xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision 22f01029)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 
103 /*
104  * MCA banks polled by the period polling timer for corrected events.
105  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
106  */
107 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
108 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
109 };
110 
111 /*
112  * MCA banks controlled through firmware first for corrected errors.
113  * This is a global list of banks for which we won't enable CMCI and we
114  * won't poll. Firmware controls these banks and is responsible for
115  * reporting corrected errors through GHES. Uncorrected/recoverable
116  * errors are still notified through a machine check.
117  */
118 mce_banks_t mce_banks_ce_disabled;
119 
120 static struct work_struct mce_work;
121 static struct irq_work mce_irq_work;
122 
123 /*
124  * CPU/chipset specific EDAC code can register a notifier call here to print
125  * MCE errors in a human-readable form.
126  */
127 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
128 
129 /* Do initial initialization of a struct mce */
130 void mce_setup(struct mce *m)
131 {
132 	memset(m, 0, sizeof(struct mce));
133 	m->cpu = m->extcpu = smp_processor_id();
134 	/* need the internal __ version to avoid deadlocks */
135 	m->time = __ktime_get_real_seconds();
136 	m->cpuvendor = boot_cpu_data.x86_vendor;
137 	m->cpuid = cpuid_eax(1);
138 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
139 	m->apicid = cpu_data(m->extcpu).initial_apicid;
140 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
141 
142 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
143 		m->ppin = __rdmsr(MSR_PPIN);
144 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
145 		m->ppin = __rdmsr(MSR_AMD_PPIN);
146 
147 	m->microcode = boot_cpu_data.microcode;
148 }
149 
150 DEFINE_PER_CPU(struct mce, injectm);
151 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
152 
153 void mce_log(struct mce *m)
154 {
155 	if (!mce_gen_pool_add(m))
156 		irq_work_queue(&mce_irq_work);
157 }
158 EXPORT_SYMBOL_GPL(mce_log);
159 
160 void mce_register_decode_chain(struct notifier_block *nb)
161 {
162 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
163 		    nb->priority > MCE_PRIO_HIGHEST))
164 		return;
165 
166 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
167 }
168 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
169 
170 void mce_unregister_decode_chain(struct notifier_block *nb)
171 {
172 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
173 }
174 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
175 
176 u32 mca_msr_reg(int bank, enum mca_msr reg)
177 {
178 	if (mce_flags.smca) {
179 		switch (reg) {
180 		case MCA_CTL:	 return MSR_AMD64_SMCA_MCx_CTL(bank);
181 		case MCA_ADDR:	 return MSR_AMD64_SMCA_MCx_ADDR(bank);
182 		case MCA_MISC:	 return MSR_AMD64_SMCA_MCx_MISC(bank);
183 		case MCA_STATUS: return MSR_AMD64_SMCA_MCx_STATUS(bank);
184 		}
185 	}
186 
187 	switch (reg) {
188 	case MCA_CTL:	 return MSR_IA32_MCx_CTL(bank);
189 	case MCA_ADDR:	 return MSR_IA32_MCx_ADDR(bank);
190 	case MCA_MISC:	 return MSR_IA32_MCx_MISC(bank);
191 	case MCA_STATUS: return MSR_IA32_MCx_STATUS(bank);
192 	}
193 
194 	return 0;
195 }
196 
197 static void __print_mce(struct mce *m)
198 {
199 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
200 		 m->extcpu,
201 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
202 		 m->mcgstatus, m->bank, m->status);
203 
204 	if (m->ip) {
205 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
206 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
207 			m->cs, m->ip);
208 
209 		if (m->cs == __KERNEL_CS)
210 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
211 		pr_cont("\n");
212 	}
213 
214 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
215 	if (m->addr)
216 		pr_cont("ADDR %llx ", m->addr);
217 	if (m->misc)
218 		pr_cont("MISC %llx ", m->misc);
219 	if (m->ppin)
220 		pr_cont("PPIN %llx ", m->ppin);
221 
222 	if (mce_flags.smca) {
223 		if (m->synd)
224 			pr_cont("SYND %llx ", m->synd);
225 		if (m->ipid)
226 			pr_cont("IPID %llx ", m->ipid);
227 	}
228 
229 	pr_cont("\n");
230 
231 	/*
232 	 * Note this output is parsed by external tools and old fields
233 	 * should not be changed.
