atomic_inc_return(&mce_panicked) > 1)
307 			wait_for_panic();
308 		barrier();
309 
310 		bust_spinlocks(1);
311 		console_verbose();
312 	} else {
313 		/* Don't log too much for fake panic */
314 		if (atomic_inc_return(&mce_fake_panicked) > 1)
315 			return;
316 	}
317 	pending = mce_gen_pool_prepare_records();
318 	/* First print corrected ones that are still unlogged */
319 	llist_for_each_entry(l, pending, llnode) {
320 		struct mce *m = &l->mce;
321 		if (!(m->status & MCI_STATUS_UC)) {
322 			print_mce(m);
323 			if (!apei_err)
324 				apei_err = apei_write_mce(m);
325 		}
326 	}
327 	/* Now print uncorrected but with the final one last */
328 	llist_for_each_entry(l, pending, llnode) {
329 		struct mce *m = &l->mce;
330 		if (!(m->status & MCI_STATUS_UC))
331 			continue;
332 		if (!final || mce_cmp(m, final)) {
333 			print_mce(m);
334 			if (!apei_err)
335 				apei_err = apei_write_mce(m);
336 		}
337 	}
338 	if (final) {
339 		print_mce(final);
340 		if (!apei_err)
341 			apei_err = apei_write_mce(final);
342 	}
343 	if (cpu_missing)
344 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
345 	if (exp)
346 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
347 	if (!fake_panic) {
348 		if (panic_timeout == 0)
349 			panic_timeout = mca_cfg.panic_timeout;
350 		panic(msg);
351 	} else
352 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
353 }
354 
355 /* Support code for software error injection */
356 
357 static int msr_to_offset(u32 msr)
358 {
359 	unsigned bank = __this_cpu_read(injectm.bank);
360 
361 	if (msr == mca_cfg.rip_msr)
362 		return offsetof(struct mce, ip);
363 	if (msr == msr_ops.status(bank))
364 		return offsetof(struct mce, status);
365 	if (msr == msr_ops.addr(bank))
366 		return offsetof(struct mce, addr);
367 	if (msr == msr_ops.misc(bank))
368 		return offsetof(struct mce, misc);
369 	if (msr == MSR_IA32_MCG_STATUS)
370 		return offsetof(struct mce, mcgstatus);
371 	return -1;
372 }
373 
374 /* MSR access wrappers used for error injection */
375 static u64 mce_rdmsrl(u32 msr)
376 {
377 	u64 v;
378 
379 	if (__this_cpu_read(injectm.finished)) {
380 		int offset = msr_to_offset(msr);
381 
382 		if (offset < 0)
383 			return 0;
384 		return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
385 	}
386 
387 	if (rdmsrl_safe(msr, &v)) {
388 		WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
389 		/*
390 		 * Return zero in case the access faulted. This should
391 		 * not happen normally but can happen if the CPU does
392 		 * something weird, or if the code is buggy.
393 		 */
394 		v = 0;
395 	}
396 
397 	return v;
398 }
399 
400 static void mce_wrmsrl(u32 msr, u64 v)
401 {
402 	if (__this_cpu_read(injectm.finished)) {
403 		int offset = msr_to_offset(msr);
404 
405 		if (offset >= 0)
406 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
407 		return;
408 	}
409 	wrmsrl(msr, v);
410 }
411 
412 /*
413  * Collect all global (w.r.t. this processor) status about this machine
414  * check into our "mce" struct so that we can use it later to assess
415  * the severity of the problem as we read per-bank specific details.
416  */
417 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
418 {
419 	mce_setup(m);
420 
421 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
422 	if (regs) {
423 		/*
424 		 * Get the address of the instruction at the time of
425 		 * the machine check error.
426 		 */
427 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
428 			m->ip = regs->ip;
429 			m->cs = regs->cs;
430 
431 			/*
432 			 * When in VM86 mode make the cs look like ring 3
433 			 * always. This is a lie, but it's better than passing
434 			 * the additional vm86 bit around everywhere.
435 			 */
436 			if (v8086_mode(regs))
437 				m->cs |= 3;
438 		}
439 		/* Use accurate RIP reporting if available. */
440 		if (mca_cfg.rip_msr)
441 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
442 	}
443 }
444 
445 int mce_available(struct cpuinfo_x86 *c)
446 {
447 	if (mca_cfg.disabled)
448 		return 0;
449 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
450 }
451 
452 static void mce_schedule_work(void)
453 {
454 	if (!mce_gen_pool_empty())
455 		schedule_work(&mce_work);
456 }
457 
458 static void mce_irq_work_cb(struct irq_work *entry)
459 {
460 	mce_schedule_work();
461 }
462 
463 static void mce_report_event(struct pt_regs *regs)
464 {
465 	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
466 		mce_notify_irq();
467 		/*
468 		 * Triggering the work queue here is just an insurance
469 		 * policy in case the syscall exit notify handler
470 		 * doesn't run soon enough or ends up running on the
471 		 * wrong CPU (can happen when audit sleeps)
472 		 */
473 		mce_schedule_work();
474 		return;
475 	}
476 
477 	irq_work_queue(&mce_irq_work);
478 }
479 
480 /*
481  * Check if the address reported by the CPU is in a format we can parse.
482  * It would be possible to add code for most other cases, but all would
483  * be somewhat complicated (e.g. segment offset would require an instruction
484  * parser). So only support physical addresses up to page granuality for now.
485  */
486 int mce_usable_address(struct mce *m)
487 {
488 	if (!(m->status & MCI_STATUS_ADDRV))
489 		return 0;
490 
491 	/* Checks after this one are Intel-specific: */
492 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
493 		return 1;
494 
495 	if (!(m->status & MCI_STATUS_MISCV))
496 		return 0;
497 
498 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
499 		return 0;
500 
501 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
502 		return 0;
503 
504 	return 1;
505 }
506 EXPORT_SYMBOL_GPL(mce_usable_address);
507 
508 bool mce_is_memory_error(struct mce *m)
509 {
510 	if (m->cpuvendor == X86_VENDOR_AMD ||
511 	    m->cpuvendor == X86_VENDOR_HYGON) {
512 		return amd_mce_is_memory_error(m);
513 	} else if (m->cpuvendor == X86_VENDOR_INTEL) {
514 		/*
515 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
516 		 *
517 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
518 		 * indicating a memory error. Bit 8 is used for indicating a
519 		 * cache hierarchy error. The combination of bit 2 and bit 3
520 		 * is used for indicating a `generic' cache hierarchy error
521 		 * But we can't just blindly check the above bits, because if
522 		 * bit 11 is set, then it is a bus/interconnect error - and
523 		 * either way the above bits just gives more detail on what
524 		 * bus/interconnect error happened. Note that bit 12 can be
525 		 * ignored, as it's the "filter" bit.
