1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Machine check handler. 4 * 5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs. 6 * Rest from unknown author(s). 7 * 2004 Andi Kleen. Rewrote most of it. 8 * Copyright 2008 Intel Corporation 9 * Author: Andi Kleen 10 */ 11 12 #include <linux/thread_info.h> 13 #include <linux/capability.h> 14 #include <linux/miscdevice.h> 15 #include <linux/ratelimit.h> 16 #include <linux/rcupdate.h> 17 #include <linux/kobject.h> 18 #include <linux/uaccess.h> 19 #include <linux/kdebug.h> 20 #include <linux/kernel.h> 21 #include <linux/percpu.h> 22 #include <linux/string.h> 23 #include <linux/device.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/delay.h> 26 #include <linux/ctype.h> 27 #include <linux/sched.h> 28 #include <linux/sysfs.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/kmod.h> 33 #include <linux/poll.h> 34 #include <linux/nmi.h> 35 #include <linux/cpu.h> 36 #include <linux/ras.h> 37 #include <linux/smp.h> 38 #include <linux/fs.h> 39 #include <linux/mm.h> 40 #include <linux/debugfs.h> 41 #include <linux/irq_work.h> 42 #include <linux/export.h> 43 #include <linux/jump_label.h> 44 #include <linux/set_memory.h> 45 46 #include <asm/intel-family.h> 47 #include <asm/processor.h> 48 #include <asm/traps.h> 49 #include <asm/tlbflush.h> 50 #include <asm/mce.h> 51 #include <asm/msr.h> 52 #include <asm/reboot.h> 53 54 #include "internal.h" 55 56 /* sysfs synchronization */ 57 static DEFINE_MUTEX(mce_sysfs_mutex); 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/mce.h> 61 62 #define SPINUNIT 100 /* 100ns */ 63 64 DEFINE_PER_CPU(unsigned, mce_exception_count); 65 66 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks); 67 68 struct mce_bank { 69 u64 ctl; /* subevents to enable */ 70 bool init; /* initialise bank? */ 71 }; 72 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array); 73 74 #define ATTR_LEN 16 75 /* One object for each MCE bank, shared by all CPUs */ 76 struct mce_bank_dev { 77 struct device_attribute attr; /* device attribute */ 78 char attrname[ATTR_LEN]; /* attribute name */ 79 u8 bank; /* bank number */ 80 }; 81 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS]; 82 83 struct mce_vendor_flags mce_flags __read_mostly; 84 85 struct mca_config mca_cfg __read_mostly = { 86 .bootlog = -1, 87 /* 88 * Tolerant levels: 89 * 0: always panic on uncorrected errors, log corrected errors 90 * 1: panic or SIGBUS on uncorrected errors, log corrected errors 91 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors 92 * 3: never panic or SIGBUS, log all errors (for testing only) 93 */ 94 .tolerant = 1, 95 .monarch_timeout = -1 96 }; 97 98 static DEFINE_PER_CPU(struct mce, mces_seen); 99 static unsigned long mce_need_notify; 100 static int cpu_missing; 101 102 /* 103 * MCA banks polled by the period polling timer for corrected events. 104 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any). 105 */ 106 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = { 107 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL 108 }; 109 110 /* 111 * MCA banks controlled through firmware first for corrected errors. 112 * This is a global list of banks for which we won't enable CMCI and we 113 * won't poll. Firmware controls these banks and is responsible for 114 * reporting corrected errors through GHES. Uncorrected/recoverable 115 * errors are still notified through a machine check. 116 */ 117 mce_banks_t mce_banks_ce_disabled; 118 119 static struct work_struct mce_work; 120 static struct irq_work mce_irq_work; 121 122 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs); 123 124 /* 125 * CPU/chipset specific EDAC code can register a notifier call here to print 126 * MCE errors in a human-readable form. 127 */ 128 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain); 129 130 /* Do initial initialization of a struct mce */ 131 void mce_setup(struct mce *m) 132 { 133 memset(m, 0, sizeof(struct mce)); 134 m->cpu = m->extcpu = smp_processor_id(); 135 /* need the internal __ version to avoid deadlocks */ 136 m->time = __ktime_get_real_seconds(); 137 m->cpuvendor = boot_cpu_data.x86_vendor; 138 m->cpuid = cpuid_eax(1); 139 m->socketid = cpu_data(m->extcpu).phys_proc_id; 140 m->apicid = cpu_data(m->extcpu).initial_apicid; 141 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap); 142 143 if (this_cpu_has(X86_FEATURE_INTEL_PPIN)) 144 rdmsrl(MSR_PPIN, m->ppin); 145 146 m->microcode = boot_cpu_data.microcode; 147 } 148 149 DEFINE_PER_CPU(struct mce, injectm); 150 EXPORT_PER_CPU_SYMBOL_GPL(injectm); 151 152 void mce_log(struct mce *m) 153 { 154 if (!mce_gen_pool_add(m)) 155 irq_work_queue(&mce_irq_work); 156 } 157 EXPORT_SYMBOL_GPL(mce_log); 158 159 /* 160 * We run the default notifier if we have only the UC, the first and the 161 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS 162 * notifiers registered on the chain. 163 */ 164 #define NUM_DEFAULT_NOTIFIERS 3 165 static atomic_t num_notifiers; 166 167 void mce_register_decode_chain(struct notifier_block *nb) 168 { 169 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC)) 170 return; 171 172 atomic_inc(&num_notifiers); 173 174 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb); 175 } 176 EXPORT_SYMBOL_GPL(mce_register_decode_chain); 177 178 void mce_unregister_decode_chain(struct notifier_block *nb) 179 { 180 atomic_dec(&num_notifiers); 181 182 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb); 183 } 184 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain); 185 186 static inline u32 ctl_reg(int bank) 187 { 188 return MSR_IA32_MCx_CTL(bank); 189 } 190 191 static inline u32 status_reg(int bank) 192 { 193 return MSR_IA32_MCx_STATUS(bank); 194 } 195 196 static inline u32 addr_reg(int bank) 197 { 198 return MSR_IA32_MCx_ADDR(bank); 199 } 200 201 static inline u32 misc_reg(int bank) 202 { 203 return MSR_IA32_MCx_MISC(bank); 204 } 205 206 static inline u32 smca_ctl_reg(int bank) 207 { 208 return MSR_AMD64_SMCA_MCx_CTL(bank); 209 } 210 211 static inline u32 smca_status_reg(int bank) 212 { 213 return MSR_AMD64_SMCA_MCx_STATUS(bank); 214 } 215 216 static inline u32 smca_addr_reg(int bank) 217 { 218 return MSR_AMD64_SMCA_MCx_ADDR(bank); 219 } 220 221 static inline u32 smca_misc_reg(int bank) 222 { 223 return MSR_AMD64_SMCA_MCx_MISC(bank); 224 } 225 226 struct mca_msr_regs msr_ops = { 227 .ctl = ctl_reg, 228 .status = status_reg, 229 .addr = addr_reg, 230 .misc = misc_reg 231 }; 232 233 static void __print_mce(struct mce *m) 234 { 235 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n", 236 m->extcpu, 237 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""), 238 m->mcgstatus, m->bank, m->status); 239 240 if (m->ip) { 241 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ", 242 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "", 243 m->cs, m->ip); 244 245 if (m->cs == __KERNEL_CS) 246 pr_cont("{%pS}", (void *)(unsigned long)m->ip); 247 pr_cont("\n"); 248 } 249 250 pr_emerg(HW_ERR "TSC %llx ", m->tsc); 251 if (m->addr) 252 pr_cont("ADDR %llx ", m->addr); 253 if (m->misc) 254 pr_cont("MISC %llx ", m->misc); 255 256 if (mce_flags.smca) { 257 if (m->synd) 258 pr_cont("SYND %llx ", m->synd); 259 if (m->ipid) 260 pr_cont("IPID %llx ", m->ipid); 261 } 262 263 pr_cont("\n"); 264 /* 265 * Note this output is parsed by external tools and old fields 266 * should not be changed. 267 */ 268 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n", 269 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid, 270 m->microcode); 271 } 272 273 static void print_mce(struct mce *m) 274 { 275 __print_mce(m); 276 277 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON) 278 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n"); 279 } 280 281 #define PANIC_TIMEOUT 5 /* 5 seconds */ 282 283 static atomic_t mce_panicked; 284 285 static int fake_panic; 286 static atomic_t mce_fake_panicked; 287 288 /* Panic in progress. Enable interrupts and wait for final IPI */ 289 static void wait_for_panic(void) 290 { 291 long timeout = PANIC_TIMEOUT*USEC_PER_SEC; 292 293 preempt_disable(); 294 local_irq_enable(); 295 while (timeout-- > 0) 296 udelay(1); 297 if (panic_timeout == 0) 298 panic_timeout = mca_cfg.panic_timeout; 299 panic("Panicing machine check CPU died"); 300 } 301 302 static void mce_panic(const char *msg, struct mce *final, char *exp) 303 { 304 int apei_err = 0; 305 struct llist_node *pending; 306 struct mce_evt_llist *l; 307 308 if (!fake_panic) { 309 /* 310 * Make sure only one CPU runs in machine check panic 311 */ 312 if (atomic_inc_return(&mce_panicked) > 1) 313 wait_for_panic(); 314 barrier(); 315 316 bust_spinlocks(1); 317 console_verbose(); 318 } else { 319 /* Don't log too much for fake panic */ 320 if (atomic_inc_return(&mce_fake_panicked) > 1) 321 return; 322 } 323 pending = mce_gen_pool_prepare_records(); 324 /* First print corrected ones that are still unlogged */ 325 llist_for_each_entry(l, pending, llnode) { 326 struct mce *m = &l->mce; 327 if (!