xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision 6846d656)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 
103 /*
104  * MCA banks polled by the period polling timer for corrected events.
105  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
106  */
107 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
108 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
109 };
110 
111 /*
112  * MCA banks controlled through firmware first for corrected errors.
113  * This is a global list of banks for which we won't enable CMCI and we
114  * won't poll. Firmware controls these banks and is responsible for
115  * reporting corrected errors through GHES. Uncorrected/recoverable
116  * errors are still notified through a machine check.
117  */
118 mce_banks_t mce_banks_ce_disabled;
119 
120 static struct work_struct mce_work;
121 static struct irq_work mce_irq_work;
122 
123 /*
124  * CPU/chipset specific EDAC code can register a notifier call here to print
125  * MCE errors in a human-readable form.
126  */
127 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
128 
129 /* Do initial initialization of a struct mce */
130 void mce_setup(struct mce *m)
131 {
132 	memset(m, 0, sizeof(struct mce));
133 	m->cpu = m->extcpu = smp_processor_id();
134 	/* need the internal __ version to avoid deadlocks */
135 	m->time = __ktime_get_real_seconds();
136 	m->cpuvendor = boot_cpu_data.x86_vendor;
137 	m->cpuid = cpuid_eax(1);
138 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
139 	m->apicid = cpu_data(m->extcpu).initial_apicid;
140 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
141 	m->ppin = cpu_data(m->extcpu).ppin;
142 	m->microcode = boot_cpu_data.microcode;
143 }
144 
145 DEFINE_PER_CPU(struct mce, injectm);
146 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
147 
148 void mce_log(struct mce *m)
149 {
150 	if (!mce_gen_pool_add(m))
151 		irq_work_queue(&mce_irq_work);
152 }
153 EXPORT_SYMBOL_GPL(mce_log);
154 
155 void mce_register_decode_chain(struct notifier_block *nb)
156 {
157 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
158 		    nb->priority > MCE_PRIO_HIGHEST))
159 		return;
160 
161 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
162 }
163 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
164 
165 void mce_unregister_decode_chain(struct notifier_block *nb)
166 {
167 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
168 }
169 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
170 
171 u32 mca_msr_reg(int bank, enum mca_msr reg)
172 {
173 	if (mce_flags.smca) {
174 		switch (reg) {
175 		case MCA_CTL:	 return MSR_AMD64_SMCA_MCx_CTL(bank);
176 		case MCA_ADDR:	 return MSR_AMD64_SMCA_MCx_ADDR(bank);
177 		case MCA_MISC:	 return MSR_AMD64_SMCA_MCx_MISC(bank);
178 		case MCA_STATUS: return MSR_AMD64_SMCA_MCx_STATUS(bank);
179 		}
180 	}
181 
182 	switch (reg) {
183 	case MCA_CTL:	 return MSR_IA32_MCx_CTL(bank);
184 	case MCA_ADDR:	 return MSR_IA32_MCx_ADDR(bank);
185 	case MCA_MISC:	 return MSR_IA32_MCx_MISC(bank);
186 	case MCA_STATUS: return MSR_IA32_MCx_STATUS(bank);
187 	}
188 
189 	return 0;
190 }
191 
192 static void __print_mce(struct mce *m)
193 {
194 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
195 		 m->extcpu,
196 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
197 		 m->mcgstatus, m->bank, m->status);
198 
199 	if (m->ip) {
200 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
201 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
202 			m->cs, m->ip);
203 
204 		if (m->cs == __KERNEL_CS)
205 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
206 		pr_cont("\n");
207 	}
208 
209 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
210 	if (m->addr)
211 		pr_cont("ADDR %llx ", m->addr);
212 	if (m->misc)
213 		pr_cont("MISC %llx ", m->misc);
214 	if (m->ppin)
215 		pr_cont("PPIN %llx ", m->ppin);
216 
217 	if (mce_flags.smca) {
218 		if (m->synd)
219 			pr_cont("SYND %llx ", m->synd);
220 		if (m->ipid)
221 			pr_cont("IPID %llx ", m->ipid);
222 	}
223 
224 	pr_cont("\n");
225 
226 	/*
227 	 * Note this output is parsed by external tools and old fields
228 	 * should not be changed.
229 	 */
230 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
231 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
232 		m->microcode);
233 }
234 
235 static void print_mce(struct mce *m)
236 {
237 	__print_mce(m);
238 
239 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
240 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
241 }
242 
243 #define PANIC_TIMEOUT 5 /* 5 seconds */
244 
245 static atomic_t mce_panicked;
246 
247 static int fake_panic;
248 static atomic_t mce_fake_panicked;
249 
250 /* Panic in progress. Enable interrupts and wait for final IPI */
251 static void wait_for_panic(void)
252 {
253 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
254 
255 	preempt_disable();
256 	local_irq_enable();
257 	while (timeout-- > 0)
258 		udelay(1);
259 	if (panic_timeout == 0)
260 		panic_timeout = mca_cfg.panic_timeout;
261 	panic("Panicing machine check CPU died");
262 }
263 
264 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
265 {
266 	struct llist_node *pending;
267 	struct mce_evt_llist *l;
268 	int apei_err = 0;
269 
270 	/*
271 	 * Allow instrumentation around external facilities usage. Not that it
272 	 * matters a whole lot since the machine is going to panic anyway.
273 	 */
274 	instrumentation_begin();
275 
276 	if (!fake_panic) {
277 		/*
278 		 * Make sure only one CPU runs in machine check panic
279 		 */
280 		if (atomic_inc_return(&mce_panicked) > 1)
281 			wait_for_panic();
282 		barrier();
283 
284 		bust_spinlocks(1);
285 		console_verbose();
286 	} else {
287 		/* Don't log too much for fake panic */
288 		if (atomic_inc_return(&mce_fake_panicked) > 1)
289 			goto out;
290 	}
291 	pending = mce_gen_pool_prepare_records();
292 	/* First print corrected ones that are still unlogged */
293 	llist_for_each_entry(l, pending, llnode) {
294 		struct mce *m = &l->mce;
295 		if (!(m->status & MCI_STATUS_UC)) {
296 			print_mce(m);
297 			if (!apei_err)
298 				apei_err = apei_write_mce(m);
299 		}
300 	}
301 	/* Now print uncorrected but with the final one last */
302 	llist_for_each_entry(l, pending, llnode) {
303 		struct mce *m = &l->mce;
304 		if (!(m->status & MCI_STATUS_UC))
305 			continue;
306 		if (!final || mce_cmp(m, final)) {
307 			print_mce(m);
308 			if (!apei_err)
309 				apei_err = apei_write_mce(m);
310 		}
311 	}
312 	if (final) {
313 		print_mce(final);
314 		if (!apei_err)
315 			apei_err = apei_write_mce(final);
316 	}
317 	if (exp)
318 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
319 	if (!fake_panic) {
320 		if (panic_timeout == 0)
321 			panic_timeout = mca_cfg.panic_timeout;
322 		panic(msg);
323 	} else
324 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
325 
326 out:
327 	instrumentation_end();
328 }
329 
330 /* Support code for software error injection */
331 
332 static int msr_to_offset(u32 msr)
333 {
334 	unsigned bank = __this_cpu_read(injectm.bank);
335 
336 	if (msr == mca_cfg.rip_msr)
337 		return offsetof(struct mce, ip);
338 	if (msr == mca_msr_reg(bank, MCA_STATUS))
339 		return offsetof(struct mce, status);
340 	if (msr == mca_msr_reg(bank, MCA_ADDR))
341 		return offsetof(struct mce, addr);
342 	if (msr == mca_msr_reg(bank, MCA_MISC))
343 		return offsetof(struct mce, misc);
344 	if (msr == MSR_IA32_MCG_STATUS)
345 		return offsetof(struct mce, mcgstatus);
346 	return -1;
347 }
348 
349 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
350 {
351 	if (wrmsr) {
352 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
353 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
354 			 regs->ip, (void *)regs->ip);
355 	} else {
356 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
357 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
358 	}
359 
360 	show_stack_regs(regs);
361 
362 	panic("MCA architectural violation!\n");
363 
364 	while (true)
365 		cpu_relax();
366 }
367 
368 /* MSR access wrappers used for error injection */
369 noinstr u64 mce_rdmsrl(u32 msr)
370 {
371 	DECLARE_ARGS(val, low, high);
372 
373 	if (__this_cpu_read(injectm.finished)) {
374 		int offset;
375 		u64 ret;
376 
377 		instrumentation_begin();
378 
379 		offset = msr_to_offset(msr);
380 		if (offset < 0)
381 			ret = 0;
382 		else
383 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
384 
385 		instrumentation_end();
386 
387 		return ret;
388 	}
389 
390 	/*
391 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
392 	 * architectural violation and needs to be reported to hw vendor. Panic
393 	 * the box to not allow any further progress.
394 	 */
395 	asm volatile("1: rdmsr\n"
396 		     "2:\n"
397 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
398 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
399 
400 
401 	return EAX_EDX_VAL(val, low, high);
402 }
403 
404 static noinstr void mce_wrmsrl(u32 msr, u64 v)
405 {
406 	u32 low, high;
407 
408 	if (__this_cpu_read(injectm.finished)) {
409 		int offset;
410 
411 		instrumentation_begin();
412 
413 		offset = msr_to_offset(msr);
414 		if (offset >= 0)
415 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
416 
417 		instrumentation_end();
418 
419 		return;
420 	}
421 
422 	low  = (u32)v;
423 	high = (u32)(v >> 32);
424 
425 	/* See comment in mce_rdmsrl() */
426 	asm volatile("1: wrmsr\n"
427 		     "2:\n"
428 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
429 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
430 }
431 
432 /*
433  * Collect all global (w.r.t. this processor) status about this machine
434  * check into our "mce" struct so that we can use it later to assess
435  * the severity of the problem as we read per-bank specific details.