526 		 */
527 		return (m->status & 0xef80) == BIT(7) ||
528 		       (m->status & 0xef00) == BIT(8) ||
529 		       (m->status & 0xeffc) == 0xc;
530 	}
531 
532 	return false;
533 }
534 EXPORT_SYMBOL_GPL(mce_is_memory_error);
535 
536 bool mce_is_correctable(struct mce *m)
537 {
538 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
539 		return false;
540 
541 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
542 		return false;
543 
544 	if (m->status & MCI_STATUS_UC)
545 		return false;
546 
547 	return true;
548 }
549 EXPORT_SYMBOL_GPL(mce_is_correctable);
550 
551 static bool cec_add_mce(struct mce *m)
552 {
553 	if (!m)
554 		return false;
555 
556 	/* We eat only correctable DRAM errors with usable addresses. */
557 	if (mce_is_memory_error(m) &&
558 	    mce_is_correctable(m)  &&
559 	    mce_usable_address(m))
560 		if (!cec_add_elem(m->addr >> PAGE_SHIFT))
561 			return true;
562 
563 	return false;
564 }
565 
566 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
567 			      void *data)
568 {
569 	struct mce *m = (struct mce *)data;
570 
571 	if (!m)
572 		return NOTIFY_DONE;
573 
574 	if (cec_add_mce(m))
575 		return NOTIFY_STOP;
576 
577 	/* Emit the trace record: */
578 	trace_mce_record(m);
579 
580 	set_bit(0, &mce_need_notify);
581 
582 	mce_notify_irq();
583 
584 	return NOTIFY_DONE;
585 }
586 
587 static struct notifier_block first_nb = {
588 	.notifier_call	= mce_first_notifier,
589 	.priority	= MCE_PRIO_FIRST,
590 };
591 
592 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
593 				void *data)
594 {
595 	struct mce *mce = (struct mce *)data;
596 	unsigned long pfn;
597 
598 	if (!mce)
599 		return NOTIFY_DONE;
600 
601 	if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
602 		pfn = mce->addr >> PAGE_SHIFT;
603 		if (!memory_failure(pfn, 0))
604 			set_mce_nospec(pfn);
605 	}
606 
607 	return NOTIFY_OK;
608 }
609 static struct notifier_block mce_srao_nb = {
610 	.notifier_call	= srao_decode_notifier,
611 	.priority	= MCE_PRIO_SRAO,
612 };
613 
614 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
615 				void *data)
616 {
617 	struct mce *m = (struct mce *)data;
618 
619 	if (!m)
620 		return NOTIFY_DONE;
621 
622 	if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
623 		return NOTIFY_DONE;
624 
625 	__print_mce(m);
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static struct notifier_block mce_default_nb = {
631 	.notifier_call	= mce_default_notifier,
632 	/* lowest prio, we want it to run last. */
633 	.priority	= MCE_PRIO_LOWEST,
634 };
635 
636 /*
637  * Read ADDR and MISC registers.
638  */
639 static void mce_read_aux(struct mce *m, int i)
640 {
641 	if (m->status & MCI_STATUS_MISCV)
642 		m->misc = mce_rdmsrl(msr_ops.misc(i));
643 
644 	if (m->status & MCI_STATUS_ADDRV) {
645 		m->addr = mce_rdmsrl(msr_ops.addr(i));
646 
647 		/*
648 		 * Mask the reported address by the reported granularity.
649 		 */
650 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
651 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
652 			m->addr >>= shift;
653 			m->addr <<= shift;
654 		}
655 
656 		/*
657 		 * Extract [55:<lsb>] where lsb is the least significant
658 		 * *valid* bit of the address bits.
659 		 */
660 		if (mce_flags.smca) {
661 			u8 lsb = (m->addr >> 56) & 0x3f;
662 
663 			m->addr &= GENMASK_ULL(55, lsb);
664 		}
665 	}
666 
667 	if (mce_flags.smca) {
668 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
669 
670 		if (m->status & MCI_STATUS_SYNDV)
671 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
672 	}
673 }
674 
675 DEFINE_PER_CPU(unsigned, mce_poll_count);
676 
677 /*
678  * Poll for corrected events or events that happened before reset.
679  * Those are just logged through /dev/mcelog.
680  *
681  * This is executed in standard interrupt context.
682  *
683  * Note: spec recommends to panic for fatal unsignalled
684  * errors here. However this would be quite problematic --
685  * we would need to reimplement the Monarch handling and
686  * it would mess up the exclusion between exception handler
687  * and poll handler -- * so we skip this for now.
688  * These cases should not happen anyways, or only when the CPU
689  * is already totally * confused. In this case it's likely it will
690  * not fully execute the machine check handler either.
691  */
692 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
693 {
694 	bool error_seen = false;
695 	struct mce m;
696 	int i;
697 
698 	this_cpu_inc(mce_poll_count);
699 
700 	mce_gather_info(&m, NULL);
701 
702 	if (flags & MCP_TIMESTAMP)
703 		m.tsc = rdtsc();
704 
705 	for (i = 0; i < mca_cfg.banks; i++) {
706 		if (!mce_banks[i].ctl || !test_bit(i, *b))
707 			continue;
708 
709 		m.misc = 0;
710 		m.addr = 0;
711 		m.bank = i;
712 
713 		barrier();
714 		m.status = mce_rdmsrl(msr_ops.status(i));
715 		if (!(m.status & MCI_STATUS_VAL))
716 			continue;
717 
718 		/*
719 		 * Uncorrected or signalled events are handled by the exception
720 		 * handler when it is enabled, so don't process those here.
721 		 *
722 		 * TBD do the same check for MCI_STATUS_EN here?
723 		 */
724 		if (!(flags & MCP_UC) &&
725 		    (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
726 			continue;
727 
728 		error_seen = true;
729 
730 		mce_read_aux(&m, i);
731 
732 		m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
733 
734 		/*
735 		 * Don't get the IP here because it's unlikely to
736 		 * have anything to do with the actual error location.
737 		 */
738 		if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
739 			mce_log(&m);
740 		else if (mce_usable_address(&m)) {
741 			/*
742 			 * Although we skipped logging this, we still want
743 			 * to take action. Add to the pool so the registered
744 			 * notifiers will see it.
745 			 */
746 			if (!mce_gen_pool_add(&m))
747 				mce_schedule_work();
748 		}
749 
750 		/*
751 		 * Clear state for this bank.
752 		 */
753 		mce_wrmsrl(msr_ops.status(i), 0);
754 	}
755 
756 	/*
757 	 * Don't clear MCG_STATUS here because it's only defined for
758 	 * exceptions.
759 	 */
760 
761 	sync_core();
762 
763 	return error_seen;
764 }
765 EXPORT_SYMBOL_GPL(machine_check_poll);
766 
767 /*
768  * Do a quick check if any of the events requires a panic.
769  * This decides if we keep the events around or clear them.
770  */
771 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
772 			  struct pt_regs *regs)
773 {
774 	char *tmp;
775 	int i;
776 
777 	for (i = 0; i < mca_cfg.banks; i++) {
778 		m->status = mce_rdmsrl(msr_ops.status(i));
779 		if (!(m->status & MCI_STATUS_VAL))
780 			continue;
781 
782 		__set_bit(i, validp);
783 		if (quirk_no_way_out)
784 			quirk_no_way_out(i, m, regs);
785 
786 		if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
787 			m->bank = i;
788 			mce_read_aux(m, i);
789 			*msg = tmp;
790 			return 1;
791 		}
792 	}
793 	return 0;
794 }
795 
796 /*
797  * Variable to establish order between CPUs while scanning.
798  * Each CPU spins initially until executing is equal its number.
799  */
800 static atomic_t mce_executing;
801 
802 /*
803  * Defines order of CPUs on entry. First CPU becomes Monarch.
804  */
805 static atomic_t mce_callin;
806 
807 /*
808  * Check if a timeout waiting for other CPUs happened.
809  */
810 static int mce_timed_out(u64 *t, const char *msg)
811 {
812 	/*
813 	 * The others already did panic for some reason.
814 	 * Bail out like in a timeout.
815 	 * rmb() to tell the compiler that system_state
816 	 * might have been modified by someone else.
817 	 */
818 	rmb();
819 	if (atomic_read(&mce_panicked))
820 		wait_for_panic();
821 	if (!mca_cfg.monarch_timeout)
822 		goto out;
823 	if ((s64)*t < SPINUNIT) {
824 		if (mca_cfg.tolerant <= 1)
825 			mce_panic(msg, NULL, NULL);
826 		cpu_missing = 1;
827 		return 1;
828 	}
829 	*t -= SPINUNIT;
830 out:
831 	touch_nmi_watchdog();
832 	return 0;
833 }
834 
835 /*
836  * The Monarch's reign.  The Monarch is the CPU who entered
837  * the machine check handler first. It waits for the others to
838  * raise the exception too and then grades them. When any
839  * error is fatal panic. Only then let the others continue.
840  *
841  * The other CPUs entering the MCE handler will be controlled by the
842  * Monarch. They are called Subjects.
843  *
844  * This way we prevent any potential data corruption in a unrecoverable case
845  * and also makes sure always all CPU's errors are examined.
846  *
847  * Also this detects the case of a machine check event coming from outer
848  * space (not detected by any CPUs) In this case some external agent wants
849  * us to shut down, so panic too.
