1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 48 #include <asm/intel-family.h> 49 #include <asm/processor.h> 50 #include <asm/traps.h> 51 #include <asm/tlbflush.h> 52 #include <asm/mce.h> 53 #include <asm/msr.h> 54 #include <asm/reboot.h> 55 56 #include "internal.h" 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 struct mce_bank { 71 u64 ctl; /* subevents to enable */ 72 bool init; /* initialise bank? */ 73 }; 74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 75 76 #define ATTR_LEN 16 77 /* One object for each MCE bank, shared by all CPUs */ 78 struct mce_bank_dev { 79 struct device_attribute attr; /* device attribute */ 80 char attrname[ATTR_LEN]; /* attribute name */ 81 u8 bank; /* bank number */ 82 }; 83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 84 85 struct mce_vendor_flags mce_flags __read_mostly; 86 87 struct mca_config mca_cfg __read_mostly = { 88 .bootlog = -1, 89 /* 90 * Tolerant levels: 91 * 0: always panic on uncorrected errors, log corrected errors 92 * 1: panic or SIGBUS on uncorrected errors, log corrected errors 93 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors 94 * 3: never panic or SIGBUS, log all errors (for testing only) 95 */ 96 .tolerant = 1, 97 .monarch_timeout = -1 98 }; 99 100 static DEFINE_PER_CPU(struct mce, mces_seen); 101 static unsigned long mce_need_notify; 102 static int cpu_missing; 103 104 /* 105 * MCA banks polled by the period polling timer for corrected events. 106 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 107 */ 108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 109 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 110 }; 111 112 /* 113 * MCA banks controlled through firmware first for corrected errors. 114 * This is a global list of banks for which we won't enable CMCI and we 115 * won't poll. Firmware controls these banks and is responsible for 116 * reporting corrected errors through GHES. Uncorrected/recoverable 117 * errors are still notified through a machine check. 118 */ 119 mce_banks_t mce_banks_ce_disabled; 120 121 static struct work_struct mce_work; 122 static struct irq_work mce_irq_work; 123 124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); 125 126 /* 127 * CPU/chipset specific EDAC code can register a notifier call here to print 128 * MCE errors in a human-readable form. 129 */ 130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 131 132 /* Do initial initialization of a struct mce */ 133 noinstr void mce_setup(struct mce *m) 134 { 135 memset(m, 0, sizeof(struct mce)); 136 m->cpu = m->extcpu = smp_processor_id(); 137 /* need the internal __ version to avoid deadlocks */ 138 m->time = __ktime_get_real_seconds(); 139 m->cpuvendor = boot_cpu_data.x86_vendor; 140 m->cpuid = cpuid_eax(1); 141 m->socketid = cpu_data(m->extcpu).phys_proc_id; 142 m->apicid = cpu_data(m->extcpu).initial_apicid; 143 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 144 145 if (this_cpu_has(X86_FEATURE_INTEL_PPIN)) 146 m->ppin = __rdmsr(MSR_PPIN); 147 else if (this_cpu_has(X86_FEATURE_AMD_PPIN)) 148 m->ppin = __rdmsr(MSR_AMD_PPIN); 149 150 m->microcode = boot_cpu_data.microcode; 151 } 152 153 DEFINE_PER_CPU(struct mce, injectm); 154 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 155 156 void mce_log(struct mce *m) 157 { 158 if (!mce_gen_pool_add(m)) 159 irq_work_queue(&mce_irq_work); 160 } 161 EXPORT_SYMBOL_GPL(mce_log); 162 163 void mce_register_decode_chain(struct notifier_block *nb) 164 { 165 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 166 nb->priority > MCE_PRIO_HIGHEST)) 167 return; 168 169 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 170 } 171 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 172 173 void mce_unregister_decode_chain(struct notifier_block *nb) 174 { 175 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 176 } 177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 178 179 static inline u32 ctl_reg(int bank) 180 { 181 return MSR_IA32_MCx_CTL(bank); 182 } 183 184 static inline u32 status_reg(int bank) 185 { 186 return MSR_IA32_MCx_STATUS(bank); 187 } 188 189 static inline u32 addr_reg(int bank) 190 { 191 return MSR_IA32_MCx_ADDR(bank); 192 } 193 194 static inline u32 misc_reg(int bank) 195 { 196 return MSR_IA32_MCx_MISC(bank); 197 } 198 199 static inline u32 smca_ctl_reg(int bank) 200 { 201 return MSR_AMD64_SMCA_MCx_CTL(bank); 202 } 203 204 static inline u32 smca_status_reg(int bank) 205 { 206 return MSR_AMD64_SMCA_MCx_STATUS(bank); 207 } 208 209 static inline u32 smca_addr_reg(int bank) 210 { 211 return MSR_AMD64_SMCA_MCx_ADDR(bank); 212 } 213 214 static inline u32 smca_misc_reg(int bank) 215 { 216 return MSR_AMD64_SMCA_MCx_MISC(bank); 217 } 218 219 struct mca_msr_regs msr_ops = { 220 .ctl = ctl_reg, 221 .status = status_reg, 222 .addr = addr_reg, 223 .misc = misc_reg 224 }; 225 226 static void __print_mce(struct mce *m) 227 { 228 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 229 m->extcpu, 230 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 231 m->mcgstatus, m->bank, m->status); 232 233 if (m->ip) { 234 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 235 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 236 m->cs, m->ip); 237 238 if (m->cs == __KERNEL_CS) 239 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 240 pr_cont("\n"); 241 } 242 243 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 244 if (m->addr) 245 pr_cont("ADDR %llx ", m->addr); 246 if (m->misc) 247 pr_cont("MISC %llx ", m->misc); 248 if (m->ppin) 249 pr_cont("PPIN %llx ", m->ppin); 250 251 if (mce_flags.smca) { 252 if (m->synd) 253 pr_cont("SYND %llx ", m->synd); 254 if (m->ipid) 255 pr_cont("IPID %llx ", m->ipid); 256 } 257 258 pr_cont("\n"); 259 260 /* 261 * Note this output is parsed by external tools and old fields 262 * should not be changed. 263 */ 264 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 265 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 266 m->microcode); 267 } 268 269 static void print_mce(struct mce *m) 270 { 271 __print_mce(m); 272 273 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 274 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 275 } 276 277 #define PANIC_TIMEOUT 5 /* 5 seconds */ 278 279 static atomic_t mce_panicked; 280 281 static int fake_panic; 282 static atomic_t mce_fake_panicked; 283 284 /* Panic in progress. Enable interrupts and wait for final IPI */ 285 static void wait_for_panic(void) 286 { 287 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 288 289 preempt_disable(); 290 local_irq_enable(); 291 while (timeout-- > 0) 292 udelay(1); 293 if (panic_timeout == 0) 294 panic_timeout = mca_cfg.panic_timeout; 295 panic("Panicing machine check CPU died"); 296 } 297 298 static void mce_panic(const char *msg, struct mce *final, char *exp) 299 { 300 int apei_err = 0; 301 struct llist_node *pending; 302 struct mce_evt_llist *l; 303 304 if (!fake_panic) { 305 /* 306 * Make sure only one CPU runs in machine check panic 307 */ 308 if (atomic_inc_return(&mce_panicked) > 1) 309 wait_for_panic(); 310 barrier(); 311 312 bust_spinlocks(1); 313 console_verbose(); 314 } else { 315 /* Don't log too much for fake panic */ 316 if (atomic_inc_return(&mce_fake_panicked) > 1) 317 return; 318 } 319 pending = mce_gen_pool_prepare_records(); 320 /* First print corrected ones that are still unlogged */ 321 llist_for_each_entry(l, pending, llnode) { 322 struct mce *m = &l->mce; 323 if (!(m->status & MCI_STATUS_UC)) { 324 print_mce(m); 325 if (!apei_err) 326 apei_err = apei_write_mce(m); 327 } 328 } 329 /* Now print uncorrected but with the final one last */ 330 llist_for_each_entry(l, pending, llnode) { 331 struct mce *m = &l->mce; 332 if (!(m->status & MCI_STATUS_UC)) 333 continue; 334 if (!final || mce_cmp(m, final)) { 335 print_mce(m); 336 if (!apei_err) 337 apei_err = apei_write_mce(m); 338 } 339 } 340 if (final) { 341 print_mce(final); 342 if (!apei_err) 343 apei_err = apei_write_mce(final); 344 } 345 if (cpu_missing) 346 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); 347 if (exp) 348 pr_emerg(HW_ERR "Machine check: %s\n", exp); 349 if (!fake_panic) { 350 if (panic_timeout == 0) 351 panic_timeout = mca_cfg.panic_timeout; 352 panic(msg); 353 } else 354 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 355 } 356 357 /* Support code for software error injection */ 358 359 static int msr_to_offset(u32 msr) 360 { 361 unsigned bank = __this_cpu_read(injectm.bank); 362 363 if (msr == mca_cfg.rip_msr) 364 return offsetof(struct mce, ip); 365 if (msr == msr_ops.status(bank)) 366 return offsetof(struct mce, status); 367 if (msr == msr_ops.addr(bank)) 368 return offsetof(struct mce, addr); 369 if (msr == msr_ops.misc(bank)) 370 return offsetof(struct mce, misc); 371 if (msr == MSR_IA32_MCG_STATUS) 372 return offsetof(struct mce, mcgstatus); 373 return -1; 374 } 375 376 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup, 377 struct pt_regs *regs, int trapnr, 378 unsigned long error_code, 379 unsigned long fault_addr) 380 { 381 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 382 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 383 384 show_stack_regs(regs); 385 386 panic("MCA architectural violation!