234 	 */
235 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
236 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
237 		m->microcode);
238 }
239 
240 static void print_mce(struct mce *m)
241 {
242 	__print_mce(m);
243 
244 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
245 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
246 }
247 
248 #define PANIC_TIMEOUT 5 /* 5 seconds */
249 
250 static atomic_t mce_panicked;
251 
252 static int fake_panic;
253 static atomic_t mce_fake_panicked;
254 
255 /* Panic in progress. Enable interrupts and wait for final IPI */
256 static void wait_for_panic(void)
257 {
258 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
259 
260 	preempt_disable();
261 	local_irq_enable();
262 	while (timeout-- > 0)
263 		udelay(1);
264 	if (panic_timeout == 0)
265 		panic_timeout = mca_cfg.panic_timeout;
266 	panic("Panicing machine check CPU died");
267 }
268 
269 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
270 {
271 	struct llist_node *pending;
272 	struct mce_evt_llist *l;
273 	int apei_err = 0;
274 
275 	/*
276 	 * Allow instrumentation around external facilities usage. Not that it
277 	 * matters a whole lot since the machine is going to panic anyway.
278 	 */
279 	instrumentation_begin();
280 
281 	if (!fake_panic) {
282 		/*
283 		 * Make sure only one CPU runs in machine check panic
284 		 */
285 		if (atomic_inc_return(&mce_panicked) > 1)
286 			wait_for_panic();
287 		barrier();
288 
289 		bust_spinlocks(1);
290 		console_verbose();
291 	} else {
292 		/* Don't log too much for fake panic */
293 		if (atomic_inc_return(&mce_fake_panicked) > 1)
294 			goto out;
295 	}
296 	pending = mce_gen_pool_prepare_records();
297 	/* First print corrected ones that are still unlogged */
298 	llist_for_each_entry(l, pending, llnode) {
299 		struct mce *m = &l->mce;
300 		if (!(m->status & MCI_STATUS_UC)) {
301 			print_mce(m);
302 			if (!apei_err)
303 				apei_err = apei_write_mce(m);
304 		}
305 	}
306 	/* Now print uncorrected but with the final one last */
307 	llist_for_each_entry(l, pending, llnode) {
308 		struct mce *m = &l->mce;
309 		if (!(m->status & MCI_STATUS_UC))
310 			continue;
311 		if (!final || mce_cmp(m, final)) {
312 			print_mce(m);
313 			if (!apei_err)
314 				apei_err = apei_write_mce(m);
315 		}
316 	}
317 	if (final) {
318 		print_mce(final);
319 		if (!apei_err)
320 			apei_err = apei_write_mce(final);
321 	}
322 	if (exp)
323 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
324 	if (!fake_panic) {
325 		if (panic_timeout == 0)
326 			panic_timeout = mca_cfg.panic_timeout;
327 		panic(msg);
328 	} else
329 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
330 
331 out:
332 	instrumentation_end();
333 }
334 
335 /* Support code for software error injection */
336 
337 static int msr_to_offset(u32 msr)
338 {
339 	unsigned bank = __this_cpu_read(injectm.bank);
340 
341 	if (msr == mca_cfg.rip_msr)
342 		return offsetof(struct mce, ip);
343 	if (msr == mca_msr_reg(bank, MCA_STATUS))
344 		return offsetof(struct mce, status);
345 	if (msr == mca_msr_reg(bank, MCA_ADDR))
346 		return offsetof(struct mce, addr);
347 	if (msr == mca_msr_reg(bank, MCA_MISC))
348 		return offsetof(struct mce, misc);
349 	if (msr == MSR_IA32_MCG_STATUS)
350 		return offsetof(struct mce, mcgstatus);
351 	return -1;
352 }
353 
354 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
355 {
356 	if (wrmsr) {
357 		pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
358 			 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
359 			 regs->ip, (void *)regs->ip);
360 	} else {
361 		pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
362 			 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
363 	}
364 
365 	show_stack_regs(regs);
366 
367 	panic("MCA architectural violation!\n");
368 
369 	while (true)
370 		cpu_relax();
371 }
372 
373 /* MSR access wrappers used for error injection */
374 noinstr u64 mce_rdmsrl(u32 msr)
375 {
376 	DECLARE_ARGS(val, low, high);
377 
378 	if (__this_cpu_read(injectm.finished)) {
379 		int offset;
380 		u64 ret;
381 
382 		instrumentation_begin();
383 
384 		offset = msr_to_offset(msr);
385 		if (offset < 0)
386 			ret = 0;
387 		else
388 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
389 
390 		instrumentation_end();
391 
392 		return ret;
393 	}
394 
395 	/*
396 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
397 	 * architectural violation and needs to be reported to hw vendor. Panic
398 	 * the box to not allow any further progress.