436  */
437 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
438 {
439 	/*
440 	 * Enable instrumentation around mce_setup() which calls external
441 	 * facilities.
442 	 */
443 	instrumentation_begin();
444 	mce_setup(m);
445 	instrumentation_end();
446 
447 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
448 	if (regs) {
449 		/*
450 		 * Get the address of the instruction at the time of
451 		 * the machine check error.
452 		 */
453 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
454 			m->ip = regs->ip;
455 			m->cs = regs->cs;
456 
457 			/*
458 			 * When in VM86 mode make the cs look like ring 3
459 			 * always. This is a lie, but it's better than passing
460 			 * the additional vm86 bit around everywhere.
461 			 */
462 			if (v8086_mode(regs))
463 				m->cs |= 3;
464 		}
465 		/* Use accurate RIP reporting if available. */
466 		if (mca_cfg.rip_msr)
467 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
468 	}
469 }
470 
471 int mce_available(struct cpuinfo_x86 *c)
472 {
473 	if (mca_cfg.disabled)
474 		return 0;
475 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
476 }
477 
478 static void mce_schedule_work(void)
479 {
480 	if (!mce_gen_pool_empty())
481 		schedule_work(&mce_work);
482 }
483 
484 static void mce_irq_work_cb(struct irq_work *entry)
485 {
486 	mce_schedule_work();
487 }
488 
489 /*
490  * Check if the address reported by the CPU is in a format we can parse.
491  * It would be possible to add code for most other cases, but all would
492  * be somewhat complicated (e.g. segment offset would require an instruction
493  * parser). So only support physical addresses up to page granularity for now.
494  */
495 int mce_usable_address(struct mce *m)
496 {
497 	if (!(m->status & MCI_STATUS_ADDRV))
498 		return 0;
499 
500 	/* Checks after this one are Intel/Zhaoxin-specific: */
501 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
502 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
503 		return 1;
504 
505 	if (!(m->status & MCI_STATUS_MISCV))
506 		return 0;
507 
508 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
509 		return 0;
510 
511 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
512 		return 0;
513 
514 	return 1;
515 }
516 EXPORT_SYMBOL_GPL(mce_usable_address);
517 
518 bool mce_is_memory_error(struct mce *m)
519 {
520 	switch (m->cpuvendor) {
521 	case X86_VENDOR_AMD:
522 	case X86_VENDOR_HYGON:
523 		return amd_mce_is_memory_error(m);
524 
525 	case X86_VENDOR_INTEL:
526 	case X86_VENDOR_ZHAOXIN:
527 		/*
528 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
529 		 *
530 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
531 		 * indicating a memory error. Bit 8 is used for indicating a
532 		 * cache hierarchy error. The combination of bit 2 and bit 3
533 		 * is used for indicating a `generic' cache hierarchy error
534 		 * But we can't just blindly check the above bits, because if
535 		 * bit 11 is set, then it is a bus/interconnect error - and
536 		 * either way the above bits just gives more detail on what
537 		 * bus/interconnect error happened. Note that bit 12 can be
538 		 * ignored, as it's the "filter" bit.
539 		 */
540 		return (m->status & 0xef80) == BIT(7) ||
541 		       (m->status & 0xef00) == BIT(8) ||
542 		       (m->status & 0xeffc) == 0xc;
543 
544 	default:
545 		return false;
546 	}
547 }
548 EXPORT_SYMBOL_GPL(mce_is_memory_error);
549 
550 static bool whole_page(struct mce *m)
551 {
552 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
553 		return true;
554 
555 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
556 }
557 
558 bool mce_is_correctable(struct mce *m)
559 {
560 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
561 		return false;
562 
563 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
564 		return false;
565 
566 	if (m->status & MCI_STATUS_UC)
567 		return false;
568 
569 	return true;
570 }
571 EXPORT_SYMBOL_GPL(mce_is_correctable);
572 
573 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
574 			      void *data)
575 {
576 	struct mce *m = (struct mce *)data;
577 
578 	if (!m)
579 		return NOTIFY_DONE;
580 
581 	/* Emit the trace record: */
582 	trace_mce_record(m);
583 
584 	set_bit(0, &mce_need_notify);
585 
586 	mce_notify_irq();
587 
588 	return NOTIFY_DONE;
589 }
590 
591 static struct notifier_block early_nb = {
592 	.notifier_call	= mce_early_notifier,
593 	.priority	= MCE_PRIO_EARLY,
594 };
595 
596 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
597 			      void *data)
598 {
599 	struct mce *mce = (struct mce *)data;
600 	unsigned long pfn;
601 
602 	if (!mce || !mce_usable_address(mce))
603 		return NOTIFY_DONE;
604 
605 	if (mce->severity != MCE_AO_SEVERITY &&
606 	    mce->severity != MCE_DEFERRED_SEVERITY)
607 		return NOTIFY_DONE;
608 
609 	pfn = mce->addr >> PAGE_SHIFT;
610 	if (!memory_failure(pfn, 0)) {
611 		set_mce_nospec(pfn, whole_page(mce));
612 		mce->kflags |= MCE_HANDLED_UC;
613 	}
614 
615 	return NOTIFY_OK;
616 }
617 
618 static struct notifier_block mce_uc_nb = {
619 	.notifier_call	= uc_decode_notifier,
620 	.priority	= MCE_PRIO_UC,
621 };
622 
623 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
624 				void *data)
625 {
626 	struct mce *m = (struct mce *)data;
627 
628 	if (!m)
629 		return NOTIFY_DONE;
630 
631 	if (mca_cfg.print_all || !m->kflags)
632 		__print_mce(m);
633 
634 	return NOTIFY_DONE;
635 }
636 
637 static struct notifier_block mce_default_nb = {
638 	.notifier_call	= mce_default_notifier,
639 	/* lowest prio, we want it to run last. */
640 	.priority	= MCE_PRIO_LOWEST,
641 };
642 
643 /*
644  * Read ADDR and MISC registers.
645  */
646 static noinstr void mce_read_aux(struct mce *m, int i)
647 {
648 	if (m->status & MCI_STATUS_MISCV)
649 		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
650 
651 	if (m->status & MCI_STATUS_ADDRV) {
652 		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
653 
654 		/*
655 		 * Mask the reported address by the reported granularity.
656 		 */
657 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
658 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
659 			m->addr >>= shift;
660 			m->addr <<= shift;
661 		}
662 
663 		/*
664 		 * Extract [55:<lsb>] where lsb is the least significant
665 		 * *valid* bit of the address bits.
666 		 */
667 		if (mce_flags.smca) {
668 			u8 lsb = (m->addr >> 56) & 0x3f;
669 
670 			m->addr &= GENMASK_ULL(55, lsb);
671 		}
672 	}
673 
674 	if (mce_flags.smca) {
675 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
676 
677 		if (m->status & MCI_STATUS_SYNDV)
678 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
679 	}
680 }
681 
682 DEFINE_PER_CPU(unsigned, mce_poll_count);
683 
684 /*
685  * Poll for corrected events or events that happened before reset.
686  * Those are just logged through /dev/mcelog.
687  *
688  * This is executed in standard interrupt context.
689  *
690  * Note: spec recommends to panic for fatal unsignalled
691  * errors here. However this would be quite problematic --
692  * we would need to reimplement the Monarch handling and
693  * it would mess up the exclusion between exception handler
694  * and poll handler -- * so we skip this for now.
695  * These cases should not happen anyways, or only when the CPU
696  * is already totally * confused. In this case it's likely it will
697  * not fully execute the machine check handler either.
698  */
699 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
700 {
701 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
702 	bool error_seen = false;
703 	struct mce m;
704 	int i;
705 
706 	this_cpu_inc(mce_poll_count);
707 
708 	mce_gather_info(&m, NULL);
709 
710 	if (flags & MCP_TIMESTAMP)
711 		m.tsc = rdtsc();
712 
713 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
714 		if (!mce_banks[i].ctl || !test_bit(i, *b))
715 			continue;
716 
717 		m.misc = 0;
718 		m.addr = 0;
719 		m.bank = i;
720 
721 		barrier();
722 		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
723 
724 		/* If this entry is not valid, ignore it */
725 		if (!(m.status & MCI_STATUS_VAL))
726 			continue;
727 
728 		/*
729 		 * If we are logging everything (at CPU online) or this
730 		 * is a corrected error, then we must log it.
731 		 */
732 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
733 			goto log_it;
734 
735 		/*
736 		 * Newer Intel systems that support software error
737 		 * recovery need to make additional checks. Other
738 		 * CPUs should skip over uncorrected errors, but log
739 		 * everything else.
740 		 */
741 		if (!mca_cfg.ser) {
742 			if (m.status & MCI_STATUS_UC)
743 				continue;
744 			goto log_it;
745 		}
746 
747 		/* Log "not enabled" (speculative) errors */
748 		if (!(m.status & MCI_STATUS_EN))
749 			goto log_it;
750 
751 		/*
752 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
753 		 * UC == 1 && PCC == 0 && S == 0
754 		 */
755 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
756 			goto log_it;
757 
758 		/*
759 		 * Skip anything else. Presumption is that our read of this
760 		 * bank is racing with a machine check. Leave the log alone
761 		 * for do_machine_check() to deal with it.
762 		 */
763 		continue;
764 
765 log_it:
766 		error_seen = true;
767 
768 		if (flags & MCP_DONTLOG)
769 			goto clear_it;
770 
771 		mce_read_aux(&m, i);
772 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
773 		/*
774 		 * Don't get the IP here because it's unlikely to
775 		 * have anything to do with the actual error location.