\n"); 387 388 while (true) 389 cpu_relax(); 390 391 return true; 392 } 393 394 /* MSR access wrappers used for error injection */ 395 static noinstr u64 mce_rdmsrl(u32 msr) 396 { 397 DECLARE_ARGS(val, low, high); 398 399 if (__this_cpu_read(injectm.finished)) { 400 int offset; 401 u64 ret; 402 403 instrumentation_begin(); 404 405 offset = msr_to_offset(msr); 406 if (offset < 0) 407 ret = 0; 408 else 409 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 410 411 instrumentation_end(); 412 413 return ret; 414 } 415 416 /* 417 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 418 * architectural violation and needs to be reported to hw vendor. Panic 419 * the box to not allow any further progress. 420 */ 421 asm volatile("1: rdmsr\n" 422 "2:\n" 423 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault) 424 : EAX_EDX_RET(val, low, high) : "c" (msr)); 425 426 427 return EAX_EDX_VAL(val, low, high); 428 } 429 430 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup, 431 struct pt_regs *regs, int trapnr, 432 unsigned long error_code, 433 unsigned long fault_addr) 434 { 435 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 436 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 437 regs->ip, (void *)regs->ip); 438 439 show_stack_regs(regs); 440 441 panic("MCA architectural violation!\n"); 442 443 while (true) 444 cpu_relax(); 445 446 return true; 447 } 448 449 static noinstr void mce_wrmsrl(u32 msr, u64 v) 450 { 451 u32 low, high; 452 453 if (__this_cpu_read(injectm.finished)) { 454 int offset; 455 456 instrumentation_begin(); 457 458 offset = msr_to_offset(msr); 459 if (offset >= 0) 460 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 461 462 instrumentation_end(); 463 464 return; 465 } 466 467 low = (u32)v; 468 high = (u32)(v >> 32); 469 470 /* See comment in mce_rdmsrl() */ 471 asm volatile("1: wrmsr\n" 472 "2:\n" 473 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault) 474 : : "c" (msr), "a"(low), "d" (high) : "memory"); 475 } 476 477 /* 478 * Collect all global (w.r.t. this processor) status about this machine 479 * check into our "mce" struct so that we can use it later to assess 480 * the severity of the problem as we read per-bank specific details. 481 */ 482 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) 483 { 484 mce_setup(m); 485 486 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 487 if (regs) { 488 /* 489 * Get the address of the instruction at the time of 490 * the machine check error. 491 */ 492 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 493 m->ip = regs->ip; 494 m->cs = regs->cs; 495 496 /* 497 * When in VM86 mode make the cs look like ring 3 498 * always. This is a lie, but it's better than passing 499 * the additional vm86 bit around everywhere. 500 */ 501 if (v8086_mode(regs)) 502 m->cs |= 3; 503 } 504 /* Use accurate RIP reporting if available. */ 505 if (mca_cfg.rip_msr) 506 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 507 } 508 } 509 510 int mce_available(struct cpuinfo_x86 *c) 511 { 512 if (mca_cfg.disabled) 513 return 0; 514 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 515 } 516 517 static void mce_schedule_work(void) 518 { 519 if (!mce_gen_pool_empty()) 520 schedule_work(&mce_work); 521 } 522 523 static void mce_irq_work_cb(struct irq_work *entry) 524 { 525 mce_schedule_work(); 526 } 527 528 /* 529 * Check if the address reported by the CPU is in a format we can parse. 530 * It would be possible to add code for most other cases, but all would 531 * be somewhat complicated (e.g. segment offset would require an instruction 532 * parser). So only support physical addresses up to page granularity for now. 533 */ 534 int mce_usable_address(struct mce *m) 535 { 536 if (!(m->status & MCI_STATUS_ADDRV)) 537 return 0; 538 539 /* Checks after this one are Intel/Zhaoxin-specific: */ 540 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 541 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 542 return 1; 543 544 if (!(m->status & MCI_STATUS_MISCV)) 545 return 0; 546 547 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 548 return 0; 549 550 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 551 return 0; 552 553 return 1; 554 } 555 EXPORT_SYMBOL_GPL(mce_usable_address); 556 557 bool mce_is_memory_error(struct mce *m) 558 { 559 switch (m->cpuvendor) { 560 case X86_VENDOR_AMD: 561 case X86_VENDOR_HYGON: 562 return amd_mce_is_memory_error(m); 563 564 case X86_VENDOR_INTEL: 565 case X86_VENDOR_ZHAOXIN: 566 /* 567 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 568 * 569 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 570 * indicating a memory error. Bit 8 is used for indicating a 571 * cache hierarchy error. The combination of bit 2 and bit 3 572 * is used for indicating a `generic' cache hierarchy error 573 * But we can't just blindly check the above bits, because if 574 * bit 11 is set, then it is a bus/interconnect error - and 575 * either way the above bits just gives more detail on what 576 * bus/interconnect error happened. Note that bit 12 can be 577 * ignored, as it's the "filter" bit. 578 */ 579 return (m->status & 0xef80) == BIT(7) || 580 (m->status & 0xef00) == BIT(8) || 581 (m->status & 0xeffc) == 0xc; 582 583 default: 584 return false; 585 } 586 } 587 EXPORT_SYMBOL_GPL(mce_is_memory_error); 588 589 static bool whole_page(struct mce *m) 590 { 591 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 592 return true; 593 594 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 595 } 596 597 bool mce_is_correctable(struct mce *m) 598 { 599 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 600 return false; 601 602 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 603 return false; 604 605 if (m->status & MCI_STATUS_UC) 606 return false; 607 608 return true; 609 } 610 EXPORT_SYMBOL_GPL(mce_is_correctable); 611 612 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 613 void *data) 614 { 615 struct mce *m = (struct mce *)data; 616 617 if (!m) 618 return NOTIFY_DONE; 619 620 /* Emit the trace record: */ 621 trace_mce_record(m); 622 623 set_bit(0, &mce_need_notify); 624 625 mce_notify_irq(); 626 627 return NOTIFY_DONE; 628 } 629 630 static struct notifier_block early_nb = { 631 .notifier_call = mce_early_notifier, 632 .priority = MCE_PRIO_EARLY, 633 }; 634 635 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 636 void *data) 637 { 638 struct mce *mce = (struct mce *)data; 639 unsigned long pfn; 640 641 if (!mce || !mce_usable_address(mce)) 642 return NOTIFY_DONE; 643 644 if (mce->severity != MCE_AO_SEVERITY && 645 mce->severity != MCE_DEFERRED_SEVERITY) 646 return NOTIFY_DONE; 647 648 pfn = mce->addr >> PAGE_SHIFT; 649 if (!memory_failure(pfn, 0)) { 650 set_mce_nospec(pfn, whole_page(mce)); 651 mce->kflags |= MCE_HANDLED_UC; 652 } 653 654 return NOTIFY_OK; 655 } 656 657 static struct notifier_block mce_uc_nb = { 658 .notifier_call = uc_decode_notifier, 659 .priority = MCE_PRIO_UC, 660 }; 661 662 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 663 void *data) 664 { 665 struct mce *m = (struct mce *)data; 666 667 if (!m) 668 return NOTIFY_DONE; 669 670 if (mca_cfg.print_all || !m->kflags) 671 __print_mce(m); 672 673 return NOTIFY_DONE; 674 } 675 676 static struct notifier_block mce_default_nb = { 677 .notifier_call = mce_default_notifier, 678 /* lowest prio, we want it to run last. */ 679 .priority = MCE_PRIO_LOWEST, 680 }; 681 682 /* 683 * Read ADDR and MISC registers. 684 */ 685 static void mce_read_aux(struct mce *m, int i) 686 { 687 if (m->status & MCI_STATUS_MISCV) 688 m->misc = mce_rdmsrl(msr_ops.misc(i)); 689 690 if (m->status & MCI_STATUS_ADDRV) { 691 m->addr = mce_rdmsrl(msr_ops.addr(i)); 692 693 /* 694 * Mask the reported address by the reported granularity. 695 */ 696 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 697 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 698 m->addr >>= shift; 699 m->addr <<= shift; 700 } 701 702 /* 703 * Extract [55:<lsb>] where lsb is the least significant 704 * *valid* bit of the address bits. 705 */ 706 if (mce_flags.smca) { 707 u8 lsb = (m->addr >> 56) & 0x3f; 708 709 m->addr &= GENMASK_ULL(55, lsb); 710 } 711 } 712 713 if (mce_flags.smca) { 714 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 715 716 if (m->status & MCI_STATUS_SYNDV) 717 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 718 } 719 } 720 721 DEFINE_PER_CPU(unsigned, mce_poll_count); 722 723 /* 724 * Poll for corrected events or events that happened before reset. 725 * Those are just logged through /dev/mcelog. 726 * 727 * This is executed in standard interrupt context. 728 * 729 * Note: spec recommends to panic for fatal unsignalled 730 * errors here. However this would be quite problematic -- 731 * we would need to reimplement the Monarch handling and 732 * it would mess up the exclusion between exception handler 733 * and poll handler -- * so we skip this for now. 734 * These cases should not happen anyways, or only when the CPU 735 * is already totally * confused. In this case it's likely it will 736 * not fully execute the machine check handler either. 