850  *
851  * The other CPUs might still decide to panic if the handler happens
852  * in a unrecoverable place, but in this case the system is in a semi-stable
853  * state and won't corrupt anything by itself. It's ok to let the others
854  * continue for a bit first.
855  *
856  * All the spin loops have timeouts; when a timeout happens a CPU
857  * typically elects itself to be Monarch.
858  */
859 static void mce_reign(void)
860 {
861 	int cpu;
862 	struct mce *m = NULL;
863 	int global_worst = 0;
864 	char *msg = NULL;
865 	char *nmsg = NULL;
866 
867 	/*
868 	 * This CPU is the Monarch and the other CPUs have run
869 	 * through their handlers.
870 	 * Grade the severity of the errors of all the CPUs.
871 	 */
872 	for_each_possible_cpu(cpu) {
873 		int severity = mce_severity(&per_cpu(mces_seen, cpu),
874 					    mca_cfg.tolerant,
875 					    &nmsg, true);
876 		if (severity > global_worst) {
877 			msg = nmsg;
878 			global_worst = severity;
879 			m = &per_cpu(mces_seen, cpu);
880 		}
881 	}
882 
883 	/*
884 	 * Cannot recover? Panic here then.
885 	 * This dumps all the mces in the log buffer and stops the
886 	 * other CPUs.
887 	 */
888 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
889 		mce_panic("Fatal machine check", m, msg);
890 
891 	/*
892 	 * For UC somewhere we let the CPU who detects it handle it.
893 	 * Also must let continue the others, otherwise the handling
894 	 * CPU could deadlock on a lock.
895 	 */
896 
897 	/*
898 	 * No machine check event found. Must be some external
899 	 * source or one CPU is hung. Panic.
900 	 */
901 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
902 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
903 
904 	/*
905 	 * Now clear all the mces_seen so that they don't reappear on
906 	 * the next mce.
907 	 */
908 	for_each_possible_cpu(cpu)
909 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
910 }
911 
912 static atomic_t global_nwo;
913 
914 /*
915  * Start of Monarch synchronization. This waits until all CPUs have
916  * entered the exception handler and then determines if any of them
917  * saw a fatal event that requires panic. Then it executes them
918  * in the entry order.
919  * TBD double check parallel CPU hotunplug
920  */
921 static int mce_start(int *no_way_out)
922 {
923 	int order;
924 	int cpus = num_online_cpus();
925 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
926 
927 	if (!timeout)
928 		return -1;
929 
930 	atomic_add(*no_way_out, &global_nwo);
931 	/*
932 	 * Rely on the implied barrier below, such that global_nwo
933 	 * is updated before mce_callin.
934 	 */
935 	order = atomic_inc_return(&mce_callin);
936 
937 	/*
938 	 * Wait for everyone.
939 	 */
940 	while (atomic_read(&mce_callin) != cpus) {
941 		if (mce_timed_out(&timeout,
942 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
943 			atomic_set(&global_nwo, 0);
944 			return -1;
945 		}
946 		ndelay(SPINUNIT);
947 	}
948 
949 	/*
950 	 * mce_callin should be read before global_nwo
951 	 */
952 	smp_rmb();
953 
954 	if (order == 1) {
955 		/*
956 		 * Monarch: Starts executing now, the others wait.
957 		 */
958 		atomic_set(&mce_executing, 1);
959 	} else {
960 		/*
961 		 * Subject: Now start the scanning loop one by one in
962 		 * the original callin order.
963 		 * This way when there are any shared banks it will be
964 		 * only seen by one CPU before cleared, avoiding duplicates.
965 		 */
966 		while (atomic_read(&mce_executing) < order) {
967 			if (mce_timed_out(&timeout,
968 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
969 				atomic_set(&global_nwo, 0);
970 				return -1;
971 			}
972 			ndelay(SPINUNIT);
973 		}
974 	}
975 
976 	/*
977 	 * Cache the global no_way_out state.
978 	 */
979 	*no_way_out = atomic_read(&global_nwo);
980 
981 	return order;
982 }
983 
984 /*
985  * Synchronize between CPUs after main scanning loop.
986  * This invokes the bulk of the Monarch processing.
987  */
988 static int mce_end(int order)
989 {
990 	int ret = -1;
991 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
992 
993 	if (!timeout)
994 		goto reset;
995 	if (order < 0)
996 		goto reset;
997 
998 	/*
999 	 * Allow others to run.
1000 	 */
1001 	atomic_inc(&mce_executing);
1002 
1003 	if (order == 1) {
1004 		/* CHECKME: Can this race with a parallel hotplug? */
1005 		int cpus = num_online_cpus();
1006 
1007 		/*
1008 		 * Monarch: Wait for everyone to go through their scanning
1009 		 * loops.
1010 		 */
1011 		while (atomic_read(&mce_executing) <= cpus) {
1012 			if (mce_timed_out(&timeout,
1013 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1014 				goto reset;
1015 			ndelay(SPINUNIT);
1016 		}
1017 
1018 		mce_reign();
1019 		barrier();
1020 		ret = 0;
1021 	} else {
1022 		/*
1023 		 * Subject: Wait for Monarch to finish.
1024 		 */
1025 		while (atomic_read(&mce_executing) != 0) {
1026 			if (mce_timed_out(&timeout,
1027 					  "Timeout: Monarch CPU did not finish machine check processing"))
1028 				goto reset;
1029 			ndelay(SPINUNIT);
1030 		}
1031 
1032 		/*
1033 		 * Don't reset anything. That's done by the Monarch.
1034 		 */
1035 		return 0;
1036 	}
1037 
1038 	/*
1039 	 * Reset all global state.
1040 	 */
1041 reset:
1042 	atomic_set(&global_nwo, 0);
1043 	atomic_set(&mce_callin, 0);
1044 	barrier();
1045 
1046 	/*
1047 	 * Let others run again.
1048 	 */
1049 	atomic_set(&mce_executing, 0);
1050 	return ret;
1051 }
1052 
1053 static void mce_clear_state(unsigned long *toclear)
1054 {
1055 	int i;
1056 
1057 	for (i = 0; i < mca_cfg.banks; i++) {
1058 		if (test_bit(i, toclear))
1059 			mce_wrmsrl(msr_ops.status(i), 0);
1060 	}
1061 }
1062 
1063 static int do_memory_failure(struct mce *m)
1064 {
1065 	int flags = MF_ACTION_REQUIRED;
1066 	int ret;
1067 
1068 	pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1069 	if (!(m->mcgstatus & MCG_STATUS_RIPV))
1070 		flags |= MF_MUST_KILL;
1071 	ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1072 	if (ret)
1073 		pr_err("Memory error not recovered");
1074 	else
1075 		set_mce_nospec(m->addr >> PAGE_SHIFT);
1076 	return ret;
1077 }
1078 
1079 
1080 /*
1081  * Cases where we avoid rendezvous handler timeout:
1082  * 1) If this CPU is offline.
1083  *
1084  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1085  *  skip those CPUs which remain looping in the 1st kernel - see
1086  *  crash_nmi_callback().
1087  *
1088  * Note: there still is a small window between kexec-ing and the new,
1089  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1090  * might not get handled properly.
1091  */
1092 static bool __mc_check_crashing_cpu(int cpu)
1093 {
1094 	if (cpu_is_offline(cpu) ||
1095 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1096 		u64 mcgstatus;
1097 
1098 		mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1099 		if (mcgstatus & MCG_STATUS_RIPV) {
1100 			mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1101 			return true;
1102 		}
1103 	}
1104 	return false;
1105 }
1106 
1107 static void __mc_scan_banks(struct mce *m, struct mce *final,
1108 			    unsigned long *toclear, unsigned long *valid_banks,
1109 			    int no_way_out, int *worst)
1110 {
1111 	struct mca_config *cfg = &mca_cfg;
1112 	int severity, i;
1113 
1114 	for (i = 0; i < cfg->banks; i++) {
1115 		__clear_bit(i, toclear);
1116 		if (!test_bit(i, valid_banks))
1117 			continue;
1118 
1119 		if (!mce_banks[i].ctl)
1120 			continue;
1121 
1122 		m->misc = 0;
1123 		m->addr = 0;
1124 		m->bank = i;
1125 
1126 		m->status = mce_rdmsrl(msr_ops.status(i));
1127 		if (!(m->status & MCI_STATUS_VAL))
1128 			continue;
1129 
1130 		/*
1131 		 * Corrected or non-signaled errors are handled by
1132 		 * machine_check_poll(). Leave them alone, unless this panics.