776 		 */
777 
778 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
779 			goto clear_it;
780 
781 		if (flags & MCP_QUEUE_LOG)
782 			mce_gen_pool_add(&m);
783 		else
784 			mce_log(&m);
785 
786 clear_it:
787 		/*
788 		 * Clear state for this bank.
789 		 */
790 		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
791 	}
792 
793 	/*
794 	 * Don't clear MCG_STATUS here because it's only defined for
795 	 * exceptions.
796 	 */
797 
798 	sync_core();
799 
800 	return error_seen;
801 }
802 EXPORT_SYMBOL_GPL(machine_check_poll);
803 
804 /*
805  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
806  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
807  * Vol 3B Table 15-20). But this confuses both the code that determines
808  * whether the machine check occurred in kernel or user mode, and also
809  * the severity assessment code. Pretend that EIPV was set, and take the
810  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
811  */
812 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
813 {
814 	if (bank != 0)
815 		return;
816 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
817 		return;
818 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
819 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
820 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
821 			  MCACOD)) !=
822 			 (MCI_STATUS_UC|MCI_STATUS_EN|
823 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
824 			  MCI_STATUS_AR|MCACOD_INSTR))
825 		return;
826 
827 	m->mcgstatus |= MCG_STATUS_EIPV;
828 	m->ip = regs->ip;
829 	m->cs = regs->cs;
830 }
831 
832 /*
833  * Do a quick check if any of the events requires a panic.
834  * This decides if we keep the events around or clear them.
835  */
836 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
837 			  struct pt_regs *regs)
838 {
839 	char *tmp = *msg;
840 	int i;
841 
842 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
843 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
844 		if (!(m->status & MCI_STATUS_VAL))
845 			continue;
846 
847 		__set_bit(i, validp);
848 		if (mce_flags.snb_ifu_quirk)
849 			quirk_sandybridge_ifu(i, m, regs);
850 
851 		m->bank = i;
852 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
853 			mce_read_aux(m, i);
854 			*msg = tmp;
855 			return 1;
856 		}
857 	}
858 	return 0;
859 }
860 
861 /*
862  * Variable to establish order between CPUs while scanning.
863  * Each CPU spins initially until executing is equal its number.
864  */
865 static atomic_t mce_executing;
866 
867 /*
868  * Defines order of CPUs on entry. First CPU becomes Monarch.
869  */
870 static atomic_t mce_callin;
871 
872 /*
873  * Track which CPUs entered the MCA broadcast synchronization and which not in
874  * order to print holdouts.
875  */
876 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
877 
878 /*
879  * Check if a timeout waiting for other CPUs happened.
880  */
881 static noinstr int mce_timed_out(u64 *t, const char *msg)
882 {
883 	int ret = 0;
884 
885 	/* Enable instrumentation around calls to external facilities */
886 	instrumentation_begin();
887 
888 	/*
889 	 * The others already did panic for some reason.
890 	 * Bail out like in a timeout.
891 	 * rmb() to tell the compiler that system_state
892 	 * might have been modified by someone else.
893 	 */
894 	rmb();
895 	if (atomic_read(&mce_panicked))
896 		wait_for_panic();
897 	if (!mca_cfg.monarch_timeout)
898 		goto out;
899 	if ((s64)*t < SPINUNIT) {
900 		if (mca_cfg.tolerant <= 1) {
901 			if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
902 				pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
903 					 cpumask_pr_args(&mce_missing_cpus));
904 			mce_panic(msg, NULL, NULL);
905 		}
906 		ret = 1;
907 		goto out;
908 	}
909 	*t -= SPINUNIT;
910 
911 out:
912 	touch_nmi_watchdog();
913 
914 	instrumentation_end();
915 
916 	return ret;
917 }
918 
919 /*
920  * The Monarch's reign.  The Monarch is the CPU who entered
921  * the machine check handler first. It waits for the others to
922  * raise the exception too and then grades them. When any
923  * error is fatal panic. Only then let the others continue.
924  *
925  * The other CPUs entering the MCE handler will be controlled by the
926  * Monarch. They are called Subjects.
927  *
928  * This way we prevent any potential data corruption in a unrecoverable case
929  * and also makes sure always all CPU's errors are examined.
930  *
931  * Also this detects the case of a machine check event coming from outer
932  * space (not detected by any CPUs) In this case some external agent wants
933  * us to shut down, so panic too.
934  *
935  * The other CPUs might still decide to panic if the handler happens
936  * in a unrecoverable place, but in this case the system is in a semi-stable
937  * state and won't corrupt anything by itself. It's ok to let the others
938  * continue for a bit first.
939  *
940  * All the spin loops have timeouts; when a timeout happens a CPU
941  * typically elects itself to be Monarch.
942  */
943 static void mce_reign(void)
944 {
945 	int cpu;
946 	struct mce *m = NULL;
947 	int global_worst = 0;
948 	char *msg = NULL;
949 
950 	/*
951 	 * This CPU is the Monarch and the other CPUs have run
952 	 * through their handlers.
953 	 * Grade the severity of the errors of all the CPUs.
954 	 */
955 	for_each_possible_cpu(cpu) {
956 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
957 
958 		if (mtmp->severity > global_worst) {
959 			global_worst = mtmp->severity;
960 			m = &per_cpu(mces_seen, cpu);
961 		}
962 	}
963 
964 	/*
965 	 * Cannot recover? Panic here then.
966 	 * This dumps all the mces in the log buffer and stops the
967 	 * other CPUs.
968 	 */
969 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
970 		/* call mce_severity() to get "msg" for panic */
971 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
972 		mce_panic("Fatal machine check", m, msg);
973 	}
974 
975 	/*
976 	 * For UC somewhere we let the CPU who detects it handle it.
977 	 * Also must let continue the others, otherwise the handling
978 	 * CPU could deadlock on a lock.
979 	 */
980 
981 	/*
982 	 * No machine check event found. Must be some external
983 	 * source or one CPU is hung. Panic.
984 	 */
985 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
986 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
987 
988 	/*
989 	 * Now clear all the mces_seen so that they don't reappear on
990 	 * the next mce.
991 	 */
992 	for_each_possible_cpu(cpu)
993 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
994 }
995 
996 static atomic_t global_nwo;
997 
998 /*
999  * Start of Monarch synchronization. This waits until all CPUs have
1000  * entered the exception handler and then determines if any of them
1001  * saw a fatal event that requires panic. Then it executes them
1002  * in the entry order.
1003  * TBD double check parallel CPU hotunplug
1004  */
1005 static noinstr int mce_start(int *no_way_out)
1006 {
1007 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1008 	int order, ret = -1;
1009 
1010 	if (!timeout)
1011 		return ret;
1012 
1013 	atomic_add(*no_way_out, &global_nwo);
1014 	/*
1015 	 * Rely on the implied barrier below, such that global_nwo
1016 	 * is updated before mce_callin.
1017 	 */
1018 	order = atomic_inc_return(&mce_callin);
1019 	cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1020 
1021 	/* Enable instrumentation around calls to external facilities */
1022 	instrumentation_begin();
1023 
1024 	/*
1025 	 * Wait for everyone.
1026 	 */
1027 	while (atomic_read(&mce_callin) != num_online_cpus()) {
1028 		if (mce_timed_out(&timeout,
1029 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1030 			atomic_set(&global_nwo, 0);
1031 			goto out;
1032 		}
1033 		ndelay(SPINUNIT);
1034 	}
1035 
1036 	/*
1037 	 * mce_callin should be read before global_nwo
1038 	 */
1039 	smp_rmb();
1040 
1041 	if (order == 1) {
1042 		/*
1043 		 * Monarch: Starts executing now, the others wait.
1044 		 */
1045 		atomic_set(&mce_executing, 1);
1046 	} else {
1047 		/*
1048 		 * Subject: Now start the scanning loop one by one in
1049 		 * the original callin order.
1050 		 * This way when there are any shared banks it will be
1051 		 * only seen by one CPU before cleared, avoiding duplicates.
1052 		 */
1053 		while (atomic_read(&mce_executing) < order) {
1054 			if (mce_timed_out(&timeout,
1055 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1056 				atomic_set(&global_nwo, 0);
1057 				goto out;
1058 			}
1059 			ndelay(SPINUNIT);
1060 		}
1061 	}
1062 
1063 	/*
1064 	 * Cache the global no_way_out state.
1065 	 */
1066 	*no_way_out = atomic_read(&global_nwo);
1067 
1068 	ret = order;
1069 
1070 out:
1071 	instrumentation_end();
1072 
1073 	return ret;
1074 }
1075 
1076 /*
1077  * Synchronize between CPUs after main scanning loop.
1078  * This invokes the bulk of the Monarch processing.
1079  */
1080 static noinstr int mce_end(int order)
1081 {
1082 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1083 	int ret = -1;
1084 
1085 	/* Allow instrumentation around external facilities. */
1086 	instrumentation_begin();
1087 
1088 	if (!timeout)
1089 		goto reset;
1090 	if (order < 0)
1091 		goto reset;
1092 
1093 	/*
1094 	 * Allow others to run.
1095 	 */
1096 	atomic_inc(&mce_executing);
1097 
1098 	if (order == 1) {
1099 		/*
1100 		 * Monarch: Wait for everyone to go through their scanning
1101 		 * loops.
1102 		 */
1103 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1104 			if (mce_timed_out(&timeout,
1105 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1106 				goto reset;
1107 			ndelay(SPINUNIT);
1108 		}
1109 
1110 		mce_reign();
1111 		barrier();
1112 		ret = 0;
1113 	} else {
1114 		/*
1115 		 * Subject: Wait for Monarch to finish.