737 */ 738 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 739 { 740 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 741 bool error_seen = false; 742 struct mce m; 743 int i; 744 745 this_cpu_inc(mce_poll_count); 746 747 mce_gather_info(&m, NULL); 748 749 if (flags & MCP_TIMESTAMP) 750 m.tsc = rdtsc(); 751 752 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 753 if (!mce_banks[i].ctl || !test_bit(i, *b)) 754 continue; 755 756 m.misc = 0; 757 m.addr = 0; 758 m.bank = i; 759 760 barrier(); 761 m.status = mce_rdmsrl(msr_ops.status(i)); 762 763 /* If this entry is not valid, ignore it */ 764 if (!(m.status & MCI_STATUS_VAL)) 765 continue; 766 767 /* 768 * If we are logging everything (at CPU online) or this 769 * is a corrected error, then we must log it. 770 */ 771 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 772 goto log_it; 773 774 /* 775 * Newer Intel systems that support software error 776 * recovery need to make additional checks. Other 777 * CPUs should skip over uncorrected errors, but log 778 * everything else. 779 */ 780 if (!mca_cfg.ser) { 781 if (m.status & MCI_STATUS_UC) 782 continue; 783 goto log_it; 784 } 785 786 /* Log "not enabled" (speculative) errors */ 787 if (!(m.status & MCI_STATUS_EN)) 788 goto log_it; 789 790 /* 791 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 792 * UC == 1 && PCC == 0 && S == 0 793 */ 794 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 795 goto log_it; 796 797 /* 798 * Skip anything else. Presumption is that our read of this 799 * bank is racing with a machine check. Leave the log alone 800 * for do_machine_check() to deal with it. 801 */ 802 continue; 803 804 log_it: 805 error_seen = true; 806 807 if (flags & MCP_DONTLOG) 808 goto clear_it; 809 810 mce_read_aux(&m, i); 811 m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false); 812 /* 813 * Don't get the IP here because it's unlikely to 814 * have anything to do with the actual error location. 815 */ 816 817 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 818 goto clear_it; 819 820 mce_log(&m); 821 822 clear_it: 823 /* 824 * Clear state for this bank. 825 */ 826 mce_wrmsrl(msr_ops.status(i), 0); 827 } 828 829 /* 830 * Don't clear MCG_STATUS here because it's only defined for 831 * exceptions. 832 */ 833 834 sync_core(); 835 836 return error_seen; 837 } 838 EXPORT_SYMBOL_GPL(machine_check_poll); 839 840 /* 841 * Do a quick check if any of the events requires a panic. 842 * This decides if we keep the events around or clear them. 843 */ 844 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 845 struct pt_regs *regs) 846 { 847 char *tmp = *msg; 848 int i; 849 850 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 851 m->status = mce_rdmsrl(msr_ops.status(i)); 852 if (!(m->status & MCI_STATUS_VAL)) 853 continue; 854 855 __set_bit(i, validp); 856 if (quirk_no_way_out) 857 quirk_no_way_out(i, m, regs); 858 859 m->bank = i; 860 if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) { 861 mce_read_aux(m, i); 862 *msg = tmp; 863 return 1; 864 } 865 } 866 return 0; 867 } 868 869 /* 870 * Variable to establish order between CPUs while scanning. 871 * Each CPU spins initially until executing is equal its number. 872 */ 873 static atomic_t mce_executing; 874 875 /* 876 * Defines order of CPUs on entry. First CPU becomes Monarch. 877 */ 878 static atomic_t mce_callin; 879 880 /* 881 * Track which CPUs entered the MCA broadcast synchronization and which not in 882 * order to print holdouts. 883 */ 884 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 885 886 /* 887 * Check if a timeout waiting for other CPUs happened. 888 */ 889 static int mce_timed_out(u64 *t, const char *msg) 890 { 891 /* 892 * The others already did panic for some reason. 893 * Bail out like in a timeout. 894 * rmb() to tell the compiler that system_state 895 * might have been modified by someone else. 896 */ 897 rmb(); 898 if (atomic_read(&mce_panicked)) 899 wait_for_panic(); 900 if (!mca_cfg.monarch_timeout) 901 goto out; 902 if ((s64)*t < SPINUNIT) { 903 if (mca_cfg.tolerant <= 1) { 904 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 905 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 906 cpumask_pr_args(&mce_missing_cpus)); 907 mce_panic(msg, NULL, NULL); 908 } 909 cpu_missing = 1; 910 return 1; 911 } 912 *t -= SPINUNIT; 913 out: 914 touch_nmi_watchdog(); 915 return 0; 916 } 917 918 /* 919 * The Monarch's reign. The Monarch is the CPU who entered 920 * the machine check handler first. It waits for the others to 921 * raise the exception too and then grades them. When any 922 * error is fatal panic. Only then let the others continue. 923 * 924 * The other CPUs entering the MCE handler will be controlled by the 925 * Monarch. They are called Subjects. 926 * 927 * This way we prevent any potential data corruption in a unrecoverable case 928 * and also makes sure always all CPU's errors are examined. 929 * 930 * Also this detects the case of a machine check event coming from outer 931 * space (not detected by any CPUs) In this case some external agent wants 932 * us to shut down, so panic too. 933 * 934 * The other CPUs might still decide to panic if the handler happens 935 * in a unrecoverable place, but in this case the system is in a semi-stable 936 * state and won't corrupt anything by itself. It's ok to let the others 937 * continue for a bit first. 938 * 939 * All the spin loops have timeouts; when a timeout happens a CPU 940 * typically elects itself to be Monarch. 941 */ 942 static void mce_reign(void) 943 { 944 int cpu; 945 struct mce *m = NULL; 946 int global_worst = 0; 947 char *msg = NULL; 948 949 /* 950 * This CPU is the Monarch and the other CPUs have run 951 * through their handlers. 952 * Grade the severity of the errors of all the CPUs. 953 */ 954 for_each_possible_cpu(cpu) { 955 struct mce *mtmp = &per_cpu(mces_seen, cpu); 956 957 if (mtmp->severity > global_worst) { 958 global_worst = mtmp->severity; 959 m = &per_cpu(mces_seen, cpu); 960 } 961 } 962 963 /* 964 * Cannot recover? Panic here then. 965 * This dumps all the mces in the log buffer and stops the 966 * other CPUs. 967 */ 968 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 969 /* call mce_severity() to get "msg" for panic */ 970 mce_severity(m, NULL, mca_cfg.tolerant, &msg, true); 971 mce_panic("Fatal machine check", m, msg); 972 } 973 974 /* 975 * For UC somewhere we let the CPU who detects it handle it. 976 * Also must let continue the others, otherwise the handling 977 * CPU could deadlock on a lock. 978 */ 979 980 /* 981 * No machine check event found. Must be some external 982 * source or one CPU is hung. Panic. 983 */ 984 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) 985 mce_panic("Fatal machine check from unknown source", NULL, NULL); 986 987 /* 988 * Now clear all the mces_seen so that they don't reappear on 989 * the next mce. 990 */ 991 for_each_possible_cpu(cpu) 992 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 993 } 994 995 static atomic_t global_nwo; 996 997 /* 998 * Start of Monarch synchronization. This waits until all CPUs have 999 * entered the exception handler and then determines if any of them 1000 * saw a fatal event that requires panic. Then it executes them 1001 * in the entry order. 1002 * TBD double check parallel CPU hotunplug 1003 */ 1004 static int mce_start(int *no_way_out) 1005 { 1006 int order; 1007 int cpus = num_online_cpus(); 1008 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1009 1010 if (!timeout) 1011 return -1; 1012 1013 atomic_add(*no_way_out, &global_nwo); 1014 /* 1015 * Rely on the implied barrier below, such that global_nwo 1016 * is updated before mce_callin. 1017 */ 1018 order = atomic_inc_return(&mce_callin); 1019 cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1020 1021 /* 1022 * Wait for everyone. 1023 */ 1024 while (atomic_read(&mce_callin) != cpus) { 1025 if (mce_timed_out(&timeout, 1026 "Timeout: Not all CPUs entered broadcast exception handler")) { 1027 atomic_set(&global_nwo, 0); 1028 return -1; 1029 } 1030 ndelay(SPINUNIT); 1031 } 1032 1033 /* 1034 * mce_callin should be read before global_nwo 1035 */ 1036 smp_rmb(); 1037 1038 if (order == 1) { 1039 /* 1040 * Monarch: Starts executing now, the others wait. 1041 */ 1042 atomic_set(&mce_executing, 1); 1043 } else { 1044 /* 1045 * Subject: Now start the scanning loop one by one in 1046 * the original callin order. 1047 * This way when there are any shared banks it will be 1048 * only seen by one CPU before cleared, avoiding duplicates. 1049 */ 1050 while (atomic_read(&mce_executing) < order) { 1051 if (mce_timed_out(&timeout, 1052 "Timeout: Subject CPUs unable to finish machine check processing")) { 1053 atomic_set(&global_nwo, 0); 1054 return -1; 1055 } 1056 ndelay(SPINUNIT); 1057 } 1058 } 1059 1060 /* 1061 * Cache the global no_way_out state. 1062 */ 1063 *no_way_out = atomic_read(&global_nwo); 1064 1065 return order; 1066 } 1067 1068 /* 1069 * Synchronize between CPUs after main scanning loop. 1070 * This invokes the bulk of the Monarch processing. 