1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/set_memory.h> 44 #include <linux/sync_core.h> 45 #include <linux/task_work.h> 46 #include <linux/hardirq.h> 47 48 #include <asm/intel-family.h> 49 #include <asm/processor.h> 50 #include <asm/traps.h> 51 #include <asm/tlbflush.h> 52 #include <asm/mce.h> 53 #include <asm/msr.h> 54 #include <asm/reboot.h> 55 56 #include "internal.h" 57 58 /* sysfs synchronization */ 59 static DEFINE_MUTEX(mce_sysfs_mutex); 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/mce.h> 63 64 #define SPINUNIT 100 /* 100ns */ 65 66 DEFINE_PER_CPU(unsigned, mce_exception_count); 67 68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 69 70 struct mce_bank { 71 u64 ctl; /* subevents to enable */ 72 bool init; /* initialise bank? */ 73 }; 74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 75 76 #define ATTR_LEN 16 77 /* One object for each MCE bank, shared by all CPUs */ 78 struct mce_bank_dev { 79 struct device_attribute attr; /* device attribute */ 80 char attrname[ATTR_LEN]; /* attribute name */ 81 u8 bank; /* bank number */ 82 }; 83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 84 85 struct mce_vendor_flags mce_flags __read_mostly; 86 87 struct mca_config mca_cfg __read_mostly = { 88 .bootlog = -1, 89 /* 90 * Tolerant levels: 91 * 0: always panic on uncorrected errors, log corrected errors 92 * 1: panic or SIGBUS on uncorrected errors, log corrected errors 93 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors 94 * 3: never panic or SIGBUS, log all errors (for testing only) 95 */ 96 .tolerant = 1, 97 .monarch_timeout = -1 98 }; 99 100 static DEFINE_PER_CPU(struct mce, mces_seen); 101 static unsigned long mce_need_notify; 102 static int cpu_missing; 103 104 /* 105 * MCA banks polled by the period polling timer for corrected events. 106 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 107 */ 108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 109 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 110 }; 111 112 /* 113 * MCA banks controlled through firmware first for corrected errors. 114 * This is a global list of banks for which we won't enable CMCI and we 115 * won't poll. Firmware controls these banks and is responsible for 116 * reporting corrected errors through GHES. Uncorrected/recoverable 117 * errors are still notified through a machine check. 118 */ 119 mce_banks_t mce_banks_ce_disabled; 120 121 static struct work_struct mce_work; 122 static struct irq_work mce_irq_work; 123 124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); 125 126 /* 127 * CPU/chipset specific EDAC code can register a notifier call here to print 128 * MCE errors in a human-readable form. 129 */ 130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 131 132 /* Do initial initialization of a struct mce */ 133 noinstr void mce_setup(struct mce *m) 134 { 135 memset(m, 0, sizeof(struct mce)); 136 m->cpu = m->extcpu = smp_processor_id(); 137 /* need the internal __ version to avoid deadlocks */ 138 m->time = __ktime_get_real_seconds(); 139 m->cpuvendor = boot_cpu_data.x86_vendor; 140 m->cpuid = cpuid_eax(1); 141 m->socketid = cpu_data(m->extcpu).phys_proc_id; 142 m->apicid = cpu_data(m->extcpu).initial_apicid; 143 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP); 144 145 if (this_cpu_has(X86_FEATURE_INTEL_PPIN)) 146 m->ppin = __rdmsr(MSR_PPIN); 147 else if (this_cpu_has(X86_FEATURE_AMD_PPIN)) 148 m->ppin = __rdmsr(MSR_AMD_PPIN); 149 150 m->microcode = boot_cpu_data.microcode; 151 } 152 153 DEFINE_PER_CPU(struct mce, injectm); 154 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 155 156 void mce_log(struct mce *m) 157 { 158 if (!mce_gen_pool_add(m)) 159 irq_work_queue(&mce_irq_work); 160 } 161 EXPORT_SYMBOL_GPL(mce_log); 162 163 void mce_register_decode_chain(struct notifier_block *nb) 164 { 165 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST || 166 nb->priority > MCE_PRIO_HIGHEST)) 167 return; 168 169 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 170 } 171 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 172 173 void mce_unregister_decode_chain(struct notifier_block *nb) 174 { 175 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 176 } 177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 178 179 static inline u32 ctl_reg(int bank) 180 { 181 return MSR_IA32_MCx_CTL(bank); 182 } 183 184 static inline u32 status_reg(int bank) 185 { 186 return MSR_IA32_MCx_STATUS(bank); 187 } 188 189 static inline u32 addr_reg(int bank) 190 { 191 return MSR_IA32_MCx_ADDR(bank); 192 } 193 194 static inline u32 misc_reg(int bank) 195 { 196 return MSR_IA32_MCx_MISC(bank); 197 } 198 199 static inline u32 smca_ctl_reg(int bank) 200 { 201 return MSR_AMD64_SMCA_MCx_CTL(bank); 202 } 203 204 static inline u32 smca_status_reg(int bank) 205 { 206 return MSR_AMD64_SMCA_MCx_STATUS(bank); 207 } 208 209 static inline u32 smca_addr_reg(int bank) 210 { 211 return MSR_AMD64_SMCA_MCx_ADDR(bank); 212 } 213 214 static inline u32 smca_misc_reg(int bank) 215 { 216 return MSR_AMD64_SMCA_MCx_MISC(bank); 217 } 218 219 struct mca_msr_regs msr_ops = { 220 .ctl = ctl_reg, 221 .status = status_reg, 222 .addr = addr_reg, 223 .misc = misc_reg 224 }; 225 226 static void __print_mce(struct mce *m) 227 { 228 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 229 m->extcpu, 230 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 231 m->mcgstatus, m->bank, m->status); 232 233 if (m->ip) { 234 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 235 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 236 m->cs, m->ip); 237 238 if (m->cs == __KERNEL_CS) 239 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 240 pr_cont("\n"); 241 } 242 243 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 244 if (m->addr) 245 pr_cont("ADDR %llx ", m->addr); 246 if (m->misc) 247 pr_cont("MISC %llx ", m->misc); 248 if (m->ppin) 249 pr_cont("PPIN %llx ", m->ppin); 250 251 if (mce_flags.smca) { 252 if (m->synd) 253 pr_cont("SYND %llx ", m->synd); 254 if (m->ipid) 255 pr_cont("IPID %llx ", m->ipid); 256 } 257 258 pr_cont("\n"); 259 260 /* 261 * Note this output is parsed by external tools and old fields 262 * should not be changed. 263 */ 264 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 265 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 266 m->microcode); 267 } 268 269 static void print_mce(struct mce *m) 270 { 271 __print_mce(m); 272 273 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 274 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 275 } 276 277 #define PANIC_TIMEOUT 5 /* 5 seconds */ 278 279 static atomic_t mce_panicked; 280 281 static int fake_panic; 282 static atomic_t mce_fake_panicked; 283 284 /* Panic in progress. Enable interrupts and wait for final IPI */ 285 static void wait_for_panic(void) 286 { 287 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 288 289 preempt_disable(); 290 local_irq_enable(); 291 while (timeout-- > 0) 292 udelay(1); 293 if (panic_timeout == 0) 294 panic_timeout = mca_cfg.panic_timeout; 295 panic("Panicing machine check CPU died"); 296 } 297 298 static void mce_panic(const char *msg, struct mce *final, char *exp) 299 { 300 int apei_err = 0; 301 struct llist_node *pending; 302 struct mce_evt_llist *l; 303 304 if (!fake_panic) { 305 /* 306 * Make sure only one CPU runs in machine check panic 307 */ 308 if (atomic_inc_return(&mce_panicked) > 1) 309 wait_for_panic(); 310 barrier(); 311 312 bust_spinlocks(1); 313 console_verbose(); 314 } else { 315 /* Don't log too much for fake panic */ 316 if (atomic_inc_return(&mce_fake_panicked) > 1) 317 return; 318 } 319 pending = mce_gen_pool_prepare_records(); 320 /* First print corrected ones that are still unlogged */ 321 llist_for_each_entry(l, pending, llnode) { 322 struct mce *m = &l->mce; 323 if (!(m->status & MCI_STATUS_UC)) { 324 print_mce(m); 325 if (!apei_err) 326 apei_err = apei_write_mce(m); 327 } 328 } 329 /* Now print uncorrected but with the final one last */ 330 llist_for_each_entry(l, pending, llnode) { 331 struct mce *m = &l->mce; 332 if (!(m->status & MCI_STATUS_UC)) 333 continue; 334 if (!final || mce_cmp(m, final)) { 335 print_mce(m); 336 if (!apei_err) 337 apei_err = apei_write_mce(m); 338 } 339 } 340 if (final) { 341 print_mce(final); 342 if (!apei_err) 343 apei_err = apei_write_mce(final); 344 } 345 if (cpu_missing) 346 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); 347 if (exp) 348 pr_emerg(HW_ERR "Machine check: %s\n", exp); 349 if (!fake_panic) { 350 if (panic_timeout == 0) 351 panic_timeout = mca_cfg.panic_timeout; 352 panic(msg); 353 } else 354 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 355 } 356 357 /* Support code for software error injection */ 358 359 static int msr_to_offset(u32 msr) 360 { 361 unsigned bank = __this_cpu_read(injectm.bank); 362 363 if (msr == mca_cfg.rip_msr) 364 return offsetof(struct mce, ip); 365 if (msr == msr_ops.status(bank)) 366 return offsetof(struct mce, status); 367 if (msr == msr_ops.addr(bank)) 368 return offsetof(struct mce, addr); 369 if (msr == msr_ops.misc(bank)) 370 return offsetof(struct mce, misc); 371 if (msr == MSR_IA32_MCG_STATUS) 372 return offsetof(struct mce, mcgstatus); 373 return -1; 374 } 375 376 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup, 377 struct pt_regs *regs, int trapnr, 378 unsigned long error_code, 379 unsigned long fault_addr) 380 { 381 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n", 382 (unsigned int)regs->cx, regs->ip, (void *)regs->ip); 383 384 show_stack_regs(regs); 385 386 panic("MCA architectural violation!