399 	 */
400 	asm volatile("1: rdmsr\n"
401 		     "2:\n"
402 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
403 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
404 
405 
406 	return EAX_EDX_VAL(val, low, high);
407 }
408 
409 static noinstr void mce_wrmsrl(u32 msr, u64 v)
410 {
411 	u32 low, high;
412 
413 	if (__this_cpu_read(injectm.finished)) {
414 		int offset;
415 
416 		instrumentation_begin();
417 
418 		offset = msr_to_offset(msr);
419 		if (offset >= 0)
420 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
421 
422 		instrumentation_end();
423 
424 		return;
425 	}
426 
427 	low  = (u32)v;
428 	high = (u32)(v >> 32);
429 
430 	/* See comment in mce_rdmsrl() */
431 	asm volatile("1: wrmsr\n"
432 		     "2:\n"
433 		     _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
434 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
435 }
436 
437 /*
438  * Collect all global (w.r.t. this processor) status about this machine
439  * check into our "mce" struct so that we can use it later to assess
440  * the severity of the problem as we read per-bank specific details.
441  */
442 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
443 {
444 	/*
445 	 * Enable instrumentation around mce_setup() which calls external
446 	 * facilities.
447 	 */
448 	instrumentation_begin();
449 	mce_setup(m);
450 	instrumentation_end();
451 
452 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
453 	if (regs) {
454 		/*
455 		 * Get the address of the instruction at the time of
456 		 * the machine check error.
457 		 */
458 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
459 			m->ip = regs->ip;
460 			m->cs = regs->cs;
461 
462 			/*
463 			 * When in VM86 mode make the cs look like ring 3
464 			 * always. This is a lie, but it's better than passing
465 			 * the additional vm86 bit around everywhere.
466 			 */
467 			if (v8086_mode(regs))
468 				m->cs |= 3;
469 		}
470 		/* Use accurate RIP reporting if available. */
471 		if (mca_cfg.rip_msr)
472 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
473 	}
474 }
475 
476 int mce_available(struct cpuinfo_x86 *c)
477 {
478 	if (mca_cfg.disabled)
479 		return 0;
480 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
481 }
482 
483 static void mce_schedule_work(void)
484 {
485 	if (!mce_gen_pool_empty())
486 		schedule_work(&mce_work);
487 }
488 
489 static void mce_irq_work_cb(struct irq_work *entry)
490 {
491 	mce_schedule_work();
492 }
493 
494 /*
495  * Check if the address reported by the CPU is in a format we can parse.
496  * It would be possible to add code for most other cases, but all would
497  * be somewhat complicated (e.g. segment offset would require an instruction
498  * parser). So only support physical addresses up to page granularity for now.
499  */
500 int mce_usable_address(struct mce *m)
501 {
502 	if (!(m->status & MCI_STATUS_ADDRV))
503 		return 0;
504 
505 	/* Checks after this one are Intel/Zhaoxin-specific: */
506 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
507 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
508 		return 1;
509 
510 	if (!(m->status & MCI_STATUS_MISCV))
511 		return 0;
512 
513 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
514 		return 0;
515 
516 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
517 		return 0;
518 
519 	return 1;
520 }
521 EXPORT_SYMBOL_GPL(mce_usable_address);
522 
523 bool mce_is_memory_error(struct mce *m)
524 {
525 	switch (m->cpuvendor) {
526 	case X86_VENDOR_AMD:
527 	case X86_VENDOR_HYGON:
528 		return amd_mce_is_memory_error(m);
529 
530 	case X86_VENDOR_INTEL:
531 	case X86_VENDOR_ZHAOXIN:
532 		/*
533 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
534 		 *
535 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
536 		 * indicating a memory error. Bit 8 is used for indicating a
537 		 * cache hierarchy error. The combination of bit 2 and bit 3
538 		 * is used for indicating a `generic' cache hierarchy error
539 		 * But we can't just blindly check the above bits, because if
540 		 * bit 11 is set, then it is a bus/interconnect error - and
541 		 * either way the above bits just gives more detail on what
542 		 * bus/interconnect error happened. Note that bit 12 can be
543 		 * ignored, as it's the "filter" bit.