1071 */ 1072 static int mce_end(int order) 1073 { 1074 int ret = -1; 1075 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1076 1077 if (!timeout) 1078 goto reset; 1079 if (order < 0) 1080 goto reset; 1081 1082 /* 1083 * Allow others to run. 1084 */ 1085 atomic_inc(&mce_executing); 1086 1087 if (order == 1) { 1088 /* CHECKME: Can this race with a parallel hotplug? */ 1089 int cpus = num_online_cpus(); 1090 1091 /* 1092 * Monarch: Wait for everyone to go through their scanning 1093 * loops. 1094 */ 1095 while (atomic_read(&mce_executing) <= cpus) { 1096 if (mce_timed_out(&timeout, 1097 "Timeout: Monarch CPU unable to finish machine check processing")) 1098 goto reset; 1099 ndelay(SPINUNIT); 1100 } 1101 1102 mce_reign(); 1103 barrier(); 1104 ret = 0; 1105 } else { 1106 /* 1107 * Subject: Wait for Monarch to finish. 1108 */ 1109 while (atomic_read(&mce_executing) != 0) { 1110 if (mce_timed_out(&timeout, 1111 "Timeout: Monarch CPU did not finish machine check processing")) 1112 goto reset; 1113 ndelay(SPINUNIT); 1114 } 1115 1116 /* 1117 * Don't reset anything. That's done by the Monarch. 1118 */ 1119 return 0; 1120 } 1121 1122 /* 1123 * Reset all global state. 1124 */ 1125 reset: 1126 atomic_set(&global_nwo, 0); 1127 atomic_set(&mce_callin, 0); 1128 cpumask_setall(&mce_missing_cpus); 1129 barrier(); 1130 1131 /* 1132 * Let others run again. 1133 */ 1134 atomic_set(&mce_executing, 0); 1135 return ret; 1136 } 1137 1138 static void mce_clear_state(unsigned long *toclear) 1139 { 1140 int i; 1141 1142 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1143 if (test_bit(i, toclear)) 1144 mce_wrmsrl(msr_ops.status(i), 0); 1145 } 1146 } 1147 1148 /* 1149 * Cases where we avoid rendezvous handler timeout: 1150 * 1) If this CPU is offline. 1151 * 1152 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1153 * skip those CPUs which remain looping in the 1st kernel - see 1154 * crash_nmi_callback(). 1155 * 1156 * Note: there still is a small window between kexec-ing and the new, 1157 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1158 * might not get handled properly. 1159 */ 1160 static noinstr bool mce_check_crashing_cpu(void) 1161 { 1162 unsigned int cpu = smp_processor_id(); 1163 1164 if (arch_cpu_is_offline(cpu) || 1165 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1166 u64 mcgstatus; 1167 1168 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1169 1170 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1171 if (mcgstatus & MCG_STATUS_LMCES) 1172 return false; 1173 } 1174 1175 if (mcgstatus & MCG_STATUS_RIPV) { 1176 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1177 return true; 1178 } 1179 } 1180 return false; 1181 } 1182 1183 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, 1184 unsigned long *toclear, unsigned long *valid_banks, 1185 int no_way_out, int *worst) 1186 { 1187 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1188 struct mca_config *cfg = &mca_cfg; 1189 int severity, i; 1190 1191 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1192 __clear_bit(i, toclear); 1193 if (!test_bit(i, valid_banks)) 1194 continue; 1195 1196 if (!mce_banks[i].ctl) 1197 continue; 1198 1199 m->misc = 0; 1200 m->addr = 0; 1201 m->bank = i; 1202 1203 m->status = mce_rdmsrl(msr_ops.status(i)); 1204 if (!(m->status & MCI_STATUS_VAL)) 1205 continue; 1206 1207 /* 1208 * Corrected or non-signaled errors are handled by 1209 * machine_check_poll(). Leave them alone, unless this panics. 1210 */ 1211 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1212 !no_way_out) 1213 continue; 1214 1215 /* Set taint even when machine check was not enabled. */ 1216 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1217 1218 severity = mce_severity(m, regs, cfg->tolerant, NULL, true); 1219 1220 /* 1221 * When machine check was for corrected/deferred handler don't 1222 * touch, unless we're panicking. 1223 */ 1224 if ((severity == MCE_KEEP_SEVERITY || 1225 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1226 continue; 1227 1228 __set_bit(i, toclear); 1229 1230 /* Machine check event was not enabled. Clear, but ignore. */ 1231 if (severity == MCE_NO_SEVERITY) 1232 continue; 1233 1234 mce_read_aux(m, i); 1235 1236 /* assuming valid severity level != 0 */ 1237 m->severity = severity; 1238 1239 mce_log(m); 1240 1241 if (severity > *worst) { 1242 *final = *m; 1243 *worst = severity; 1244 } 1245 } 1246 1247 /* mce_clear_state will clear *final, save locally for use later */ 1248 *m = *final; 1249 } 1250 1251 static void kill_me_now(struct callback_head *ch) 1252 { 1253 force_sig(SIGBUS); 1254 } 1255 1256 static void kill_me_maybe(struct callback_head *cb) 1257 { 1258 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1259 int flags = MF_ACTION_REQUIRED; 1260 1261 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1262 1263 if (!p->mce_ripv) 1264 flags |= MF_MUST_KILL; 1265 1266 if (!memory_failure(p->mce_addr >> PAGE_SHIFT, flags) && 1267 !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) { 1268 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page); 1269 sync_core(); 1270 return; 1271 } 1272 1273 if (p->mce_vaddr != (void __user *)-1l) { 1274 force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT); 1275 } else { 1276 pr_err("Memory error not recovered"); 1277 kill_me_now(cb); 1278 } 1279 } 1280 1281 static void queue_task_work(struct mce *m, int kill_current_task) 1282 { 1283 current->mce_addr = m->addr; 1284 current->mce_kflags = m->kflags; 1285 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1286 current->mce_whole_page = whole_page(m); 1287 1288 if (kill_current_task) 1289 current->mce_kill_me.func = kill_me_now; 1290 else 1291 current->mce_kill_me.func = kill_me_maybe; 1292 1293 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1294 } 1295 1296 /* 1297 * The actual machine check handler. This only handles real 1298 * exceptions when something got corrupted coming in through int 18. 1299 * 1300 * This is executed in NMI context not subject to normal locking rules. This 1301 * implies that most kernel services cannot be safely used. Don't even 1302 * think about putting a printk in there! 1303 * 1304 * On Intel systems this is entered on all CPUs in parallel through 1305 * MCE broadcast. However some CPUs might be broken beyond repair, 1306 * so be always careful when synchronizing with others. 1307 * 1308 * Tracing and kprobes are disabled: if we interrupted a kernel context 1309 * with IF=1, we need to minimize stack usage. There are also recursion 1310 * issues: if the machine check was due to a failure of the memory 1311 * backing the user stack, tracing that reads the user stack will cause 1312 * potentially infinite recursion. 1313 */ 1314 noinstr void do_machine_check(struct pt_regs *regs) 1315 { 1316 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); 1317 DECLARE_BITMAP(toclear, MAX_NR_BANKS); 1318 struct mca_config *cfg = &mca_cfg; 1319 struct mce m, *final; 1320 char *msg = NULL; 1321 int worst = 0; 1322 1323 /* 1324 * Establish sequential order between the CPUs entering the machine 1325 * check handler. 1326 */ 1327 int order = -1; 1328 1329 /* 1330 * If no_way_out gets set, there is no safe way to recover from this 1331 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. 1332 */ 1333 int no_way_out = 0; 1334 1335 /* 1336 * If kill_current_task is not set, there might be a way to recover from this 1337 * error. 1338 */ 1339 int kill_current_task = 0; 1340 1341 /* 1342 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1343 * on Intel. 1344 */ 1345 int lmce = 1; 1346 1347 this_cpu_inc(mce_exception_count); 1348 1349 mce_gather_info(&m, regs); 1350 m.tsc = rdtsc(); 1351 1352 final = this_cpu_ptr(&mces_seen); 1353 *final = m; 1354 1355 memset(valid_banks, 0, sizeof(valid_banks)); 1356 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1357 1358 barrier(); 1359 1360 /* 1361 * When no restart IP might need to kill or panic. 1362 * Assume the worst for now, but if we find the 1363 * severity is MCE_AR_SEVERITY we have other options. 1364 */ 1365 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1366 kill_current_task = (cfg->tolerant == 3) ? 0 : 1; 1367 /* 1368 * Check if this MCE is signaled to only this logical processor, 1369 * on Intel, Zhaoxin only. 1370 */ 1371 if (m.cpuvendor == X86_VENDOR_INTEL || 1372 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1373 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1374 1375 /* 1376 * Local machine check may already know that we have to panic. 1377 * Broadcast machine check begins rendezvous in mce_start() 1378 * Go through all banks in exclusion of the other CPUs. This way we 1379 * don't report duplicated events on shared banks because the first one 1380 * to see it will clear it. 1381 */ 1382 if (lmce) { 1383 if (no_way_out && cfg->tolerant < 3) 1384 mce_panic("Fatal local machine check", &m, msg); 1385 } else { 1386 order = mce_start(&no_way_out); 1387 } 1388 1389 __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); 1390 1391 if (!no_way_out) 1392 mce_clear_state(toclear); 1393 1394 /* 1395 * Do most of the synchronization with other CPUs. 1396 * When there's any problem use only local no_way_out state. 