1133 		 */
1134 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1135 			!no_way_out)
1136 			continue;
1137 
1138 		/* Set taint even when machine check was not enabled. */
1139 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1140 
1141 		severity = mce_severity(m, cfg->tolerant, NULL, true);
1142 
1143 		/*
1144 		 * When machine check was for corrected/deferred handler don't
1145 		 * touch, unless we're panicking.
1146 		 */
1147 		if ((severity == MCE_KEEP_SEVERITY ||
1148 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1149 			continue;
1150 
1151 		__set_bit(i, toclear);
1152 
1153 		/* Machine check event was not enabled. Clear, but ignore. */
1154 		if (severity == MCE_NO_SEVERITY)
1155 			continue;
1156 
1157 		mce_read_aux(m, i);
1158 
1159 		/* assuming valid severity level != 0 */
1160 		m->severity = severity;
1161 
1162 		mce_log(m);
1163 
1164 		if (severity > *worst) {
1165 			*final = *m;
1166 			*worst = severity;
1167 		}
1168 	}
1169 
1170 	/* mce_clear_state will clear *final, save locally for use later */
1171 	*m = *final;
1172 }
1173 
1174 /*
1175  * The actual machine check handler. This only handles real
1176  * exceptions when something got corrupted coming in through int 18.
1177  *
1178  * This is executed in NMI context not subject to normal locking rules. This
1179  * implies that most kernel services cannot be safely used. Don't even
1180  * think about putting a printk in there!
1181  *
1182  * On Intel systems this is entered on all CPUs in parallel through
1183  * MCE broadcast. However some CPUs might be broken beyond repair,
1184  * so be always careful when synchronizing with others.
1185  */
1186 void do_machine_check(struct pt_regs *regs, long error_code)
1187 {
1188 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1189 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1190 	struct mca_config *cfg = &mca_cfg;
1191 	int cpu = smp_processor_id();
1192 	char *msg = "Unknown";
1193 	struct mce m, *final;
1194 	int worst = 0;
1195 
1196 	/*
1197 	 * Establish sequential order between the CPUs entering the machine
1198 	 * check handler.
1199 	 */
1200 	int order = -1;
1201 
1202 	/*
1203 	 * If no_way_out gets set, there is no safe way to recover from this
1204 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1205 	 */
1206 	int no_way_out = 0;
1207 
1208 	/*
1209 	 * If kill_it gets set, there might be a way to recover from this
1210 	 * error.
1211 	 */
1212 	int kill_it = 0;
1213 
1214 	/*
1215 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1216 	 * on Intel.
1217 	 */
1218 	int lmce = 1;
1219 
1220 	if (__mc_check_crashing_cpu(cpu))
1221 		return;
1222 
1223 	ist_enter(regs);
1224 
1225 	this_cpu_inc(mce_exception_count);
1226 
1227 	mce_gather_info(&m, regs);
1228 	m.tsc = rdtsc();
1229 
1230 	final = this_cpu_ptr(&mces_seen);
1231 	*final = m;
1232 
1233 	memset(valid_banks, 0, sizeof(valid_banks));
1234 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1235 
1236 	barrier();
1237 
1238 	/*
1239 	 * When no restart IP might need to kill or panic.
1240 	 * Assume the worst for now, but if we find the
1241 	 * severity is MCE_AR_SEVERITY we have other options.
1242 	 */
1243 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1244 		kill_it = 1;
1245 
1246 	/*
1247 	 * Check if this MCE is signaled to only this logical processor,
1248 	 * on Intel only.
1249 	 */
1250 	if (m.cpuvendor == X86_VENDOR_INTEL)
1251 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1252 
1253 	/*
1254 	 * Local machine check may already know that we have to panic.
1255 	 * Broadcast machine check begins rendezvous in mce_start()
1256 	 * Go through all banks in exclusion of the other CPUs. This way we
1257 	 * don't report duplicated events on shared banks because the first one
1258 	 * to see it will clear it.
1259 	 */
1260 	if (lmce) {
1261 		if (no_way_out)
1262 			mce_panic("Fatal local machine check", &m, msg);
1263 	} else {
1264 		order = mce_start(&no_way_out);
1265 	}
1266 
1267 	__mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst);
1268 
1269 	if (!no_way_out)
1270 		mce_clear_state(toclear);
1271 
1272 	/*
1273 	 * Do most of the synchronization with other CPUs.
1274 	 * When there's any problem use only local no_way_out state.
1275 	 */
1276 	if (!lmce) {
1277 		if (mce_end(order) < 0)
1278 			no_way_out = worst >= MCE_PANIC_SEVERITY;
1279 	} else {
1280 		/*
1281 		 * If there was a fatal machine check we should have
1282 		 * already called mce_panic earlier in this function.
1283 		 * Since we re-read the banks, we might have found
1284 		 * something new. Check again to see if we found a
1285 		 * fatal error. We call "mce_severity()" again to
1286 		 * make sure we have the right "msg".
1287 		 */
1288 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1289 			mce_severity(&m, cfg->tolerant, &msg, true);
1290 			mce_panic("Local fatal machine check!", &m, msg);
1291 		}
1292 	}
1293 
1294 	/*
1295 	 * If tolerant is at an insane level we drop requests to kill
1296 	 * processes and continue even when there is no way out.
1297 	 */
1298 	if (cfg->tolerant == 3)
1299 		kill_it = 0;
1300 	else if (no_way_out)
1301 		mce_panic("Fatal machine check on current CPU", &m, msg);
1302 
1303 	if (worst > 0)
1304 		mce_report_event(regs);
1305 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1306 
1307 	sync_core();
1308 
1309 	if (worst != MCE_AR_SEVERITY && !kill_it)
1310 		goto out_ist;
1311 
1312 	/* Fault was in user mode and we need to take some action */
1313 	if ((m.cs & 3) == 3) {
1314 		ist_begin_non_atomic(regs);
1315 		local_irq_enable();
1316 
1317 		if (kill_it || do_memory_failure(&m))
1318 			force_sig(SIGBUS, current);
1319 		local_irq_disable();
1320 		ist_end_non_atomic();
1321 	} else {
1322 		if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0))
1323 			mce_panic("Failed kernel mode recovery", &m, NULL);
1324 	}
1325 
1326 out_ist:
1327 	ist_exit(regs);
1328 }
1329 EXPORT_SYMBOL_GPL(do_machine_check);
1330 
1331 #ifndef CONFIG_MEMORY_FAILURE
1332 int memory_failure(unsigned long pfn, int flags)
1333 {
1334 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1335 	BUG_ON(flags & MF_ACTION_REQUIRED);
1336 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1337 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1338 	       pfn);
1339 
1340 	return 0;
1341 }
1342 #endif
1343 
1344 /*
1345  * Periodic polling timer for "silent" machine check errors.  If the
1346  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1347  * errors, poll 2x slower (up to check_interval seconds).
1348  */
1349 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1350 
1351 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1352 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1353 
1354 static unsigned long mce_adjust_timer_default(unsigned long interval)
1355 {
1356 	return interval;
1357 }
1358 
1359 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1360 
1361 static void __start_timer(struct timer_list *t, unsigned long interval)
1362 {
1363 	unsigned long when = jiffies + interval;
1364 	unsigned long flags;
1365 
1366 	local_irq_save(flags);
1367 
1368 	if (!timer_pending(t) || time_before(when, t->expires))
1369 		mod_timer(t, round_jiffies(when));
1370 
1371 	local_irq_restore(flags);
1372 }
1373 
1374 static void mce_timer_fn(struct timer_list *t)
1375 {
1376 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1377 	unsigned long iv;
1378 
1379 	WARN_ON(cpu_t != t);
1380 
1381 	iv = __this_cpu_read(mce_next_interval);
1382 
1383 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1384 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1385 
1386 		if (mce_intel_cmci_poll()) {
1387 			iv = mce_adjust_timer(iv);
1388 			goto done;
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1394 	 * interval, otherwise increase the polling interval.