(m->status & MCI_STATUS_UC)) { 328 print_mce(m); 329 if (!apei_err) 330 apei_err = apei_write_mce(m); 331 } 332 } 333 /* Now print uncorrected but with the final one last */ 334 llist_for_each_entry(l, pending, llnode) { 335 struct mce *m = &l->mce; 336 if (!(m->status & MCI_STATUS_UC)) 337 continue; 338 if (!final || mce_cmp(m, final)) { 339 print_mce(m); 340 if (!apei_err) 341 apei_err = apei_write_mce(m); 342 } 343 } 344 if (final) { 345 print_mce(final); 346 if (!apei_err) 347 apei_err = apei_write_mce(final); 348 } 349 if (cpu_missing) 350 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n"); 351 if (exp) 352 pr_emerg(HW_ERR "Machine check: %s\n", exp); 353 if (!fake_panic) { 354 if (panic_timeout == 0) 355 panic_timeout = mca_cfg.panic_timeout; 356 panic(msg); 357 } else 358 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg); 359 } 360 361 /* Support code for software error injection */ 362 363 static int msr_to_offset(u32 msr) 364 { 365 unsigned bank = __this_cpu_read(injectm.bank); 366 367 if (msr == mca_cfg.rip_msr) 368 return offsetof(struct mce, ip); 369 if (msr == msr_ops.status(bank)) 370 return offsetof(struct mce, status); 371 if (msr == msr_ops.addr(bank)) 372 return offsetof(struct mce, addr); 373 if (msr == msr_ops.misc(bank)) 374 return offsetof(struct mce, misc); 375 if (msr == MSR_IA32_MCG_STATUS) 376 return offsetof(struct mce, mcgstatus); 377 return -1; 378 } 379 380 /* MSR access wrappers used for error injection */ 381 static u64 mce_rdmsrl(u32 msr) 382 { 383 u64 v; 384 385 if (__this_cpu_read(injectm.finished)) { 386 int offset = msr_to_offset(msr); 387 388 if (offset < 0) 389 return 0; 390 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset); 391 } 392 393 if (rdmsrl_safe(msr, &v)) { 394 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr); 395 /* 396 * Return zero in case the access faulted. This should 397 * not happen normally but can happen if the CPU does 398 * something weird, or if the code is buggy. 399 */ 400 v = 0; 401 } 402 403 return v; 404 } 405 406 static void mce_wrmsrl(u32 msr, u64 v) 407 { 408 if (__this_cpu_read(injectm.finished)) { 409 int offset = msr_to_offset(msr); 410 411 if (offset >= 0) 412 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v; 413 return; 414 } 415 wrmsrl(msr, v); 416 } 417 418 /* 419 * Collect all global (w.r.t. this processor) status about this machine 420 * check into our "mce" struct so that we can use it later to assess 421 * the severity of the problem as we read per-bank specific details. 422 */ 423 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs) 424 { 425 mce_setup(m); 426 427 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 428 if (regs) { 429 /* 430 * Get the address of the instruction at the time of 431 * the machine check error. 432 */ 433 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) { 434 m->ip = regs->ip; 435 m->cs = regs->cs; 436 437 /* 438 * When in VM86 mode make the cs look like ring 3 439 * always. This is a lie, but it's better than passing 440 * the additional vm86 bit around everywhere. 441 */ 442 if (v8086_mode(regs)) 443 m->cs |= 3; 444 } 445 /* Use accurate RIP reporting if available. */ 446 if (mca_cfg.rip_msr) 447 m->ip = mce_rdmsrl(mca_cfg.rip_msr); 448 } 449 } 450 451 int mce_available(struct cpuinfo_x86 *c) 452 { 453 if (mca_cfg.disabled) 454 return 0; 455 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA); 456 } 457 458 static void mce_schedule_work(void) 459 { 460 if (!mce_gen_pool_empty()) 461 schedule_work(&mce_work); 462 } 463 464 static void mce_irq_work_cb(struct irq_work *entry) 465 { 466 mce_schedule_work(); 467 } 468 469 /* 470 * Check if the address reported by the CPU is in a format we can parse. 471 * It would be possible to add code for most other cases, but all would 472 * be somewhat complicated (e.g. segment offset would require an instruction 473 * parser). So only support physical addresses up to page granuality for now. 474 */ 475 int mce_usable_address(struct mce *m) 476 { 477 if (!(m->status & MCI_STATUS_ADDRV)) 478 return 0; 479 480 /* Checks after this one are Intel/Zhaoxin-specific: */ 481 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL && 482 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN) 483 return 1; 484 485 if (!(m->status & MCI_STATUS_MISCV)) 486 return 0; 487 488 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT) 489 return 0; 490 491 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS) 492 return 0; 493 494 return 1; 495 } 496 EXPORT_SYMBOL_GPL(mce_usable_address); 497 498 bool mce_is_memory_error(struct mce *m) 499 { 500 switch (m->cpuvendor) { 501 case X86_VENDOR_AMD: 502 case X86_VENDOR_HYGON: 503 return amd_mce_is_memory_error(m); 504 505 case X86_VENDOR_INTEL: 506 case X86_VENDOR_ZHAOXIN: 507 /* 508 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes 509 * 510 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for 511 * indicating a memory error. Bit 8 is used for indicating a 512 * cache hierarchy error. The combination of bit 2 and bit 3 513 * is used for indicating a `generic' cache hierarchy error 514 * But we can't just blindly check the above bits, because if 515 * bit 11 is set, then it is a bus/interconnect error - and 516 * either way the above bits just gives more detail on what 517 * bus/interconnect error happened. Note that bit 12 can be 518 * ignored, as it's the "filter" bit. 519 */ 520 return (m->status & 0xef80) == BIT(7) || 521 (m->status & 0xef00) == BIT(8) || 522 (m->status & 0xeffc) == 0xc; 523 524 default: 525 return false; 526 } 527 } 528 EXPORT_SYMBOL_GPL(mce_is_memory_error); 529 530 bool mce_is_correctable(struct mce *m) 531 { 532 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED) 533 return false; 534 535 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED) 536 return false; 537 538 if (m->status & MCI_STATUS_UC) 539 return false; 540 541 return true; 542 } 543 EXPORT_SYMBOL_GPL(mce_is_correctable); 544 545 static bool cec_add_mce(struct mce *m) 546 { 547 if (!m) 548 return false; 549 550 /* We eat only correctable DRAM errors with usable addresses. */ 551 if (mce_is_memory_error(m) && 552 mce_is_correctable(m) && 553 mce_usable_address(m)) 554 if (!cec_add_elem(m->addr >> PAGE_SHIFT)) 555 return true; 556 557 return false; 558 } 559 560 static int mce_first_notifier(struct notifier_block *nb, unsigned long val, 561 void *data) 562 { 563 struct mce *m = (struct mce *)data; 564 565 if (!m) 566 return NOTIFY_DONE; 567 568 if (cec_add_mce(m)) 569 return NOTIFY_STOP; 570 571 /* Emit the trace record: */ 572 trace_mce_record(m); 573 574 set_bit(0, &mce_need_notify); 575 576 mce_notify_irq(); 577 578 return NOTIFY_DONE; 579 } 580 581 static struct notifier_block first_nb = { 582 .notifier_call = mce_first_notifier, 583 .priority = MCE_PRIO_FIRST, 584 }; 585 586 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val, 587 void *data) 588 { 589 struct mce *mce = (struct mce *)data; 590 unsigned long pfn; 591 592 if (!mce || !mce_usable_address(mce)) 593 return NOTIFY_DONE; 594 595 if (mce->severity != MCE_AO_SEVERITY && 596 mce->severity != MCE_DEFERRED_SEVERITY) 597 return NOTIFY_DONE; 598 599 pfn = mce->addr >> PAGE_SHIFT; 600 if (!memory_failure(pfn, 0)) 601 set_mce_nospec(pfn); 602 603 return NOTIFY_OK; 604 } 605 606 static struct notifier_block mce_uc_nb = { 607 .notifier_call = uc_decode_notifier, 608 .priority = MCE_PRIO_UC, 609 }; 610 611 static int mce_default_notifier(struct notifier_block *nb, unsigned long val, 612 void *data) 613 { 614 struct mce *m = (struct mce *)data; 615 616 if (!m) 617 return NOTIFY_DONE; 618 619 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS) 620 return NOTIFY_DONE; 621 622 __print_mce(m); 623 624 return NOTIFY_DONE; 625 } 626 627 static struct notifier_block mce_default_nb = { 628 .notifier_call = mce_default_notifier, 629 /* lowest prio, we want it to run last. */ 630 .priority = MCE_PRIO_LOWEST, 631 }; 632 633 /* 634 * Read ADDR and MISC registers. 635 */ 636 static void mce_read_aux(struct mce *m, int i) 637 { 638 if (m->status & MCI_STATUS_MISCV) 639 m->misc = mce_rdmsrl(msr_ops.misc(i)); 640 641 if (m->status & MCI_STATUS_ADDRV) { 642 m->addr = mce_rdmsrl(msr_ops.addr(i)); 643 644 /* 645 * Mask the reported address by the reported granularity. 