1397 */ 1398 if (!lmce) { 1399 if (mce_end(order) < 0) { 1400 if (!no_way_out) 1401 no_way_out = worst >= MCE_PANIC_SEVERITY; 1402 1403 if (no_way_out && cfg->tolerant < 3) 1404 mce_panic("Fatal machine check on current CPU", &m, msg); 1405 } 1406 } else { 1407 /* 1408 * If there was a fatal machine check we should have 1409 * already called mce_panic earlier in this function. 1410 * Since we re-read the banks, we might have found 1411 * something new. Check again to see if we found a 1412 * fatal error. We call "mce_severity()" again to 1413 * make sure we have the right "msg". 1414 */ 1415 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 1416 mce_severity(&m, regs, cfg->tolerant, &msg, true); 1417 mce_panic("Local fatal machine check!", &m, msg); 1418 } 1419 } 1420 1421 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1422 goto out; 1423 1424 /* Fault was in user mode and we need to take some action */ 1425 if ((m.cs & 3) == 3) { 1426 /* If this triggers there is no way to recover. Die hard. */ 1427 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1428 1429 queue_task_work(&m, kill_current_task); 1430 1431 } else { 1432 /* 1433 * Handle an MCE which has happened in kernel space but from 1434 * which the kernel can recover: ex_has_fault_handler() has 1435 * already verified that the rIP at which the error happened is 1436 * a rIP from which the kernel can recover (by jumping to 1437 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1438 * corresponding exception handler which would do that is the 1439 * proper one. 1440 */ 1441 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1442 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1443 mce_panic("Failed kernel mode recovery", &m, msg); 1444 } 1445 1446 if (m.kflags & MCE_IN_KERNEL_COPYIN) 1447 queue_task_work(&m, kill_current_task); 1448 } 1449 out: 1450 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1451 } 1452 EXPORT_SYMBOL_GPL(do_machine_check); 1453 1454 #ifndef CONFIG_MEMORY_FAILURE 1455 int memory_failure(unsigned long pfn, int flags) 1456 { 1457 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1458 BUG_ON(flags & MF_ACTION_REQUIRED); 1459 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1460 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1461 pfn); 1462 1463 return 0; 1464 } 1465 #endif 1466 1467 /* 1468 * Periodic polling timer for "silent" machine check errors. If the 1469 * poller finds an MCE, poll 2x faster. When the poller finds no more 1470 * errors, poll 2x slower (up to check_interval seconds). 1471 */ 1472 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1473 1474 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1475 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1476 1477 static unsigned long mce_adjust_timer_default(unsigned long interval) 1478 { 1479 return interval; 1480 } 1481 1482 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1483 1484 static void __start_timer(struct timer_list *t, unsigned long interval) 1485 { 1486 unsigned long when = jiffies + interval; 1487 unsigned long flags; 1488 1489 local_irq_save(flags); 1490 1491 if (!timer_pending(t) || time_before(when, t->expires)) 1492 mod_timer(t, round_jiffies(when)); 1493 1494 local_irq_restore(flags); 1495 } 1496 1497 static void mce_timer_fn(struct timer_list *t) 1498 { 1499 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1500 unsigned long iv; 1501 1502 WARN_ON(cpu_t != t); 1503 1504 iv = __this_cpu_read(mce_next_interval); 1505 1506 if (mce_available(this_cpu_ptr(&cpu_info))) { 1507 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1508 1509 if (mce_intel_cmci_poll()) { 1510 iv = mce_adjust_timer(iv); 1511 goto done; 1512 } 1513 } 1514 1515 /* 1516 * Alert userspace if needed. If we logged an MCE, reduce the polling 1517 * interval, otherwise increase the polling interval. 1518 */ 1519 if (mce_notify_irq()) 1520 iv = max(iv / 2, (unsigned long) HZ/100); 1521 else 1522 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1523 1524 done: 1525 __this_cpu_write(mce_next_interval, iv); 1526 __start_timer(t, iv); 1527 } 1528 1529 /* 1530 * Ensure that the timer is firing in @interval from now. 1531 */ 1532 void mce_timer_kick(unsigned long interval) 1533 { 1534 struct timer_list *t = this_cpu_ptr(&mce_timer); 1535 unsigned long iv = __this_cpu_read(mce_next_interval); 1536 1537 __start_timer(t, interval); 1538 1539 if (interval < iv) 1540 __this_cpu_write(mce_next_interval, interval); 1541 } 1542 1543 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1544 static void mce_timer_delete_all(void) 1545 { 1546 int cpu; 1547 1548 for_each_online_cpu(cpu) 1549 del_timer_sync(&per_cpu(mce_timer, cpu)); 1550 } 1551 1552 /* 1553 * Notify the user(s) about new machine check events. 1554 * Can be called from interrupt context, but not from machine check/NMI 1555 * context. 1556 */ 1557 int mce_notify_irq(void) 1558 { 1559 /* Not more than two messages every minute */ 1560 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1561 1562 if (test_and_clear_bit(0, &mce_need_notify)) { 1563 mce_work_trigger(); 1564 1565 if (__ratelimit(&ratelimit)) 1566 pr_info(HW_ERR "Machine check events logged\n"); 1567 1568 return 1; 1569 } 1570 return 0; 1571 } 1572 EXPORT_SYMBOL_GPL(mce_notify_irq); 1573 1574 static void __mcheck_cpu_mce_banks_init(void) 1575 { 1576 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1577 u8 n_banks = this_cpu_read(mce_num_banks); 1578 int i; 1579 1580 for (i = 0; i < n_banks; i++) { 1581 struct mce_bank *b = &mce_banks[i]; 1582 1583 /* 1584 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1585 * the required vendor quirks before 1586 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1587 */ 1588 b->ctl = -1ULL; 1589 b->init = true; 1590 } 1591 } 1592 1593 /* 1594 * Initialize Machine Checks for a CPU. 1595 */ 1596 static void __mcheck_cpu_cap_init(void) 1597 { 1598 u64 cap; 1599 u8 b; 1600 1601 rdmsrl(MSR_IA32_MCG_CAP, cap); 1602 1603 b = cap & MCG_BANKCNT_MASK; 1604 1605 if (b > MAX_NR_BANKS) { 1606 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1607 smp_processor_id(), MAX_NR_BANKS, b); 1608 b = MAX_NR_BANKS; 1609 } 1610 1611 this_cpu_write(mce_num_banks, b); 1612 1613 __mcheck_cpu_mce_banks_init(); 1614 1615 /* Use accurate RIP reporting if available. */ 1616 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1617 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1618 1619 if (cap & MCG_SER_P) 1620 mca_cfg.ser = 1; 1621 } 1622 1623 static void __mcheck_cpu_init_generic(void) 1624 { 1625 enum mcp_flags m_fl = 0; 1626 mce_banks_t all_banks; 1627 u64 cap; 1628 1629 if (!mca_cfg.bootlog) 1630 m_fl = MCP_DONTLOG; 1631 1632 /* 1633 * Log the machine checks left over from the previous reset. 1634 */ 1635 bitmap_fill(all_banks, MAX_NR_BANKS); 1636 machine_check_poll(MCP_UC | m_fl, &all_banks); 1637 1638 cr4_set_bits(X86_CR4_MCE); 1639 1640 rdmsrl(MSR_IA32_MCG_CAP, cap); 1641 if (cap & MCG_CTL_P) 1642 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1643 } 1644 1645 static void __mcheck_cpu_init_clear_banks(void) 1646 { 1647 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1648 int i; 1649 1650 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1651 struct mce_bank *b = &mce_banks[i]; 1652 1653 if (!b->init) 1654 continue; 1655 wrmsrl(msr_ops.ctl(i), b->ctl); 1656 wrmsrl(msr_ops.status(i), 0); 1657 } 1658 } 1659 1660 /* 1661 * Do a final check to see if there are any unused/RAZ banks. 1662 * 1663 * This must be done after the banks have been initialized and any quirks have 1664 * been applied. 1665 * 1666 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1667 * Otherwise, a user who disables a bank will not be able to re-enable it 1668 * without a system reboot. 1669 */ 1670 static void __mcheck_cpu_check_banks(void) 1671 { 1672 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1673 u64 msrval; 1674 int i; 1675 1676 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1677 struct mce_bank *b = &mce_banks[i]; 1678 1679 if (!b->init) 1680 continue; 1681 1682 rdmsrl(msr_ops.ctl(i), msrval); 1683 b->init = !!msrval; 1684 } 1685 } 1686 1687 /* 1688 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 1689 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 1690 * Vol 3B Table 15-20). But this confuses both the code that determines 1691 * whether the machine check occurred in kernel or user mode, and also 1692 * the severity assessment code. Pretend that EIPV was set, and take the 1693 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 1694 */ 1695 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 1696 { 1697 if (bank != 0) 1698 return; 1699 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 1700 return; 1701 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 1702 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 1703 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 1704 MCACOD)) != 1705 (MCI_STATUS_UC|MCI_STATUS_EN| 1706 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 1707 MCI_STATUS_AR|MCACOD_INSTR)) 1708 return; 1709 1710 m->mcgstatus |= MCG_STATUS_EIPV; 1711 m->ip = regs->ip; 1712 m->cs = regs->cs; 1713 } 1714 1715 /* Add per CPU specific workarounds here */ 1716 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1717 { 1718 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1719 struct mca_config *cfg = &mca_cfg; 1720 1721 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1722 pr_info("unknown CPU type - not enabling MCE support\n"); 1723 return -EOPNOTSUPP; 1724 } 1725 1726 /* This should be disabled by the BIOS, but isn't always */ 1727 if (c->x86_vendor == X86_VENDOR_AMD) { 1728 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1729 /* 1730 * disable GART TBL walk error reporting, which 1731 * trips off incorrectly with the IOMMU & 3ware 1732 * & Cerberus: 1733 */ 1734 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1735 } 1736 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1737 /* 1738 * Lots of broken BIOS around that don't clear them 1739 * by default and leave crap in there. Don't log: 1740 */ 1741 cfg->bootlog = 0; 1742 } 1743 /* 1744 * Various K7s with broken bank 0 around. Always disable 1745 * by default. 