544 		 */
545 		return (m->status & 0xef80) == BIT(7) ||
546 		       (m->status & 0xef00) == BIT(8) ||
547 		       (m->status & 0xeffc) == 0xc;
548 
549 	default:
550 		return false;
551 	}
552 }
553 EXPORT_SYMBOL_GPL(mce_is_memory_error);
554 
555 static bool whole_page(struct mce *m)
556 {
557 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
558 		return true;
559 
560 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
561 }
562 
563 bool mce_is_correctable(struct mce *m)
564 {
565 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
566 		return false;
567 
568 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
569 		return false;
570 
571 	if (m->status & MCI_STATUS_UC)
572 		return false;
573 
574 	return true;
575 }
576 EXPORT_SYMBOL_GPL(mce_is_correctable);
577 
578 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
579 			      void *data)
580 {
581 	struct mce *m = (struct mce *)data;
582 
583 	if (!m)
584 		return NOTIFY_DONE;
585 
586 	/* Emit the trace record: */
587 	trace_mce_record(m);
588 
589 	set_bit(0, &mce_need_notify);
590 
591 	mce_notify_irq();
592 
593 	return NOTIFY_DONE;
594 }
595 
596 static struct notifier_block early_nb = {
597 	.notifier_call	= mce_early_notifier,
598 	.priority	= MCE_PRIO_EARLY,
599 };
600 
601 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
602 			      void *data)
603 {
604 	struct mce *mce = (struct mce *)data;
605 	unsigned long pfn;
606 
607 	if (!mce || !mce_usable_address(mce))
608 		return NOTIFY_DONE;
609 
610 	if (mce->severity != MCE_AO_SEVERITY &&
611 	    mce->severity != MCE_DEFERRED_SEVERITY)
612 		return NOTIFY_DONE;
613 
614 	pfn = mce->addr >> PAGE_SHIFT;
615 	if (!memory_failure(pfn, 0)) {
616 		set_mce_nospec(pfn, whole_page(mce));
617 		mce->kflags |= MCE_HANDLED_UC;
618 	}
619 
620 	return NOTIFY_OK;
621 }
622 
623 static struct notifier_block mce_uc_nb = {
624 	.notifier_call	= uc_decode_notifier,
625 	.priority	= MCE_PRIO_UC,
626 };
627 
628 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
629 				void *data)
630 {
631 	struct mce *m = (struct mce *)data;
632 
633 	if (!m)
634 		return NOTIFY_DONE;
635 
636 	if (mca_cfg.print_all || !m->kflags)
637 		__print_mce(m);
638 
639 	return NOTIFY_DONE;
640 }
641 
642 static struct notifier_block mce_default_nb = {
643 	.notifier_call	= mce_default_notifier,
644 	/* lowest prio, we want it to run last. */
645 	.priority	= MCE_PRIO_LOWEST,
646 };
647 
648 /*
649  * Read ADDR and MISC registers.
650  */
651 static noinstr void mce_read_aux(struct mce *m, int i)
652 {
653 	if (m->status & MCI_STATUS_MISCV)
654 		m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
655 
656 	if (m->status & MCI_STATUS_ADDRV) {
657 		m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
658 
659 		/*
660 		 * Mask the reported address by the reported granularity.
661 		 */
662 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
663 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
664 			m->addr >>= shift;
665 			m->addr <<= shift;
666 		}
667 
668 		/*
669 		 * Extract [55:<lsb>] where lsb is the least significant
670 		 * *valid* bit of the address bits.
671 		 */
672 		if (mce_flags.smca) {
673 			u8 lsb = (m->addr >> 56) & 0x3f;
674 
675 			m->addr &= GENMASK_ULL(55, lsb);
676 		}
677 	}
678 
679 	if (mce_flags.smca) {
680 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
681 
682 		if (m->status & MCI_STATUS_SYNDV)
683 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
684 	}
685 }
686 
687 DEFINE_PER_CPU(unsigned, mce_poll_count);
688 
689 /*
690  * Poll for corrected events or events that happened before reset.
691  * Those are just logged through /dev/mcelog.
692  *
693  * This is executed in standard interrupt context.
694  *
695  * Note: spec recommends to panic for fatal unsignalled
696  * errors here. However this would be quite problematic --
697  * we would need to reimplement the Monarch handling and
698  * it would mess up the exclusion between exception handler
699  * and poll handler -- * so we skip this for now.
700  * These cases should not happen anyways, or only when the CPU
701  * is already totally * confused. In this case it's likely it will
702  * not fully execute the machine check handler either.
703  */
704 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
705 {
706 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
707 	bool error_seen = false;
708 	struct mce m;
709 	int i;
710 
711 	this_cpu_inc(mce_poll_count);
712 
713 	mce_gather_info(&m, NULL);
714 
715 	if (flags & MCP_TIMESTAMP)
716 		m.tsc = rdtsc();
717 
718 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
719 		if (!mce_banks[i].ctl || !test_bit(i, *b))
720 			continue;
721 
722 		m.misc = 0;
723 		m.addr = 0;
724 		m.bank = i;
725 
726 		barrier();
727 		m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
728 
729 		/* If this entry is not valid, ignore it */
730 		if (!(m.status & MCI_STATUS_VAL))
731 			continue;
732 
733 		/*
734 		 * If we are logging everything (at CPU online) or this
735 		 * is a corrected error, then we must log it.
736 		 */
737 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
738 			goto log_it;
739 
740 		/*
741 		 * Newer Intel systems that support software error
742 		 * recovery need to make additional checks. Other
743 		 * CPUs should skip over uncorrected errors, but log
744 		 * everything else.