1116 		 */
1117 		while (atomic_read(&mce_executing) != 0) {
1118 			if (mce_timed_out(&timeout,
1119 					  "Timeout: Monarch CPU did not finish machine check processing"))
1120 				goto reset;
1121 			ndelay(SPINUNIT);
1122 		}
1123 
1124 		/*
1125 		 * Don't reset anything. That's done by the Monarch.
1126 		 */
1127 		ret = 0;
1128 		goto out;
1129 	}
1130 
1131 	/*
1132 	 * Reset all global state.
1133 	 */
1134 reset:
1135 	atomic_set(&global_nwo, 0);
1136 	atomic_set(&mce_callin, 0);
1137 	cpumask_setall(&mce_missing_cpus);
1138 	barrier();
1139 
1140 	/*
1141 	 * Let others run again.
1142 	 */
1143 	atomic_set(&mce_executing, 0);
1144 
1145 out:
1146 	instrumentation_end();
1147 
1148 	return ret;
1149 }
1150 
1151 static void mce_clear_state(unsigned long *toclear)
1152 {
1153 	int i;
1154 
1155 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1156 		if (test_bit(i, toclear))
1157 			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1158 	}
1159 }
1160 
1161 /*
1162  * Cases where we avoid rendezvous handler timeout:
1163  * 1) If this CPU is offline.
1164  *
1165  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1166  *  skip those CPUs which remain looping in the 1st kernel - see
1167  *  crash_nmi_callback().
1168  *
1169  * Note: there still is a small window between kexec-ing and the new,
1170  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1171  * might not get handled properly.
1172  */
1173 static noinstr bool mce_check_crashing_cpu(void)
1174 {
1175 	unsigned int cpu = smp_processor_id();
1176 
1177 	if (arch_cpu_is_offline(cpu) ||
1178 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1179 		u64 mcgstatus;
1180 
1181 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1182 
1183 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1184 			if (mcgstatus & MCG_STATUS_LMCES)
1185 				return false;
1186 		}
1187 
1188 		if (mcgstatus & MCG_STATUS_RIPV) {
1189 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1190 			return true;
1191 		}
1192 	}
1193 	return false;
1194 }
1195 
1196 static __always_inline int
1197 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1198 		unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1199 		int *worst)
1200 {
1201 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1202 	struct mca_config *cfg = &mca_cfg;
1203 	int severity, i, taint = 0;
1204 
1205 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1206 		__clear_bit(i, toclear);
1207 		if (!test_bit(i, valid_banks))
1208 			continue;
1209 
1210 		if (!mce_banks[i].ctl)
1211 			continue;
1212 
1213 		m->misc = 0;
1214 		m->addr = 0;
1215 		m->bank = i;
1216 
1217 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1218 		if (!(m->status & MCI_STATUS_VAL))
1219 			continue;
1220 
1221 		/*
1222 		 * Corrected or non-signaled errors are handled by
1223 		 * machine_check_poll(). Leave them alone, unless this panics.
1224 		 */
1225 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1226 			!no_way_out)
1227 			continue;
1228 
1229 		/* Set taint even when machine check was not enabled. */
1230 		taint++;
1231 
1232 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1233 
1234 		/*
1235 		 * When machine check was for corrected/deferred handler don't
1236 		 * touch, unless we're panicking.
1237 		 */
1238 		if ((severity == MCE_KEEP_SEVERITY ||
1239 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1240 			continue;
1241 
1242 		__set_bit(i, toclear);
1243 
1244 		/* Machine check event was not enabled. Clear, but ignore. */
1245 		if (severity == MCE_NO_SEVERITY)
1246 			continue;
1247 
1248 		mce_read_aux(m, i);
1249 
1250 		/* assuming valid severity level != 0 */
1251 		m->severity = severity;
1252 
1253 		/*
1254 		 * Enable instrumentation around the mce_log() call which is
1255 		 * done in #MC context, where instrumentation is disabled.
1256 		 */
1257 		instrumentation_begin();
1258 		mce_log(m);
1259 		instrumentation_end();
1260 
1261 		if (severity > *worst) {
1262 			*final = *m;
1263 			*worst = severity;
1264 		}
1265 	}
1266 
1267 	/* mce_clear_state will clear *final, save locally for use later */
1268 	*m = *final;
1269 
1270 	return taint;
1271 }
1272 
1273 static void kill_me_now(struct callback_head *ch)
1274 {
1275 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1276 
1277 	p->mce_count = 0;
1278 	force_sig(SIGBUS);
1279 }
1280 
1281 static void kill_me_maybe(struct callback_head *cb)
1282 {
1283 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1284 	int flags = MF_ACTION_REQUIRED;
1285 	int ret;
1286 
1287 	p->mce_count = 0;
1288 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1289 
1290 	if (!p->mce_ripv)
1291 		flags |= MF_MUST_KILL;
1292 
1293 	ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1294 	if (!ret) {
1295 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1296 		sync_core();
1297 		return;
1298 	}
1299 
1300 	/*
1301 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1302 	 * to the current process with the proper error info,
1303 	 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1304 	 *
1305 	 * In both cases, no further processing is required.
1306 	 */
1307 	if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1308 		return;
1309 
1310 	pr_err("Memory error not recovered");
1311 	kill_me_now(cb);
1312 }
1313 
1314 static void kill_me_never(struct callback_head *cb)
1315 {
1316 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1317 
1318 	p->mce_count = 0;
1319 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1320 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0))
1321 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1322 }
1323 
1324 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1325 {
1326 	int count = ++current->mce_count;
1327 
1328 	/* First call, save all the details */
1329 	if (count == 1) {
1330 		current->mce_addr = m->addr;
1331 		current->mce_kflags = m->kflags;
1332 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1333 		current->mce_whole_page = whole_page(m);
1334 		current->mce_kill_me.func = func;
1335 	}
1336 
1337 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1338 	if (count > 10)
1339 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1340 
1341 	/* Second or later call, make sure page address matches the one from first call */
1342 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1343 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1344 
1345 	/* Do not call task_work_add() more than once */
1346 	if (count > 1)
1347 		return;
1348 
1349 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1350 }
1351 
1352 /* Handle unconfigured int18 (should never happen) */
1353 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1354 {
1355 	instrumentation_begin();
1356 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1357 	       smp_processor_id());
1358 	instrumentation_end();
1359 }
1360 
1361 /*
1362  * The actual machine check handler. This only handles real exceptions when
1363  * something got corrupted coming in through int 18.
1364  *
1365  * This is executed in #MC context not subject to normal locking rules.
1366  * This implies that most kernel services cannot be safely used. Don't even
1367  * think about putting a printk in there!
1368  *
1369  * On Intel systems this is entered on all CPUs in parallel through
1370  * MCE broadcast. However some CPUs might be broken beyond repair,
1371  * so be always careful when synchronizing with others.
1372  *
1373  * Tracing and kprobes are disabled: if we interrupted a kernel context
1374  * with IF=1, we need to minimize stack usage.  There are also recursion
1375  * issues: if the machine check was due to a failure of the memory
1376  * backing the user stack, tracing that reads the user stack will cause
1377  * potentially infinite recursion.
1378  *
1379  * Currently, the #MC handler calls out to a number of external facilities
1380  * and, therefore, allows instrumentation around them. The optimal thing to
1381  * have would be to do the absolutely minimal work required in #MC context
1382  * and have instrumentation disabled only around that. Further processing can
1383  * then happen in process context where instrumentation is allowed. Achieving
1384  * that requires careful auditing and modifications. Until then, the code
1385  * allows instrumentation temporarily, where required. *
1386  */
1387 noinstr void do_machine_check(struct pt_regs *regs)
1388 {
1389 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1390 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1391 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1392 	struct mca_config *cfg = &mca_cfg;
1393 	struct mce m, *final;
1394 	char *msg = NULL;
1395 
1396 	if (unlikely(mce_flags.p5))
1397 		return pentium_machine_check(regs);
1398 	else if (unlikely(mce_flags.winchip))
1399 		return winchip_machine_check(regs);
1400 	else if (unlikely(!mca_cfg.initialized))
1401 		return unexpected_machine_check(regs);
1402 
1403 	/*
1404 	 * Establish sequential order between the CPUs entering the machine
1405 	 * check handler.
1406 	 */
1407 	order = -1;
1408 
1409 	/*
1410 	 * If no_way_out gets set, there is no safe way to recover from this
1411 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1412 	 */
1413 	no_way_out = 0;
1414 
1415 	/*
1416 	 * If kill_current_task is not set, there might be a way to recover from this
1417 	 * error.
1418 	 */
1419 	kill_current_task = 0;
1420 
1421 	/*
1422 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1423 	 * on Intel.
1424 	 */
1425 	lmce = 1;
1426 
1427 	this_cpu_inc(mce_exception_count);
1428 
1429 	mce_gather_info(&m, regs);
1430 	m.tsc = rdtsc();
1431 
1432 	final = this_cpu_ptr(&mces_seen);
1433 	*final = m;
1434 
1435 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1436 
1437 	barrier();
1438 
1439 	/*
1440 	 * When no restart IP might need to kill or panic.
1441 	 * Assume the worst for now, but if we find the
1442 	 * severity is MCE_AR_SEVERITY we have other options.
1443 	 */
1444 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1445 		kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1446 	/*
1447 	 * Check if this MCE is signaled to only this logical processor,
1448 	 * on Intel, Zhaoxin only.
1449 	 */
1450 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1451 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1452 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1453 
1454 	/*
1455 	 * Local machine check may already know that we have to panic.
1456 	 * Broadcast machine check begins rendezvous in mce_start()
1457 	 * Go through all banks in exclusion of the other CPUs. This way we
1458 	 * don't report duplicated events on shared banks because the first one
1459 	 * to see it will clear it.