1746 */ 1747 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1748 mce_banks[0].ctl = 0; 1749 1750 /* 1751 * overflow_recov is supported for F15h Models 00h-0fh 1752 * even though we don't have a CPUID bit for it. 1753 */ 1754 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1755 mce_flags.overflow_recov = 1; 1756 1757 } 1758 1759 if (c->x86_vendor == X86_VENDOR_INTEL) { 1760 /* 1761 * SDM documents that on family 6 bank 0 should not be written 1762 * because it aliases to another special BIOS controlled 1763 * register. 1764 * But it's not aliased anymore on model 0x1a+ 1765 * Don't ignore bank 0 completely because there could be a 1766 * valid event later, merely don't write CTL0. 1767 */ 1768 1769 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1770 mce_banks[0].init = false; 1771 1772 /* 1773 * All newer Intel systems support MCE broadcasting. Enable 1774 * synchronization with a one second timeout. 1775 */ 1776 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1777 cfg->monarch_timeout < 0) 1778 cfg->monarch_timeout = USEC_PER_SEC; 1779 1780 /* 1781 * There are also broken BIOSes on some Pentium M and 1782 * earlier systems: 1783 */ 1784 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1785 cfg->bootlog = 0; 1786 1787 if (c->x86 == 6 && c->x86_model == 45) 1788 quirk_no_way_out = quirk_sandybridge_ifu; 1789 } 1790 1791 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1792 /* 1793 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1794 * synchronization with a one second timeout. 1795 */ 1796 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1797 if (cfg->monarch_timeout < 0) 1798 cfg->monarch_timeout = USEC_PER_SEC; 1799 } 1800 } 1801 1802 if (cfg->monarch_timeout < 0) 1803 cfg->monarch_timeout = 0; 1804 if (cfg->bootlog != 0) 1805 cfg->panic_timeout = 30; 1806 1807 return 0; 1808 } 1809 1810 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1811 { 1812 if (c->x86 != 5) 1813 return 0; 1814 1815 switch (c->x86_vendor) { 1816 case X86_VENDOR_INTEL: 1817 intel_p5_mcheck_init(c); 1818 return 1; 1819 case X86_VENDOR_CENTAUR: 1820 winchip_mcheck_init(c); 1821 return 1; 1822 default: 1823 return 0; 1824 } 1825 1826 return 0; 1827 } 1828 1829 /* 1830 * Init basic CPU features needed for early decoding of MCEs. 1831 */ 1832 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1833 { 1834 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1835 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1836 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1837 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1838 mce_flags.amd_threshold = 1; 1839 1840 if (mce_flags.smca) { 1841 msr_ops.ctl = smca_ctl_reg; 1842 msr_ops.status = smca_status_reg; 1843 msr_ops.addr = smca_addr_reg; 1844 msr_ops.misc = smca_misc_reg; 1845 } 1846 } 1847 } 1848 1849 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1850 { 1851 struct mca_config *cfg = &mca_cfg; 1852 1853 /* 1854 * All newer Centaur CPUs support MCE broadcasting. Enable 1855 * synchronization with a one second timeout. 1856 */ 1857 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1858 c->x86 > 6) { 1859 if (cfg->monarch_timeout < 0) 1860 cfg->monarch_timeout = USEC_PER_SEC; 1861 } 1862 } 1863 1864 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1865 { 1866 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1867 1868 /* 1869 * These CPUs have MCA bank 8 which reports only one error type called 1870 * SVAD (System View Address Decoder). The reporting of that error is 1871 * controlled by IA32_MC8.CTL.0. 1872 * 1873 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1874 * virtual machines start and result in a system panic. Always disable 1875 * bank 8 SVAD error by default. 1876 */ 1877 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1878 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1879 if (this_cpu_read(mce_num_banks) > 8) 1880 mce_banks[8].ctl = 0; 1881 } 1882 1883 intel_init_cmci(); 1884 intel_init_lmce(); 1885 mce_adjust_timer = cmci_intel_adjust_timer; 1886 } 1887 1888 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 1889 { 1890 intel_clear_lmce(); 1891 } 1892 1893 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1894 { 1895 switch (c->x86_vendor) { 1896 case X86_VENDOR_INTEL: 1897 mce_intel_feature_init(c); 1898 mce_adjust_timer = cmci_intel_adjust_timer; 1899 break; 1900 1901 case X86_VENDOR_AMD: { 1902 mce_amd_feature_init(c); 1903 break; 1904 } 1905 1906 case X86_VENDOR_HYGON: 1907 mce_hygon_feature_init(c); 1908 break; 1909 1910 case X86_VENDOR_CENTAUR: 1911 mce_centaur_feature_init(c); 1912 break; 1913 1914 case X86_VENDOR_ZHAOXIN: 1915 mce_zhaoxin_feature_init(c); 1916 break; 1917 1918 default: 1919 break; 1920 } 1921 } 1922 1923 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 1924 { 1925 switch (c->x86_vendor) { 1926 case X86_VENDOR_INTEL: 1927 mce_intel_feature_clear(c); 1928 break; 1929 1930 case X86_VENDOR_ZHAOXIN: 1931 mce_zhaoxin_feature_clear(c); 1932 break; 1933 1934 default: 1935 break; 1936 } 1937 } 1938 1939 static void mce_start_timer(struct timer_list *t) 1940 { 1941 unsigned long iv = check_interval * HZ; 1942 1943 if (mca_cfg.ignore_ce || !iv) 1944 return; 1945 1946 this_cpu_write(mce_next_interval, iv); 1947 __start_timer(t, iv); 1948 } 1949 1950 static void __mcheck_cpu_setup_timer(void) 1951 { 1952 struct timer_list *t = this_cpu_ptr(&mce_timer); 1953 1954 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1955 } 1956 1957 static void __mcheck_cpu_init_timer(void) 1958 { 1959 struct timer_list *t = this_cpu_ptr(&mce_timer); 1960 1961 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1962 mce_start_timer(t); 1963 } 1964 1965 bool filter_mce(struct mce *m) 1966 { 1967 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1968 return amd_filter_mce(m); 1969 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 1970 return intel_filter_mce(m); 1971 1972 return false; 1973 } 1974 1975 /* Handle unconfigured int18 (should never happen) */ 1976 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1977 { 1978 instrumentation_begin(); 1979 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1980 smp_processor_id()); 1981 instrumentation_end(); 1982 } 1983 1984 /* Call the installed machine check handler for this CPU setup. */ 1985 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check; 1986 1987 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 1988 { 1989 irqentry_state_t irq_state; 1990 1991 WARN_ON_ONCE(user_mode(regs)); 1992 1993 /* 1994 * Only required when from kernel mode. See 1995 * mce_check_crashing_cpu() for details. 1996 */ 1997 if (machine_check_vector == do_machine_check && 1998 mce_check_crashing_cpu()) 1999 return; 2000 2001 irq_state = irqentry_nmi_enter(regs); 2002 /* 2003 * The call targets are marked noinstr, but objtool can't figure 2004 * that out because it's an indirect call. Annotate it. 2005 */ 2006 instrumentation_begin(); 2007 2008 machine_check_vector(regs); 2009 2010 instrumentation_end(); 2011 irqentry_nmi_exit(regs, irq_state); 2012 } 2013 2014 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2015 { 2016 irqentry_enter_from_user_mode(regs); 2017 instrumentation_begin(); 2018 2019 machine_check_vector(regs); 2020 2021 instrumentation_end(); 2022 irqentry_exit_to_user_mode(regs); 2023 } 2024 2025 #ifdef CONFIG_X86_64 2026 /* MCE hit kernel mode */ 2027 DEFINE_IDTENTRY_MCE(exc_machine_check) 2028 { 2029 unsigned long dr7; 2030 2031 dr7 = local_db_save(); 2032 exc_machine_check_kernel(regs); 2033 local_db_restore(dr7); 2034 } 2035 2036 /* The user mode variant. */ 2037 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2038 { 2039 unsigned long dr7; 2040 2041 dr7 = local_db_save(); 2042 exc_machine_check_user(regs); 2043 local_db_restore(dr7); 2044 } 2045 #else 2046 /* 32bit unified entry point */ 2047 DEFINE_IDTENTRY_RAW(exc_machine_check) 2048 { 2049 unsigned long dr7; 2050 2051 dr7 = local_db_save(); 2052 if (user_mode(regs)) 2053 exc_machine_check_user(regs); 2054 else 2055 exc_machine_check_kernel(regs); 2056 local_db_restore(dr7); 2057 } 2058 #endif 2059 2060 /* 2061 * Called for each booted CPU to set up machine checks. 