\n"); 387 388 while (true) 389 cpu_relax(); 390 391 return true; 392 } 393 394 /* MSR access wrappers used for error injection */ 395 static noinstr u64 mce_rdmsrl(u32 msr) 396 { 397 DECLARE_ARGS(val, low, high); 398 399 if (__this_cpu_read(injectm.finished)) { 400 int offset; 401 u64 ret; 402 403 instrumentation_begin(); 404 405 offset = msr_to_offset(msr); 406 if (offset < 0) 407 ret = 0; 408 else 409 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 410 411 instrumentation_end(); 412 413 return ret; 414 } 415 416 /* 417 * RDMSR on MCA MSRs should not fault. If they do, this is very much an 418 * architectural violation and needs to be reported to hw vendor. Panic 419 * the box to not allow any further progress. 420 */ 421 asm volatile("1: rdmsr\n" 422 "2:\n" 423 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault) 424 : EAX_EDX_RET(val, low, high) : "c" (msr)); 425 426 427 return EAX_EDX_VAL(val, low, high); 428 } 429 430 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup, 431 struct pt_regs *regs, int trapnr, 432 unsigned long error_code, 433 unsigned long fault_addr) 434 { 435 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n", 436 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax, 437 regs->ip, (void *)regs->ip); 438 439 show_stack_regs(regs); 440 441 panic("MCA architectural violation!\n"); 442 443 while (true) 444 cpu_relax(); 445 446 return true; 447 } 448 449 static noinstr void mce_wrmsrl(u32 msr, u64 v) 450 { 451 u32 low, high; 452 453 if (__this_cpu_read(injectm.finished)) { 454 int offset; 455 456 instrumentation_begin(); 457 458 offset = msr_to_offset(msr); 459 if (offset >= 0) 460 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 461 462 instrumentation_end(); 463 464 return; 465 } 466 467 low = (u32)v; 468 high = (u32)(v >> 32); 469 470 /* See comment in mce_rdmsrl() */ 471 asm volatile("1: wrmsr\n" 472 "2:\n" 473 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault) 474 : : "c" (msr), "a"(low), "d" (high) : "memory"); 475 } 476 477 /* 478 * Collect all global (w.r.t. this processor) status about this machine 479 * check into our "mce" struct so that we can use it later to assess 480 * the severity of the problem as we read per-bank specific details. 481 */ 482 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) 483 { 484 mce_setup(m); 485 486 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 487 if (regs) { 488 /* 489 * Get the address of the instruction at the time of 490 * the machine check error. 491 */ 492 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 493 m->ip = regs->ip; 494 m->cs = regs->cs; 495 496 /* 497 * When in VM86 mode make the cs look like ring 3 498 * always. This is a lie, but it's better than passing 499 * the additional vm86 bit around everywhere. 500 */ 501 if (v8086_mode(regs)) 502 m->cs |= 3; 503 } 504 /* Use accurate RIP reporting if available. */ 505 if (mca_cfg.rip_msr) 506 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 507 } 508 } 509 510 int mce_available(struct cpuinfo_x86 *c) 511 { 512 if (mca_cfg.disabled) 513 return 0; 514 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 515 } 516 517 static void mce_schedule_work(void) 518 { 519 if (!mce_gen_pool_empty()) 520 schedule_work(&mce_work); 521 } 522 523 static void mce_irq_work_cb(struct irq_work *entry) 524 { 525 mce_schedule_work(); 526 } 527 528 /* 529 * Check if the address reported by the CPU is in a format we can parse. 530 * It would be possible to add code for most other cases, but all would 531 * be somewhat complicated (e.g. segment offset would require an instruction 532 * parser). So only support physical addresses up to page granularity for now. 533 */ 534 int mce_usable_address(struct mce *m) 535 { 536 if (!(m->status & MCI_STATUS_ADDRV)) 537 return 0; 538 539 /* Checks after this one are Intel/Zhaoxin-specific: */ 540 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 541 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 542 return 1; 543 544 if (!(m->status & MCI_STATUS_MISCV)) 545 return 0; 546 547 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 548 return 0; 549 550 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 551 return 0; 552 553 return 1; 554 } 555 EXPORT_SYMBOL_GPL(mce_usable_address); 556 557 bool mce_is_memory_error(struct mce *m) 558 { 559 switch (m->cpuvendor) { 560 case X86_VENDOR_AMD: 561 case X86_VENDOR_HYGON: 562 return amd_mce_is_memory_error(m); 563 564 case X86_VENDOR_INTEL: 565 case X86_VENDOR_ZHAOXIN: 566 /* 567 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 568 * 569 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 570 * indicating a memory error. Bit 8 is used for indicating a 571 * cache hierarchy error. The combination of bit 2 and bit 3 572 * is used for indicating a `generic' cache hierarchy error 573 * But we can't just blindly check the above bits, because if 574 * bit 11 is set, then it is a bus/interconnect error - and 575 * either way the above bits just gives more detail on what 576 * bus/interconnect error happened. Note that bit 12 can be 577 * ignored, as it's the "filter" bit. 578 */ 579 return (m->status & 0xef80) == BIT(7) || 580 (m->status & 0xef00) == BIT(8) || 581 (m->status & 0xeffc) == 0xc; 582 583 default: 584 return false; 585 } 586 } 587 EXPORT_SYMBOL_GPL(mce_is_memory_error); 588 589 static bool whole_page(struct mce *m) 590 { 591 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV)) 592 return true; 593 594 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT; 595 } 596 597 bool mce_is_correctable(struct mce *m) 598 { 599 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 600 return false; 601 602 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 603 return false; 604 605 if (m->status & MCI_STATUS_UC) 606 return false; 607 608 return true; 609 } 610 EXPORT_SYMBOL_GPL(mce_is_correctable); 611 612 static int mce_early_notifier(struct notifier_block *nb, unsigned long val, 613 void *data) 614 { 615 struct mce *m = (struct mce *)data; 616 617 if (!m) 618 return NOTIFY_DONE; 619 620 /* Emit the trace record: */ 621 trace_mce_record(m); 622 623 set_bit(0, &mce_need_notify); 624 625 mce_notify_irq(); 626 627 return NOTIFY_DONE; 628 } 629 630 static struct notifier_block early_nb = { 631 .notifier_call = mce_early_notifier, 632 .priority = MCE_PRIO_EARLY, 633 }; 634 635 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 636 void *data) 637 { 638 struct mce *mce = (struct mce *)data; 639 unsigned long pfn; 640 641 if (!mce || !mce_usable_address(mce)) 642 return NOTIFY_DONE; 643 644 if (mce->severity != MCE_AO_SEVERITY && 645 mce->severity != MCE_DEFERRED_SEVERITY) 646 return NOTIFY_DONE; 647 648 pfn = mce->addr >> PAGE_SHIFT; 649 if (!memory_failure(pfn, 0)) { 650 set_mce_nospec(pfn, whole_page(mce)); 651 mce->kflags |= MCE_HANDLED_UC; 652 } 653 654 return NOTIFY_OK; 655 } 656 657 static struct notifier_block mce_uc_nb = { 658 .notifier_call = uc_decode_notifier, 659 .priority = MCE_PRIO_UC, 660 }; 661 662 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 663 void *data) 664 { 665 struct mce *m = (struct mce *)data; 666 667 if (!m) 668 return NOTIFY_DONE; 669 670 if (mca_cfg.print_all || !m->kflags) 671 __print_mce(m); 672 673 return NOTIFY_DONE; 674 } 675 676 static struct notifier_block mce_default_nb = { 677 .notifier_call = mce_default_notifier, 678 /* lowest prio, we want it to run last. */ 679 .priority = MCE_PRIO_LOWEST, 680 }; 681 682 /* 683 * Read ADDR and MISC registers. 684 */ 685 static void mce_read_aux(struct mce *m, int i) 686 { 687 if (m->status & MCI_STATUS_MISCV) 688 m->misc = mce_rdmsrl(msr_ops.misc(i)); 689 690 if (m->status & MCI_STATUS_ADDRV) { 691 m->addr = mce_rdmsrl(msr_ops.addr(i)); 692 693 /* 694 * Mask the reported address by the reported granularity. 695 */ 696 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 697 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 698 m->addr >>= shift; 699 m->addr <<= shift; 700 } 701 702 /* 703 * Extract [55:<lsb>] where lsb is the least significant 704 * *valid* bit of the address bits. 705 */ 706 if (mce_flags.smca) { 707 u8 lsb = (m->addr >> 56) & 0x3f; 708 709 m->addr &= GENMASK_ULL(55, lsb); 710 } 711 } 712 713 if (mce_flags.smca) { 714 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 715 716 if (m->status & MCI_STATUS_SYNDV) 717 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 718 } 719 } 720 721 DEFINE_PER_CPU(unsigned, mce_poll_count); 722 723 /* 724 * Poll for corrected events or events that happened before reset. 725 * Those are just logged through /dev/mcelog. 726 * 727 * This is executed in standard interrupt context. 728 * 729 * Note: spec recommends to panic for fatal unsignalled 730 * errors here. However this would be quite problematic -- 731 * we would need to reimplement the Monarch handling and 732 * it would mess up the exclusion between exception handler 733 * and poll handler -- * so we skip this for now. 734 * These cases should not happen anyways, or only when the CPU 735 * is already totally * confused. In this case it's likely it will 736 * not fully execute the machine check handler either. 