646 */ 647 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) { 648 u8 shift = MCI_MISC_ADDR_LSB(m->misc); 649 m->addr >>= shift; 650 m->addr <<= shift; 651 } 652 653 /* 654 * Extract [55:<lsb>] where lsb is the least significant 655 * *valid* bit of the address bits. 656 */ 657 if (mce_flags.smca) { 658 u8 lsb = (m->addr >> 56) & 0x3f; 659 660 m->addr &= GENMASK_ULL(55, lsb); 661 } 662 } 663 664 if (mce_flags.smca) { 665 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i)); 666 667 if (m->status & MCI_STATUS_SYNDV) 668 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i)); 669 } 670 } 671 672 DEFINE_PER_CPU(unsigned, mce_poll_count); 673 674 /* 675 * Poll for corrected events or events that happened before reset. 676 * Those are just logged through /dev/mcelog. 677 * 678 * This is executed in standard interrupt context. 679 * 680 * Note: spec recommends to panic for fatal unsignalled 681 * errors here. However this would be quite problematic -- 682 * we would need to reimplement the Monarch handling and 683 * it would mess up the exclusion between exception handler 684 * and poll handler -- * so we skip this for now. 685 * These cases should not happen anyways, or only when the CPU 686 * is already totally * confused. In this case it's likely it will 687 * not fully execute the machine check handler either. 688 */ 689 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b) 690 { 691 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 692 bool error_seen = false; 693 struct mce m; 694 int i; 695 696 this_cpu_inc(mce_poll_count); 697 698 mce_gather_info(&m, NULL); 699 700 if (flags & MCP_TIMESTAMP) 701 m.tsc = rdtsc(); 702 703 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 704 if (!mce_banks[i].ctl || !test_bit(i, *b)) 705 continue; 706 707 m.misc = 0; 708 m.addr = 0; 709 m.bank = i; 710 711 barrier(); 712 m.status = mce_rdmsrl(msr_ops.status(i)); 713 714 /* If this entry is not valid, ignore it */ 715 if (!(m.status & MCI_STATUS_VAL)) 716 continue; 717 718 /* 719 * If we are logging everything (at CPU online) or this 720 * is a corrected error, then we must log it. 721 */ 722 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC)) 723 goto log_it; 724 725 /* 726 * Newer Intel systems that support software error 727 * recovery need to make additional checks. Other 728 * CPUs should skip over uncorrected errors, but log 729 * everything else. 730 */ 731 if (!mca_cfg.ser) { 732 if (m.status & MCI_STATUS_UC) 733 continue; 734 goto log_it; 735 } 736 737 /* Log "not enabled" (speculative) errors */ 738 if (!(m.status & MCI_STATUS_EN)) 739 goto log_it; 740 741 /* 742 * Log UCNA (SDM: 15.6.3 "UCR Error Classification") 743 * UC == 1 && PCC == 0 && S == 0 744 */ 745 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S)) 746 goto log_it; 747 748 /* 749 * Skip anything else. Presumption is that our read of this 750 * bank is racing with a machine check. Leave the log alone 751 * for do_machine_check() to deal with it. 752 */ 753 continue; 754 755 log_it: 756 error_seen = true; 757 758 if (flags & MCP_DONTLOG) 759 goto clear_it; 760 761 mce_read_aux(&m, i); 762 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false); 763 /* 764 * Don't get the IP here because it's unlikely to 765 * have anything to do with the actual error location. 766 */ 767 768 if (mca_cfg.dont_log_ce && !mce_usable_address(&m)) 769 goto clear_it; 770 771 mce_log(&m); 772 773 clear_it: 774 /* 775 * Clear state for this bank. 776 */ 777 mce_wrmsrl(msr_ops.status(i), 0); 778 } 779 780 /* 781 * Don't clear MCG_STATUS here because it's only defined for 782 * exceptions. 783 */ 784 785 sync_core(); 786 787 return error_seen; 788 } 789 EXPORT_SYMBOL_GPL(machine_check_poll); 790 791 /* 792 * Do a quick check if any of the events requires a panic. 793 * This decides if we keep the events around or clear them. 794 */ 795 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp, 796 struct pt_regs *regs) 797 { 798 char *tmp = *msg; 799 int i; 800 801 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 802 m->status = mce_rdmsrl(msr_ops.status(i)); 803 if (!(m->status & MCI_STATUS_VAL)) 804 continue; 805 806 __set_bit(i, validp); 807 if (quirk_no_way_out) 808 quirk_no_way_out(i, m, regs); 809 810 m->bank = i; 811 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) { 812 mce_read_aux(m, i); 813 *msg = tmp; 814 return 1; 815 } 816 } 817 return 0; 818 } 819 820 /* 821 * Variable to establish order between CPUs while scanning. 822 * Each CPU spins initially until executing is equal its number. 823 */ 824 static atomic_t mce_executing; 825 826 /* 827 * Defines order of CPUs on entry. First CPU becomes Monarch. 828 */ 829 static atomic_t mce_callin; 830 831 /* 832 * Check if a timeout waiting for other CPUs happened. 833 */ 834 static int mce_timed_out(u64 *t, const char *msg) 835 { 836 /* 837 * The others already did panic for some reason. 838 * Bail out like in a timeout. 839 * rmb() to tell the compiler that system_state 840 * might have been modified by someone else. 841 */ 842 rmb(); 843 if (atomic_read(&mce_panicked)) 844 wait_for_panic(); 845 if (!mca_cfg.monarch_timeout) 846 goto out; 847 if ((s64)*t < SPINUNIT) { 848 if (mca_cfg.tolerant <= 1) 849 mce_panic(msg, NULL, NULL); 850 cpu_missing = 1; 851 return 1; 852 } 853 *t -= SPINUNIT; 854 out: 855 touch_nmi_watchdog(); 856 return 0; 857 } 858 859 /* 860 * The Monarch's reign. The Monarch is the CPU who entered 861 * the machine check handler first. It waits for the others to 862 * raise the exception too and then grades them. When any 863 * error is fatal panic. Only then let the others continue. 864 * 865 * The other CPUs entering the MCE handler will be controlled by the 866 * Monarch. They are called Subjects. 867 * 868 * This way we prevent any potential data corruption in a unrecoverable case 869 * and also makes sure always all CPU's errors are examined. 870 * 871 * Also this detects the case of a machine check event coming from outer 872 * space (not detected by any CPUs) In this case some external agent wants 873 * us to shut down, so panic too. 874 * 875 * The other CPUs might still decide to panic if the handler happens 876 * in a unrecoverable place, but in this case the system is in a semi-stable 877 * state and won't corrupt anything by itself. It's ok to let the others 878 * continue for a bit first. 879 * 880 * All the spin loops have timeouts; when a timeout happens a CPU 881 * typically elects itself to be Monarch. 882 */ 883 static void mce_reign(void) 884 { 885 int cpu; 886 struct mce *m = NULL; 887 int global_worst = 0; 888 char *msg = NULL; 889 char *nmsg = NULL; 890 891 /* 892 * This CPU is the Monarch and the other CPUs have run 893 * through their handlers. 894 * Grade the severity of the errors of all the CPUs. 895 */ 896 for_each_possible_cpu(cpu) { 897 int severity = mce_severity(&per_cpu(mces_seen, cpu), 898 mca_cfg.tolerant, 899 &nmsg, true); 900 if (severity > global_worst) { 901 msg = nmsg; 902 global_worst = severity; 903 m = &per_cpu(mces_seen, cpu); 904 } 905 } 906 907 /* 908 * Cannot recover? Panic here then. 909 * This dumps all the mces in the log buffer and stops the 910 * other CPUs. 911 */ 912 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) 913 mce_panic("Fatal machine check", m, msg); 914 915 /* 916 * For UC somewhere we let the CPU who detects it handle it. 917 * Also must let continue the others, otherwise the handling 918 * CPU could deadlock on a lock. 919 */ 920 921 /* 922 * No machine check event found. Must be some external 923 * source or one CPU is hung. Panic. 924 */ 925 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3) 926 mce_panic("Fatal machine check from unknown source", NULL, NULL); 927 928 /* 929 * Now clear all the mces_seen so that they don't reappear on 930 * the next mce. 931 */ 932 for_each_possible_cpu(cpu) 933 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce)); 934 } 935 936 static atomic_t global_nwo; 937 938 /* 939 * Start of Monarch synchronization. This waits until all CPUs have 940 * entered the exception handler and then determines if any of them 941 * saw a fatal event that requires panic. Then it executes them 942 * in the entry order. 943 * TBD double check parallel CPU hotunplug 944 */ 945 static int mce_start(int *no_way_out) 946 { 947 int order; 948 int cpus = num_online_cpus(); 949 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 950 951 if (!timeout) 952 return -1; 953 954 atomic_add(*no_way_out, &global_nwo); 955 /* 956 * Rely on the implied barrier below, such that global_nwo 957 * is updated before mce_callin. 958 */ 959 order = atomic_inc_return(&mce_callin); 960 961 /* 962 * Wait for everyone. 