1395 	 */
1396 	if (mce_notify_irq())
1397 		iv = max(iv / 2, (unsigned long) HZ/100);
1398 	else
1399 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1400 
1401 done:
1402 	__this_cpu_write(mce_next_interval, iv);
1403 	__start_timer(t, iv);
1404 }
1405 
1406 /*
1407  * Ensure that the timer is firing in @interval from now.
1408  */
1409 void mce_timer_kick(unsigned long interval)
1410 {
1411 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1412 	unsigned long iv = __this_cpu_read(mce_next_interval);
1413 
1414 	__start_timer(t, interval);
1415 
1416 	if (interval < iv)
1417 		__this_cpu_write(mce_next_interval, interval);
1418 }
1419 
1420 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1421 static void mce_timer_delete_all(void)
1422 {
1423 	int cpu;
1424 
1425 	for_each_online_cpu(cpu)
1426 		del_timer_sync(&per_cpu(mce_timer, cpu));
1427 }
1428 
1429 /*
1430  * Notify the user(s) about new machine check events.
1431  * Can be called from interrupt context, but not from machine check/NMI
1432  * context.
1433  */
1434 int mce_notify_irq(void)
1435 {
1436 	/* Not more than two messages every minute */
1437 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1438 
1439 	if (test_and_clear_bit(0, &mce_need_notify)) {
1440 		mce_work_trigger();
1441 
1442 		if (__ratelimit(&ratelimit))
1443 			pr_info(HW_ERR "Machine check events logged\n");
1444 
1445 		return 1;
1446 	}
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(mce_notify_irq);
1450 
1451 static int __mcheck_cpu_mce_banks_init(void)
1452 {
1453 	int i;
1454 	u8 num_banks = mca_cfg.banks;
1455 
1456 	mce_banks = kcalloc(num_banks, sizeof(struct mce_bank), GFP_KERNEL);
1457 	if (!mce_banks)
1458 		return -ENOMEM;
1459 
1460 	for (i = 0; i < num_banks; i++) {
1461 		struct mce_bank *b = &mce_banks[i];
1462 
1463 		b->ctl = -1ULL;
1464 		b->init = 1;
1465 	}
1466 	return 0;
1467 }
1468 
1469 /*
1470  * Initialize Machine Checks for a CPU.
1471  */
1472 static int __mcheck_cpu_cap_init(void)
1473 {
1474 	unsigned b;
1475 	u64 cap;
1476 
1477 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1478 
1479 	b = cap & MCG_BANKCNT_MASK;
1480 	if (!mca_cfg.banks)
1481 		pr_info("CPU supports %d MCE banks\n", b);
1482 
1483 	if (b > MAX_NR_BANKS) {
1484 		pr_warn("Using only %u machine check banks out of %u\n",
1485 			MAX_NR_BANKS, b);
1486 		b = MAX_NR_BANKS;
1487 	}
1488 
1489 	/* Don't support asymmetric configurations today */
1490 	WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1491 	mca_cfg.banks = b;
1492 
1493 	if (!mce_banks) {
1494 		int err = __mcheck_cpu_mce_banks_init();
1495 
1496 		if (err)
1497 			return err;
1498 	}
1499 
1500 	/* Use accurate RIP reporting if available. */
1501 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1502 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1503 
1504 	if (cap & MCG_SER_P)
1505 		mca_cfg.ser = 1;
1506 
1507 	return 0;
1508 }
1509 
1510 static void __mcheck_cpu_init_generic(void)
1511 {
1512 	enum mcp_flags m_fl = 0;
1513 	mce_banks_t all_banks;
1514 	u64 cap;
1515 
1516 	if (!mca_cfg.bootlog)
1517 		m_fl = MCP_DONTLOG;
1518 
1519 	/*
1520 	 * Log the machine checks left over from the previous reset.
1521 	 */
1522 	bitmap_fill(all_banks, MAX_NR_BANKS);
1523 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1524 
1525 	cr4_set_bits(X86_CR4_MCE);
1526 
1527 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1528 	if (cap & MCG_CTL_P)
1529 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1530 }
1531 
1532 static void __mcheck_cpu_init_clear_banks(void)
1533 {
1534 	int i;
1535 
1536 	for (i = 0; i < mca_cfg.banks; i++) {
1537 		struct mce_bank *b = &mce_banks[i];
1538 
1539 		if (!b->init)
1540 			continue;
1541 		wrmsrl(msr_ops.ctl(i), b->ctl);
1542 		wrmsrl(msr_ops.status(i), 0);
1543 	}
1544 }
1545 
1546 /*
1547  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1548  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1549  * Vol 3B Table 15-20). But this confuses both the code that determines
1550  * whether the machine check occurred in kernel or user mode, and also
1551  * the severity assessment code. Pretend that EIPV was set, and take the
1552  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1553  */
1554 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1555 {
1556 	if (bank != 0)
1557 		return;
1558 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1559 		return;
1560 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1561 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1562 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1563 			  MCACOD)) !=
1564 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1565 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1566 			  MCI_STATUS_AR|MCACOD_INSTR))
1567 		return;
1568 
1569 	m->mcgstatus |= MCG_STATUS_EIPV;
1570 	m->ip = regs->ip;
1571 	m->cs = regs->cs;
1572 }
1573 
1574 /* Add per CPU specific workarounds here */
1575 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1576 {
1577 	struct mca_config *cfg = &mca_cfg;
1578 
1579 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1580 		pr_info("unknown CPU type - not enabling MCE support\n");
1581 		return -EOPNOTSUPP;
1582 	}
1583 
1584 	/* This should be disabled by the BIOS, but isn't always */
1585 	if (c->x86_vendor == X86_VENDOR_AMD) {
1586 		if (c->x86 == 15 && cfg->banks > 4) {
1587 			/*
1588 			 * disable GART TBL walk error reporting, which
1589 			 * trips off incorrectly with the IOMMU & 3ware
1590 			 * & Cerberus:
1591 			 */
1592 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1593 		}
1594 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1595 			/*
1596 			 * Lots of broken BIOS around that don't clear them
1597 			 * by default and leave crap in there. Don't log:
1598 			 */
1599 			cfg->bootlog = 0;
1600 		}
1601 		/*
1602 		 * Various K7s with broken bank 0 around. Always disable
1603 		 * by default.
1604 		 */
1605 		if (c->x86 == 6 && cfg->banks > 0)
1606 			mce_banks[0].ctl = 0;
1607 
1608 		/*
1609 		 * overflow_recov is supported for F15h Models 00h-0fh
1610 		 * even though we don't have a CPUID bit for it.
1611 		 */
1612 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1613 			mce_flags.overflow_recov = 1;
1614 
1615 	}
1616 
1617 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1618 		/*
1619 		 * SDM documents that on family 6 bank 0 should not be written
1620 		 * because it aliases to another special BIOS controlled
1621 		 * register.
1622 		 * But it's not aliased anymore on model 0x1a+
1623 		 * Don't ignore bank 0 completely because there could be a
1624 		 * valid event later, merely don't write CTL0.
1625 		 */
1626 
1627 		if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1628 			mce_banks[0].init = 0;
1629 
1630 		/*
1631 		 * All newer Intel systems support MCE broadcasting. Enable
1632 		 * synchronization with a one second timeout.