2062 * Must be called with preempt off: 2063 */ 2064 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2065 { 2066 if (mca_cfg.disabled) 2067 return; 2068 2069 if (__mcheck_cpu_ancient_init(c)) 2070 return; 2071 2072 if (!mce_available(c)) 2073 return; 2074 2075 __mcheck_cpu_cap_init(); 2076 2077 if (__mcheck_cpu_apply_quirks(c) < 0) { 2078 mca_cfg.disabled = 1; 2079 return; 2080 } 2081 2082 if (mce_gen_pool_init()) { 2083 mca_cfg.disabled = 1; 2084 pr_emerg("Couldn't allocate MCE records pool!\n"); 2085 return; 2086 } 2087 2088 machine_check_vector = do_machine_check; 2089 2090 __mcheck_cpu_init_early(c); 2091 __mcheck_cpu_init_generic(); 2092 __mcheck_cpu_init_vendor(c); 2093 __mcheck_cpu_init_clear_banks(); 2094 __mcheck_cpu_check_banks(); 2095 __mcheck_cpu_setup_timer(); 2096 } 2097 2098 /* 2099 * Called for each booted CPU to clear some machine checks opt-ins 2100 */ 2101 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2102 { 2103 if (mca_cfg.disabled) 2104 return; 2105 2106 if (!mce_available(c)) 2107 return; 2108 2109 /* 2110 * Possibly to clear general settings generic to x86 2111 * __mcheck_cpu_clear_generic(c); 2112 */ 2113 __mcheck_cpu_clear_vendor(c); 2114 2115 } 2116 2117 static void __mce_disable_bank(void *arg) 2118 { 2119 int bank = *((int *)arg); 2120 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2121 cmci_disable_bank(bank); 2122 } 2123 2124 void mce_disable_bank(int bank) 2125 { 2126 if (bank >= this_cpu_read(mce_num_banks)) { 2127 pr_warn(FW_BUG 2128 "Ignoring request to disable invalid MCA bank %d.\n", 2129 bank); 2130 return; 2131 } 2132 set_bit(bank, mce_banks_ce_disabled); 2133 on_each_cpu(__mce_disable_bank, &bank, 1); 2134 } 2135 2136 /* 2137 * mce=off Disables machine check 2138 * mce=no_cmci Disables CMCI 2139 * mce=no_lmce Disables LMCE 2140 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2141 * mce=print_all Print all machine check logs to console 2142 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2143 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2144 * monarchtimeout is how long to wait for other CPUs on machine 2145 * check, or 0 to not wait 2146 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2147 and older. 2148 * mce=nobootlog Don't log MCEs from before booting. 2149 * mce=bios_cmci_threshold Don't program the CMCI threshold 2150 * mce=recovery force enable copy_mc_fragile() 2151 */ 2152 static int __init mcheck_enable(char *str) 2153 { 2154 struct mca_config *cfg = &mca_cfg; 2155 2156 if (*str == 0) { 2157 enable_p5_mce(); 2158 return 1; 2159 } 2160 if (*str == '=') 2161 str++; 2162 if (!strcmp(str, "off")) 2163 cfg->disabled = 1; 2164 else if (!strcmp(str, "no_cmci")) 2165 cfg->cmci_disabled = true; 2166 else if (!strcmp(str, "no_lmce")) 2167 cfg->lmce_disabled = 1; 2168 else if (!strcmp(str, "dont_log_ce")) 2169 cfg->dont_log_ce = true; 2170 else if (!strcmp(str, "print_all")) 2171 cfg->print_all = true; 2172 else if (!strcmp(str, "ignore_ce")) 2173 cfg->ignore_ce = true; 2174 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2175 cfg->bootlog = (str[0] == 'b'); 2176 else if (!strcmp(str, "bios_cmci_threshold")) 2177 cfg->bios_cmci_threshold = 1; 2178 else if (!strcmp(str, "recovery")) 2179 cfg->recovery = 1; 2180 else if (isdigit(str[0])) { 2181 if (get_option(&str, &cfg->tolerant) == 2) 2182 get_option(&str, &(cfg->monarch_timeout)); 2183 } else { 2184 pr_info("mce argument %s ignored. Please use /sys\n", str); 2185 return 0; 2186 } 2187 return 1; 2188 } 2189 __setup("mce", mcheck_enable); 2190 2191 int __init mcheck_init(void) 2192 { 2193 mce_register_decode_chain(&early_nb); 2194 mce_register_decode_chain(&mce_uc_nb); 2195 mce_register_decode_chain(&mce_default_nb); 2196 mcheck_vendor_init_severity(); 2197 2198 INIT_WORK(&mce_work, mce_gen_pool_process); 2199 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2200 2201 return 0; 2202 } 2203 2204 /* 2205 * mce_syscore: PM support 2206 */ 2207 2208 /* 2209 * Disable machine checks on suspend and shutdown. We can't really handle 2210 * them later. 2211 */ 2212 static void mce_disable_error_reporting(void) 2213 { 2214 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2215 int i; 2216 2217 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2218 struct mce_bank *b = &mce_banks[i]; 2219 2220 if (b->init) 2221 wrmsrl(msr_ops.ctl(i), 0); 2222 } 2223 return; 2224 } 2225 2226 static void vendor_disable_error_reporting(void) 2227 { 2228 /* 2229 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2230 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2231 * is bad, since it will inhibit reporting for all shared resources on 2232 * the socket like the last level cache (LLC), the integrated memory 2233 * controller (iMC), etc. 2234 */ 2235 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2236 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2237 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2238 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2239 return; 2240 2241 mce_disable_error_reporting(); 2242 } 2243 2244 static int mce_syscore_suspend(void) 2245 { 2246 vendor_disable_error_reporting(); 2247 return 0; 2248 } 2249 2250 static void mce_syscore_shutdown(void) 2251 { 2252 vendor_disable_error_reporting(); 2253 } 2254 2255 /* 2256 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2257 * Only one CPU is active at this time, the others get re-added later using 2258 * CPU hotplug: 2259 */ 2260 static void mce_syscore_resume(void) 2261 { 2262 __mcheck_cpu_init_generic(); 2263 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2264 __mcheck_cpu_init_clear_banks(); 2265 } 2266 2267 static struct syscore_ops mce_syscore_ops = { 2268 .suspend = mce_syscore_suspend, 2269 .shutdown = mce_syscore_shutdown, 2270 .resume = mce_syscore_resume, 2271 }; 2272 2273 /* 2274 * mce_device: Sysfs support 2275 */ 2276 2277 static void mce_cpu_restart(void *data) 2278 { 2279 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2280 return; 2281 __mcheck_cpu_init_generic(); 2282 __mcheck_cpu_init_clear_banks(); 2283 __mcheck_cpu_init_timer(); 2284 } 2285 2286 /* Reinit MCEs after user configuration changes */ 2287 static void mce_restart(void) 2288 { 2289 mce_timer_delete_all(); 2290 on_each_cpu(mce_cpu_restart, NULL, 1); 2291 } 2292 2293 /* Toggle features for corrected errors */ 2294 static void mce_disable_cmci(void *data) 2295 { 2296 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2297 return; 2298 cmci_clear(); 2299 } 2300 2301 static void mce_enable_ce(void *all) 2302 { 2303 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2304 return; 2305 cmci_reenable(); 2306 cmci_recheck(); 2307 if (all) 2308 __mcheck_cpu_init_timer(); 2309 } 2310 2311 static struct bus_type mce_subsys = { 2312 .name = "machinecheck", 2313 .dev_name = "machinecheck", 2314 }; 2315 2316 DEFINE_PER_CPU(struct device *, mce_device); 2317 2318 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2319 { 2320 return container_of(attr, struct mce_bank_dev, attr); 2321 } 2322 2323 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2324 char *buf) 2325 { 2326 u8 bank = attr_to_bank(attr)->bank; 2327 struct mce_bank *b; 2328 2329 if (bank >= per_cpu(mce_num_banks, s->id)) 2330 return -EINVAL; 2331 2332 b = &per_cpu(mce_banks_array, s->id)[bank]; 2333 2334 if (!b->init) 2335 return -ENODEV; 2336 2337 return sprintf(buf, "%llx\n", b->ctl); 2338 } 2339 2340 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2341 const char *buf, size_t size) 2342 { 2343 u8 bank = attr_to_bank(attr)->bank; 2344 struct mce_bank *b; 2345 u64 new; 2346 2347 if (kstrtou64(buf, 0, &new) < 0) 2348 return -EINVAL; 2349 2350 if (bank >= per_cpu(mce_num_banks, s->id)) 2351 return -EINVAL; 2352 2353 b = &per_cpu(mce_banks_array, s->id)[bank]; 2354 2355 if (!b->init) 2356 return -ENODEV; 2357 2358 b->ctl = new; 2359 mce_restart(); 2360 2361 return size; 2362 } 2363 2364 static ssize_t set_ignore_ce(struct device *s, 2365 struct device_attribute *attr, 2366 const char *buf, size_t size) 2367 { 2368 u64 new; 2369 2370 if (kstrtou64(buf, 0, &new) < 0) 2371 return -EINVAL; 2372 2373 mutex_lock(&mce_sysfs_mutex); 2374 if (mca_cfg.ignore_ce ^ !!new) { 2375 if (new) { 2376 /* disable ce features */ 2377 mce_timer_delete_all(); 2378 on_each_cpu(mce_disable_cmci, NULL, 1); 2379 mca_cfg.ignore_ce = true; 2380 } else { 2381 /* enable ce features */ 2382 mca_cfg.ignore_ce = false; 2383 on_each_cpu(mce_enable_ce, (void *)1, 1); 2384 } 2385 } 2386 mutex_unlock(&mce_sysfs_mutex); 2387 2388 return size; 2389 } 2390 2391 static ssize_t set_cmci_disabled(struct device *s, 2392 struct device_attribute *attr, 2393 const char *buf, size_t size) 2394 { 2395 u64 new; 2396 2397 if (kstrtou64(buf, 0, &new) < 0) 2398 return -EINVAL; 2399 2400 mutex_lock(&mce_sysfs_mutex); 2401 if (mca_cfg.cmci_disabled ^ !!new) { 2402 if (new) { 