963 */ 964 while (atomic_read(&mce_callin) != cpus) { 965 if (mce_timed_out(&timeout, 966 "Timeout: Not all CPUs entered broadcast exception handler")) { 967 atomic_set(&global_nwo, 0); 968 return -1; 969 } 970 ndelay(SPINUNIT); 971 } 972 973 /* 974 * mce_callin should be read before global_nwo 975 */ 976 smp_rmb(); 977 978 if (order == 1) { 979 /* 980 * Monarch: Starts executing now, the others wait. 981 */ 982 atomic_set(&mce_executing, 1); 983 } else { 984 /* 985 * Subject: Now start the scanning loop one by one in 986 * the original callin order. 987 * This way when there are any shared banks it will be 988 * only seen by one CPU before cleared, avoiding duplicates. 989 */ 990 while (atomic_read(&mce_executing) < order) { 991 if (mce_timed_out(&timeout, 992 "Timeout: Subject CPUs unable to finish machine check processing")) { 993 atomic_set(&global_nwo, 0); 994 return -1; 995 } 996 ndelay(SPINUNIT); 997 } 998 } 999 1000 /* 1001 * Cache the global no_way_out state. 1002 */ 1003 *no_way_out = atomic_read(&global_nwo); 1004 1005 return order; 1006 } 1007 1008 /* 1009 * Synchronize between CPUs after main scanning loop. 1010 * This invokes the bulk of the Monarch processing. 1011 */ 1012 static int mce_end(int order) 1013 { 1014 int ret = -1; 1015 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC; 1016 1017 if (!timeout) 1018 goto reset; 1019 if (order < 0) 1020 goto reset; 1021 1022 /* 1023 * Allow others to run. 1024 */ 1025 atomic_inc(&mce_executing); 1026 1027 if (order == 1) { 1028 /* CHECKME: Can this race with a parallel hotplug? */ 1029 int cpus = num_online_cpus(); 1030 1031 /* 1032 * Monarch: Wait for everyone to go through their scanning 1033 * loops. 1034 */ 1035 while (atomic_read(&mce_executing) <= cpus) { 1036 if (mce_timed_out(&timeout, 1037 "Timeout: Monarch CPU unable to finish machine check processing")) 1038 goto reset; 1039 ndelay(SPINUNIT); 1040 } 1041 1042 mce_reign(); 1043 barrier(); 1044 ret = 0; 1045 } else { 1046 /* 1047 * Subject: Wait for Monarch to finish. 1048 */ 1049 while (atomic_read(&mce_executing) != 0) { 1050 if (mce_timed_out(&timeout, 1051 "Timeout: Monarch CPU did not finish machine check processing")) 1052 goto reset; 1053 ndelay(SPINUNIT); 1054 } 1055 1056 /* 1057 * Don't reset anything. That's done by the Monarch. 1058 */ 1059 return 0; 1060 } 1061 1062 /* 1063 * Reset all global state. 1064 */ 1065 reset: 1066 atomic_set(&global_nwo, 0); 1067 atomic_set(&mce_callin, 0); 1068 barrier(); 1069 1070 /* 1071 * Let others run again. 1072 */ 1073 atomic_set(&mce_executing, 0); 1074 return ret; 1075 } 1076 1077 static void mce_clear_state(unsigned long *toclear) 1078 { 1079 int i; 1080 1081 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1082 if (test_bit(i, toclear)) 1083 mce_wrmsrl(msr_ops.status(i), 0); 1084 } 1085 } 1086 1087 static int do_memory_failure(struct mce *m) 1088 { 1089 int flags = MF_ACTION_REQUIRED; 1090 int ret; 1091 1092 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr); 1093 if (!(m->mcgstatus & MCG_STATUS_RIPV)) 1094 flags |= MF_MUST_KILL; 1095 ret = memory_failure(m->addr >> PAGE_SHIFT, flags); 1096 if (ret) 1097 pr_err("Memory error not recovered"); 1098 else 1099 set_mce_nospec(m->addr >> PAGE_SHIFT); 1100 return ret; 1101 } 1102 1103 1104 /* 1105 * Cases where we avoid rendezvous handler timeout: 1106 * 1) If this CPU is offline. 1107 * 1108 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to 1109 * skip those CPUs which remain looping in the 1st kernel - see 1110 * crash_nmi_callback(). 1111 * 1112 * Note: there still is a small window between kexec-ing and the new, 1113 * kdump kernel establishing a new #MC handler where a broadcasted MCE 1114 * might not get handled properly. 1115 */ 1116 static bool __mc_check_crashing_cpu(int cpu) 1117 { 1118 if (cpu_is_offline(cpu) || 1119 (crashing_cpu != -1 && crashing_cpu != cpu)) { 1120 u64 mcgstatus; 1121 1122 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS); 1123 1124 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) { 1125 if (mcgstatus & MCG_STATUS_LMCES) 1126 return false; 1127 } 1128 1129 if (mcgstatus & MCG_STATUS_RIPV) { 1130 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1131 return true; 1132 } 1133 } 1134 return false; 1135 } 1136 1137 static void __mc_scan_banks(struct mce *m, struct mce *final, 1138 unsigned long *toclear, unsigned long *valid_banks, 1139 int no_way_out, int *worst) 1140 { 1141 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1142 struct mca_config *cfg = &mca_cfg; 1143 int severity, i; 1144 1145 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1146 __clear_bit(i, toclear); 1147 if (!test_bit(i, valid_banks)) 1148 continue; 1149 1150 if (!mce_banks[i].ctl) 1151 continue; 1152 1153 m->misc = 0; 1154 m->addr = 0; 1155 m->bank = i; 1156 1157 m->status = mce_rdmsrl(msr_ops.status(i)); 1158 if (!(m->status & MCI_STATUS_VAL)) 1159 continue; 1160 1161 /* 1162 * Corrected or non-signaled errors are handled by 1163 * machine_check_poll(). Leave them alone, unless this panics. 1164 */ 1165 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) && 1166 !no_way_out) 1167 continue; 1168 1169 /* Set taint even when machine check was not enabled. */ 1170 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE); 1171 1172 severity = mce_severity(m, cfg->tolerant, NULL, true); 1173 1174 /* 1175 * When machine check was for corrected/deferred handler don't 1176 * touch, unless we're panicking. 1177 */ 1178 if ((severity == MCE_KEEP_SEVERITY || 1179 severity == MCE_UCNA_SEVERITY) && !no_way_out) 1180 continue; 1181 1182 __set_bit(i, toclear); 1183 1184 /* Machine check event was not enabled. Clear, but ignore. */ 1185 if (severity == MCE_NO_SEVERITY) 1186 continue; 1187 1188 mce_read_aux(m, i); 1189 1190 /* assuming valid severity level != 0 */ 1191 m->severity = severity; 1192 1193 mce_log(m); 1194 1195 if (severity > *worst) { 1196 *final = *m; 1197 *worst = severity; 1198 } 1199 } 1200 1201 /* mce_clear_state will clear *final, save locally for use later */ 1202 *m = *final; 1203 } 1204 1205 /* 1206 * The actual machine check handler. This only handles real 1207 * exceptions when something got corrupted coming in through int 18. 1208 * 1209 * This is executed in NMI context not subject to normal locking rules. This 1210 * implies that most kernel services cannot be safely used. Don't even 1211 * think about putting a printk in there! 1212 * 1213 * On Intel systems this is entered on all CPUs in parallel through 1214 * MCE broadcast. However some CPUs might be broken beyond repair, 1215 * so be always careful when synchronizing with others. 1216 */ 1217 void do_machine_check(struct pt_regs *regs, long error_code) 1218 { 1219 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS); 1220 DECLARE_BITMAP(toclear, MAX_NR_BANKS); 1221 struct mca_config *cfg = &mca_cfg; 1222 int cpu = smp_processor_id(); 1223 struct mce m, *final; 1224 char *msg = NULL; 1225 int worst = 0; 1226 1227 /* 1228 * Establish sequential order between the CPUs entering the machine 1229 * check handler. 1230 */ 1231 int order = -1; 1232 1233 /* 1234 * If no_way_out gets set, there is no safe way to recover from this 1235 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway. 1236 */ 1237 int no_way_out = 0; 1238 1239 /* 1240 * If kill_it gets set, there might be a way to recover from this 1241 * error. 1242 */ 1243 int kill_it = 0; 1244 1245 /* 1246 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES 1247 * on Intel. 1248 */ 1249 int lmce = 1; 1250 1251 if (__mc_check_crashing_cpu(cpu)) 1252 return; 1253 1254 ist_enter(regs); 1255 1256 this_cpu_inc(mce_exception_count); 1257 1258 mce_gather_info(&m, regs); 1259 m.tsc = rdtsc(); 1260 1261 final = this_cpu_ptr(&mces_seen); 1262 *final = m; 1263 1264 memset(valid_banks, 0, sizeof(valid_banks)); 1265 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs); 1266 1267 barrier(); 1268 1269 /* 1270 * When no restart IP might need to kill or panic. 1271 * Assume the worst for now, but if we find the 1272 * severity is MCE_AR_SEVERITY we have other options. 1273 */ 1274 if (!(m.mcgstatus & MCG_STATUS_RIPV)) 1275 kill_it = 1; 1276 1277 /* 1278 * Check if this MCE is signaled to only this logical processor, 1279 * on Intel, Zhaoxin only. 1280 */ 1281 if (m.cpuvendor == X86_VENDOR_INTEL || 1282 m.cpuvendor == X86_VENDOR_ZHAOXIN) 1283 lmce = m.mcgstatus & MCG_STATUS_LMCES; 1284 1285 /* 1286 * Local machine check may already know that we have to panic. 