737 */ 738 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 739 { 740 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 741 bool error_seen = false; 742 struct mce m; 743 int i; 744 745 this_cpu_inc(mce_poll_count); 746 747 mce_gather_info(&m, NULL); 748 749 if (flags & MCP_TIMESTAMP) 750 m.tsc = rdtsc(); 751 752 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 753 if (!mce_banks[i].ctl || !test_bit(i, *b)) 754 continue; 755 756 m.misc = 0; 757 m.addr = 0; 758 m.bank = i; 759 760 barrier(); 761 m.status = mce_rdmsrl(msr_ops.status(i)); 762 763 /* If this entry is not valid, ignore it */ 764 if (!(m.status & MCI_STATUS_VAL)) 765 continue; 766 767 /* 768 * If we are logging everything (at CPU online) or this 769 * is a corrected error, then we must log it. 770 */ 771 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 772 goto log_it; 773 774 /* 775 * Newer Intel systems that support software error 776 * recovery need to make additional checks. Other 777 * CPUs should skip over uncorrected errors, but log 778 * everything else. 779 */ 780 if (!mca_cfg.ser) { 781 if (m.status & MCI_STATUS_UC) 782 continue; 783 goto log_it; 784 } 785 786 /* Log "not enabled" (speculative) errors */ 787 if (!(m.status & MCI_STATUS_EN)) 788 goto log_it; 789 790 /* 791 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 792 * UC == 1 && PCC == 0 && S == 0 793 */ 794 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 795 goto log_it; 796 797 /* 798 * Skip anything else. Presumption is that our read of this 799 * bank is racing with a machine check. Leave the log alone 800 * for do_machine_check() to deal with it. 801 */ 802 continue; 803 804 log_it: 805 error_seen = true; 806 807 if (flags & MCP_DONTLOG) 808 goto clear_it; 809 810 mce_read_aux(&m, i); 811 m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false); 812 /* 813 * Don't get the IP here because it's unlikely to 814 * have anything to do with the actual error location. 815 */ 816 817 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 818 goto clear_it; 819 820 if (flags & MCP_QUEUE_LOG) 821 mce_gen_pool_add(&m); 822 else 823 mce_log(&m); 824 825 clear_it: 826 /* 827 * Clear state for this bank. 828 */ 829 mce_wrmsrl(msr_ops.status(i), 0); 830 } 831 832 /* 833 * Don't clear MCG_STATUS here because it's only defined for 834 * exceptions. 835 */ 836 837 sync_core(); 838 839 return error_seen; 840 } 841 EXPORT_SYMBOL_GPL(machine_check_poll); 842 843 /* 844 * Do a quick check if any of the events requires a panic. 845 * This decides if we keep the events around or clear them. 846 */ 847 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 848 struct pt_regs *regs) 849 { 850 char *tmp = *msg; 851 int i; 852 853 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 854 m->status = mce_rdmsrl(msr_ops.status(i)); 855 if (!(m->status & MCI_STATUS_VAL)) 856 continue; 857 858 __set_bit(i, validp); 859 if (quirk_no_way_out) 860 quirk_no_way_out(i, m, regs); 861 862 m->bank = i; 863 if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) { 864 mce_read_aux(m, i); 865 *msg = tmp; 866 return 1; 867 } 868 } 869 return 0; 870 } 871 872 /* 873 * Variable to establish order between CPUs while scanning. 874 * Each CPU spins initially until executing is equal its number. 875 */ 876 static atomic_t mce_executing; 877 878 /* 879 * Defines order of CPUs on entry. First CPU becomes Monarch. 880 */ 881 static atomic_t mce_callin; 882 883 /* 884 * Track which CPUs entered the MCA broadcast synchronization and which not in 885 * order to print holdouts. 886 */ 887 static cpumask_t mce_missing_cpus = CPU_MASK_ALL; 888 889 /* 890 * Check if a timeout waiting for other CPUs happened. 891 */ 892 static int mce_timed_out(u64 *t, const char *msg) 893 { 894 /* 895 * The others already did panic for some reason. 896 * Bail out like in a timeout. 897 * rmb() to tell the compiler that system_state 898 * might have been modified by someone else. 899 */ 900 rmb(); 901 if (atomic_read(&mce_panicked)) 902 wait_for_panic(); 903 if (!mca_cfg.monarch_timeout) 904 goto out; 905 if ((s64)*t < SPINUNIT) { 906 if (mca_cfg.tolerant <= 1) { 907 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus)) 908 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n", 909 cpumask_pr_args(&mce_missing_cpus)); 910 mce_panic(msg, NULL, NULL); 911 } 912 cpu_missing = 1; 913 return 1; 914 } 915 *t -= SPINUNIT; 916 out: 917 touch_nmi_watchdog(); 918 return 0; 919 } 920 921 /* 922 * The Monarch's reign. The Monarch is the CPU who entered 923 * the machine check handler first. It waits for the others to 924 * raise the exception too and then grades them. When any 925 * error is fatal panic. Only then let the others continue. 926 * 927 * The other CPUs entering the MCE handler will be controlled by the 928 * Monarch. They are called Subjects. 929 * 930 * This way we prevent any potential data corruption in a unrecoverable case 931 * and also makes sure always all CPU's errors are examined. 932 * 933 * Also this detects the case of a machine check event coming from outer 934 * space (not detected by any CPUs) In this case some external agent wants 935 * us to shut down, so panic too. 936 * 937 * The other CPUs might still decide to panic if the handler happens 938 * in a unrecoverable place, but in this case the system is in a semi-stable 939 * state and won't corrupt anything by itself. It's ok to let the others 940 * continue for a bit first. 941 * 942 * All the spin loops have timeouts; when a timeout happens a CPU 943 * typically elects itself to be Monarch. 944 */ 945 static void mce_reign(void) 946 { 947 int cpu; 948 struct mce *m = NULL; 949 int global_worst = 0; 950 char *msg = NULL; 951 952 /* 953 * This CPU is the Monarch and the other CPUs have run 954 * through their handlers. 955 * Grade the severity of the errors of all the CPUs. 956 */ 957 for_each_possible_cpu(cpu) { 958 struct mce *mtmp = &per_cpu(mces_seen, cpu); 959 960 if (mtmp->severity > global_worst) { 961 global_worst = mtmp->severity; 962 m = &per_cpu(mces_seen, cpu); 963 } 964 } 965 966 /* 967 * Cannot recover? Panic here then. 968 * This dumps all the mces in the log buffer and stops the 969 * other CPUs. 970 */ 971 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 972 /* call mce_severity() to get "msg" for panic */ 973 mce_severity(m, NULL, mca_cfg.tolerant, &msg, true); 974 mce_panic("Fatal machine check", m, msg); 975 } 976 977 /* 978 * For UC somewhere we let the CPU who detects it handle it. 979 * Also must let continue the others, otherwise the handling 980 * CPU could deadlock on a lock. 981 */ 982 983 /* 984 * No machine check event found. Must be some external 985 * source or one CPU is hung. Panic. 986 */ 987 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) 988 mce_panic("Fatal machine check from unknown source", NULL, NULL); 989 990 /* 991 * Now clear all the mces_seen so that they don't reappear on 992 * the next mce. 993 */ 994 for_each_possible_cpu(cpu) 995 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 996 } 997 998 static atomic_t global_nwo; 999 1000 /* 1001 * Start of Monarch synchronization. This waits until all CPUs have 1002 * entered the exception handler and then determines if any of them 1003 * saw a fatal event that requires panic. Then it executes them 1004 * in the entry order. 1005 * TBD double check parallel CPU hotunplug 1006 */ 1007 static int mce_start(int *no_way_out) 1008 { 1009 int order; 1010 int cpus = num_online_cpus(); 1011 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1012 1013 if (!timeout) 1014 return -1; 1015 1016 atomic_add(*no_way_out, &global_nwo); 1017 /* 1018 * Rely on the implied barrier below, such that global_nwo 1019 * is updated before mce_callin. 1020 */ 1021 order = atomic_inc_return(&mce_callin); 1022 cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus); 1023 1024 /* 1025 * Wait for everyone. 1026 */ 1027 while (atomic_read(&mce_callin) != cpus) { 1028 if (mce_timed_out(&timeout, 1029 "Timeout: Not all CPUs entered broadcast exception handler")) { 1030 atomic_set(&global_nwo, 0); 1031 return -1; 1032 } 1033 ndelay(SPINUNIT); 1034 } 1035 1036 /* 1037 * mce_callin should be read before global_nwo 1038 */ 1039 smp_rmb(); 1040 1041 if (order == 1) { 1042 /* 1043 * Monarch: Starts executing now, the others wait. 1044 */ 1045 atomic_set(&mce_executing, 1); 1046 } else { 1047 /* 1048 * Subject: Now start the scanning loop one by one in 1049 * the original callin order. 1050 * This way when there are any shared banks it will be 1051 * only seen by one CPU before cleared, avoiding duplicates. 1052 */ 1053 while (atomic_read(&mce_executing) < order) { 1054 if (mce_timed_out(&timeout, 1055 "Timeout: Subject CPUs unable to finish machine check processing")) { 1056 atomic_set(&global_nwo, 0); 1057 return -1; 1058 } 1059 ndelay(SPINUNIT); 1060 } 1061 } 1062 1063 /* 1064 * Cache the global no_way_out state. 