2403 /* disable cmci */ 2404 on_each_cpu(mce_disable_cmci, NULL, 1); 2405 mca_cfg.cmci_disabled = true; 2406 } else { 2407 /* enable cmci */ 2408 mca_cfg.cmci_disabled = false; 2409 on_each_cpu(mce_enable_ce, NULL, 1); 2410 } 2411 } 2412 mutex_unlock(&mce_sysfs_mutex); 2413 2414 return size; 2415 } 2416 2417 static ssize_t store_int_with_restart(struct device *s, 2418 struct device_attribute *attr, 2419 const char *buf, size_t size) 2420 { 2421 unsigned long old_check_interval = check_interval; 2422 ssize_t ret = device_store_ulong(s, attr, buf, size); 2423 2424 if (check_interval == old_check_interval) 2425 return ret; 2426 2427 mutex_lock(&mce_sysfs_mutex); 2428 mce_restart(); 2429 mutex_unlock(&mce_sysfs_mutex); 2430 2431 return ret; 2432 } 2433 2434 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); 2435 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2436 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2437 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2438 2439 static struct dev_ext_attribute dev_attr_check_interval = { 2440 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2441 &check_interval 2442 }; 2443 2444 static struct dev_ext_attribute dev_attr_ignore_ce = { 2445 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2446 &mca_cfg.ignore_ce 2447 }; 2448 2449 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2450 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2451 &mca_cfg.cmci_disabled 2452 }; 2453 2454 static struct device_attribute *mce_device_attrs[] = { 2455 &dev_attr_tolerant.attr, 2456 &dev_attr_check_interval.attr, 2457 #ifdef CONFIG_X86_MCELOG_LEGACY 2458 &dev_attr_trigger, 2459 #endif 2460 &dev_attr_monarch_timeout.attr, 2461 &dev_attr_dont_log_ce.attr, 2462 &dev_attr_print_all.attr, 2463 &dev_attr_ignore_ce.attr, 2464 &dev_attr_cmci_disabled.attr, 2465 NULL 2466 }; 2467 2468 static cpumask_var_t mce_device_initialized; 2469 2470 static void mce_device_release(struct device *dev) 2471 { 2472 kfree(dev); 2473 } 2474 2475 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2476 static int mce_device_create(unsigned int cpu) 2477 { 2478 struct device *dev; 2479 int err; 2480 int i, j; 2481 2482 if (!mce_available(&boot_cpu_data)) 2483 return -EIO; 2484 2485 dev = per_cpu(mce_device, cpu); 2486 if (dev) 2487 return 0; 2488 2489 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2490 if (!dev) 2491 return -ENOMEM; 2492 dev->id = cpu; 2493 dev->bus = &mce_subsys; 2494 dev->release = &mce_device_release; 2495 2496 err = device_register(dev); 2497 if (err) { 2498 put_device(dev); 2499 return err; 2500 } 2501 2502 for (i = 0; mce_device_attrs[i]; i++) { 2503 err = device_create_file(dev, mce_device_attrs[i]); 2504 if (err) 2505 goto error; 2506 } 2507 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2508 err = device_create_file(dev, &mce_bank_devs[j].attr); 2509 if (err) 2510 goto error2; 2511 } 2512 cpumask_set_cpu(cpu, mce_device_initialized); 2513 per_cpu(mce_device, cpu) = dev; 2514 2515 return 0; 2516 error2: 2517 while (--j >= 0) 2518 device_remove_file(dev, &mce_bank_devs[j].attr); 2519 error: 2520 while (--i >= 0) 2521 device_remove_file(dev, mce_device_attrs[i]); 2522 2523 device_unregister(dev); 2524 2525 return err; 2526 } 2527 2528 static void mce_device_remove(unsigned int cpu) 2529 { 2530 struct device *dev = per_cpu(mce_device, cpu); 2531 int i; 2532 2533 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2534 return; 2535 2536 for (i = 0; mce_device_attrs[i]; i++) 2537 device_remove_file(dev, mce_device_attrs[i]); 2538 2539 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2540 device_remove_file(dev, &mce_bank_devs[i].attr); 2541 2542 device_unregister(dev); 2543 cpumask_clear_cpu(cpu, mce_device_initialized); 2544 per_cpu(mce_device, cpu) = NULL; 2545 } 2546 2547 /* Make sure there are no machine checks on offlined CPUs. */ 2548 static void mce_disable_cpu(void) 2549 { 2550 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2551 return; 2552 2553 if (!cpuhp_tasks_frozen) 2554 cmci_clear(); 2555 2556 vendor_disable_error_reporting(); 2557 } 2558 2559 static void mce_reenable_cpu(void) 2560 { 2561 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2562 int i; 2563 2564 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2565 return; 2566 2567 if (!cpuhp_tasks_frozen) 2568 cmci_reenable(); 2569 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2570 struct mce_bank *b = &mce_banks[i]; 2571 2572 if (b->init) 2573 wrmsrl(msr_ops.ctl(i), b->ctl); 2574 } 2575 } 2576 2577 static int mce_cpu_dead(unsigned int cpu) 2578 { 2579 mce_intel_hcpu_update(cpu); 2580 2581 /* intentionally ignoring frozen here */ 2582 if (!cpuhp_tasks_frozen) 2583 cmci_rediscover(); 2584 return 0; 2585 } 2586 2587 static int mce_cpu_online(unsigned int cpu) 2588 { 2589 struct timer_list *t = this_cpu_ptr(&mce_timer); 2590 int ret; 2591 2592 mce_device_create(cpu); 2593 2594 ret = mce_threshold_create_device(cpu); 2595 if (ret) { 2596 mce_device_remove(cpu); 2597 return ret; 2598 } 2599 mce_reenable_cpu(); 2600 mce_start_timer(t); 2601 return 0; 2602 } 2603 2604 static int mce_cpu_pre_down(unsigned int cpu) 2605 { 2606 struct timer_list *t = this_cpu_ptr(&mce_timer); 2607 2608 mce_disable_cpu(); 2609 del_timer_sync(t); 2610 mce_threshold_remove_device(cpu); 2611 mce_device_remove(cpu); 2612 return 0; 2613 } 2614 2615 static __init void mce_init_banks(void) 2616 { 2617 int i; 2618 2619 for (i = 0; i < MAX_NR_BANKS; i++) { 2620 struct mce_bank_dev *b = &mce_bank_devs[i]; 2621 struct device_attribute *a = &b->attr; 2622 2623 b->bank = i; 2624 2625 sysfs_attr_init(&a->attr); 2626 a->attr.name = b->attrname; 2627 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2628 2629 a->attr.mode = 0644; 2630 a->show = show_bank; 2631 a->store = set_bank; 2632 } 2633 } 2634 2635 /* 2636 * When running on XEN, this initcall is ordered against the XEN mcelog 2637 * initcall: 2638 * 2639 * device_initcall(xen_late_init_mcelog); 2640 * device_initcall_sync(mcheck_init_device); 2641 */ 2642 static __init int mcheck_init_device(void) 2643 { 2644 int err; 2645 2646 /* 2647 * Check if we have a spare virtual bit. This will only become 2648 * a problem if/when we move beyond 5-level page tables. 2649 */ 2650 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2651 2652 if (!mce_available(&boot_cpu_data)) { 2653 err = -EIO; 2654 goto err_out; 2655 } 2656 2657 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2658 err = -ENOMEM; 2659 goto err_out; 2660 } 2661 2662 mce_init_banks(); 2663 2664 err = subsys_system_register(&mce_subsys, NULL); 2665 if (err) 2666 goto err_out_mem; 2667 2668 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2669 mce_cpu_dead); 2670 if (err) 2671 goto err_out_mem; 2672 2673 /* 2674 * Invokes mce_cpu_online() on all CPUs which are online when 2675 * the state is installed. 2676 */ 2677 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2678 mce_cpu_online, mce_cpu_pre_down); 2679 if (err < 0) 2680 goto err_out_online; 2681 2682 register_syscore_ops(&mce_syscore_ops); 2683 2684 return 0; 2685 2686 err_out_online: 2687 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2688 2689 err_out_mem: 2690 free_cpumask_var(mce_device_initialized); 2691 2692 err_out: 2693 pr_err("Unable to init MCE device (rc: %d)\n", err); 2694 2695 return err; 2696 } 2697 device_initcall_sync(mcheck_init_device); 2698 2699 /* 2700 * Old style boot options parsing. Only for compatibility. 2701 */ 2702 static int __init mcheck_disable(char *str) 2703 { 2704 mca_cfg.disabled = 1; 2705 return 1; 2706 } 2707 __setup("nomce", mcheck_disable); 2708 2709 #ifdef CONFIG_DEBUG_FS 2710 struct dentry *mce_get_debugfs_dir(void) 2711 { 2712 static struct dentry *dmce; 2713 2714 if (!dmce) 2715 dmce = debugfs_create_dir("mce", NULL); 2716 2717 return dmce; 2718 } 2719 2720 static void mce_reset(void) 2721 { 2722 cpu_missing = 0; 2723 atomic_set(&mce_fake_panicked, 0); 2724 atomic_set(&mce_executing, 0); 2725 atomic_set(&mce_callin, 0); 2726 atomic_set(&global_nwo, 0); 2727 cpumask_setall(&mce_missing_cpus); 2728 } 2729 2730 static int fake_panic_get(void *data, u64 *val) 2731 { 2732 *val = fake_panic; 2733 return 0; 2734 } 2735 2736 static int fake_panic_set(void *data, u64 val) 2737 { 2738 mce_reset(); 2739 fake_panic = val; 2740 return 0; 2741 } 2742 2743 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2744 "%llu\n"); 2745 2746 static void __init mcheck_debugfs_init(void) 2747 { 2748 struct dentry *dmce; 2749 2750 dmce = mce_get_debugfs_dir(); 2751 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2752 &fake_panic_fops); 2753 } 2754 #else 2755 static void __init mcheck_debugfs_init(void) { } 2756 #endif 2757 2758 static int __init mcheck_late_init(void) 2759 { 2760 if (mca_cfg.recovery) 2761 enable_copy_mc_fragile(); 2762 2763 mcheck_debugfs_init(); 2764 2765 /* 2766 * Flush out everything that has been logged during early boot, now that 2767 * everything has been initialized (workqueues, decoders, ...). 2768 */ 2769 mce_schedule_work(); 2770 2771 return 0; 2772 } 2773 late_initcall(mcheck_late_init); 2774