1287 * Broadcast machine check begins rendezvous in mce_start() 1288 * Go through all banks in exclusion of the other CPUs. This way we 1289 * don't report duplicated events on shared banks because the first one 1290 * to see it will clear it. 1291 */ 1292 if (lmce) { 1293 if (no_way_out) 1294 mce_panic("Fatal local machine check", &m, msg); 1295 } else { 1296 order = mce_start(&no_way_out); 1297 } 1298 1299 __mc_scan_banks(&m, final, toclear, valid_banks, no_way_out, &worst); 1300 1301 if (!no_way_out) 1302 mce_clear_state(toclear); 1303 1304 /* 1305 * Do most of the synchronization with other CPUs. 1306 * When there's any problem use only local no_way_out state. 1307 */ 1308 if (!lmce) { 1309 if (mce_end(order) < 0) 1310 no_way_out = worst >= MCE_PANIC_SEVERITY; 1311 } else { 1312 /* 1313 * If there was a fatal machine check we should have 1314 * already called mce_panic earlier in this function. 1315 * Since we re-read the banks, we might have found 1316 * something new. Check again to see if we found a 1317 * fatal error. We call "mce_severity()" again to 1318 * make sure we have the right "msg". 1319 */ 1320 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) { 1321 mce_severity(&m, cfg->tolerant, &msg, true); 1322 mce_panic("Local fatal machine check!", &m, msg); 1323 } 1324 } 1325 1326 /* 1327 * If tolerant is at an insane level we drop requests to kill 1328 * processes and continue even when there is no way out. 1329 */ 1330 if (cfg->tolerant == 3) 1331 kill_it = 0; 1332 else if (no_way_out) 1333 mce_panic("Fatal machine check on current CPU", &m, msg); 1334 1335 if (worst > 0) 1336 irq_work_queue(&mce_irq_work); 1337 1338 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0); 1339 1340 sync_core(); 1341 1342 if (worst != MCE_AR_SEVERITY && !kill_it) 1343 goto out_ist; 1344 1345 /* Fault was in user mode and we need to take some action */ 1346 if ((m.cs & 3) == 3) { 1347 ist_begin_non_atomic(regs); 1348 local_irq_enable(); 1349 1350 if (kill_it || do_memory_failure(&m)) 1351 force_sig(SIGBUS); 1352 local_irq_disable(); 1353 ist_end_non_atomic(); 1354 } else { 1355 if (!fixup_exception(regs, X86_TRAP_MC, error_code, 0)) 1356 mce_panic("Failed kernel mode recovery", &m, msg); 1357 } 1358 1359 out_ist: 1360 ist_exit(regs); 1361 } 1362 EXPORT_SYMBOL_GPL(do_machine_check); 1363 1364 #ifndef CONFIG_MEMORY_FAILURE 1365 int memory_failure(unsigned long pfn, int flags) 1366 { 1367 /* mce_severity() should not hand us an ACTION_REQUIRED error */ 1368 BUG_ON(flags & MF_ACTION_REQUIRED); 1369 pr_err("Uncorrected memory error in page 0x%lx ignored\n" 1370 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", 1371 pfn); 1372 1373 return 0; 1374 } 1375 #endif 1376 1377 /* 1378 * Periodic polling timer for "silent" machine check errors. If the 1379 * poller finds an MCE, poll 2x faster. When the poller finds no more 1380 * errors, poll 2x slower (up to check_interval seconds). 1381 */ 1382 static unsigned long check_interval = INITIAL_CHECK_INTERVAL; 1383 1384 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */ 1385 static DEFINE_PER_CPU(struct timer_list, mce_timer); 1386 1387 static unsigned long mce_adjust_timer_default(unsigned long interval) 1388 { 1389 return interval; 1390 } 1391 1392 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default; 1393 1394 static void __start_timer(struct timer_list *t, unsigned long interval) 1395 { 1396 unsigned long when = jiffies + interval; 1397 unsigned long flags; 1398 1399 local_irq_save(flags); 1400 1401 if (!timer_pending(t) || time_before(when, t->expires)) 1402 mod_timer(t, round_jiffies(when)); 1403 1404 local_irq_restore(flags); 1405 } 1406 1407 static void mce_timer_fn(struct timer_list *t) 1408 { 1409 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer); 1410 unsigned long iv; 1411 1412 WARN_ON(cpu_t != t); 1413 1414 iv = __this_cpu_read(mce_next_interval); 1415 1416 if (mce_available(this_cpu_ptr(&cpu_info))) { 1417 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks)); 1418 1419 if (mce_intel_cmci_poll()) { 1420 iv = mce_adjust_timer(iv); 1421 goto done; 1422 } 1423 } 1424 1425 /* 1426 * Alert userspace if needed. If we logged an MCE, reduce the polling 1427 * interval, otherwise increase the polling interval. 1428 */ 1429 if (mce_notify_irq()) 1430 iv = max(iv / 2, (unsigned long) HZ/100); 1431 else 1432 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ)); 1433 1434 done: 1435 __this_cpu_write(mce_next_interval, iv); 1436 __start_timer(t, iv); 1437 } 1438 1439 /* 1440 * Ensure that the timer is firing in @interval from now. 1441 */ 1442 void mce_timer_kick(unsigned long interval) 1443 { 1444 struct timer_list *t = this_cpu_ptr(&mce_timer); 1445 unsigned long iv = __this_cpu_read(mce_next_interval); 1446 1447 __start_timer(t, interval); 1448 1449 if (interval < iv) 1450 __this_cpu_write(mce_next_interval, interval); 1451 } 1452 1453 /* Must not be called in IRQ context where del_timer_sync() can deadlock */ 1454 static void mce_timer_delete_all(void) 1455 { 1456 int cpu; 1457 1458 for_each_online_cpu(cpu) 1459 del_timer_sync(&per_cpu(mce_timer, cpu)); 1460 } 1461 1462 /* 1463 * Notify the user(s) about new machine check events. 1464 * Can be called from interrupt context, but not from machine check/NMI 1465 * context. 1466 */ 1467 int mce_notify_irq(void) 1468 { 1469 /* Not more than two messages every minute */ 1470 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2); 1471 1472 if (test_and_clear_bit(0, &mce_need_notify)) { 1473 mce_work_trigger(); 1474 1475 if (__ratelimit(&ratelimit)) 1476 pr_info(HW_ERR "Machine check events logged\n"); 1477 1478 return 1; 1479 } 1480 return 0; 1481 } 1482 EXPORT_SYMBOL_GPL(mce_notify_irq); 1483 1484 static void __mcheck_cpu_mce_banks_init(void) 1485 { 1486 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1487 u8 n_banks = this_cpu_read(mce_num_banks); 1488 int i; 1489 1490 for (i = 0; i < n_banks; i++) { 1491 struct mce_bank *b = &mce_banks[i]; 1492 1493 /* 1494 * Init them all, __mcheck_cpu_apply_quirks() is going to apply 1495 * the required vendor quirks before 1496 * __mcheck_cpu_init_clear_banks() does the final bank setup. 1497 */ 1498 b->ctl = -1ULL; 1499 b->init = 1; 1500 } 1501 } 1502 1503 /* 1504 * Initialize Machine Checks for a CPU. 1505 */ 1506 static void __mcheck_cpu_cap_init(void) 1507 { 1508 u64 cap; 1509 u8 b; 1510 1511 rdmsrl(MSR_IA32_MCG_CAP, cap); 1512 1513 b = cap & MCG_BANKCNT_MASK; 1514 1515 if (b > MAX_NR_BANKS) { 1516 pr_warn("CPU%d: Using only %u machine check banks out of %u\n", 1517 smp_processor_id(), MAX_NR_BANKS, b); 1518 b = MAX_NR_BANKS; 1519 } 1520 1521 this_cpu_write(mce_num_banks, b); 1522 1523 __mcheck_cpu_mce_banks_init(); 1524 1525 /* Use accurate RIP reporting if available. */ 1526 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9) 1527 mca_cfg.rip_msr = MSR_IA32_MCG_EIP; 1528 1529 if (cap & MCG_SER_P) 1530 mca_cfg.ser = 1; 1531 } 1532 1533 static void __mcheck_cpu_init_generic(void) 1534 { 1535 enum mcp_flags m_fl = 0; 1536 mce_banks_t all_banks; 1537 u64 cap; 1538 1539 if (!mca_cfg.bootlog) 1540 m_fl = MCP_DONTLOG; 1541 1542 /* 1543 * Log the machine checks left over from the previous reset. 1544 */ 1545 bitmap_fill(all_banks, MAX_NR_BANKS); 1546 machine_check_poll(MCP_UC | m_fl, &all_banks); 1547 1548 cr4_set_bits(X86_CR4_MCE); 1549 1550 rdmsrl(MSR_IA32_MCG_CAP, cap); 1551 if (cap & MCG_CTL_P) 1552 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff); 1553 } 1554 1555 static void __mcheck_cpu_init_clear_banks(void) 1556 { 1557 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1558 int i; 1559 1560 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1561 struct mce_bank *b = &mce_banks[i]; 1562 1563 if (!b->init) 1564 continue; 1565 wrmsrl(msr_ops.ctl(i), b->ctl); 1566 wrmsrl(msr_ops.status(i), 0); 1567 } 1568 } 1569 1570 /* 1571 * Do a final check to see if there are any unused/RAZ banks. 1572 * 1573 * This must be done after the banks have been initialized and any quirks have 1574 * been applied. 1575 * 1576 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs. 1577 * Otherwise, a user who disables a bank will not be able to re-enable it 1578 * without a system reboot. 