1065 */ 1066 *no_way_out = atomic_read(&global_nwo); 1067 1068 return order; 1069 } 1070 1071 /* 1072 * Synchronize between CPUs after main scanning loop. 1073 * This invokes the bulk of the Monarch processing. 1074 */ 1075 static int mce_end(int order) 1076 { 1077 int ret = -1; 1078 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1079 1080 if (!timeout) 1081 goto reset; 1082 if (order < 0) 1083 goto reset; 1084 1085 /* 1086 * Allow others to run. 1087 */ 1088 atomic_inc(&mce_executing); 1089 1090 if (order == 1) { 1091 /* CHECKME: Can this race with a parallel hotplug? */ 1092 int cpus = num_online_cpus(); 1093 1094 /* 1095 * Monarch: Wait for everyone to go through their scanning 1096 * loops. 1097 */ 1098 while (atomic_read(&mce_executing) <= cpus) { 1099 if (mce_timed_out(&timeout, 1100 "Timeout: Monarch CPU unable to finish machine check processing")) 1101 goto reset; 1102 ndelay(SPINUNIT); 1103 } 1104 1105 mce_reign(); 1106 barrier(); 1107 ret = 0; 1108 } else { 1109 /* 1110 * Subject: Wait for Monarch to finish. 1111 */ 1112 while (atomic_read(&mce_executing) != 0) { 1113 if (mce_timed_out(&timeout, 1114 "Timeout: Monarch CPU did not finish machine check processing")) 1115 goto reset; 1116 ndelay(SPINUNIT); 1117 } 1118 1119 /* 1120 * Don't reset anything. That's done by the Monarch. 1121 */ 1122 return 0; 1123 } 1124 1125 /* 1126 * Reset all global state. 1127 */ 1128 reset: 1129 atomic_set(&global_nwo, 0); 1130 atomic_set(&mce_callin, 0); 1131 cpumask_setall(&mce_missing_cpus); 1132 barrier(); 1133 1134 /* 1135 * Let others run again. 1136 */ 1137 atomic_set(&mce_executing, 0); 1138 return ret; 1139 } 1140 1141 static void mce_clear_state(unsigned long *toclear) 1142 { 1143 int i; 1144 1145 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1146 if (test_bit(i, toclear)) 1147 mce_wrmsrl(msr_ops.status(i), 0); 1148 } 1149 } 1150 1151 /* 1152 * Cases where we avoid rendezvous handler timeout: 1153 * 1) If this CPU is offline. 1154 * 1155 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1156 * skip those CPUs which remain looping in the 1st kernel - see 1157 * crash_nmi_callback(). 1158 * 1159 * Note: there still is a small window between kexec-ing and the new, 1160 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1161 * might not get handled properly. 1162 */ 1163 static noinstr bool mce_check_crashing_cpu(void) 1164 { 1165 unsigned int cpu = smp_processor_id(); 1166 1167 if (arch_cpu_is_offline(cpu) || 1168 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1169 u64 mcgstatus; 1170 1171 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS); 1172 1173 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1174 if (mcgstatus & MCG_STATUS_LMCES) 1175 return false; 1176 } 1177 1178 if (mcgstatus & MCG_STATUS_RIPV) { 1179 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0); 1180 return true; 1181 } 1182 } 1183 return false; 1184 } 1185 1186 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final, 1187 unsigned long *toclear, unsigned long *valid_banks, 1188 int no_way_out, int *worst) 1189 { 1190 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1191 struct mca_config *cfg = &mca_cfg; 1192 int severity, i; 1193 1194 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1195 __clear_bit(i, toclear); 1196 if (!test_bit(i, valid_banks)) 1197 continue; 1198 1199 if (!mce_banks[i].ctl) 1200 continue; 1201 1202 m->misc = 0; 1203 m->addr = 0; 1204 m->bank = i; 1205 1206 m->status = mce_rdmsrl(msr_ops.status(i)); 1207 if (!(m->status & MCI_STATUS_VAL)) 1208 continue; 1209 1210 /* 1211 * Corrected or non-signaled errors are handled by 1212 * machine_check_poll(). Leave them alone, unless this panics. 1213 */ 1214 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1215 !no_way_out) 1216 continue; 1217 1218 /* Set taint even when machine check was not enabled. */ 1219 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1220 1221 severity = mce_severity(m, regs, cfg->tolerant, NULL, true); 1222 1223 /* 1224 * When machine check was for corrected/deferred handler don't 1225 * touch, unless we're panicking. 1226 */ 1227 if ((severity == MCE_KEEP_SEVERITY || 1228 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1229 continue; 1230 1231 __set_bit(i, toclear); 1232 1233 /* Machine check event was not enabled. Clear, but ignore. */ 1234 if (severity == MCE_NO_SEVERITY) 1235 continue; 1236 1237 mce_read_aux(m, i); 1238 1239 /* assuming valid severity level != 0 */ 1240 m->severity = severity; 1241 1242 mce_log(m); 1243 1244 if (severity > *worst) { 1245 *final = *m; 1246 *worst = severity; 1247 } 1248 } 1249 1250 /* mce_clear_state will clear *final, save locally for use later */ 1251 *m = *final; 1252 } 1253 1254 static void kill_me_now(struct callback_head *ch) 1255 { 1256 force_sig(SIGBUS); 1257 } 1258 1259 static void kill_me_maybe(struct callback_head *cb) 1260 { 1261 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me); 1262 int flags = MF_ACTION_REQUIRED; 1263 int ret; 1264 1265 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr); 1266 1267 if (!p->mce_ripv) 1268 flags |= MF_MUST_KILL; 1269 1270 ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags); 1271 if (!ret && !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) { 1272 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page); 1273 sync_core(); 1274 return; 1275 } 1276 1277 /* 1278 * -EHWPOISON from memory_failure() means that it already sent SIGBUS 1279 * to the current process with the proper error info, so no need to 1280 * send SIGBUS here again. 1281 */ 1282 if (ret == -EHWPOISON) 1283 return; 1284 1285 if (p->mce_vaddr != (void __user *)-1l) { 1286 force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT); 1287 } else { 1288 pr_err("Memory error not recovered"); 1289 kill_me_now(cb); 1290 } 1291 } 1292 1293 static void queue_task_work(struct mce *m, int kill_current_task) 1294 { 1295 current->mce_addr = m->addr; 1296 current->mce_kflags = m->kflags; 1297 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV); 1298 current->mce_whole_page = whole_page(m); 1299 1300 if (kill_current_task) 1301 current->mce_kill_me.func = kill_me_now; 1302 else 1303 current->mce_kill_me.func = kill_me_maybe; 1304 1305 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME); 1306 } 1307 1308 /* 1309 * The actual machine check handler. This only handles real 1310 * exceptions when something got corrupted coming in through int 18. 1311 * 1312 * This is executed in NMI context not subject to normal locking rules. This 1313 * implies that most kernel services cannot be safely used. Don't even 1314 * think about putting a printk in there! 1315 * 1316 * On Intel systems this is entered on all CPUs in parallel through 1317 * MCE broadcast. However some CPUs might be broken beyond repair, 1318 * so be always careful when synchronizing with others. 1319 * 1320 * Tracing and kprobes are disabled: if we interrupted a kernel context 1321 * with IF=1, we need to minimize stack usage. There are also recursion 1322 * issues: if the machine check was due to a failure of the memory 1323 * backing the user stack, tracing that reads the user stack will cause 1324 * potentially infinite recursion. 1325 */ 1326 noinstr void do_machine_check(struct pt_regs *regs) 1327 { 1328 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); 1329 DECLARE_BITMAP(toclear, MAX_NR_BANKS); 1330 struct mca_config *cfg = &mca_cfg; 1331 struct mce m, *final; 1332 char *msg = NULL; 1333 int worst = 0; 1334 1335 /* 1336 * Establish sequential order between the CPUs entering the machine 1337 * check handler. 1338 */ 1339 int order = -1; 1340 1341 /* 1342 * If no_way_out gets set, there is no safe way to recover from this 1343 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. 1344 */ 1345 int no_way_out = 0; 1346 1347 /* 1348 * If kill_current_task is not set, there might be a way to recover from this 1349 * error. 1350 */ 1351 int kill_current_task = 0; 1352 1353 /* 1354 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1355 * on Intel. 1356 */ 1357 int lmce = 1; 1358 1359 this_cpu_inc(mce_exception_count); 1360 1361 mce_gather_info(&m, regs); 1362 m.tsc = rdtsc(); 1363 1364 final = this_cpu_ptr(&mces_seen); 1365 *final = m; 1366 1367 memset(valid_banks, 0, sizeof(valid_banks)); 1368 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1369 1370 barrier(); 1371 1372 /* 1373 * When no restart IP might need to kill or panic. 1374 * Assume the worst for now, but if we find the 1375 * severity is MCE_AR_SEVERITY we have other options. 1376 */ 1377 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1378 kill_current_task = (cfg->tolerant == 3) ? 0 : 1; 1379 /* 1380 * Check if this MCE is signaled to only this logical processor, 1381 * on Intel, Zhaoxin only. 1382 */ 1383 if (m.cpuvendor == X86_VENDOR_INTEL || 1384 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1385 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1386 1387 /* 1388 * Local machine check may already know that we have to panic. 