745 		 */
746 		if (!mca_cfg.ser) {
747 			if (m.status & MCI_STATUS_UC)
748 				continue;
749 			goto log_it;
750 		}
751 
752 		/* Log "not enabled" (speculative) errors */
753 		if (!(m.status & MCI_STATUS_EN))
754 			goto log_it;
755 
756 		/*
757 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
758 		 * UC == 1 && PCC == 0 && S == 0
759 		 */
760 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
761 			goto log_it;
762 
763 		/*
764 		 * Skip anything else. Presumption is that our read of this
765 		 * bank is racing with a machine check. Leave the log alone
766 		 * for do_machine_check() to deal with it.
767 		 */
768 		continue;
769 
770 log_it:
771 		error_seen = true;
772 
773 		if (flags & MCP_DONTLOG)
774 			goto clear_it;
775 
776 		mce_read_aux(&m, i);
777 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
778 		/*
779 		 * Don't get the IP here because it's unlikely to
780 		 * have anything to do with the actual error location.
781 		 */
782 
783 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
784 			goto clear_it;
785 
786 		if (flags & MCP_QUEUE_LOG)
787 			mce_gen_pool_add(&m);
788 		else
789 			mce_log(&m);
790 
791 clear_it:
792 		/*
793 		 * Clear state for this bank.
794 		 */
795 		mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
796 	}
797 
798 	/*
799 	 * Don't clear MCG_STATUS here because it's only defined for
800 	 * exceptions.
801 	 */
802 
803 	sync_core();
804 
805 	return error_seen;
806 }
807 EXPORT_SYMBOL_GPL(machine_check_poll);
808 
809 /*
810  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
811  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
812  * Vol 3B Table 15-20). But this confuses both the code that determines
813  * whether the machine check occurred in kernel or user mode, and also
814  * the severity assessment code. Pretend that EIPV was set, and take the
815  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
816  */
817 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
818 {
819 	if (bank != 0)
820 		return;
821 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
822 		return;
823 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
824 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
825 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
826 			  MCACOD)) !=
827 			 (MCI_STATUS_UC|MCI_STATUS_EN|
828 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
829 			  MCI_STATUS_AR|MCACOD_INSTR))
830 		return;
831 
832 	m->mcgstatus |= MCG_STATUS_EIPV;
833 	m->ip = regs->ip;
834 	m->cs = regs->cs;
835 }
836 
837 /*
838  * Do a quick check if any of the events requires a panic.
839  * This decides if we keep the events around or clear them.
840  */
841 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
842 			  struct pt_regs *regs)
843 {
844 	char *tmp = *msg;
845 	int i;
846 
847 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
848 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
849 		if (!(m->status & MCI_STATUS_VAL))
850 			continue;
851 
852 		__set_bit(i, validp);
853 		if (mce_flags.snb_ifu_quirk)
854 			quirk_sandybridge_ifu(i, m, regs);
855 
856 		m->bank = i;
857 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
858 			mce_read_aux(m, i);
859 			*msg = tmp;
860 			return 1;
861 		}
862 	}
863 	return 0;
864 }
865 
866 /*
867  * Variable to establish order between CPUs while scanning.
868  * Each CPU spins initially until executing is equal its number.
869  */
870 static atomic_t mce_executing;
871 
872 /*
873  * Defines order of CPUs on entry. First CPU becomes Monarch.
874  */
875 static atomic_t mce_callin;
876 
877 /*
878  * Track which CPUs entered the MCA broadcast synchronization and which not in
879  * order to print holdouts.
880  */
881 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
882 
883 /*
884  * Check if a timeout waiting for other CPUs happened.
885  */
886 static noinstr int mce_timed_out(u64 *t, const char *msg)
887 {
888 	int ret = 0;
889 
890 	/* Enable instrumentation around calls to external facilities */
891 	instrumentation_begin();
892 
893 	/*
894 	 * The others already did panic for some reason.
895 	 * Bail out like in a timeout.
896 	 * rmb() to tell the compiler that system_state
897 	 * might have been modified by someone else.
898 	 */
899 	rmb();
900 	if (atomic_read(&mce_panicked))
901 		wait_for_panic();
902 	if (!mca_cfg.monarch_timeout)
903 		goto out;
904 	if ((s64)*t < SPINUNIT) {
905 		if (mca_cfg.tolerant <= 1) {
906 			if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
907 				pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
908 					 cpumask_pr_args(&mce_missing_cpus));
909 			mce_panic(msg, NULL, NULL);
910 		}
911 		ret = 1;
912 		goto out;
913 	}
914 	*t -= SPINUNIT;
915 
916 out:
917 	touch_nmi_watchdog();
918 
919 	instrumentation_end();
920 
921 	return ret;
922 }
923 
924 /*
925  * The Monarch's reign.  The Monarch is the CPU who entered
926  * the machine check handler first. It waits for the others to
927  * raise the exception too and then grades them. When any
928  * error is fatal panic. Only then let the others continue.
929  *
930  * The other CPUs entering the MCE handler will be controlled by the
931  * Monarch. They are called Subjects.