1633 		 */
1634 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1635 			cfg->monarch_timeout < 0)
1636 			cfg->monarch_timeout = USEC_PER_SEC;
1637 
1638 		/*
1639 		 * There are also broken BIOSes on some Pentium M and
1640 		 * earlier systems:
1641 		 */
1642 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1643 			cfg->bootlog = 0;
1644 
1645 		if (c->x86 == 6 && c->x86_model == 45)
1646 			quirk_no_way_out = quirk_sandybridge_ifu;
1647 	}
1648 	if (cfg->monarch_timeout < 0)
1649 		cfg->monarch_timeout = 0;
1650 	if (cfg->bootlog != 0)
1651 		cfg->panic_timeout = 30;
1652 
1653 	return 0;
1654 }
1655 
1656 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1657 {
1658 	if (c->x86 != 5)
1659 		return 0;
1660 
1661 	switch (c->x86_vendor) {
1662 	case X86_VENDOR_INTEL:
1663 		intel_p5_mcheck_init(c);
1664 		return 1;
1665 		break;
1666 	case X86_VENDOR_CENTAUR:
1667 		winchip_mcheck_init(c);
1668 		return 1;
1669 		break;
1670 	default:
1671 		return 0;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 /*
1678  * Init basic CPU features needed for early decoding of MCEs.
1679  */
1680 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1681 {
1682 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1683 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1684 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1685 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1686 
1687 		if (mce_flags.smca) {
1688 			msr_ops.ctl	= smca_ctl_reg;
1689 			msr_ops.status	= smca_status_reg;
1690 			msr_ops.addr	= smca_addr_reg;
1691 			msr_ops.misc	= smca_misc_reg;
1692 		}
1693 	}
1694 }
1695 
1696 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1697 {
1698 	struct mca_config *cfg = &mca_cfg;
1699 
1700 	 /*
1701 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1702 	  * synchronization with a one second timeout.
1703 	  */
1704 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1705 	     c->x86 > 6) {
1706 		if (cfg->monarch_timeout < 0)
1707 			cfg->monarch_timeout = USEC_PER_SEC;
1708 	}
1709 }
1710 
1711 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1712 {
1713 	switch (c->x86_vendor) {
1714 	case X86_VENDOR_INTEL:
1715 		mce_intel_feature_init(c);
1716 		mce_adjust_timer = cmci_intel_adjust_timer;
1717 		break;
1718 
1719 	case X86_VENDOR_AMD: {
1720 		mce_amd_feature_init(c);
1721 		break;
1722 		}
1723 
1724 	case X86_VENDOR_HYGON:
1725 		mce_hygon_feature_init(c);
1726 		break;
1727 
1728 	case X86_VENDOR_CENTAUR:
1729 		mce_centaur_feature_init(c);
1730 		break;
1731 
1732 	default:
1733 		break;
1734 	}
1735 }
1736 
1737 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1738 {
1739 	switch (c->x86_vendor) {
1740 	case X86_VENDOR_INTEL:
1741 		mce_intel_feature_clear(c);
1742 		break;
1743 	default:
1744 		break;
1745 	}
1746 }
1747 
1748 static void mce_start_timer(struct timer_list *t)
1749 {
1750 	unsigned long iv = check_interval * HZ;
1751 
1752 	if (mca_cfg.ignore_ce || !iv)
1753 		return;
1754 
1755 	this_cpu_write(mce_next_interval, iv);
1756 	__start_timer(t, iv);
1757 }
1758 
1759 static void __mcheck_cpu_setup_timer(void)
1760 {
1761 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1762 
1763 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1764 }
1765 
1766 static void __mcheck_cpu_init_timer(void)
1767 {
1768 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1769 
1770 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1771 	mce_start_timer(t);
1772 }
1773 
1774 /* Handle unconfigured int18 (should never happen) */
1775 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1776 {
1777 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1778 	       smp_processor_id());
1779 }
1780 
1781 /* Call the installed machine check handler for this CPU setup. */
1782 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1783 						unexpected_machine_check;
1784 
1785 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1786 {
1787 	machine_check_vector(regs, error_code);
1788 }
1789 
1790 /*
1791  * Called for each booted CPU to set up machine checks.
1792  * Must be called with preempt off:
1793  */
1794 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1795 {
1796 	if (mca_cfg.disabled)
1797 		return;
1798 
1799 	if (__mcheck_cpu_ancient_init(c))
1800 		return;
1801 
1802 	if (!mce_available(c))
1803 		return;
1804 
1805 	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1806 		mca_cfg.disabled = 1;
1807 		return;
1808 	}
1809 
1810 	if (mce_gen_pool_init()) {
1811 		mca_cfg.disabled = 1;
1812 		pr_emerg("Couldn't allocate MCE records pool!\n");
1813 		return;
1814 	}
1815 
1816 	machine_check_vector = do_machine_check;
1817 
1818 	__mcheck_cpu_init_early(c);
1819 	__mcheck_cpu_init_generic();
1820 	__mcheck_cpu_init_vendor(c);
1821 	__mcheck_cpu_init_clear_banks();
1822 	__mcheck_cpu_setup_timer();
1823 }
1824 
1825 /*
1826  * Called for each booted CPU to clear some machine checks opt-ins
1827  */
1828 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1829 {
1830 	if (mca_cfg.disabled)
1831 		return;
1832 
1833 	if (!mce_available(c))
1834 		return;
1835 
1836 	/*
1837 	 * Possibly to clear general settings generic to x86
1838 	 * __mcheck_cpu_clear_generic(c);
1839 	 */
1840 	__mcheck_cpu_clear_vendor(c);
1841 
1842 }
1843 
1844 static void __mce_disable_bank(void *arg)
1845 {
1846 	int bank = *((int *)arg);
1847 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1848 	cmci_disable_bank(bank);
1849 }
1850 
1851 void mce_disable_bank(int bank)
1852 {
1853 	if (bank >= mca_cfg.banks) {
1854 		pr_warn(FW_BUG
1855 			"Ignoring request to disable invalid MCA bank %d.\n",
1856 			bank);
1857 		return;
1858 	}
1859 	set_bit(bank, mce_banks_ce_disabled);
1860 	on_each_cpu(__mce_disable_bank, &bank, 1);
1861 }
1862 
1863 /*
1864  * mce=off Disables machine check
1865  * mce=no_cmci Disables CMCI
1866  * mce=no_lmce Disables LMCE
1867  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1868  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1869  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1870  *	monarchtimeout is how long to wait for other CPUs on machine
1871  *	check, or 0 to not wait
1872  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1873 	and older.
1874  * mce=nobootlog Don't log MCEs from before booting.
1875  * mce=bios_cmci_threshold Don't program the CMCI threshold
1876  * mce=recovery force enable memcpy_mcsafe()
1877  */
1878 static int __init mcheck_enable(char *str)
1879 {
1880 	struct mca_config *cfg = &mca_cfg;
1881 
1882 	if (*str == 0) {
1883 		enable_p5_mce();
1884 		return 1;
1885 	}
1886 	if (*str == '=')
1887 		str++;
1888 	if (!strcmp(str, "off"))
1889 		cfg->disabled = 1;
1890 	else if (!strcmp(str, "no_cmci"))
1891 		cfg->cmci_disabled = true;
1892 	else if (!strcmp(str, "no_lmce"))
1893 		cfg->lmce_disabled = 1;
1894 	else if (!strcmp(str, "dont_log_ce"))
1895 		cfg->dont_log_ce = true;
1896 	else if (!strcmp(str, "ignore_ce"))
1897 		cfg->ignore_ce = true;
1898 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1899 		cfg->bootlog = (str[0] == 'b');
1900 	else if (!strcmp(str, "bios_cmci_threshold"))
1901 		cfg->bios_cmci_threshold = 1;
1902 	else if (!strcmp(str, "recovery"))
1903 		cfg->recovery = 1;
1904 	else if (isdigit(str[0])) {
1905 		if (get_option(&str, &cfg->tolerant) == 2)
1906 			get_option(&str, &(cfg->monarch_timeout));
1907 	} else {
1908 		pr_info("mce argument %s ignored. Please use /sys\n", str);
1909 		return 0;
1910 	}
1911 	return 1;
1912 }
1913 __setup("mce", mcheck_enable);
1914 
1915 int __init mcheck_init(void)
1916 {
1917 	mcheck_intel_therm_init();
1918 	mce_register_decode_chain(&first_nb);
1919 	mce_register_decode_chain(&mce_srao_nb);
1920 	mce_register_decode_chain(&mce_default_nb);
1921 	mcheck_vendor_init_severity();
1922 
1923 	INIT_WORK(&mce_work, mce_gen_pool_process);
1924 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
1925 
1926 	return 0;
1927 }
1928 
1929 /*
1930  * mce_syscore: PM support
1931  */
1932 
1933 /*
1934  * Disable machine checks on suspend and shutdown. We can't really handle
1935  * them later.