1389 * Broadcast machine check begins rendezvous in mce_start() 1390 * Go through all banks in exclusion of the other CPUs. This way we 1391 * don't report duplicated events on shared banks because the first one 1392 * to see it will clear it. 1393 */ 1394 if (lmce) { 1395 if (no_way_out && cfg->tolerant < 3) 1396 mce_panic("Fatal local machine check", &m, msg); 1397 } else { 1398 order = mce_start(&no_way_out); 1399 } 1400 1401 __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst); 1402 1403 if (!no_way_out) 1404 mce_clear_state(toclear); 1405 1406 /* 1407 * Do most of the synchronization with other CPUs. 1408 * When there's any problem use only local no_way_out state. 1409 */ 1410 if (!lmce) { 1411 if (mce_end(order) < 0) { 1412 if (!no_way_out) 1413 no_way_out = worst >= MCE_PANIC_SEVERITY; 1414 1415 if (no_way_out && cfg->tolerant < 3) 1416 mce_panic("Fatal machine check on current CPU", &m, msg); 1417 } 1418 } else { 1419 /* 1420 * If there was a fatal machine check we should have 1421 * already called mce_panic earlier in this function. 1422 * Since we re-read the banks, we might have found 1423 * something new. Check again to see if we found a 1424 * fatal error. We call "mce_severity()" again to 1425 * make sure we have the right "msg". 1426 */ 1427 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 1428 mce_severity(&m, regs, cfg->tolerant, &msg, true); 1429 mce_panic("Local fatal machine check!", &m, msg); 1430 } 1431 } 1432 1433 if (worst != MCE_AR_SEVERITY && !kill_current_task) 1434 goto out; 1435 1436 /* Fault was in user mode and we need to take some action */ 1437 if ((m.cs & 3) == 3) { 1438 /* If this triggers there is no way to recover. Die hard. */ 1439 BUG_ON(!on_thread_stack() || !user_mode(regs)); 1440 1441 queue_task_work(&m, kill_current_task); 1442 1443 } else { 1444 /* 1445 * Handle an MCE which has happened in kernel space but from 1446 * which the kernel can recover: ex_has_fault_handler() has 1447 * already verified that the rIP at which the error happened is 1448 * a rIP from which the kernel can recover (by jumping to 1449 * recovery code specified in _ASM_EXTABLE_FAULT()) and the 1450 * corresponding exception handler which would do that is the 1451 * proper one. 1452 */ 1453 if (m.kflags & MCE_IN_KERNEL_RECOV) { 1454 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0)) 1455 mce_panic("Failed kernel mode recovery", &m, msg); 1456 } 1457 1458 if (m.kflags & MCE_IN_KERNEL_COPYIN) 1459 queue_task_work(&m, kill_current_task); 1460 } 1461 out: 1462 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1463 } 1464 EXPORT_SYMBOL_GPL(do_machine_check); 1465 1466 #ifndef CONFIG_MEMORY_FAILURE 1467 int memory_failure(unsigned long pfn, int flags) 1468 { 1469 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1470 BUG_ON(flags & MF_ACTION_REQUIRED); 1471 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1472 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1473 pfn); 1474 1475 return 0; 1476 } 1477 #endif 1478 1479 /* 1480 * Periodic polling timer for "silent" machine check errors. If the 1481 * poller finds an MCE, poll 2x faster. When the poller finds no more 1482 * errors, poll 2x slower (up to check_interval seconds). 1483 */ 1484 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1485 1486 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1487 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1488 1489 static unsigned long mce_adjust_timer_default(unsigned long interval) 1490 { 1491 return interval; 1492 } 1493 1494 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1495 1496 static void __start_timer(struct timer_list *t, unsigned long interval) 1497 { 1498 unsigned long when = jiffies + interval; 1499 unsigned long flags; 1500 1501 local_irq_save(flags); 1502 1503 if (!timer_pending(t) || time_before(when, t->expires)) 1504 mod_timer(t, round_jiffies(when)); 1505 1506 local_irq_restore(flags); 1507 } 1508 1509 static void mce_timer_fn(struct timer_list *t) 1510 { 1511 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1512 unsigned long iv; 1513 1514 WARN_ON(cpu_t != t); 1515 1516 iv = __this_cpu_read(mce_next_interval); 1517 1518 if (mce_available(this_cpu_ptr(&cpu_info))) { 1519 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1520 1521 if (mce_intel_cmci_poll()) { 1522 iv = mce_adjust_timer(iv); 1523 goto done; 1524 } 1525 } 1526 1527 /* 1528 * Alert userspace if needed. If we logged an MCE, reduce the polling 1529 * interval, otherwise increase the polling interval. 1530 */ 1531 if (mce_notify_irq()) 1532 iv = max(iv / 2, (unsigned long) HZ/100); 1533 else 1534 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1535 1536 done: 1537 __this_cpu_write(mce_next_interval, iv); 1538 __start_timer(t, iv); 1539 } 1540 1541 /* 1542 * Ensure that the timer is firing in @interval from now. 1543 */ 1544 void mce_timer_kick(unsigned long interval) 1545 { 1546 struct timer_list *t = this_cpu_ptr(&mce_timer); 1547 unsigned long iv = __this_cpu_read(mce_next_interval); 1548 1549 __start_timer(t, interval); 1550 1551 if (interval < iv) 1552 __this_cpu_write(mce_next_interval, interval); 1553 } 1554 1555 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1556 static void mce_timer_delete_all(void) 1557 { 1558 int cpu; 1559 1560 for_each_online_cpu(cpu) 1561 del_timer_sync(&per_cpu(mce_timer, cpu)); 1562 } 1563 1564 /* 1565 * Notify the user(s) about new machine check events. 1566 * Can be called from interrupt context, but not from machine check/NMI 1567 * context. 1568 */ 1569 int mce_notify_irq(void) 1570 { 1571 /* Not more than two messages every minute */ 1572 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1573 1574 if (test_and_clear_bit(0, &mce_need_notify)) { 1575 mce_work_trigger(); 1576 1577 if (__ratelimit(&ratelimit)) 1578 pr_info(HW_ERR "Machine check events logged\n"); 1579 1580 return 1; 1581 } 1582 return 0; 1583 } 1584 EXPORT_SYMBOL_GPL(mce_notify_irq); 1585 1586 static void __mcheck_cpu_mce_banks_init(void) 1587 { 1588 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1589 u8 n_banks = this_cpu_read(mce_num_banks); 1590 int i; 1591 1592 for (i = 0; i < n_banks; i++) { 1593 struct mce_bank *b = &mce_banks[i]; 1594 1595 /* 1596 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1597 * the required vendor quirks before 1598 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1599 */ 1600 b->ctl = -1ULL; 1601 b->init = true; 1602 } 1603 } 1604 1605 /* 1606 * Initialize Machine Checks for a CPU. 1607 */ 1608 static void __mcheck_cpu_cap_init(void) 1609 { 1610 u64 cap; 1611 u8 b; 1612 1613 rdmsrl(MSR_IA32_MCG_CAP, cap); 1614 1615 b = cap & MCG_BANKCNT_MASK; 1616 1617 if (b > MAX_NR_BANKS) { 1618 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1619 smp_processor_id(), MAX_NR_BANKS, b); 1620 b = MAX_NR_BANKS; 1621 } 1622 1623 this_cpu_write(mce_num_banks, b); 1624 1625 __mcheck_cpu_mce_banks_init(); 1626 1627 /* Use accurate RIP reporting if available. */ 1628 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1629 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1630 1631 if (cap & MCG_SER_P) 1632 mca_cfg.ser = 1; 1633 } 1634 1635 static void __mcheck_cpu_init_generic(void) 1636 { 1637 enum mcp_flags m_fl = 0; 1638 mce_banks_t all_banks; 1639 u64 cap; 1640 1641 if (!mca_cfg.bootlog) 1642 m_fl = MCP_DONTLOG; 1643 1644 /* 1645 * Log the machine checks left over from the previous reset. Log them 1646 * only, do not start processing them. That will happen in mcheck_late_init() 1647 * when all consumers have been registered on the notifier chain. 1648 */ 1649 bitmap_fill(all_banks, MAX_NR_BANKS); 1650 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks); 1651 1652 cr4_set_bits(X86_CR4_MCE); 1653 1654 rdmsrl(MSR_IA32_MCG_CAP, cap); 1655 if (cap & MCG_CTL_P) 1656 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1657 } 1658 1659 static void __mcheck_cpu_init_clear_banks(void) 1660 { 1661 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1662 int i; 1663 1664 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1665 struct mce_bank *b = &mce_banks[i]; 1666 1667 if (!b->init) 1668 continue; 1669 wrmsrl(msr_ops.ctl(i), b->ctl); 1670 wrmsrl(msr_ops.status(i), 0); 1671 } 1672 } 1673 1674 /* 1675 * Do a final check to see if there are any unused/RAZ banks. 1676 * 1677 * This must be done after the banks have been initialized and any quirks have 1678 * been applied. 1679 * 1680 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1681 * Otherwise, a user who disables a bank will not be able to re-enable it 1682 * without a system reboot. 