932  *
933  * This way we prevent any potential data corruption in a unrecoverable case
934  * and also makes sure always all CPU's errors are examined.
935  *
936  * Also this detects the case of a machine check event coming from outer
937  * space (not detected by any CPUs) In this case some external agent wants
938  * us to shut down, so panic too.
939  *
940  * The other CPUs might still decide to panic if the handler happens
941  * in a unrecoverable place, but in this case the system is in a semi-stable
942  * state and won't corrupt anything by itself. It's ok to let the others
943  * continue for a bit first.
944  *
945  * All the spin loops have timeouts; when a timeout happens a CPU
946  * typically elects itself to be Monarch.
947  */
948 static void mce_reign(void)
949 {
950 	int cpu;
951 	struct mce *m = NULL;
952 	int global_worst = 0;
953 	char *msg = NULL;
954 
955 	/*
956 	 * This CPU is the Monarch and the other CPUs have run
957 	 * through their handlers.
958 	 * Grade the severity of the errors of all the CPUs.
959 	 */
960 	for_each_possible_cpu(cpu) {
961 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
962 
963 		if (mtmp->severity > global_worst) {
964 			global_worst = mtmp->severity;
965 			m = &per_cpu(mces_seen, cpu);
966 		}
967 	}
968 
969 	/*
970 	 * Cannot recover? Panic here then.
971 	 * This dumps all the mces in the log buffer and stops the
972 	 * other CPUs.
973 	 */
974 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
975 		/* call mce_severity() to get "msg" for panic */
976 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
977 		mce_panic("Fatal machine check", m, msg);
978 	}
979 
980 	/*
981 	 * For UC somewhere we let the CPU who detects it handle it.
982 	 * Also must let continue the others, otherwise the handling
983 	 * CPU could deadlock on a lock.
984 	 */
985 
986 	/*
987 	 * No machine check event found. Must be some external
988 	 * source or one CPU is hung. Panic.
989 	 */
990 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
991 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
992 
993 	/*
994 	 * Now clear all the mces_seen so that they don't reappear on
995 	 * the next mce.
996 	 */
997 	for_each_possible_cpu(cpu)
998 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
999 }
1000 
1001 static atomic_t global_nwo;
1002 
1003 /*
1004  * Start of Monarch synchronization. This waits until all CPUs have
1005  * entered the exception handler and then determines if any of them
1006  * saw a fatal event that requires panic. Then it executes them
1007  * in the entry order.
1008  * TBD double check parallel CPU hotunplug
1009  */
1010 static noinstr int mce_start(int *no_way_out)
1011 {
1012 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1013 	int order, ret = -1;
1014 
1015 	if (!timeout)
1016 		return ret;
1017 
1018 	atomic_add(*no_way_out, &global_nwo);
1019 	/*
1020 	 * Rely on the implied barrier below, such that global_nwo
1021 	 * is updated before mce_callin.
1022 	 */
1023 	order = atomic_inc_return(&mce_callin);
1024 	cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1025 
1026 	/* Enable instrumentation around calls to external facilities */
1027 	instrumentation_begin();
1028 
1029 	/*
1030 	 * Wait for everyone.
1031 	 */
1032 	while (atomic_read(&mce_callin) != num_online_cpus()) {
1033 		if (mce_timed_out(&timeout,
1034 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1035 			atomic_set(&global_nwo, 0);
1036 			goto out;
1037 		}
1038 		ndelay(SPINUNIT);
1039 	}
1040 
1041 	/*
1042 	 * mce_callin should be read before global_nwo
1043 	 */
1044 	smp_rmb();
1045 
1046 	if (order == 1) {
1047 		/*
1048 		 * Monarch: Starts executing now, the others wait.
1049 		 */
1050 		atomic_set(&mce_executing, 1);
1051 	} else {
1052 		/*
1053 		 * Subject: Now start the scanning loop one by one in
1054 		 * the original callin order.
1055 		 * This way when there are any shared banks it will be
1056 		 * only seen by one CPU before cleared, avoiding duplicates.
1057 		 */
1058 		while (atomic_read(&mce_executing) < order) {
1059 			if (mce_timed_out(&timeout,
1060 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1061 				atomic_set(&global_nwo, 0);
1062 				goto out;
1063 			}
1064 			ndelay(SPINUNIT);
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * Cache the global no_way_out state.
1070 	 */
1071 	*no_way_out = atomic_read(&global_nwo);
1072 
1073 	ret = order;
1074 
1075 out:
1076 	instrumentation_end();
1077 
1078 	return ret;
1079 }
1080 
1081 /*
1082  * Synchronize between CPUs after main scanning loop.
1083  * This invokes the bulk of the Monarch processing.