1936  */
1937 static void mce_disable_error_reporting(void)
1938 {
1939 	int i;
1940 
1941 	for (i = 0; i < mca_cfg.banks; i++) {
1942 		struct mce_bank *b = &mce_banks[i];
1943 
1944 		if (b->init)
1945 			wrmsrl(msr_ops.ctl(i), 0);
1946 	}
1947 	return;
1948 }
1949 
1950 static void vendor_disable_error_reporting(void)
1951 {
1952 	/*
1953 	 * Don't clear on Intel or AMD or Hygon CPUs. Some of these MSRs
1954 	 * are socket-wide.
1955 	 * Disabling them for just a single offlined CPU is bad, since it will
1956 	 * inhibit reporting for all shared resources on the socket like the
1957 	 * last level cache (LLC), the integrated memory controller (iMC), etc.
1958 	 */
1959 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1960 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
1961 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1962 		return;
1963 
1964 	mce_disable_error_reporting();
1965 }
1966 
1967 static int mce_syscore_suspend(void)
1968 {
1969 	vendor_disable_error_reporting();
1970 	return 0;
1971 }
1972 
1973 static void mce_syscore_shutdown(void)
1974 {
1975 	vendor_disable_error_reporting();
1976 }
1977 
1978 /*
1979  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1980  * Only one CPU is active at this time, the others get re-added later using
1981  * CPU hotplug:
1982  */
1983 static void mce_syscore_resume(void)
1984 {
1985 	__mcheck_cpu_init_generic();
1986 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
1987 	__mcheck_cpu_init_clear_banks();
1988 }
1989 
1990 static struct syscore_ops mce_syscore_ops = {
1991 	.suspend	= mce_syscore_suspend,
1992 	.shutdown	= mce_syscore_shutdown,
1993 	.resume		= mce_syscore_resume,
1994 };
1995 
1996 /*
1997  * mce_device: Sysfs support
1998  */
1999 
2000 static void mce_cpu_restart(void *data)
2001 {
2002 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2003 		return;
2004 	__mcheck_cpu_init_generic();
2005 	__mcheck_cpu_init_clear_banks();
2006 	__mcheck_cpu_init_timer();
2007 }
2008 
2009 /* Reinit MCEs after user configuration changes */
2010 static void mce_restart(void)
2011 {
2012 	mce_timer_delete_all();
2013 	on_each_cpu(mce_cpu_restart, NULL, 1);
2014 }
2015 
2016 /* Toggle features for corrected errors */
2017 static void mce_disable_cmci(void *data)
2018 {
2019 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2020 		return;
2021 	cmci_clear();
2022 }
2023 
2024 static void mce_enable_ce(void *all)
2025 {
2026 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2027 		return;
2028 	cmci_reenable();
2029 	cmci_recheck();
2030 	if (all)
2031 		__mcheck_cpu_init_timer();
2032 }
2033 
2034 static struct bus_type mce_subsys = {
2035 	.name		= "machinecheck",
2036 	.dev_name	= "machinecheck",
2037 };
2038 
2039 DEFINE_PER_CPU(struct device *, mce_device);
2040 
2041 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2042 {
2043 	return container_of(attr, struct mce_bank, attr);
2044 }
2045 
2046 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2047 			 char *buf)
2048 {
2049 	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2050 }
2051 
2052 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2053 			const char *buf, size_t size)
2054 {
2055 	u64 new;
2056 
2057 	if (kstrtou64(buf, 0, &new) < 0)
2058 		return -EINVAL;
2059 
2060 	attr_to_bank(attr)->ctl = new;
2061 	mce_restart();
2062 
2063 	return size;
2064 }
2065 
2066 static ssize_t set_ignore_ce(struct device *s,
2067 			     struct device_attribute *attr,
2068 			     const char *buf, size_t size)
2069 {
2070 	u64 new;
2071 
2072 	if (kstrtou64(buf, 0, &new) < 0)
2073 		return -EINVAL;
2074 
2075 	mutex_lock(&mce_sysfs_mutex);
2076 	if (mca_cfg.ignore_ce ^ !!new) {
2077 		if (new) {
2078 			/* disable ce features */
2079 			mce_timer_delete_all();
2080 			on_each_cpu(mce_disable_cmci, NULL, 1);
2081 			mca_cfg.ignore_ce = true;
2082 		} else {
2083 			/* enable ce features */
2084 			mca_cfg.ignore_ce = false;
2085 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2086 		}
2087 	}
2088 	mutex_unlock(&mce_sysfs_mutex);
2089 
2090 	return size;
2091 }
2092 
2093 static ssize_t set_cmci_disabled(struct device *s,
2094 				 struct device_attribute *attr,
2095 				 const char *buf, size_t size)
2096 {
2097 	u64 new;
2098 
2099 	if (kstrtou64(buf, 0, &new) < 0)
2100 		return -EINVAL;
2101 
2102 	mutex_lock(&mce_sysfs_mutex);
2103 	if (mca_cfg.cmci_disabled ^ !!new) {
2104 		if (new) {
2105 			/* disable cmci */
2106 			on_each_cpu(mce_disable_cmci, NULL, 1);
2107 			mca_cfg.cmci_disabled = true;
2108 		} else {
2109 			/* enable cmci */
2110 			mca_cfg.cmci_disabled = false;
2111 			on_each_cpu(mce_enable_ce, NULL, 1);
2112 		}
2113 	}
2114 	mutex_unlock(&mce_sysfs_mutex);
2115 
2116 	return size;
2117 }
2118 
2119 static ssize_t store_int_with_restart(struct device *s,
2120 				      struct device_attribute *attr,
2121 				      const char *buf, size_t size)
2122 {
2123 	unsigned long old_check_interval = check_interval;
2124 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2125 
2126 	if (check_interval == old_check_interval)
2127 		return ret;
2128 
2129 	mutex_lock(&mce_sysfs_mutex);
2130 	mce_restart();
2131 	mutex_unlock(&mce_sysfs_mutex);
2132 
2133 	return ret;
2134 }
2135 
2136 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2137 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2138 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2139 
2140 static struct dev_ext_attribute dev_attr_check_interval = {
2141 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2142 	&check_interval
2143 };
2144 
2145 static struct dev_ext_attribute dev_attr_ignore_ce = {
2146 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2147 	&mca_cfg.ignore_ce
2148 };
2149 
2150 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2151 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2152 	&mca_cfg.cmci_disabled
2153 };
2154 
2155 static struct device_attribute *mce_device_attrs[] = {
2156 	&dev_attr_tolerant.attr,
2157 	&dev_attr_check_interval.attr,
2158 #ifdef CONFIG_X86_MCELOG_LEGACY
2159 	&dev_attr_trigger,
2160 #endif
2161 	&dev_attr_monarch_timeout.attr,
2162 	&dev_attr_dont_log_ce.attr,
2163 	&dev_attr_ignore_ce.attr,
2164 	&dev_attr_cmci_disabled.attr,
2165 	NULL
2166 };
2167 
2168 static cpumask_var_t mce_device_initialized;
2169 
2170 static void mce_device_release(struct device *dev)
2171 {
2172 	kfree(dev);
2173 }
2174 
2175 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2176 static int mce_device_create(unsigned int cpu)
2177 {
2178 	struct device *dev;
2179 	int err;
2180 	int i, j;
2181 
2182 	if (!mce_available(&boot_cpu_data))
2183 		return -EIO;
2184 
2185 	dev = per_cpu(mce_device, cpu);
2186 	if (dev)
2187 		return 0;
2188 
2189 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2190 	if (!dev)