1683 */ 1684 static void __mcheck_cpu_check_banks(void) 1685 { 1686 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1687 u64 msrval; 1688 int i; 1689 1690 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1691 struct mce_bank *b = &mce_banks[i]; 1692 1693 if (!b->init) 1694 continue; 1695 1696 rdmsrl(msr_ops.ctl(i), msrval); 1697 b->init = !!msrval; 1698 } 1699 } 1700 1701 /* 1702 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 1703 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 1704 * Vol 3B Table 15-20). But this confuses both the code that determines 1705 * whether the machine check occurred in kernel or user mode, and also 1706 * the severity assessment code. Pretend that EIPV was set, and take the 1707 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 1708 */ 1709 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 1710 { 1711 if (bank != 0) 1712 return; 1713 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 1714 return; 1715 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 1716 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 1717 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 1718 MCACOD)) != 1719 (MCI_STATUS_UC|MCI_STATUS_EN| 1720 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 1721 MCI_STATUS_AR|MCACOD_INSTR)) 1722 return; 1723 1724 m->mcgstatus |= MCG_STATUS_EIPV; 1725 m->ip = regs->ip; 1726 m->cs = regs->cs; 1727 } 1728 1729 /* Add per CPU specific workarounds here */ 1730 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1731 { 1732 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1733 struct mca_config *cfg = &mca_cfg; 1734 1735 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1736 pr_info("unknown CPU type - not enabling MCE support\n"); 1737 return -EOPNOTSUPP; 1738 } 1739 1740 /* This should be disabled by the BIOS, but isn't always */ 1741 if (c->x86_vendor == X86_VENDOR_AMD) { 1742 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1743 /* 1744 * disable GART TBL walk error reporting, which 1745 * trips off incorrectly with the IOMMU & 3ware 1746 * & Cerberus: 1747 */ 1748 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1749 } 1750 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1751 /* 1752 * Lots of broken BIOS around that don't clear them 1753 * by default and leave crap in there. Don't log: 1754 */ 1755 cfg->bootlog = 0; 1756 } 1757 /* 1758 * Various K7s with broken bank 0 around. Always disable 1759 * by default. 1760 */ 1761 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1762 mce_banks[0].ctl = 0; 1763 1764 /* 1765 * overflow_recov is supported for F15h Models 00h-0fh 1766 * even though we don't have a CPUID bit for it. 1767 */ 1768 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1769 mce_flags.overflow_recov = 1; 1770 1771 } 1772 1773 if (c->x86_vendor == X86_VENDOR_INTEL) { 1774 /* 1775 * SDM documents that on family 6 bank 0 should not be written 1776 * because it aliases to another special BIOS controlled 1777 * register. 1778 * But it's not aliased anymore on model 0x1a+ 1779 * Don't ignore bank 0 completely because there could be a 1780 * valid event later, merely don't write CTL0. 1781 */ 1782 1783 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1784 mce_banks[0].init = false; 1785 1786 /* 1787 * All newer Intel systems support MCE broadcasting. Enable 1788 * synchronization with a one second timeout. 1789 */ 1790 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1791 cfg->monarch_timeout < 0) 1792 cfg->monarch_timeout = USEC_PER_SEC; 1793 1794 /* 1795 * There are also broken BIOSes on some Pentium M and 1796 * earlier systems: 1797 */ 1798 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1799 cfg->bootlog = 0; 1800 1801 if (c->x86 == 6 && c->x86_model == 45) 1802 quirk_no_way_out = quirk_sandybridge_ifu; 1803 } 1804 1805 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1806 /* 1807 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1808 * synchronization with a one second timeout. 1809 */ 1810 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1811 if (cfg->monarch_timeout < 0) 1812 cfg->monarch_timeout = USEC_PER_SEC; 1813 } 1814 } 1815 1816 if (cfg->monarch_timeout < 0) 1817 cfg->monarch_timeout = 0; 1818 if (cfg->bootlog != 0) 1819 cfg->panic_timeout = 30; 1820 1821 return 0; 1822 } 1823 1824 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1825 { 1826 if (c->x86 != 5) 1827 return 0; 1828 1829 switch (c->x86_vendor) { 1830 case X86_VENDOR_INTEL: 1831 intel_p5_mcheck_init(c); 1832 return 1; 1833 case X86_VENDOR_CENTAUR: 1834 winchip_mcheck_init(c); 1835 return 1; 1836 default: 1837 return 0; 1838 } 1839 1840 return 0; 1841 } 1842 1843 /* 1844 * Init basic CPU features needed for early decoding of MCEs. 1845 */ 1846 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1847 { 1848 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1849 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1850 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1851 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1852 mce_flags.amd_threshold = 1; 1853 1854 if (mce_flags.smca) { 1855 msr_ops.ctl = smca_ctl_reg; 1856 msr_ops.status = smca_status_reg; 1857 msr_ops.addr = smca_addr_reg; 1858 msr_ops.misc = smca_misc_reg; 1859 } 1860 } 1861 } 1862 1863 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1864 { 1865 struct mca_config *cfg = &mca_cfg; 1866 1867 /* 1868 * All newer Centaur CPUs support MCE broadcasting. Enable 1869 * synchronization with a one second timeout. 1870 */ 1871 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1872 c->x86 > 6) { 1873 if (cfg->monarch_timeout < 0) 1874 cfg->monarch_timeout = USEC_PER_SEC; 1875 } 1876 } 1877 1878 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1879 { 1880 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1881 1882 /* 1883 * These CPUs have MCA bank 8 which reports only one error type called 1884 * SVAD (System View Address Decoder). The reporting of that error is 1885 * controlled by IA32_MC8.CTL.0. 1886 * 1887 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1888 * virtual machines start and result in a system panic. Always disable 1889 * bank 8 SVAD error by default. 1890 */ 1891 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1892 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1893 if (this_cpu_read(mce_num_banks) > 8) 1894 mce_banks[8].ctl = 0; 1895 } 1896 1897 intel_init_cmci(); 1898 intel_init_lmce(); 1899 mce_adjust_timer = cmci_intel_adjust_timer; 1900 } 1901 1902 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 1903 { 1904 intel_clear_lmce(); 1905 } 1906 1907 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1908 { 1909 switch (c->x86_vendor) { 1910 case X86_VENDOR_INTEL: 1911 mce_intel_feature_init(c); 1912 mce_adjust_timer = cmci_intel_adjust_timer; 1913 break; 1914 1915 case X86_VENDOR_AMD: { 1916 mce_amd_feature_init(c); 1917 break; 1918 } 1919 1920 case X86_VENDOR_HYGON: 1921 mce_hygon_feature_init(c); 1922 break; 1923 1924 case X86_VENDOR_CENTAUR: 1925 mce_centaur_feature_init(c); 1926 break; 1927 1928 case X86_VENDOR_ZHAOXIN: 1929 mce_zhaoxin_feature_init(c); 1930 break; 1931 1932 default: 1933 break; 1934 } 1935 } 1936 1937 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 1938 { 1939 switch (c->x86_vendor) { 1940 case X86_VENDOR_INTEL: 1941 mce_intel_feature_clear(c); 1942 break; 1943 1944 case X86_VENDOR_ZHAOXIN: 1945 mce_zhaoxin_feature_clear(c); 1946 break; 1947 1948 default: 1949 break; 1950 } 1951 } 1952 1953 static void mce_start_timer(struct timer_list *t) 1954 { 1955 unsigned long iv = check_interval * HZ; 1956 1957 if (mca_cfg.ignore_ce || !iv) 1958 return; 1959 1960 this_cpu_write(mce_next_interval, iv); 1961 __start_timer(t, iv); 1962 } 1963 1964 static void __mcheck_cpu_setup_timer(void) 1965 { 1966 struct timer_list *t = this_cpu_ptr(&mce_timer); 1967 1968 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1969 } 1970 1971 static void __mcheck_cpu_init_timer(void) 1972 { 1973 struct timer_list *t = this_cpu_ptr(&mce_timer); 1974 1975 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1976 mce_start_timer(t); 1977 } 1978 1979 bool filter_mce(struct mce *m) 1980 { 1981 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1982 return amd_filter_mce(m); 1983 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 1984 return intel_filter_mce(m); 1985 1986 return false; 1987 } 1988 1989 /* Handle unconfigured int18 (should never happen) */ 1990 static noinstr void unexpected_machine_check(struct pt_regs *regs) 1991 { 1992 instrumentation_begin(); 1993 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1994 smp_processor_id()); 1995 instrumentation_end(); 1996 } 1997 1998 /* Call the installed machine check handler for this CPU setup. */ 1999 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check; 2000 2001 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs) 2002 { 2003 irqentry_state_t irq_state; 2004 2005 WARN_ON_ONCE(user_mode(regs)); 2006 2007 /* 2008 * Only required when from kernel mode. See 2009 * mce_check_crashing_cpu() for details. 2010 */ 2011 if (machine_check_vector == do_machine_check && 2012 mce_check_crashing_cpu()) 2013 return; 2014 2015 irq_state = irqentry_nmi_enter(regs); 2016 /* 2017 * The call targets are marked noinstr, but objtool can't figure 2018 * that out because it's an indirect call. Annotate it. 2019 */ 2020 instrumentation_begin(); 2021 2022 machine_check_vector(regs); 2023 2024 instrumentation_end(); 2025 irqentry_nmi_exit(regs, irq_state); 2026 } 2027 2028 static __always_inline void exc_machine_check_user(struct pt_regs *regs) 2029 { 2030 irqentry_enter_from_user_mode(regs); 2031 instrumentation_begin(); 2032 2033 machine_check_vector(regs); 2034 2035 instrumentation_end(); 2036 irqentry_exit_to_user_mode(regs); 2037 } 2038 2039 #ifdef CONFIG_X86_64 2040 /* MCE hit kernel mode */ 2041 DEFINE_IDTENTRY_MCE(exc_machine_check) 2042 { 2043 unsigned long dr7; 2044 2045 dr7 = local_db_save(); 2046 exc_machine_check_kernel(regs); 2047 local_db_restore(dr7); 2048 } 2049 2050 /* The user mode variant. */ 2051 DEFINE_IDTENTRY_MCE_USER(exc_machine_check) 2052 { 2053 unsigned long dr7; 2054 2055 dr7 = local_db_save(); 2056 exc_machine_check_user(regs); 2057 local_db_restore(dr7); 2058 } 2059 #else 2060 /* 32bit unified entry point */ 2061 DEFINE_IDTENTRY_RAW(exc_machine_check) 2062 { 2063 unsigned long dr7; 2064 2065 dr7 = local_db_save(); 2066 if (user_mode(regs)) 2067 exc_machine_check_user(regs); 2068 else 2069 exc_machine_check_kernel(regs); 2070 local_db_restore(dr7); 2071 } 2072 #endif 2073 2074 /* 2075 * Called for each booted CPU to set up machine checks. 