1084  */
1085 static noinstr int mce_end(int order)
1086 {
1087 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1088 	int ret = -1;
1089 
1090 	/* Allow instrumentation around external facilities. */
1091 	instrumentation_begin();
1092 
1093 	if (!timeout)
1094 		goto reset;
1095 	if (order < 0)
1096 		goto reset;
1097 
1098 	/*
1099 	 * Allow others to run.
1100 	 */
1101 	atomic_inc(&mce_executing);
1102 
1103 	if (order == 1) {
1104 		/*
1105 		 * Monarch: Wait for everyone to go through their scanning
1106 		 * loops.
1107 		 */
1108 		while (atomic_read(&mce_executing) <= num_online_cpus()) {
1109 			if (mce_timed_out(&timeout,
1110 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1111 				goto reset;
1112 			ndelay(SPINUNIT);
1113 		}
1114 
1115 		mce_reign();
1116 		barrier();
1117 		ret = 0;
1118 	} else {
1119 		/*
1120 		 * Subject: Wait for Monarch to finish.
1121 		 */
1122 		while (atomic_read(&mce_executing) != 0) {
1123 			if (mce_timed_out(&timeout,
1124 					  "Timeout: Monarch CPU did not finish machine check processing"))
1125 				goto reset;
1126 			ndelay(SPINUNIT);
1127 		}
1128 
1129 		/*
1130 		 * Don't reset anything. That's done by the Monarch.
1131 		 */
1132 		ret = 0;
1133 		goto out;
1134 	}
1135 
1136 	/*
1137 	 * Reset all global state.
1138 	 */
1139 reset:
1140 	atomic_set(&global_nwo, 0);
1141 	atomic_set(&mce_callin, 0);
1142 	cpumask_setall(&mce_missing_cpus);
1143 	barrier();
1144 
1145 	/*
1146 	 * Let others run again.
1147 	 */
1148 	atomic_set(&mce_executing, 0);
1149 
1150 out:
1151 	instrumentation_end();
1152 
1153 	return ret;
1154 }
1155 
1156 static void mce_clear_state(unsigned long *toclear)
1157 {
1158 	int i;
1159 
1160 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1161 		if (test_bit(i, toclear))
1162 			mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1163 	}
1164 }
1165 
1166 /*
1167  * Cases where we avoid rendezvous handler timeout:
1168  * 1) If this CPU is offline.
1169  *
1170  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1171  *  skip those CPUs which remain looping in the 1st kernel - see
1172  *  crash_nmi_callback().
1173  *
1174  * Note: there still is a small window between kexec-ing and the new,
1175  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1176  * might not get handled properly.
1177  */
1178 static noinstr bool mce_check_crashing_cpu(void)
1179 {
1180 	unsigned int cpu = smp_processor_id();
1181 
1182 	if (arch_cpu_is_offline(cpu) ||
1183 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1184 		u64 mcgstatus;
1185 
1186 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1187 
1188 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1189 			if (mcgstatus & MCG_STATUS_LMCES)
1190 				return false;
1191 		}
1192 
1193 		if (mcgstatus & MCG_STATUS_RIPV) {
1194 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1195 			return true;
1196 		}
1197 	}
1198 	return false;
1199 }
1200 
1201 static __always_inline int
1202 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1203 		unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1204 		int *worst)
1205 {
1206 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1207 	struct mca_config *cfg = &mca_cfg;
1208 	int severity, i, taint = 0;
1209 
1210 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1211 		__clear_bit(i, toclear);
1212 		if (!test_bit(i, valid_banks))
1213 			continue;
1214 
1215 		if (!mce_banks[i].ctl)
1216 			continue;
1217 
1218 		m->misc = 0;
1219 		m->addr = 0;
1220 		m->bank = i;
1221 
1222 		m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1223 		if (!(m->status & MCI_STATUS_VAL))
1224 			continue;
1225 
1226 		/*
1227 		 * Corrected or non-signaled errors are handled by
1228 		 * machine_check_poll(). Leave them alone, unless this panics.
1229 		 */
1230 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1231 			!no_way_out)
1232 			continue;
1233 
1234 		/* Set taint even when machine check was not enabled. */
1235 		taint++;
1236 
1237 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1238 
1239 		/*
1240 		 * When machine check was for corrected/deferred handler don't
1241 		 * touch, unless we're panicking.
1242 		 */
1243 		if ((severity == MCE_KEEP_SEVERITY ||
1244 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1245 			continue;
1246 
1247 		__set_bit(i, toclear);
1248 
1249 		/* Machine check event was not enabled. Clear, but ignore. */
1250 		if (severity == MCE_NO_SEVERITY)
1251 			continue;
1252 
1253 		mce_read_aux(m, i);
1254 
1255 		/* assuming valid severity level != 0 */
1256 		m->severity = severity;
1257 
1258 		/*
1259 		 * Enable instrumentation around the mce_log() call which is
1260 		 * done in #MC context, where instrumentation is disabled.