1579 */ 1580 static void __mcheck_cpu_check_banks(void) 1581 { 1582 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1583 u64 msrval; 1584 int i; 1585 1586 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 1587 struct mce_bank *b = &mce_banks[i]; 1588 1589 if (!b->init) 1590 continue; 1591 1592 rdmsrl(msr_ops.ctl(i), msrval); 1593 b->init = !!msrval; 1594 } 1595 } 1596 1597 /* 1598 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and 1599 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM 1600 * Vol 3B Table 15-20). But this confuses both the code that determines 1601 * whether the machine check occurred in kernel or user mode, and also 1602 * the severity assessment code. Pretend that EIPV was set, and take the 1603 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier. 1604 */ 1605 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs) 1606 { 1607 if (bank != 0) 1608 return; 1609 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0) 1610 return; 1611 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC| 1612 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV| 1613 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR| 1614 MCACOD)) != 1615 (MCI_STATUS_UC|MCI_STATUS_EN| 1616 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S| 1617 MCI_STATUS_AR|MCACOD_INSTR)) 1618 return; 1619 1620 m->mcgstatus |= MCG_STATUS_EIPV; 1621 m->ip = regs->ip; 1622 m->cs = regs->cs; 1623 } 1624 1625 /* Add per CPU specific workarounds here */ 1626 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c) 1627 { 1628 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1629 struct mca_config *cfg = &mca_cfg; 1630 1631 if (c->x86_vendor == X86_VENDOR_UNKNOWN) { 1632 pr_info("unknown CPU type - not enabling MCE support\n"); 1633 return -EOPNOTSUPP; 1634 } 1635 1636 /* This should be disabled by the BIOS, but isn't always */ 1637 if (c->x86_vendor == X86_VENDOR_AMD) { 1638 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) { 1639 /* 1640 * disable GART TBL walk error reporting, which 1641 * trips off incorrectly with the IOMMU & 3ware 1642 * & Cerberus: 1643 */ 1644 clear_bit(10, (unsigned long *)&mce_banks[4].ctl); 1645 } 1646 if (c->x86 < 0x11 && cfg->bootlog < 0) { 1647 /* 1648 * Lots of broken BIOS around that don't clear them 1649 * by default and leave crap in there. Don't log: 1650 */ 1651 cfg->bootlog = 0; 1652 } 1653 /* 1654 * Various K7s with broken bank 0 around. Always disable 1655 * by default. 1656 */ 1657 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0) 1658 mce_banks[0].ctl = 0; 1659 1660 /* 1661 * overflow_recov is supported for F15h Models 00h-0fh 1662 * even though we don't have a CPUID bit for it. 1663 */ 1664 if (c->x86 == 0x15 && c->x86_model <= 0xf) 1665 mce_flags.overflow_recov = 1; 1666 1667 } 1668 1669 if (c->x86_vendor == X86_VENDOR_INTEL) { 1670 /* 1671 * SDM documents that on family 6 bank 0 should not be written 1672 * because it aliases to another special BIOS controlled 1673 * register. 1674 * But it's not aliased anymore on model 0x1a+ 1675 * Don't ignore bank 0 completely because there could be a 1676 * valid event later, merely don't write CTL0. 1677 */ 1678 1679 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0) 1680 mce_banks[0].init = 0; 1681 1682 /* 1683 * All newer Intel systems support MCE broadcasting. Enable 1684 * synchronization with a one second timeout. 1685 */ 1686 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) && 1687 cfg->monarch_timeout < 0) 1688 cfg->monarch_timeout = USEC_PER_SEC; 1689 1690 /* 1691 * There are also broken BIOSes on some Pentium M and 1692 * earlier systems: 1693 */ 1694 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0) 1695 cfg->bootlog = 0; 1696 1697 if (c->x86 == 6 && c->x86_model == 45) 1698 quirk_no_way_out = quirk_sandybridge_ifu; 1699 } 1700 1701 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) { 1702 /* 1703 * All newer Zhaoxin CPUs support MCE broadcasting. Enable 1704 * synchronization with a one second timeout. 1705 */ 1706 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1707 if (cfg->monarch_timeout < 0) 1708 cfg->monarch_timeout = USEC_PER_SEC; 1709 } 1710 } 1711 1712 if (cfg->monarch_timeout < 0) 1713 cfg->monarch_timeout = 0; 1714 if (cfg->bootlog != 0) 1715 cfg->panic_timeout = 30; 1716 1717 return 0; 1718 } 1719 1720 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c) 1721 { 1722 if (c->x86 != 5) 1723 return 0; 1724 1725 switch (c->x86_vendor) { 1726 case X86_VENDOR_INTEL: 1727 intel_p5_mcheck_init(c); 1728 return 1; 1729 break; 1730 case X86_VENDOR_CENTAUR: 1731 winchip_mcheck_init(c); 1732 return 1; 1733 break; 1734 default: 1735 return 0; 1736 } 1737 1738 return 0; 1739 } 1740 1741 /* 1742 * Init basic CPU features needed for early decoding of MCEs. 1743 */ 1744 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c) 1745 { 1746 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { 1747 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV); 1748 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR); 1749 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA); 1750 1751 if (mce_flags.smca) { 1752 msr_ops.ctl = smca_ctl_reg; 1753 msr_ops.status = smca_status_reg; 1754 msr_ops.addr = smca_addr_reg; 1755 msr_ops.misc = smca_misc_reg; 1756 } 1757 } 1758 } 1759 1760 static void mce_centaur_feature_init(struct cpuinfo_x86 *c) 1761 { 1762 struct mca_config *cfg = &mca_cfg; 1763 1764 /* 1765 * All newer Centaur CPUs support MCE broadcasting. Enable 1766 * synchronization with a one second timeout. 1767 */ 1768 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) || 1769 c->x86 > 6) { 1770 if (cfg->monarch_timeout < 0) 1771 cfg->monarch_timeout = USEC_PER_SEC; 1772 } 1773 } 1774 1775 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c) 1776 { 1777 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 1778 1779 /* 1780 * These CPUs have MCA bank 8 which reports only one error type called 1781 * SVAD (System View Address Decoder). The reporting of that error is 1782 * controlled by IA32_MC8.CTL.0. 1783 * 1784 * If enabled, prefetching on these CPUs will cause SVAD MCE when 1785 * virtual machines start and result in a system panic. Always disable 1786 * bank 8 SVAD error by default. 1787 */ 1788 if ((c->x86 == 7 && c->x86_model == 0x1b) || 1789 (c->x86_model == 0x19 || c->x86_model == 0x1f)) { 1790 if (this_cpu_read(mce_num_banks) > 8) 1791 mce_banks[8].ctl = 0; 1792 } 1793 1794 intel_init_cmci(); 1795 intel_init_lmce(); 1796 mce_adjust_timer = cmci_intel_adjust_timer; 1797 } 1798 1799 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c) 1800 { 1801 intel_clear_lmce(); 1802 } 1803 1804 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c) 1805 { 1806 switch (c->x86_vendor) { 1807 case X86_VENDOR_INTEL: 1808 mce_intel_feature_init(c); 1809 mce_adjust_timer = cmci_intel_adjust_timer; 1810 break; 1811 1812 case X86_VENDOR_AMD: { 1813 mce_amd_feature_init(c); 1814 break; 1815 } 1816 1817 case X86_VENDOR_HYGON: 1818 mce_hygon_feature_init(c); 1819 break; 1820 1821 case X86_VENDOR_CENTAUR: 1822 mce_centaur_feature_init(c); 1823 break; 1824 1825 case X86_VENDOR_ZHAOXIN: 1826 mce_zhaoxin_feature_init(c); 1827 break; 1828 1829 default: 1830 break; 1831 } 1832 } 1833 1834 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c) 1835 { 1836 switch (c->x86_vendor) { 1837 case X86_VENDOR_INTEL: 1838 mce_intel_feature_clear(c); 1839 break; 1840 1841 case X86_VENDOR_ZHAOXIN: 1842 mce_zhaoxin_feature_clear(c); 1843 break; 1844 1845 default: 1846 break; 1847 } 1848 } 1849 1850 static void mce_start_timer(struct timer_list *t) 1851 { 1852 unsigned long iv = check_interval * HZ; 1853 1854 if (mca_cfg.ignore_ce || !iv) 1855 return; 1856 1857 this_cpu_write(mce_next_interval, iv); 1858 __start_timer(t, iv); 1859 } 1860 1861 static void __mcheck_cpu_setup_timer(void) 1862 { 1863 struct timer_list *t = this_cpu_ptr(&mce_timer); 1864 1865 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1866 } 1867 1868 static void __mcheck_cpu_init_timer(void) 1869 { 1870 struct timer_list *t = this_cpu_ptr(&mce_timer); 1871 1872 timer_setup(t, mce_timer_fn, TIMER_PINNED); 1873 mce_start_timer(t); 1874 } 1875 1876 bool filter_mce(struct mce *m) 1877 { 1878 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1879 return amd_filter_mce(m); 1880 1881 return false; 1882 } 1883 1884 /* Handle unconfigured int18 (should never happen) */ 1885 static void unexpected_machine_check(struct pt_regs *regs, long error_code) 1886 { 1887 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n", 1888 smp_processor_id()); 1889 } 1890 1891 /* Call the installed machine check handler for this CPU setup. */ 1892 void (*machine_check_vector)(struct pt_regs *, long error_code) = 1893 unexpected_machine_check; 1894 1895 dotraplinkage void do_mce(struct pt_regs *regs, long error_code) 1896 { 1897 machine_check_vector(regs, error_code); 1898 } 1899 1900 /* 1901 * Called for each booted CPU to set up machine checks. 1902 * Must be called with preempt off: 1903 */ 1904 void mcheck_cpu_init(struct cpuinfo_x86 *c) 1905 { 1906 if (mca_cfg.disabled) 1907 return; 1908 1909 if (__mcheck_cpu_ancient_init(c)) 1910 return; 1911 1912 if (!mce_available(c)) 1913 return; 1914 1915 __mcheck_cpu_cap_init(); 1916 1917 if (__mcheck_cpu_apply_quirks(c) < 0) { 1918 mca_cfg.disabled = 1; 1919 return; 1920 } 1921 1922 if (mce_gen_pool_init()) { 1923 mca_cfg.disabled = 1; 1924 pr_emerg("Couldn't allocate MCE records pool!