2076 * Must be called with preempt off: 2077 */ 2078 void mcheck_cpu_init(struct cpuinfo_x86 *c) 2079 { 2080 if (mca_cfg.disabled) 2081 return; 2082 2083 if (__mcheck_cpu_ancient_init(c)) 2084 return; 2085 2086 if (!mce_available(c)) 2087 return; 2088 2089 __mcheck_cpu_cap_init(); 2090 2091 if (__mcheck_cpu_apply_quirks(c) < 0) { 2092 mca_cfg.disabled = 1; 2093 return; 2094 } 2095 2096 if (mce_gen_pool_init()) { 2097 mca_cfg.disabled = 1; 2098 pr_emerg("Couldn't allocate MCE records pool!\n"); 2099 return; 2100 } 2101 2102 machine_check_vector = do_machine_check; 2103 2104 __mcheck_cpu_init_early(c); 2105 __mcheck_cpu_init_generic(); 2106 __mcheck_cpu_init_vendor(c); 2107 __mcheck_cpu_init_clear_banks(); 2108 __mcheck_cpu_check_banks(); 2109 __mcheck_cpu_setup_timer(); 2110 } 2111 2112 /* 2113 * Called for each booted CPU to clear some machine checks opt-ins 2114 */ 2115 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 2116 { 2117 if (mca_cfg.disabled) 2118 return; 2119 2120 if (!mce_available(c)) 2121 return; 2122 2123 /* 2124 * Possibly to clear general settings generic to x86 2125 * __mcheck_cpu_clear_generic(c); 2126 */ 2127 __mcheck_cpu_clear_vendor(c); 2128 2129 } 2130 2131 static void __mce_disable_bank(void *arg) 2132 { 2133 int bank = *((int *)arg); 2134 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 2135 cmci_disable_bank(bank); 2136 } 2137 2138 void mce_disable_bank(int bank) 2139 { 2140 if (bank >= this_cpu_read(mce_num_banks)) { 2141 pr_warn(FW_BUG 2142 "Ignoring request to disable invalid MCA bank %d.\n", 2143 bank); 2144 return; 2145 } 2146 set_bit(bank, mce_banks_ce_disabled); 2147 on_each_cpu(__mce_disable_bank, &bank, 1); 2148 } 2149 2150 /* 2151 * mce=off Disables machine check 2152 * mce=no_cmci Disables CMCI 2153 * mce=no_lmce Disables LMCE 2154 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 2155 * mce=print_all Print all machine check logs to console 2156 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 2157 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 2158 * monarchtimeout is how long to wait for other CPUs on machine 2159 * check, or 0 to not wait 2160 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 2161 and older. 2162 * mce=nobootlog Don't log MCEs from before booting. 2163 * mce=bios_cmci_threshold Don't program the CMCI threshold 2164 * mce=recovery force enable copy_mc_fragile() 2165 */ 2166 static int __init mcheck_enable(char *str) 2167 { 2168 struct mca_config *cfg = &mca_cfg; 2169 2170 if (*str == 0) { 2171 enable_p5_mce(); 2172 return 1; 2173 } 2174 if (*str == '=') 2175 str++; 2176 if (!strcmp(str, "off")) 2177 cfg->disabled = 1; 2178 else if (!strcmp(str, "no_cmci")) 2179 cfg->cmci_disabled = true; 2180 else if (!strcmp(str, "no_lmce")) 2181 cfg->lmce_disabled = 1; 2182 else if (!strcmp(str, "dont_log_ce")) 2183 cfg->dont_log_ce = true; 2184 else if (!strcmp(str, "print_all")) 2185 cfg->print_all = true; 2186 else if (!strcmp(str, "ignore_ce")) 2187 cfg->ignore_ce = true; 2188 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2189 cfg->bootlog = (str[0] == 'b'); 2190 else if (!strcmp(str, "bios_cmci_threshold")) 2191 cfg->bios_cmci_threshold = 1; 2192 else if (!strcmp(str, "recovery")) 2193 cfg->recovery = 1; 2194 else if (isdigit(str[0])) { 2195 if (get_option(&str, &cfg->tolerant) == 2) 2196 get_option(&str, &(cfg->monarch_timeout)); 2197 } else { 2198 pr_info("mce argument %s ignored. Please use /sys\n", str); 2199 return 0; 2200 } 2201 return 1; 2202 } 2203 __setup("mce", mcheck_enable); 2204 2205 int __init mcheck_init(void) 2206 { 2207 mce_register_decode_chain(&early_nb); 2208 mce_register_decode_chain(&mce_uc_nb); 2209 mce_register_decode_chain(&mce_default_nb); 2210 mcheck_vendor_init_severity(); 2211 2212 INIT_WORK(&mce_work, mce_gen_pool_process); 2213 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2214 2215 return 0; 2216 } 2217 2218 /* 2219 * mce_syscore: PM support 2220 */ 2221 2222 /* 2223 * Disable machine checks on suspend and shutdown. We can't really handle 2224 * them later. 2225 */ 2226 static void mce_disable_error_reporting(void) 2227 { 2228 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2229 int i; 2230 2231 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2232 struct mce_bank *b = &mce_banks[i]; 2233 2234 if (b->init) 2235 wrmsrl(msr_ops.ctl(i), 0); 2236 } 2237 return; 2238 } 2239 2240 static void vendor_disable_error_reporting(void) 2241 { 2242 /* 2243 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2244 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2245 * is bad, since it will inhibit reporting for all shared resources on 2246 * the socket like the last level cache (LLC), the integrated memory 2247 * controller (iMC), etc. 2248 */ 2249 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2250 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2251 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2252 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2253 return; 2254 2255 mce_disable_error_reporting(); 2256 } 2257 2258 static int mce_syscore_suspend(void) 2259 { 2260 vendor_disable_error_reporting(); 2261 return 0; 2262 } 2263 2264 static void mce_syscore_shutdown(void) 2265 { 2266 vendor_disable_error_reporting(); 2267 } 2268 2269 /* 2270 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2271 * Only one CPU is active at this time, the others get re-added later using 2272 * CPU hotplug: 2273 */ 2274 static void mce_syscore_resume(void) 2275 { 2276 __mcheck_cpu_init_generic(); 2277 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2278 __mcheck_cpu_init_clear_banks(); 2279 } 2280 2281 static struct syscore_ops mce_syscore_ops = { 2282 .suspend = mce_syscore_suspend, 2283 .shutdown = mce_syscore_shutdown, 2284 .resume = mce_syscore_resume, 2285 }; 2286 2287 /* 2288 * mce_device: Sysfs support 2289 */ 2290 2291 static void mce_cpu_restart(void *data) 2292 { 2293 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2294 return; 2295 __mcheck_cpu_init_generic(); 2296 __mcheck_cpu_init_clear_banks(); 2297 __mcheck_cpu_init_timer(); 2298 } 2299 2300 /* Reinit MCEs after user configuration changes */ 2301 static void mce_restart(void) 2302 { 2303 mce_timer_delete_all(); 2304 on_each_cpu(mce_cpu_restart, NULL, 1); 2305 } 2306 2307 /* Toggle features for corrected errors */ 2308 static void mce_disable_cmci(void *data) 2309 { 2310 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2311 return; 2312 cmci_clear(); 2313 } 2314 2315 static void mce_enable_ce(void *all) 2316 { 2317 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2318 return; 2319 cmci_reenable(); 2320 cmci_recheck(); 2321 if (all) 2322 __mcheck_cpu_init_timer(); 2323 } 2324 2325 static struct bus_type mce_subsys = { 2326 .name = "machinecheck", 2327 .dev_name = "machinecheck", 2328 }; 2329 2330 DEFINE_PER_CPU(struct device *, mce_device); 2331 2332 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2333 { 2334 return container_of(attr, struct mce_bank_dev, attr); 2335 } 2336 2337 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2338 char *buf) 2339 { 2340 u8 bank = attr_to_bank(attr)->bank; 2341 struct mce_bank *b; 2342 2343 if (bank >= per_cpu(mce_num_banks, s->id)) 2344 return -EINVAL; 2345 2346 b = &per_cpu(mce_banks_array, s->id)[bank]; 2347 2348 if (!b->init) 2349 return -ENODEV; 2350 2351 return sprintf(buf, "%llx\n", b->ctl); 2352 } 2353 2354 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2355 const char *buf, size_t size) 2356 { 2357 u8 bank = attr_to_bank(attr)->bank; 2358 struct mce_bank *b; 2359 u64 new; 2360 2361 if (kstrtou64(buf, 0, &new) < 0) 2362 return -EINVAL; 2363 2364 if (bank >= per_cpu(mce_num_banks, s->id)) 2365 return -EINVAL; 2366 2367 b = &per_cpu(mce_banks_array, s->id)[bank]; 2368 2369 if (!b->init) 2370 return -ENODEV; 2371 2372 b->ctl = new; 2373 mce_restart(); 2374 2375 return size; 2376 } 2377 2378 static ssize_t set_ignore_ce(struct device *s, 2379 struct device_attribute *attr, 2380 const char *buf, size_t size) 2381 { 2382 u64 new; 2383 2384 if (kstrtou64(buf, 0, &new) < 0) 2385 return -EINVAL; 2386 2387 mutex_lock(&mce_sysfs_mutex); 2388 if (mca_cfg.ignore_ce ^ !!new) { 2389 if (new) { 2390 /* disable ce features */ 2391 mce_timer_delete_all(); 2392 on_each_cpu(mce_disable_cmci, NULL, 1); 2393 mca_cfg.ignore_ce = true; 2394 } else { 2395 /* enable ce features */ 2396 mca_cfg.ignore_ce = false; 2397 on_each_cpu(mce_enable_ce, (void *)1, 1); 2398 } 2399 } 2400 mutex_unlock(&mce_sysfs_mutex); 2401 2402 return size; 2403 } 2404 2405 static ssize_t set_cmci_disabled(struct device *s, 2406 struct device_attribute *attr, 2407 const char *buf, size_t size) 2408 { 2409 u64 new; 2410 2411 if (kstrtou64(buf, 0, &new) < 0) 2412 