2191 		return -ENOMEM;
2192 	dev->id  = cpu;
2193 	dev->bus = &mce_subsys;
2194 	dev->release = &mce_device_release;
2195 
2196 	err = device_register(dev);
2197 	if (err) {
2198 		put_device(dev);
2199 		return err;
2200 	}
2201 
2202 	for (i = 0; mce_device_attrs[i]; i++) {
2203 		err = device_create_file(dev, mce_device_attrs[i]);
2204 		if (err)
2205 			goto error;
2206 	}
2207 	for (j = 0; j < mca_cfg.banks; j++) {
2208 		err = device_create_file(dev, &mce_banks[j].attr);
2209 		if (err)
2210 			goto error2;
2211 	}
2212 	cpumask_set_cpu(cpu, mce_device_initialized);
2213 	per_cpu(mce_device, cpu) = dev;
2214 
2215 	return 0;
2216 error2:
2217 	while (--j >= 0)
2218 		device_remove_file(dev, &mce_banks[j].attr);
2219 error:
2220 	while (--i >= 0)
2221 		device_remove_file(dev, mce_device_attrs[i]);
2222 
2223 	device_unregister(dev);
2224 
2225 	return err;
2226 }
2227 
2228 static void mce_device_remove(unsigned int cpu)
2229 {
2230 	struct device *dev = per_cpu(mce_device, cpu);
2231 	int i;
2232 
2233 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2234 		return;
2235 
2236 	for (i = 0; mce_device_attrs[i]; i++)
2237 		device_remove_file(dev, mce_device_attrs[i]);
2238 
2239 	for (i = 0; i < mca_cfg.banks; i++)
2240 		device_remove_file(dev, &mce_banks[i].attr);
2241 
2242 	device_unregister(dev);
2243 	cpumask_clear_cpu(cpu, mce_device_initialized);
2244 	per_cpu(mce_device, cpu) = NULL;
2245 }
2246 
2247 /* Make sure there are no machine checks on offlined CPUs. */
2248 static void mce_disable_cpu(void)
2249 {
2250 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2251 		return;
2252 
2253 	if (!cpuhp_tasks_frozen)
2254 		cmci_clear();
2255 
2256 	vendor_disable_error_reporting();
2257 }
2258 
2259 static void mce_reenable_cpu(void)
2260 {
2261 	int i;
2262 
2263 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2264 		return;
2265 
2266 	if (!cpuhp_tasks_frozen)
2267 		cmci_reenable();
2268 	for (i = 0; i < mca_cfg.banks; i++) {
2269 		struct mce_bank *b = &mce_banks[i];
2270 
2271 		if (b->init)
2272 			wrmsrl(msr_ops.ctl(i), b->ctl);
2273 	}
2274 }
2275 
2276 static int mce_cpu_dead(unsigned int cpu)
2277 {
2278 	mce_intel_hcpu_update(cpu);
2279 
2280 	/* intentionally ignoring frozen here */
2281 	if (!cpuhp_tasks_frozen)
2282 		cmci_rediscover();
2283 	return 0;
2284 }
2285 
2286 static int mce_cpu_online(unsigned int cpu)
2287 {
2288 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2289 	int ret;
2290 
2291 	mce_device_create(cpu);
2292 
2293 	ret = mce_threshold_create_device(cpu);
2294 	if (ret) {
2295 		mce_device_remove(cpu);
2296 		return ret;
2297 	}
2298 	mce_reenable_cpu();
2299 	mce_start_timer(t);
2300 	return 0;
2301 }
2302 
2303 static int mce_cpu_pre_down(unsigned int cpu)
2304 {
2305 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2306 
2307 	mce_disable_cpu();
2308 	del_timer_sync(t);
2309 	mce_threshold_remove_device(cpu);
2310 	mce_device_remove(cpu);
2311 	return 0;
2312 }
2313 
2314 static __init void mce_init_banks(void)
2315 {
2316 	int i;
2317 
2318 	for (i = 0; i < mca_cfg.banks; i++) {
2319 		struct mce_bank *b = &mce_banks[i];
2320 		struct device_attribute *a = &b->attr;
2321 
2322 		sysfs_attr_init(&a->attr);
2323 		a->attr.name	= b->attrname;
2324 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2325 
2326 		a->attr.mode	= 0644;
2327 		a->show		= show_bank;
2328 		a->store	= set_bank;
2329 	}
2330 }
2331 
2332 static __init int mcheck_init_device(void)
2333 {
2334 	int err;
2335 
2336 	/*
2337 	 * Check if we have a spare virtual bit. This will only become
2338 	 * a problem if/when we move beyond 5-level page tables.
2339 	 */
2340 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2341 
2342 	if (!mce_available(&boot_cpu_data)) {
2343 		err = -EIO;
2344 		goto err_out;
2345 	}
2346 
2347 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2348 		err = -ENOMEM;
2349 		goto err_out;
2350 	}
2351 
2352 	mce_init_banks();
2353 
2354 	err = subsys_system_register(&mce_subsys, NULL);
2355 	if (err)
2356 		goto err_out_mem;
2357 
2358 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2359 				mce_cpu_dead);
2360 	if (err)
2361 		goto err_out_mem;
2362 
2363 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2364 				mce_cpu_online, mce_cpu_pre_down);
2365 	if (err < 0)
2366 		goto err_out_online;
2367 
2368 	register_syscore_ops(&mce_syscore_ops);
2369 
2370 	return 0;
2371 
2372 err_out_online:
2373 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2374 
2375 err_out_mem:
2376 	free_cpumask_var(mce_device_initialized);
2377 
2378 err_out:
2379 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2380 
2381 	return err;
2382 }
2383 device_initcall_sync(mcheck_init_device);
2384 
2385 /*
2386  * Old style boot options parsing. Only for compatibility.
2387  */
2388 static int __init mcheck_disable(char *str)
2389 {
2390 	mca_cfg.disabled = 1;
2391 	return 1;
2392 }
2393 __setup("nomce", mcheck_disable);
2394 
2395 #ifdef CONFIG_DEBUG_FS
2396 struct dentry *mce_get_debugfs_dir(void)
2397 {
2398 	static struct dentry *dmce;
2399 
2400 	if (!dmce)
2401 		dmce = debugfs_create_dir("mce", NULL);
2402 
2403 	return dmce;
2404 }
2405 
2406 static void mce_reset(void)
2407 {
2408 	cpu_missing = 0;
2409 	atomic_set(&mce_fake_panicked, 0);
2410 	atomic_set(&mce_executing, 0);
2411 	atomic_set(&mce_callin, 0);
2412 	atomic_set(&global_nwo, 0);
2413 }
2414 
2415 static int fake_panic_get(void *data, u64 *val)
2416 {
2417 	*val = fake_panic;
2418 	return 0;
2419 }
2420 
2421 static int fake_panic_set(void *data, u64 val)
2422 {
2423 	mce_reset();
2424 	fake_panic = val;
2425 	return 0;
2426 }
2427 
2428 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2429 			fake_panic_set, "%llu\n");
2430 
2431 static int __init mcheck_debugfs_init(void)
2432 {
2433 	struct dentry *dmce, *ffake_panic;
2434 
2435 	dmce = mce_get_debugfs_dir();
2436 	if (!dmce)
2437 		return -ENOMEM;
2438 	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2439 					  &fake_panic_fops);
2440 	if (!ffake_panic)
2441 		return -ENOMEM;
2442 
2443 	return 0;
2444 }
2445 #else
2446 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2447 #endif
2448 
2449 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2450 EXPORT_SYMBOL_GPL(mcsafe_key);
2451 
2452 static int __init mcheck_late_init(void)
2453 {
2454 	if (mca_cfg.recovery)
2455 		static_branch_inc(&mcsafe_key);
2456 
2457 	mcheck_debugfs_init();
2458 	cec_init();
2459 
2460 	/*
2461 	 * Flush out everything that has been logged during early boot, now that
2462 	 * everything has been initialized (workqueues, decoders, ...).
2463 	 */
2464 	mce_schedule_work();
2465 
2466 	return 0;
2467 }
2468 late_initcall(mcheck_late_init);
2469