1460 	 */
1461 	if (lmce) {
1462 		if (no_way_out && cfg->tolerant < 3)
1463 			mce_panic("Fatal local machine check", &m, msg);
1464 	} else {
1465 		order = mce_start(&no_way_out);
1466 	}
1467 
1468 	taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1469 
1470 	if (!no_way_out)
1471 		mce_clear_state(toclear);
1472 
1473 	/*
1474 	 * Do most of the synchronization with other CPUs.
1475 	 * When there's any problem use only local no_way_out state.
1476 	 */
1477 	if (!lmce) {
1478 		if (mce_end(order) < 0) {
1479 			if (!no_way_out)
1480 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1481 
1482 			if (no_way_out && cfg->tolerant < 3)
1483 				mce_panic("Fatal machine check on current CPU", &m, msg);
1484 		}
1485 	} else {
1486 		/*
1487 		 * If there was a fatal machine check we should have
1488 		 * already called mce_panic earlier in this function.
1489 		 * Since we re-read the banks, we might have found
1490 		 * something new. Check again to see if we found a
1491 		 * fatal error. We call "mce_severity()" again to
1492 		 * make sure we have the right "msg".
1493 		 */
1494 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1495 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1496 			mce_panic("Local fatal machine check!", &m, msg);
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * Enable instrumentation around the external facilities like task_work_add()
1502 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1503 	 * properly would need a lot more involved reorganization.
1504 	 */
1505 	instrumentation_begin();
1506 
1507 	if (taint)
1508 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1509 
1510 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1511 		goto out;
1512 
1513 	/* Fault was in user mode and we need to take some action */
1514 	if ((m.cs & 3) == 3) {
1515 		/* If this triggers there is no way to recover. Die hard. */
1516 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1517 
1518 		if (kill_current_task)
1519 			queue_task_work(&m, msg, kill_me_now);
1520 		else
1521 			queue_task_work(&m, msg, kill_me_maybe);
1522 
1523 	} else {
1524 		/*
1525 		 * Handle an MCE which has happened in kernel space but from
1526 		 * which the kernel can recover: ex_has_fault_handler() has
1527 		 * already verified that the rIP at which the error happened is
1528 		 * a rIP from which the kernel can recover (by jumping to
1529 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1530 		 * corresponding exception handler which would do that is the
1531 		 * proper one.
1532 		 */
1533 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1534 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1535 				mce_panic("Failed kernel mode recovery", &m, msg);
1536 		}
1537 
1538 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1539 			queue_task_work(&m, msg, kill_me_never);
1540 	}
1541 
1542 out:
1543 	instrumentation_end();
1544 
1545 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1546 }
1547 EXPORT_SYMBOL_GPL(do_machine_check);
1548 
1549 #ifndef CONFIG_MEMORY_FAILURE
1550 int memory_failure(unsigned long pfn, int flags)
1551 {
1552 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1553 	BUG_ON(flags & MF_ACTION_REQUIRED);
1554 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1555 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1556 	       pfn);
1557 
1558 	return 0;
1559 }
1560 #endif
1561 
1562 /*
1563  * Periodic polling timer for "silent" machine check errors.  If the
1564  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1565  * errors, poll 2x slower (up to check_interval seconds).
1566  */
1567 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1568 
1569 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1570 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1571 
1572 static unsigned long mce_adjust_timer_default(unsigned long interval)
1573 {
1574 	return interval;
1575 }
1576 
1577 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1578 
1579 static void __start_timer(struct timer_list *t, unsigned long interval)
1580 {
1581 	unsigned long when = jiffies + interval;
1582 	unsigned long flags;
1583 
1584 	local_irq_save(flags);
1585 
1586 	if (!timer_pending(t) || time_before(when, t->expires))
1587 		mod_timer(t, round_jiffies(when));
1588 
1589 	local_irq_restore(flags);
1590 }
1591 
1592 static void mce_timer_fn(struct timer_list *t)
1593 {
1594 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1595 	unsigned long iv;
1596 
1597 	WARN_ON(cpu_t != t);
1598 
1599 	iv = __this_cpu_read(mce_next_interval);
1600 
1601 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1602 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1603 
1604 		if (mce_intel_cmci_poll()) {
1605 			iv = mce_adjust_timer(iv);
1606 			goto done;
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1612 	 * interval, otherwise increase the polling interval.
1613 	 */
1614 	if (mce_notify_irq())
1615 		iv = max(iv / 2, (unsigned long) HZ/100);
1616 	else
1617 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1618 
1619 done:
1620 	__this_cpu_write(mce_next_interval, iv);
1621 	__start_timer(t, iv);
1622 }
1623 
1624 /*
1625  * Ensure that the timer is firing in @interval from now.
1626  */
1627 void mce_timer_kick(unsigned long interval)
1628 {
1629 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1630 	unsigned long iv = __this_cpu_read(mce_next_interval);
1631 
1632 	__start_timer(t, interval);
1633 
1634 	if (interval < iv)
1635 		__this_cpu_write(mce_next_interval, interval);
1636 }
1637 
1638 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1639 static void mce_timer_delete_all(void)
1640 {
1641 	int cpu;
1642 
1643 	for_each_online_cpu(cpu)
1644 		del_timer_sync(&per_cpu(mce_timer, cpu));
1645 }
1646 
1647 /*
1648  * Notify the user(s) about new machine check events.
1649  * Can be called from interrupt context, but not from machine check/NMI
1650  * context.
1651  */
1652 int mce_notify_irq(void)
1653 {
1654 	/* Not more than two messages every minute */
1655 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1656 
1657 	if (test_and_clear_bit(0, &mce_need_notify)) {
1658 		mce_work_trigger();
1659 
1660 		if (__ratelimit(&ratelimit))
1661 			pr_info(HW_ERR "Machine check events logged\n");
1662 
1663 		return 1;
1664 	}
1665 	return 0;
1666 }
1667 EXPORT_SYMBOL_GPL(mce_notify_irq);
1668 
1669 static void __mcheck_cpu_mce_banks_init(void)
1670 {
1671 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1672 	u8 n_banks = this_cpu_read(mce_num_banks);
1673 	int i;
1674 
1675 	for (i = 0; i < n_banks; i++) {
1676 		struct mce_bank *b = &mce_banks[i];
1677 
1678 		/*
1679 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1680 		 * the required vendor quirks before
1681 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1682 		 */
1683 		b->ctl = -1ULL;
1684 		b->init = true;
1685 	}
1686 }
1687 
1688 /*
1689  * Initialize Machine Checks for a CPU.
1690  */
1691 static void __mcheck_cpu_cap_init(void)
1692 {
1693 	u64 cap;
1694 	u8 b;
1695 
1696 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1697 
1698 	b = cap & MCG_BANKCNT_MASK;
1699 
1700 	if (b > MAX_NR_BANKS) {
1701 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1702 			smp_processor_id(), MAX_NR_BANKS, b);
1703 		b = MAX_NR_BANKS;
1704 	}
1705 
1706 	this_cpu_write(mce_num_banks, b);
1707 
1708 	__mcheck_cpu_mce_banks_init();
1709 
1710 	/* Use accurate RIP reporting if available. */
1711 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1712 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1713 
1714 	if (cap & MCG_SER_P)
1715 		mca_cfg.ser = 1;
1716 }
1717 
1718 static void __mcheck_cpu_init_generic(void)
1719 {
1720 	enum mcp_flags m_fl = 0;
1721 	mce_banks_t all_banks;
1722 	u64 cap;
1723 
1724 	if (!mca_cfg.bootlog)
1725 		m_fl = MCP_DONTLOG;
1726 
1727 	/*
1728 	 * Log the machine checks left over from the previous reset. Log them
1729 	 * only, do not start processing them. That will happen in mcheck_late_init()
1730 	 * when all consumers have been registered on the notifier chain.
1731 	 */
1732 	bitmap_fill(all_banks, MAX_NR_BANKS);
1733 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1734 
1735 	cr4_set_bits(X86_CR4_MCE);
1736 
1737 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1738 	if (cap & MCG_CTL_P)
1739 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1740 }
1741 
1742 static void __mcheck_cpu_init_clear_banks(void)
1743 {
1744 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1745 	int i;
1746 
1747 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1748 		struct mce_bank *b = &mce_banks[i];
1749 
1750 		if (!b->init)
1751 			continue;
1752 		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1753 		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1754 	}
1755 }
1756 
1757 /*
1758  * Do a final check to see if there are any unused/RAZ banks.
1759  *
1760  * This must be done after the banks have been initialized and any quirks have
1761  * been applied.
1762  *
1763  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1764  * Otherwise, a user who disables a bank will not be able to re-enable it
1765  * without a system reboot.
1766  */
1767 static void __mcheck_cpu_check_banks(void)
1768 {
1769 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1770 	u64 msrval;
1771 	int i;
1772 
1773 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1774 		struct mce_bank *b = &mce_banks[i];
1775 
1776 		if (!b->init)
1777 			continue;
1778 
1779 		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1780 		b->init = !!msrval;
1781 	}
1782 }
1783 
1784 /* Add per CPU specific workarounds here */
1785 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1786 {
1787 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1788 	struct mca_config *cfg = &mca_cfg;
1789 
1790 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1791 		pr_info("unknown CPU type - not enabling MCE support\n");
1792 		return -EOPNOTSUPP;
1793 	}
1794 
1795 	/* This should be disabled by the BIOS, but isn't always */
1796 	if (c->x86_vendor == X86_VENDOR_AMD) {
1797 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1798 			/*
1799 			 * disable GART TBL walk error reporting, which
1800 			 * trips off incorrectly with the IOMMU & 3ware
1801 			 * & Cerberus:
1802 			 */
1803 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1804 		}
1805 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1806 			/*
1807 			 * Lots of broken BIOS around that don't clear them
1808 			 * by default and leave crap in there. Don't log:
1809 			 */
1810 			cfg->bootlog = 0;
1811 		}
1812 		/*
1813 		 * Various K7s with broken bank 0 around. Always disable
1814 		 * by default.