return -EINVAL; 2413 2414 mutex_lock(&mce_sysfs_mutex); 2415 if (mca_cfg.cmci_disabled ^ !!new) { 2416 if (new) { 2417 /* disable cmci */ 2418 on_each_cpu(mce_disable_cmci, NULL, 1); 2419 mca_cfg.cmci_disabled = true; 2420 } else { 2421 /* enable cmci */ 2422 mca_cfg.cmci_disabled = false; 2423 on_each_cpu(mce_enable_ce, NULL, 1); 2424 } 2425 } 2426 mutex_unlock(&mce_sysfs_mutex); 2427 2428 return size; 2429 } 2430 2431 static ssize_t store_int_with_restart(struct device *s, 2432 struct device_attribute *attr, 2433 const char *buf, size_t size) 2434 { 2435 unsigned long old_check_interval = check_interval; 2436 ssize_t ret = device_store_ulong(s, attr, buf, size); 2437 2438 if (check_interval == old_check_interval) 2439 return ret; 2440 2441 mutex_lock(&mce_sysfs_mutex); 2442 mce_restart(); 2443 mutex_unlock(&mce_sysfs_mutex); 2444 2445 return ret; 2446 } 2447 2448 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); 2449 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2450 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2451 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all); 2452 2453 static struct dev_ext_attribute dev_attr_check_interval = { 2454 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2455 &check_interval 2456 }; 2457 2458 static struct dev_ext_attribute dev_attr_ignore_ce = { 2459 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2460 &mca_cfg.ignore_ce 2461 }; 2462 2463 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2464 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2465 &mca_cfg.cmci_disabled 2466 }; 2467 2468 static struct device_attribute *mce_device_attrs[] = { 2469 &dev_attr_tolerant.attr, 2470 &dev_attr_check_interval.attr, 2471 #ifdef CONFIG_X86_MCELOG_LEGACY 2472 &dev_attr_trigger, 2473 #endif 2474 &dev_attr_monarch_timeout.attr, 2475 &dev_attr_dont_log_ce.attr, 2476 &dev_attr_print_all.attr, 2477 &dev_attr_ignore_ce.attr, 2478 &dev_attr_cmci_disabled.attr, 2479 NULL 2480 }; 2481 2482 static cpumask_var_t mce_device_initialized; 2483 2484 static void mce_device_release(struct device *dev) 2485 { 2486 kfree(dev); 2487 } 2488 2489 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2490 static int mce_device_create(unsigned int cpu) 2491 { 2492 struct device *dev; 2493 int err; 2494 int i, j; 2495 2496 if (!mce_available(&boot_cpu_data)) 2497 return -EIO; 2498 2499 dev = per_cpu(mce_device, cpu); 2500 if (dev) 2501 return 0; 2502 2503 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2504 if (!dev) 2505 return -ENOMEM; 2506 dev->id = cpu; 2507 dev->bus = &mce_subsys; 2508 dev->release = &mce_device_release; 2509 2510 err = device_register(dev); 2511 if (err) { 2512 put_device(dev); 2513 return err; 2514 } 2515 2516 for (i = 0; mce_device_attrs[i]; i++) { 2517 err = device_create_file(dev, mce_device_attrs[i]); 2518 if (err) 2519 goto error; 2520 } 2521 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2522 err = device_create_file(dev, &mce_bank_devs[j].attr); 2523 if (err) 2524 goto error2; 2525 } 2526 cpumask_set_cpu(cpu, mce_device_initialized); 2527 per_cpu(mce_device, cpu) = dev; 2528 2529 return 0; 2530 error2: 2531 while (--j >= 0) 2532 device_remove_file(dev, &mce_bank_devs[j].attr); 2533 error: 2534 while (--i >= 0) 2535 device_remove_file(dev, mce_device_attrs[i]); 2536 2537 device_unregister(dev); 2538 2539 return err; 2540 } 2541 2542 static void mce_device_remove(unsigned int cpu) 2543 { 2544 struct device *dev = per_cpu(mce_device, cpu); 2545 int i; 2546 2547 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2548 return; 2549 2550 for (i = 0; mce_device_attrs[i]; i++) 2551 device_remove_file(dev, mce_device_attrs[i]); 2552 2553 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2554 device_remove_file(dev, &mce_bank_devs[i].attr); 2555 2556 device_unregister(dev); 2557 cpumask_clear_cpu(cpu, mce_device_initialized); 2558 per_cpu(mce_device, cpu) = NULL; 2559 } 2560 2561 /* Make sure there are no machine checks on offlined CPUs. */ 2562 static void mce_disable_cpu(void) 2563 { 2564 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2565 return; 2566 2567 if (!cpuhp_tasks_frozen) 2568 cmci_clear(); 2569 2570 vendor_disable_error_reporting(); 2571 } 2572 2573 static void mce_reenable_cpu(void) 2574 { 2575 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2576 int i; 2577 2578 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2579 return; 2580 2581 if (!cpuhp_tasks_frozen) 2582 cmci_reenable(); 2583 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2584 struct mce_bank *b = &mce_banks[i]; 2585 2586 if (b->init) 2587 wrmsrl(msr_ops.ctl(i), b->ctl); 2588 } 2589 } 2590 2591 static int mce_cpu_dead(unsigned int cpu) 2592 { 2593 mce_intel_hcpu_update(cpu); 2594 2595 /* intentionally ignoring frozen here */ 2596 if (!cpuhp_tasks_frozen) 2597 cmci_rediscover(); 2598 return 0; 2599 } 2600 2601 static int mce_cpu_online(unsigned int cpu) 2602 { 2603 struct timer_list *t = this_cpu_ptr(&mce_timer); 2604 int ret; 2605 2606 mce_device_create(cpu); 2607 2608 ret = mce_threshold_create_device(cpu); 2609 if (ret) { 2610 mce_device_remove(cpu); 2611 return ret; 2612 } 2613 mce_reenable_cpu(); 2614 mce_start_timer(t); 2615 return 0; 2616 } 2617 2618 static int mce_cpu_pre_down(unsigned int cpu) 2619 { 2620 struct timer_list *t = this_cpu_ptr(&mce_timer); 2621 2622 mce_disable_cpu(); 2623 del_timer_sync(t); 2624 mce_threshold_remove_device(cpu); 2625 mce_device_remove(cpu); 2626 return 0; 2627 } 2628 2629 static __init void mce_init_banks(void) 2630 { 2631 int i; 2632 2633 for (i = 0; i < MAX_NR_BANKS; i++) { 2634 struct mce_bank_dev *b = &mce_bank_devs[i]; 2635 struct device_attribute *a = &b->attr; 2636 2637 b->bank = i; 2638 2639 sysfs_attr_init(&a->attr); 2640 a->attr.name = b->attrname; 2641 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2642 2643 a->attr.mode = 0644; 2644 a->show = show_bank; 2645 a->store = set_bank; 2646 } 2647 } 2648 2649 /* 2650 * When running on XEN, this initcall is ordered against the XEN mcelog 2651 * initcall: 2652 * 2653 * device_initcall(xen_late_init_mcelog); 2654 * device_initcall_sync(mcheck_init_device); 2655 */ 2656 static __init int mcheck_init_device(void) 2657 { 2658 int err; 2659 2660 /* 2661 * Check if we have a spare virtual bit. This will only become 2662 * a problem if/when we move beyond 5-level page tables. 2663 */ 2664 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2665 2666 if (!mce_available(&boot_cpu_data)) { 2667 err = -EIO; 2668 goto err_out; 2669 } 2670 2671 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2672 err = -ENOMEM; 2673 goto err_out; 2674 } 2675 2676 mce_init_banks(); 2677 2678 err = subsys_system_register(&mce_subsys, NULL); 2679 if (err) 2680 goto err_out_mem; 2681 2682 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2683 mce_cpu_dead); 2684 if (err) 2685 goto err_out_mem; 2686 2687 /* 2688 * Invokes mce_cpu_online() on all CPUs which are online when 2689 * the state is installed. 2690 */ 2691 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2692 mce_cpu_online, mce_cpu_pre_down); 2693 if (err < 0) 2694 goto err_out_online; 2695 2696 register_syscore_ops(&mce_syscore_ops); 2697 2698 return 0; 2699 2700 err_out_online: 2701 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2702 2703 err_out_mem: 2704 free_cpumask_var(mce_device_initialized); 2705 2706 err_out: 2707 pr_err("Unable to init MCE device (rc: %d)\n", err); 2708 2709 return err; 2710 } 2711 device_initcall_sync(mcheck_init_device); 2712 2713 /* 2714 * Old style boot options parsing. Only for compatibility. 2715 */ 2716 static int __init mcheck_disable(char *str) 2717 { 2718 mca_cfg.disabled = 1; 2719 return 1; 2720 } 2721 __setup("nomce", mcheck_disable); 2722 2723 #ifdef CONFIG_DEBUG_FS 2724 struct dentry *mce_get_debugfs_dir(void) 2725 { 2726 static struct dentry *dmce; 2727 2728 if (!dmce) 2729 dmce = debugfs_create_dir("mce", NULL); 2730 2731 return dmce; 2732 } 2733 2734 static void mce_reset(void) 2735 { 2736 cpu_missing = 0; 2737 atomic_set(&mce_fake_panicked, 0); 2738 atomic_set(&mce_executing, 0); 2739 atomic_set(&mce_callin, 0); 2740 atomic_set(&global_nwo, 0); 2741 cpumask_setall(&mce_missing_cpus); 2742 } 2743 2744 static int fake_panic_get(void *data, u64 *val) 2745 { 2746 *val = fake_panic; 2747 return 0; 2748 } 2749 2750 static int fake_panic_set(void *data, u64 val) 2751 { 2752 mce_reset(); 2753 fake_panic = val; 2754 return 0; 2755 } 2756 2757 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2758 "%llu\n"); 2759 2760 static void __init mcheck_debugfs_init(void) 2761 { 2762 struct dentry *dmce; 2763 2764 dmce = mce_get_debugfs_dir(); 2765 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2766 &fake_panic_fops); 2767 } 2768 #else 2769 static void __init mcheck_debugfs_init(void) { } 2770 #endif 2771 2772 static int __init mcheck_late_init(void) 2773 { 2774 if (mca_cfg.recovery) 2775 enable_copy_mc_fragile(); 2776 2777 mcheck_debugfs_init(); 2778 2779 /* 2780 * Flush out everything that has been logged during early boot, now that 2781 * everything has been initialized (workqueues, decoders, ...). 2782 */ 2783 mce_schedule_work(); 2784 2785 return 0; 2786 } 2787 late_initcall(mcheck_late_init); 2788