\n"); 1925 return; 1926 } 1927 1928 machine_check_vector = do_machine_check; 1929 1930 __mcheck_cpu_init_early(c); 1931 __mcheck_cpu_init_generic(); 1932 __mcheck_cpu_init_vendor(c); 1933 __mcheck_cpu_init_clear_banks(); 1934 __mcheck_cpu_check_banks(); 1935 __mcheck_cpu_setup_timer(); 1936 } 1937 1938 /* 1939 * Called for each booted CPU to clear some machine checks opt-ins 1940 */ 1941 void mcheck_cpu_clear(struct cpuinfo_x86 *c) 1942 { 1943 if (mca_cfg.disabled) 1944 return; 1945 1946 if (!mce_available(c)) 1947 return; 1948 1949 /* 1950 * Possibly to clear general settings generic to x86 1951 * __mcheck_cpu_clear_generic(c); 1952 */ 1953 __mcheck_cpu_clear_vendor(c); 1954 1955 } 1956 1957 static void __mce_disable_bank(void *arg) 1958 { 1959 int bank = *((int *)arg); 1960 __clear_bit(bank, this_cpu_ptr(mce_poll_banks)); 1961 cmci_disable_bank(bank); 1962 } 1963 1964 void mce_disable_bank(int bank) 1965 { 1966 if (bank >= this_cpu_read(mce_num_banks)) { 1967 pr_warn(FW_BUG 1968 "Ignoring request to disable invalid MCA bank %d.\n", 1969 bank); 1970 return; 1971 } 1972 set_bit(bank, mce_banks_ce_disabled); 1973 on_each_cpu(__mce_disable_bank, &bank, 1); 1974 } 1975 1976 /* 1977 * mce=off Disables machine check 1978 * mce=no_cmci Disables CMCI 1979 * mce=no_lmce Disables LMCE 1980 * mce=dont_log_ce Clears corrected events silently, no log created for CEs. 1981 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared. 1982 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above) 1983 * monarchtimeout is how long to wait for other CPUs on machine 1984 * check, or 0 to not wait 1985 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h 1986 and older. 1987 * mce=nobootlog Don't log MCEs from before booting. 1988 * mce=bios_cmci_threshold Don't program the CMCI threshold 1989 * mce=recovery force enable memcpy_mcsafe() 1990 */ 1991 static int __init mcheck_enable(char *str) 1992 { 1993 struct mca_config *cfg = &mca_cfg; 1994 1995 if (*str == 0) { 1996 enable_p5_mce(); 1997 return 1; 1998 } 1999 if (*str == '=') 2000 str++; 2001 if (!strcmp(str, "off")) 2002 cfg->disabled = 1; 2003 else if (!strcmp(str, "no_cmci")) 2004 cfg->cmci_disabled = true; 2005 else if (!strcmp(str, "no_lmce")) 2006 cfg->lmce_disabled = 1; 2007 else if (!strcmp(str, "dont_log_ce")) 2008 cfg->dont_log_ce = true; 2009 else if (!strcmp(str, "ignore_ce")) 2010 cfg->ignore_ce = true; 2011 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog")) 2012 cfg->bootlog = (str[0] == 'b'); 2013 else if (!strcmp(str, "bios_cmci_threshold")) 2014 cfg->bios_cmci_threshold = 1; 2015 else if (!strcmp(str, "recovery")) 2016 cfg->recovery = 1; 2017 else if (isdigit(str[0])) { 2018 if (get_option(&str, &cfg->tolerant) == 2) 2019 get_option(&str, &(cfg->monarch_timeout)); 2020 } else { 2021 pr_info("mce argument %s ignored. Please use /sys\n", str); 2022 return 0; 2023 } 2024 return 1; 2025 } 2026 __setup("mce", mcheck_enable); 2027 2028 int __init mcheck_init(void) 2029 { 2030 mcheck_intel_therm_init(); 2031 mce_register_decode_chain(&first_nb); 2032 mce_register_decode_chain(&mce_uc_nb); 2033 mce_register_decode_chain(&mce_default_nb); 2034 mcheck_vendor_init_severity(); 2035 2036 INIT_WORK(&mce_work, mce_gen_pool_process); 2037 init_irq_work(&mce_irq_work, mce_irq_work_cb); 2038 2039 return 0; 2040 } 2041 2042 /* 2043 * mce_syscore: PM support 2044 */ 2045 2046 /* 2047 * Disable machine checks on suspend and shutdown. We can't really handle 2048 * them later. 2049 */ 2050 static void mce_disable_error_reporting(void) 2051 { 2052 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2053 int i; 2054 2055 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2056 struct mce_bank *b = &mce_banks[i]; 2057 2058 if (b->init) 2059 wrmsrl(msr_ops.ctl(i), 0); 2060 } 2061 return; 2062 } 2063 2064 static void vendor_disable_error_reporting(void) 2065 { 2066 /* 2067 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these 2068 * MSRs are socket-wide. Disabling them for just a single offlined CPU 2069 * is bad, since it will inhibit reporting for all shared resources on 2070 * the socket like the last level cache (LLC), the integrated memory 2071 * controller (iMC), etc. 2072 */ 2073 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL || 2074 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON || 2075 boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 2076 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) 2077 return; 2078 2079 mce_disable_error_reporting(); 2080 } 2081 2082 static int mce_syscore_suspend(void) 2083 { 2084 vendor_disable_error_reporting(); 2085 return 0; 2086 } 2087 2088 static void mce_syscore_shutdown(void) 2089 { 2090 vendor_disable_error_reporting(); 2091 } 2092 2093 /* 2094 * On resume clear all MCE state. Don't want to see leftovers from the BIOS. 2095 * Only one CPU is active at this time, the others get re-added later using 2096 * CPU hotplug: 2097 */ 2098 static void mce_syscore_resume(void) 2099 { 2100 __mcheck_cpu_init_generic(); 2101 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info)); 2102 __mcheck_cpu_init_clear_banks(); 2103 } 2104 2105 static struct syscore_ops mce_syscore_ops = { 2106 .suspend = mce_syscore_suspend, 2107 .shutdown = mce_syscore_shutdown, 2108 .resume = mce_syscore_resume, 2109 }; 2110 2111 /* 2112 * mce_device: Sysfs support 2113 */ 2114 2115 static void mce_cpu_restart(void *data) 2116 { 2117 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2118 return; 2119 __mcheck_cpu_init_generic(); 2120 __mcheck_cpu_init_clear_banks(); 2121 __mcheck_cpu_init_timer(); 2122 } 2123 2124 /* Reinit MCEs after user configuration changes */ 2125 static void mce_restart(void) 2126 { 2127 mce_timer_delete_all(); 2128 on_each_cpu(mce_cpu_restart, NULL, 1); 2129 } 2130 2131 /* Toggle features for corrected errors */ 2132 static void mce_disable_cmci(void *data) 2133 { 2134 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2135 return; 2136 cmci_clear(); 2137 } 2138 2139 static void mce_enable_ce(void *all) 2140 { 2141 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2142 return; 2143 cmci_reenable(); 2144 cmci_recheck(); 2145 if (all) 2146 __mcheck_cpu_init_timer(); 2147 } 2148 2149 static struct bus_type mce_subsys = { 2150 .name = "machinecheck", 2151 .dev_name = "machinecheck", 2152 }; 2153 2154 DEFINE_PER_CPU(struct device *, mce_device); 2155 2156 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr) 2157 { 2158 return container_of(attr, struct mce_bank_dev, attr); 2159 } 2160 2161 static ssize_t show_bank(struct device *s, struct device_attribute *attr, 2162 char *buf) 2163 { 2164 u8 bank = attr_to_bank(attr)->bank; 2165 struct mce_bank *b; 2166 2167 if (bank >= per_cpu(mce_num_banks, s->id)) 2168 return -EINVAL; 2169 2170 b = &per_cpu(mce_banks_array, s->id)[bank]; 2171 2172 if (!b->init) 2173 return -ENODEV; 2174 2175 return sprintf(buf, "%llx\n", b->ctl); 2176 } 2177 2178 static ssize_t set_bank(struct device *s, struct device_attribute *attr, 2179 const char *buf, size_t size) 2180 { 2181 u8 bank = attr_to_bank(attr)->bank; 2182 struct mce_bank *b; 2183 u64 new; 2184 2185 if (kstrtou64(buf, 0, &new) < 0) 2186 return -EINVAL; 2187 2188 if (bank >= per_cpu(mce_num_banks, s->id)) 2189 return -EINVAL; 2190 2191 b = &per_cpu(mce_banks_array, s->id)[bank]; 2192 2193 if (!b->init) 2194 return -ENODEV; 2195 2196 b->ctl = new; 2197 mce_restart(); 2198 2199 return size; 2200 } 2201 2202 static ssize_t set_ignore_ce(struct device *s, 2203 struct device_attribute *attr, 2204 const char *buf, size_t size) 2205 { 2206 u64 new; 2207 2208 if (kstrtou64(buf, 0, &new) < 0) 2209 return -EINVAL; 2210 2211 mutex_lock(&mce_sysfs_mutex); 2212 if (mca_cfg.ignore_ce ^ !!new) { 2213 if (new) { 2214 /* disable ce features */ 2215 mce_timer_delete_all(); 2216 on_each_cpu(mce_disable_cmci, NULL, 1); 2217 mca_cfg.ignore_ce = true; 2218 } else { 2219 /* enable ce features */ 2220 mca_cfg.ignore_ce = false; 2221 on_each_cpu(mce_enable_ce, (void *)1, 1); 2222 } 2223 } 2224 mutex_unlock(&mce_sysfs_mutex); 2225 2226 return size; 2227 } 2228 2229 static ssize_t set_cmci_disabled(struct device *s, 2230 struct device_attribute *attr, 2231 const char *buf, size_t size) 2232 { 2233 u64 new; 2234 2235 if (kstrtou64(buf, 0, &new) < 0) 2236 return -EINVAL; 2237 2238 mutex_lock(&mce_sysfs_mutex); 2239 if (mca_cfg.cmci_disabled ^ !!new) { 2240 if (new) { 2241 /* disable cmci */ 2242 on_each_cpu(mce_disable_cmci, NULL, 1); 2243 mca_cfg.cmci_disabled = true; 2244 } else { 2245 /* enable cmci */ 2246 mca_cfg.cmci_disabled = false; 2247 on_each_cpu(mce_enable_ce, NULL, 1); 2248 } 2249 } 2250 mutex_unlock(&mce_sysfs_mutex); 2251 2252 return size; 2253 } 2254 2255 static ssize_t store_int_with_restart(struct device *s, 2256 struct device_attribute *attr, 2257 const char *buf, size_t size) 2258 { 2259 unsigned long old_check_interval = check_interval; 2260 ssize_t ret = device_store_ulong(s, attr, buf, size); 2261 2262 if (check_interval == old_check_interval) 2263 return ret; 2264 2265 mutex_lock(&mce_sysfs_mutex); 2266 mce_restart(); 2267 mutex_unlock(&mce_sysfs_mutex); 2268 2269 return ret; 2270 } 2271 2272 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant); 2273 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout); 2274 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce); 2275 2276 static struct dev_ext_attribute dev_attr_check_interval = { 2277 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart), 2278 &check_interval 2279 }; 2280 2281 static struct dev_ext_attribute dev_attr_ignore_ce = { 2282 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce), 2283 &mca_cfg.ignore_ce 2284 }; 2285 2286 static struct dev_ext_attribute dev_attr_cmci_disabled = { 2287 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled), 2288 &mca_cfg.cmci_disabled 2289 }; 2290 2291 static struct device_attribute *mce_device_attrs[] = { 2292 &dev_attr_tolerant.attr, 2293 &dev_attr_check_interval.attr, 2294 #ifdef CONFIG_X86_MCELOG_LEGACY 2295 &dev_attr_trigger, 2296 #endif 2297 &dev_attr_monarch_timeout.attr, 2298 &dev_attr_dont_log_ce.attr, 2299 &dev_attr_ignore_ce.attr, 2300 &dev_attr_cmci_disabled.attr, 2301 NULL 2302 }; 2303 2304 static cpumask_var_t mce_device_initialized; 2305 2306 static void mce_device_release(struct device *dev) 2307 { 2308 kfree(dev); 2309 } 2310 2311 /* Per CPU device init. All of the CPUs still share the same bank device: */ 2312 static int mce_device_create(unsigned int cpu) 2313 { 2314 struct device *dev; 2315 int err; 2316 int i, j; 2317 2318 if (!mce_available(&boot_cpu_data)) 2319 return -EIO; 2320 2321 dev = per_cpu(mce_device, cpu); 2322 if (dev) 2323 return 0; 2324 2325 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2326 if (!dev) 2327 return -ENOMEM; 2328 dev->id = cpu; 2329 dev->bus = &mce_subsys; 2330 dev->release = &mce_device_release; 2331 2332 err = device_register(dev); 2333 if (err) { 2334 put_device(dev); 2335 return err; 2336 } 2337 2338 for (i = 0; mce_device_attrs[i]; i++) { 2339 err = device_create_file(dev, mce_device_attrs[i]); 2340 if (err) 2341 goto error; 2342 } 2343 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) { 2344 err = device_create_file(dev, &mce_bank_devs[j].attr); 2345 if (err) 2346 goto error2; 2347 } 2348 cpumask_set_cpu(cpu, mce_device_initialized); 2349 per_cpu(mce_device, cpu) = dev; 2350 2351 return 0; 2352 error2: 2353 while (--j >= 0) 2354 device_remove_file(dev, &mce_bank_devs[j].attr); 2355 error: 2356 while (--i >= 0) 2357 device_remove_file(dev, mce_device_attrs[i]); 2358 2359 device_unregister(dev); 2360 2361 return err; 2362 } 2363 2364 static void mce_device_remove(unsigned int cpu) 2365 { 2366 struct device *dev = per_cpu(mce_device, cpu); 2367 int i; 2368 2369 if (!cpumask_test_cpu(cpu, mce_device_initialized)) 2370 return; 2371 2372 for (i = 0; mce_device_attrs[i]; i++) 2373 device_remove_file(dev, mce_device_attrs[i]); 2374 2375 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++) 2376 device_remove_file(dev, &mce_bank_devs[i].attr); 2377 2378 device_unregister(dev); 2379 cpumask_clear_cpu(cpu, mce_device_initialized); 2380 per_cpu(mce_device, cpu) = NULL; 2381 } 2382 2383 /* Make sure there are no machine checks on offlined CPUs. */ 2384 static void mce_disable_cpu(void) 2385 { 2386 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2387 return; 2388 2389 if (!cpuhp_tasks_frozen) 2390 cmci_clear(); 2391 2392 vendor_disable_error_reporting(); 2393 } 2394 2395 static void mce_reenable_cpu(void) 2396 { 2397 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array); 2398 int i; 2399 2400 if (!mce_available(raw_cpu_ptr(&cpu_info))) 2401 return; 2402 2403 if (!cpuhp_tasks_frozen) 2404 cmci_reenable(); 2405 for (i = 0; i < this_cpu_read(mce_num_banks); i++) { 2406 struct mce_bank *b = &mce_banks[i]; 2407 2408 if (b->init) 2409 wrmsrl(msr_ops.ctl(i), b->ctl); 2410 } 2411 } 2412 2413 static int mce_cpu_dead(unsigned int cpu) 2414 { 2415 mce_intel_hcpu_update(cpu); 2416 2417 /* intentionally ignoring frozen here */ 2418 if (!cpuhp_tasks_frozen) 2419 cmci_rediscover(); 2420 return 0; 2421 } 2422 2423 static int mce_cpu_online(unsigned int cpu) 2424 { 2425 struct timer_list *t = this_cpu_ptr(&mce_timer); 2426 int ret; 2427 2428 mce_device_create(cpu); 2429 2430 ret = mce_threshold_create_device(cpu); 2431 if (ret) { 2432 mce_device_remove(cpu); 2433 return ret; 2434 } 2435 mce_reenable_cpu(); 2436 mce_start_timer(t); 2437 return 0; 2438 } 2439 2440 static int mce_cpu_pre_down(unsigned int cpu) 2441 { 2442 struct timer_list *t = this_cpu_ptr(&mce_timer); 2443 2444 mce_disable_cpu(); 2445 del_timer_sync(t); 2446 mce_threshold_remove_device(cpu); 2447 mce_device_remove(cpu); 2448 return 0; 2449 } 2450 2451 static __init void mce_init_banks(void) 2452 { 2453 int i; 2454 2455 for (i = 0; i < MAX_NR_BANKS; i++) { 2456 struct mce_bank_dev *b = &mce_bank_devs[i]; 2457 struct device_attribute *a = &b->attr; 2458 2459 b->bank = i; 2460 2461 sysfs_attr_init(&a->attr); 2462 a->attr.name = b->attrname; 2463 snprintf(b->attrname, ATTR_LEN, "bank%d", i); 2464 2465 a->attr.mode = 0644; 2466 a->show = show_bank; 2467 a->store = set_bank; 2468 } 2469 } 2470 2471 static __init int mcheck_init_device(void) 2472 { 2473 int err; 2474 2475 /* 2476 * Check if we have a spare virtual bit. This will only become 2477 * a problem if/when we move beyond 5-level page tables. 2478 */ 2479 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63); 2480 2481 if (!mce_available(&boot_cpu_data)) { 2482 err = -EIO; 2483 goto err_out; 2484 } 2485 2486 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) { 2487 err = -ENOMEM; 2488 goto err_out; 2489 } 2490 2491 mce_init_banks(); 2492 2493 err = subsys_system_register(&mce_subsys, NULL); 2494 if (err) 2495 goto err_out_mem; 2496 2497 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL, 2498 mce_cpu_dead); 2499 if (err) 2500 goto err_out_mem; 2501 2502 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online", 2503 mce_cpu_online, mce_cpu_pre_down); 2504 if (err < 0) 2505 goto err_out_online; 2506 2507 register_syscore_ops(&mce_syscore_ops); 2508 2509 return 0; 2510 2511 err_out_online: 2512 cpuhp_remove_state(CPUHP_X86_MCE_DEAD); 2513 2514 err_out_mem: 2515 free_cpumask_var(mce_device_initialized); 2516 2517 err_out: 2518 pr_err("Unable to init MCE device (rc: %d)\n", err); 2519 2520 return err; 2521 } 2522 device_initcall_sync(mcheck_init_device); 2523 2524 /* 2525 * Old style boot options parsing. Only for compatibility. 2526 */ 2527 static int __init mcheck_disable(char *str) 2528 { 2529 mca_cfg.disabled = 1; 2530 return 1; 2531 } 2532 __setup("nomce", mcheck_disable); 2533 2534 #ifdef CONFIG_DEBUG_FS 2535 struct dentry *mce_get_debugfs_dir(void) 2536 { 2537 static struct dentry *dmce; 2538 2539 if (!dmce) 2540 dmce = debugfs_create_dir("mce", NULL); 2541 2542 return dmce; 2543 } 2544 2545 static void mce_reset(void) 2546 { 2547 cpu_missing = 0; 2548 atomic_set(&mce_fake_panicked, 0); 2549 atomic_set(&mce_executing, 0); 2550 atomic_set(&mce_callin, 0); 2551 atomic_set(&global_nwo, 0); 2552 } 2553 2554 static int fake_panic_get(void *data, u64 *val) 2555 { 2556 *val = fake_panic; 2557 return 0; 2558 } 2559 2560 static int fake_panic_set(void *data, u64 val) 2561 { 2562 mce_reset(); 2563 fake_panic = val; 2564 return 0; 2565 } 2566 2567 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set, 2568 "%llu\n"); 2569 2570 static void __init mcheck_debugfs_init(void) 2571 { 2572 struct dentry *dmce; 2573 2574 dmce = mce_get_debugfs_dir(); 2575 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL, 2576 &fake_panic_fops); 2577 } 2578 #else 2579 static void __init mcheck_debugfs_init(void) { } 2580 #endif 2581 2582 DEFINE_STATIC_KEY_FALSE(mcsafe_key); 2583 EXPORT_SYMBOL_GPL(mcsafe_key); 2584 2585 static int __init mcheck_late_init(void) 2586 { 2587 if (mca_cfg.recovery) 2588 static_branch_inc(&mcsafe_key); 2589 2590 mcheck_debugfs_init(); 2591 cec_init(); 2592 2593 /* 2594 * Flush out everything that has been logged during early boot, now that 2595 * everything has been initialized (workqueues, decoders, ...). 2596 */ 2597 mce_schedule_work(); 2598 2599 return 0; 2600 } 2601 late_initcall(mcheck_late_init); 2602