1815 		 */
1816 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1817 			mce_banks[0].ctl = 0;
1818 
1819 		/*
1820 		 * overflow_recov is supported for F15h Models 00h-0fh
1821 		 * even though we don't have a CPUID bit for it.
1822 		 */
1823 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1824 			mce_flags.overflow_recov = 1;
1825 
1826 	}
1827 
1828 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1829 		/*
1830 		 * SDM documents that on family 6 bank 0 should not be written
1831 		 * because it aliases to another special BIOS controlled
1832 		 * register.
1833 		 * But it's not aliased anymore on model 0x1a+
1834 		 * Don't ignore bank 0 completely because there could be a
1835 		 * valid event later, merely don't write CTL0.
1836 		 */
1837 
1838 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1839 			mce_banks[0].init = false;
1840 
1841 		/*
1842 		 * All newer Intel systems support MCE broadcasting. Enable
1843 		 * synchronization with a one second timeout.
1844 		 */
1845 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1846 			cfg->monarch_timeout < 0)
1847 			cfg->monarch_timeout = USEC_PER_SEC;
1848 
1849 		/*
1850 		 * There are also broken BIOSes on some Pentium M and
1851 		 * earlier systems:
1852 		 */
1853 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1854 			cfg->bootlog = 0;
1855 
1856 		if (c->x86 == 6 && c->x86_model == 45)
1857 			mce_flags.snb_ifu_quirk = 1;
1858 	}
1859 
1860 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1861 		/*
1862 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1863 		 * synchronization with a one second timeout.
1864 		 */
1865 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1866 			if (cfg->monarch_timeout < 0)
1867 				cfg->monarch_timeout = USEC_PER_SEC;
1868 		}
1869 	}
1870 
1871 	if (cfg->monarch_timeout < 0)
1872 		cfg->monarch_timeout = 0;
1873 	if (cfg->bootlog != 0)
1874 		cfg->panic_timeout = 30;
1875 
1876 	return 0;
1877 }
1878 
1879 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1880 {
1881 	if (c->x86 != 5)
1882 		return 0;
1883 
1884 	switch (c->x86_vendor) {
1885 	case X86_VENDOR_INTEL:
1886 		intel_p5_mcheck_init(c);
1887 		mce_flags.p5 = 1;
1888 		return 1;
1889 	case X86_VENDOR_CENTAUR:
1890 		winchip_mcheck_init(c);
1891 		mce_flags.winchip = 1;
1892 		return 1;
1893 	default:
1894 		return 0;
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 /*
1901  * Init basic CPU features needed for early decoding of MCEs.
1902  */
1903 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1904 {
1905 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1906 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1907 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1908 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1909 		mce_flags.amd_threshold	 = 1;
1910 	}
1911 }
1912 
1913 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1914 {
1915 	struct mca_config *cfg = &mca_cfg;
1916 
1917 	 /*
1918 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1919 	  * synchronization with a one second timeout.
1920 	  */
1921 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1922 	     c->x86 > 6) {
1923 		if (cfg->monarch_timeout < 0)
1924 			cfg->monarch_timeout = USEC_PER_SEC;
1925 	}
1926 }
1927 
1928 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1929 {
1930 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1931 
1932 	/*
1933 	 * These CPUs have MCA bank 8 which reports only one error type called
1934 	 * SVAD (System View Address Decoder). The reporting of that error is
1935 	 * controlled by IA32_MC8.CTL.0.
1936 	 *
1937 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1938 	 * virtual machines start and result in a system  panic. Always disable
1939 	 * bank 8 SVAD error by default.
1940 	 */
1941 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1942 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1943 		if (this_cpu_read(mce_num_banks) > 8)
1944 			mce_banks[8].ctl = 0;
1945 	}
1946 
1947 	intel_init_cmci();
1948 	intel_init_lmce();
1949 	mce_adjust_timer = cmci_intel_adjust_timer;
1950 }
1951 
1952 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1953 {
1954 	intel_clear_lmce();
1955 }
1956 
1957 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1958 {
1959 	switch (c->x86_vendor) {
1960 	case X86_VENDOR_INTEL:
1961 		mce_intel_feature_init(c);
1962 		mce_adjust_timer = cmci_intel_adjust_timer;
1963 		break;
1964 
1965 	case X86_VENDOR_AMD: {
1966 		mce_amd_feature_init(c);
1967 		break;
1968 		}
1969 
1970 	case X86_VENDOR_HYGON:
1971 		mce_hygon_feature_init(c);
1972 		break;
1973 
1974 	case X86_VENDOR_CENTAUR:
1975 		mce_centaur_feature_init(c);
1976 		break;
1977 
1978 	case X86_VENDOR_ZHAOXIN:
1979 		mce_zhaoxin_feature_init(c);
1980 		break;
1981 
1982 	default:
1983 		break;
1984 	}
1985 }
1986 
1987 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1988 {
1989 	switch (c->x86_vendor) {
1990 	case X86_VENDOR_INTEL:
1991 		mce_intel_feature_clear(c);
1992 		break;
1993 
1994 	case X86_VENDOR_ZHAOXIN:
1995 		mce_zhaoxin_feature_clear(c);
1996 		break;
1997 
1998 	default:
1999 		break;
2000 	}
2001 }
2002 
2003 static void mce_start_timer(struct timer_list *t)
2004 {
2005 	unsigned long iv = check_interval * HZ;
2006 
2007 	if (mca_cfg.ignore_ce || !iv)
2008 		return;
2009 
2010 	this_cpu_write(mce_next_interval, iv);
2011 	__start_timer(t, iv);
2012 }
2013 
2014 static void __mcheck_cpu_setup_timer(void)
2015 {
2016 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2017 
2018 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2019 }
2020 
2021 static void __mcheck_cpu_init_timer(void)
2022 {
2023 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2024 
2025 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2026 	mce_start_timer(t);
2027 }
2028 
2029 bool filter_mce(struct mce *m)
2030 {
2031 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2032 		return amd_filter_mce(m);
2033 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2034 		return intel_filter_mce(m);
2035 
2036 	return false;
2037 }
2038 
2039 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2040 {
2041 	irqentry_state_t irq_state;
2042 
2043 	WARN_ON_ONCE(user_mode(regs));
2044 
2045 	/*
2046 	 * Only required when from kernel mode. See
2047 	 * mce_check_crashing_cpu() for details.
2048 	 */
2049 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2050 		return;
2051 
2052 	irq_state = irqentry_nmi_enter(regs);
2053 
2054 	do_machine_check(regs);
2055 
2056 	irqentry_nmi_exit(regs, irq_state);
2057 }
2058 
2059 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2060 {
2061 	irqentry_enter_from_user_mode(regs);
2062 
2063 	do_machine_check(regs);
2064 
2065 	irqentry_exit_to_user_mode(regs);
2066 }
2067 
2068 #ifdef CONFIG_X86_64
2069 /* MCE hit kernel mode */
2070 DEFINE_IDTENTRY_MCE(exc_machine_check)
2071 {
2072 	unsigned long dr7;
2073 
2074 	dr7 = local_db_save();
2075 	exc_machine_check_kernel(regs);
2076 	local_db_restore(dr7);
2077 }
2078 
2079 /* The user mode variant. */
2080 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2081 {
2082 	unsigned long dr7;
2083 
2084 	dr7 = local_db_save();
2085 	exc_machine_check_user(regs);
2086 	local_db_restore(dr7);
2087 }
2088 #else
2089 /* 32bit unified entry point */
2090 DEFINE_IDTENTRY_RAW(exc_machine_check)
2091 {
2092 	unsigned long dr7;
2093 
2094 	dr7 = local_db_save();
2095 	if (user_mode(regs))
2096 		exc_machine_check_user(regs);
2097 	else
2098 		exc_machine_check_kernel(regs);
2099 	local_db_restore(dr7);
2100 }
2101 #endif
2102 
2103 /*
2104  * Called for each booted CPU to set up machine checks.
2105  * Must be called with preempt off:
2106  */
2107 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2108 {
2109 	if (mca_cfg.disabled)
2110 		return;
2111 
2112 	if (__mcheck_cpu_ancient_init(c))
2113 		return;
2114 
2115 	if (!mce_available(c))
2116 		return;
2117 
2118 	__mcheck_cpu_cap_init();
2119 
2120 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2121 		mca_cfg.disabled = 1;
2122 		return;
2123 	}
2124 
2125 	if (mce_gen_pool_init()) {
2126 		mca_cfg.disabled = 1;
2127 		pr_emerg("Couldn't allocate MCE records pool!\n");
2128 		return;
2129 	}
2130 
2131 	mca_cfg.initialized = 1;
2132 
2133 	__mcheck_cpu_init_early(c);
2134 	__mcheck_cpu_init_generic();
2135 	__mcheck_cpu_init_vendor(c);
2136 	__mcheck_cpu_init_clear_banks();
2137 	__mcheck_cpu_check_banks();
2138 	__mcheck_cpu_setup_timer();
2139 }
2140 
2141 /*
2142  * Called for each booted CPU to clear some machine checks opt-ins
2143  */
2144 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2145 {
2146 	if (mca_cfg.disabled)
2147 		return;
2148 
2149 	if (!mce_available(c))
2150 		return;
2151 
2152 	/*
2153 	 * Possibly to clear general settings generic to x86
2154 	 * __mcheck_cpu_clear_generic(c);
2155 	 */
2156 	__mcheck_cpu_clear_vendor(c);
2157 
2158 }
2159 
2160 static void __mce_disable_bank(void *arg)
2161 {
2162 	int bank = *((int *)arg);
2163 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2164 	cmci_disable_bank(bank);
2165 }
2166 
2167 void mce_disable_bank(int bank)
2168 {
2169 	if (bank >= this_cpu_read(mce_num_banks)) {
2170 		pr_warn(FW_BUG
2171 			"Ignoring request to disable invalid MCA bank %d.\n",
2172 			bank);
2173 		return;
2174 	}
2175 	set_bit(bank, mce_banks_ce_disabled);
2176 	on_each_cpu(__mce_disable_bank, &bank, 1);
2177 }
2178 
2179 /*
2180  * mce=off Disables machine check
2181  * mce=no_cmci Disables CMCI
2182  * mce=no_lmce Disables LMCE
2183  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2184  * mce=print_all Print all machine check logs to console
2185  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2186  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2187  *	monarchtimeout is how long to wait for other CPUs on machine
2188  *	check, or 0 to not wait
2189  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2190 	and older.
2191  * mce=nobootlog Don't log MCEs from before booting.
2192  * mce=bios_cmci_threshold Don't program the CMCI threshold
2193  * mce=recovery force enable copy_mc_fragile()
2194  */
2195 static int __init mcheck_enable(char *str)
2196 {
2197 	struct mca_config *cfg = &mca_cfg;
2198 
2199 	if (*str == 0) {
2200 		enable_p5_mce();
2201 		return 1;
2202 	}
2203 	if (*str == '=')
2204 		str++;
2205 	if (!strcmp(str, "off"))
2206 		cfg->disabled = 1;
2207 	else if (!strcmp(str, "no_cmci"))
2208 		cfg->cmci_disabled = true;
2209 	else if (!strcmp(str, "no_lmce"))
2210 		cfg->lmce_disabled = 1;
2211 	else if (!strcmp(str, "dont_log_ce"))
2212 		cfg->dont_log_ce = true;
2213 	else if (!strcmp(str, "print_all"))
2214 		cfg->print_all = true;
2215 	else if (!strcmp(str, "ignore_ce"))
2216 		cfg->ignore_ce = true;
2217 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2218 		cfg->bootlog = (str[0] == 'b');
2219 	else if (!strcmp(str, "bios_cmci_threshold"))
2220 		cfg->bios_cmci_threshold = 1;
2221 	else if (!strcmp(str, "recovery"))
2222 		cfg->recovery = 1;
2223 	else if (isdigit(str[0])) {
2224 		if (get_option(&str, &cfg->tolerant) == 2)
2225 			get_option(&str, &(cfg->monarch_timeout));
2226 	} else {
2227 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2228 		return 0;
2229 	}
2230 	return 1;
2231 }
2232 __setup("mce", mcheck_enable);
2233 
2234 int __init mcheck_init(void)
2235 {
2236 	mce_register_decode_chain(&early_nb);
2237 	mce_register_decode_chain(&mce_uc_nb);
2238 	mce_register_decode_chain(&mce_default_nb);
2239 
2240 	INIT_WORK(&mce_work, mce_gen_pool_process);
2241 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2242 
2243 	return 0;
2244 }
2245 
2246 /*
2247  * mce_syscore: PM support
2248  */
2249 
2250 /*
2251  * Disable machine checks on suspend and shutdown. We can't really handle
2252  * them later.
2253  */
2254 static void mce_disable_error_reporting(void)
2255 {
2256 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2257 	int i;
2258 
2259 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2260 		struct mce_bank *b = &mce_banks[i];
2261 
2262 		if (b->init)
2263 			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2264 	}
2265 	return;
2266 }
2267 
2268 static void vendor_disable_error_reporting(void)
2269 {
2270 	/*
2271 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2272 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2273 	 * is bad, since it will inhibit reporting for all shared resources on
2274 	 * the socket like the last level cache (LLC), the integrated memory
2275 	 * controller (iMC), etc.
2276 	 */
2277 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2278 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2279 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2280 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2281 		return;
2282 
2283 	mce_disable_error_reporting();
2284 }
2285 
2286 static int mce_syscore_suspend(void)
2287 {
2288 	vendor_disable_error_reporting();
2289 	return 0;
2290 }
2291 
2292 static void mce_syscore_shutdown(void)
2293 {
2294 	vendor_disable_error_reporting();
2295 }
2296 
2297 /*
2298  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2299  * Only one CPU is active at this time, the others get re-added later using
2300  * CPU hotplug:
2301  */
2302 static void mce_syscore_resume(void)
2303 {
2304 	__mcheck_cpu_init_generic();
2305 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2306 	__mcheck_cpu_init_clear_banks();
2307 }
2308 
2309 static struct syscore_ops mce_syscore_ops = {
2310 	.suspend	= mce_syscore_suspend,
2311 	.shutdown	= mce_syscore_shutdown,
2312 	.resume		= mce_syscore_resume,
2313 };
2314 
2315 /*
2316  * mce_device: Sysfs support
2317  */
2318 
2319 static void mce_cpu_restart(void *data)
2320 {
2321 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2322 		return;
2323 	__mcheck_cpu_init_generic();
2324 	__mcheck_cpu_init_clear_banks();
2325 	__mcheck_cpu_init_timer();
2326 }
2327 
2328 /* Reinit MCEs after user configuration changes */
2329 static void mce_restart(void)
2330 {
2331 	mce_timer_delete_all();
2332 	on_each_cpu(mce_cpu_restart, NULL, 1);
2333 }
2334 
2335 /* Toggle features for corrected errors */
2336 static void mce_disable_cmci(void *data)
2337 {
2338 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2339 		return;
2340 	cmci_clear();
2341 }
2342 
2343 static void mce_enable_ce(void *all)
2344 {
2345 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2346 		return;
2347 	cmci_reenable();
2348 	cmci_recheck();
2349 	if (all)
2350 		__mcheck_cpu_init_timer();
2351 }
2352 
2353 static struct bus_type mce_subsys = {
2354 	.name		= "machinecheck",
2355 	.dev_name	= "machinecheck",
2356 };
2357 
2358 DEFINE_PER_CPU(struct device *, mce_device);
2359 
2360 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2361 {
2362 	return container_of(attr, struct mce_bank_dev, attr);
2363 }
2364 
2365 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2366 			 char *buf)
2367 {
2368 	u8 bank = attr_to_bank(attr)->bank;
2369 	struct mce_bank *b;
2370 
2371 	if (bank >= per_cpu(mce_num_banks, s->id))
2372 		return -EINVAL;
2373 
2374 	b = &per_cpu(mce_banks_array, s->id)[bank];
2375 
2376 	if (!b->init)
2377 		return -ENODEV;
2378 
2379 	return sprintf(buf, "%llx\n", b->ctl);
2380 }
2381 
2382 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2383 			const char *buf, size_t size)
2384 {
2385 	u8 bank = attr_to_bank(attr)->bank;
2386 	struct mce_bank *b;
2387 	u64 new;
2388 
2389 	if (kstrtou64(buf, 0, &new) < 0)
2390 		return -EINVAL;
2391 
2392 	if (bank >= per_cpu(mce_num_banks, s->id))
2393 		return -EINVAL;
2394 
2395 	b = &per_cpu(mce_banks_array, s->id)[bank];
2396 
2397 	if (!b->init)
2398 		return -ENODEV;
2399 
2400 	b->ctl = new;
2401 	mce_restart();
2402 
2403 	return size;
2404 }
2405 
2406 static ssize_t set_ignore_ce(struct device *s,
2407 			     struct device_attribute *attr,
2408 			     const char *buf, size_t size)
2409 {
2410 	u64 new;
2411 
2412 	if (kstrtou64(buf, 0, &new) < 0)
2413 		return -EINVAL;
2414 
2415 	mutex_lock(&mce_sysfs_mutex);
2416 	if (mca_cfg.ignore_ce ^ !!new) {
2417 		if (new) {
2418 			/* disable ce features */
2419 			mce_timer_delete_all();
2420 			on_each_cpu(mce_disable_cmci, NULL, 1);
2421 			mca_cfg.ignore_ce = true;
2422 		} else {
2423 			/* enable ce features */
2424 			mca_cfg.ignore_ce = false;
2425 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2426 		}
2427 	}
2428 	mutex_unlock(&mce_sysfs_mutex);
2429 
2430 	return size;
2431 }
2432 
2433 static ssize_t set_cmci_disabled(struct device *s,
2434 				 struct device_attribute *attr,
2435 				 const char *buf, size_t size)
2436 {
2437 	u64 new;
2438 
2439 	if (kstrtou64(buf, 0, &new) < 0)
2440 		return -EINVAL;
2441 
2442 	mutex_lock(&mce_sysfs_mutex);
2443 	if (mca_cfg.cmci_disabled ^ !!new) {
2444 		if (new) {
2445 			/* disable cmci */
2446 			on_each_cpu(mce_disable_cmci, NULL, 1);
2447 			mca_cfg.cmci_disabled = true;
2448 		} else {
2449 			/* enable cmci */
2450 			mca_cfg.cmci_disabled = false;
2451 			on_each_cpu(mce_enable_ce, NULL, 1);
2452 		}
2453 	}
2454 	mutex_unlock(&mce_sysfs_mutex);
2455 
2456 	return size;
2457 }
2458 
2459 static ssize_t store_int_with_restart(struct device *s,
2460 				      struct device_attribute *attr,
2461 				      const char *buf, size_t size)
2462 {
2463 	unsigned long old_check_interval = check_interval;
2464 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2465 
2466 	if (check_interval == old_check_interval)
2467 		return ret;
2468 
2469 	mutex_lock(&mce_sysfs_mutex);
2470 	mce_restart();
2471 	mutex_unlock(&mce_sysfs_mutex);
2472 
2473 	return ret;
2474 }
2475 
2476 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2477 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2478 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2479 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2480 
2481 static struct dev_ext_attribute dev_attr_check_interval = {
2482 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2483 	&check_interval
2484 };
2485 
2486 static struct dev_ext_attribute dev_attr_ignore_ce = {
2487 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2488 	&mca_cfg.ignore_ce
2489 };
2490 
2491 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2492 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2493 	&mca_cfg.cmci_disabled
2494 };
2495 
2496 static struct device_attribute *mce_device_attrs[] = {
2497 	&dev_attr_tolerant.attr,
2498 	&dev_attr_check_interval.attr,
2499 #ifdef CONFIG_X86_MCELOG_LEGACY
2500 	&dev_attr_trigger,
2501 #endif
2502 	&dev_attr_monarch_timeout.attr,
2503 	&dev_attr_dont_log_ce.attr,
2504 	&dev_attr_print_all.attr,
2505 	&dev_attr_ignore_ce.attr,
2506 	&dev_attr_cmci_disabled.attr,
2507 	NULL
2508 };
2509 
2510 static cpumask_var_t mce_device_initialized;
2511 
2512 static void mce_device_release(struct device *dev)
2513 {
2514 	kfree(dev);
2515 }
2516 
2517 /* Per CPU device init. All of the CPUs still share the same bank device: */
2518 static int mce_device_create(unsigned int cpu)
2519 {
2520 	struct device *dev;
2521 	int err;
2522 	int i, j;
2523 
2524 	if (!mce_available(&boot_cpu_data))
2525 		return -EIO;
2526 
2527 	dev = per_cpu(mce_device, cpu);
2528 	if (dev)
2529 		return 0;
2530 
2531 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2532 	if (!dev)
2533 		return -ENOMEM;
2534 	dev->id  = cpu;
2535 	dev->bus = &mce_subsys;
2536 	dev->release = &mce_device_release;
2537 
2538 	err = device_register(dev);
2539 	if (err) {
2540 		put_device(dev);
2541 		return err;
2542 	}
2543 
2544 	for (i = 0; mce_device_attrs[i]; i++) {
2545 		err = device_create_file(dev, mce_device_attrs[i]);
2546 		if (err)
2547 			goto error;
2548 	}
2549 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2550 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2551 		if (err)
2552 			goto error2;
2553 	}
2554 	cpumask_set_cpu(cpu, mce_device_initialized);
2555 	per_cpu(mce_device, cpu) = dev;
2556 
2557 	return 0;
2558 error2:
2559 	while (--j >= 0)
2560 		device_remove_file(dev, &mce_bank_devs[j].attr);
2561 error:
2562 	while (--i >= 0)
2563 		device_remove_file(dev, mce_device_attrs[i]);
2564 
2565 	device_unregister(dev);
2566 
2567 	return err;
2568 }
2569 
2570 static void mce_device_remove(unsigned int cpu)
2571 {
2572 	struct device *dev = per_cpu(mce_device, cpu);
2573 	int i;
2574 
2575 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2576 		return;
2577 
2578 	for (i = 0; mce_device_attrs[i]; i++)
2579 		device_remove_file(dev, mce_device_attrs[i]);
2580 
2581 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2582 		device_remove_file(dev, &mce_bank_devs[i].attr);
2583 
2584 	device_unregister(dev);
2585 	cpumask_clear_cpu(cpu, mce_device_initialized);
2586 	per_cpu(mce_device, cpu) = NULL;
2587 }
2588 
2589 /* Make sure there are no machine checks on offlined CPUs. */
2590 static void mce_disable_cpu(void)
2591 {
2592 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2593 		return;
2594 
2595 	if (!cpuhp_tasks_frozen)
2596 		cmci_clear();
2597 
2598 	vendor_disable_error_reporting();
2599 }
2600 
2601 static void mce_reenable_cpu(void)
2602 {
2603 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2604 	int i;
2605 
2606 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2607 		return;
2608 
2609 	if (!cpuhp_tasks_frozen)
2610 		cmci_reenable();
2611 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2612 		struct mce_bank *b = &mce_banks[i];
2613 
2614 		if (b->init)
2615 			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2616 	}
2617 }
2618 
2619 static int mce_cpu_dead(unsigned int cpu)
2620 {
2621 	mce_intel_hcpu_update(cpu);
2622 
2623 	/* intentionally ignoring frozen here */
2624 	if (!cpuhp_tasks_frozen)
2625 		cmci_rediscover();
2626 	return 0;
2627 }
2628 
2629 static int mce_cpu_online(unsigned int cpu)
2630 {
2631 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2632 	int ret;
2633 
2634 	mce_device_create(cpu);
2635 
2636 	ret = mce_threshold_create_device(cpu);
2637 	if (ret) {
2638 		mce_device_remove(cpu);
2639 		return ret;
2640 	}
2641 	mce_reenable_cpu();
2642 	mce_start_timer(t);
2643 	return 0;
2644 }
2645 
2646 static int mce_cpu_pre_down(unsigned int cpu)
2647 {
2648 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2649 
2650 	mce_disable_cpu();
2651 	del_timer_sync(t);
2652 	mce_threshold_remove_device(cpu);
2653 	mce_device_remove(cpu);
2654 	return 0;
2655 }
2656 
2657 static __init void mce_init_banks(void)
2658 {
2659 	int i;
2660 
2661 	for (i = 0; i < MAX_NR_BANKS; i++) {
2662 		struct mce_bank_dev *b = &mce_bank_devs[i];
2663 		struct device_attribute *a = &b->attr;
2664 
2665 		b->bank = i;
2666 
2667 		sysfs_attr_init(&a->attr);
2668 		a->attr.name	= b->attrname;
2669 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2670 
2671 		a->attr.mode	= 0644;
2672 		a->show		= show_bank;
2673 		a->store	= set_bank;
2674 	}
2675 }
2676 
2677 /*
2678  * When running on XEN, this initcall is ordered against the XEN mcelog
2679  * initcall:
2680  *
2681  *   device_initcall(xen_late_init_mcelog);
2682  *   device_initcall_sync(mcheck_init_device);
2683  */
2684 static __init int mcheck_init_device(void)
2685 {
2686 	int err;
2687 
2688 	/*
2689 	 * Check if we have a spare virtual bit. This will only become
2690 	 * a problem if/when we move beyond 5-level page tables.
2691 	 */
2692 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2693 
2694 	if (!mce_available(&boot_cpu_data)) {
2695 		err = -EIO;
2696 		goto err_out;
2697 	}
2698 
2699 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2700 		err = -ENOMEM;
2701 		goto err_out;
2702 	}
2703 
2704 	mce_init_banks();
2705 
2706 	err = subsys_system_register(&mce_subsys, NULL);
2707 	if (err)
2708 		goto err_out_mem;
2709 
2710 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2711 				mce_cpu_dead);
2712 	if (err)
2713 		goto err_out_mem;
2714 
2715 	/*
2716 	 * Invokes mce_cpu_online() on all CPUs which are online when
2717 	 * the state is installed.
2718 	 */
2719 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2720 				mce_cpu_online, mce_cpu_pre_down);
2721 	if (err < 0)
2722 		goto err_out_online;
2723 
2724 	register_syscore_ops(&mce_syscore_ops);
2725 
2726 	return 0;
2727 
2728 err_out_online:
2729 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2730 
2731 err_out_mem:
2732 	free_cpumask_var(mce_device_initialized);
2733 
2734 err_out:
2735 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2736 
2737 	return err;
2738 }
2739 device_initcall_sync(mcheck_init_device);
2740 
2741 /*
2742  * Old style boot options parsing. Only for compatibility.
2743  */
2744 static int __init mcheck_disable(char *str)
2745 {
2746 	mca_cfg.disabled = 1;
2747 	return 1;
2748 }
2749 __setup("nomce", mcheck_disable);
2750 
2751 #ifdef CONFIG_DEBUG_FS
2752 struct dentry *mce_get_debugfs_dir(void)
2753 {
2754 	static struct dentry *dmce;
2755 
2756 	if (!dmce)
2757 		dmce = debugfs_create_dir("mce", NULL);
2758 
2759 	return dmce;
2760 }
2761 
2762 static void mce_reset(void)
2763 {
2764 	atomic_set(&mce_fake_panicked, 0);
2765 	atomic_set(&mce_executing, 0);
2766 	atomic_set(&mce_callin, 0);
2767 	atomic_set(&global_nwo, 0);
2768 	cpumask_setall(&mce_missing_cpus);
2769 }
2770 
2771 static int fake_panic_get(void *data, u64 *val)
2772 {
2773 	*val = fake_panic;
2774 	return 0;
2775 }
2776 
2777 static int fake_panic_set(void *data, u64 val)
2778 {
2779 	mce_reset();
2780 	fake_panic = val;
2781 	return 0;
2782 }
2783 
2784 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2785 			 "%llu\n");
2786 
2787 static void __init mcheck_debugfs_init(void)
2788 {
2789 	struct dentry *dmce;
2790 
2791 	dmce = mce_get_debugfs_dir();
2792 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2793 				   &fake_panic_fops);
2794 }
2795 #else
2796 static void __init mcheck_debugfs_init(void) { }
2797 #endif
2798 
2799 static int __init mcheck_late_init(void)
2800 {
2801 	if (mca_cfg.recovery)
2802 		enable_copy_mc_fragile();
2803 
2804 	mcheck_debugfs_init();
2805 
2806 	/*
2807 	 * Flush out everything that has been logged during early boot, now that
2808 	 * everything has been initialized (workqueues, decoders, ...).
2809 	 */
2810 	mce_schedule_work();
2811 
2812 	return 0;
2813 }
2814 late_initcall(mcheck_late_init);
2815