1261 		 */
1262 		instrumentation_begin();
1263 		mce_log(m);
1264 		instrumentation_end();
1265 
1266 		if (severity > *worst) {
1267 			*final = *m;
1268 			*worst = severity;
1269 		}
1270 	}
1271 
1272 	/* mce_clear_state will clear *final, save locally for use later */
1273 	*m = *final;
1274 
1275 	return taint;
1276 }
1277 
1278 static void kill_me_now(struct callback_head *ch)
1279 {
1280 	struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1281 
1282 	p->mce_count = 0;
1283 	force_sig(SIGBUS);
1284 }
1285 
1286 static void kill_me_maybe(struct callback_head *cb)
1287 {
1288 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1289 	int flags = MF_ACTION_REQUIRED;
1290 	int ret;
1291 
1292 	p->mce_count = 0;
1293 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1294 
1295 	if (!p->mce_ripv)
1296 		flags |= MF_MUST_KILL;
1297 
1298 	ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1299 	if (!ret) {
1300 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1301 		sync_core();
1302 		return;
1303 	}
1304 
1305 	/*
1306 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1307 	 * to the current process with the proper error info, so no need to
1308 	 * send SIGBUS here again.
1309 	 */
1310 	if (ret == -EHWPOISON)
1311 		return;
1312 
1313 	pr_err("Memory error not recovered");
1314 	kill_me_now(cb);
1315 }
1316 
1317 static void kill_me_never(struct callback_head *cb)
1318 {
1319 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1320 
1321 	p->mce_count = 0;
1322 	pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1323 	if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0))
1324 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1325 }
1326 
1327 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1328 {
1329 	int count = ++current->mce_count;
1330 
1331 	/* First call, save all the details */
1332 	if (count == 1) {
1333 		current->mce_addr = m->addr;
1334 		current->mce_kflags = m->kflags;
1335 		current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1336 		current->mce_whole_page = whole_page(m);
1337 		current->mce_kill_me.func = func;
1338 	}
1339 
1340 	/* Ten is likely overkill. Don't expect more than two faults before task_work() */
1341 	if (count > 10)
1342 		mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1343 
1344 	/* Second or later call, make sure page address matches the one from first call */
1345 	if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1346 		mce_panic("Consecutive machine checks to different user pages", m, msg);
1347 
1348 	/* Do not call task_work_add() more than once */
1349 	if (count > 1)
1350 		return;
1351 
1352 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1353 }
1354 
1355 /* Handle unconfigured int18 (should never happen) */
1356 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1357 {
1358 	instrumentation_begin();
1359 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1360 	       smp_processor_id());
1361 	instrumentation_end();
1362 }
1363 
1364 /*
1365  * The actual machine check handler. This only handles real exceptions when
1366  * something got corrupted coming in through int 18.
1367  *
1368  * This is executed in #MC context not subject to normal locking rules.
1369  * This implies that most kernel services cannot be safely used. Don't even
1370  * think about putting a printk in there!
1371  *
1372  * On Intel systems this is entered on all CPUs in parallel through
1373  * MCE broadcast. However some CPUs might be broken beyond repair,
1374  * so be always careful when synchronizing with others.
1375  *
1376  * Tracing and kprobes are disabled: if we interrupted a kernel context
1377  * with IF=1, we need to minimize stack usage.  There are also recursion
1378  * issues: if the machine check was due to a failure of the memory
1379  * backing the user stack, tracing that reads the user stack will cause
1380  * potentially infinite recursion.
1381  *
1382  * Currently, the #MC handler calls out to a number of external facilities
1383  * and, therefore, allows instrumentation around them. The optimal thing to
1384  * have would be to do the absolutely minimal work required in #MC context
1385  * and have instrumentation disabled only around that. Further processing can
1386  * then happen in process context where instrumentation is allowed. Achieving
1387  * that requires careful auditing and modifications. Until then, the code
1388  * allows instrumentation temporarily, where required. *
1389  */
1390 noinstr void do_machine_check(struct pt_regs *regs)
1391 {
1392 	int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1393 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1394 	DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1395 	struct mca_config *cfg = &mca_cfg;
1396 	struct mce m, *final;
1397 	char *msg = NULL;
1398 
1399 	if (unlikely(mce_flags.p5))
1400 		return pentium_machine_check(regs);
1401 	else if (unlikely(mce_flags.winchip))
1402 		return winchip_machine_check(regs);
1403 	else if (unlikely(!mca_cfg.initialized))
1404 		return unexpected_machine_check(regs);
1405 
1406 	/*
1407 	 * Establish sequential order between the CPUs entering the machine
1408 	 * check handler.
1409 	 */
1410 	order = -1;
1411 
1412 	/*
1413 	 * If no_way_out gets set, there is no safe way to recover from this
1414 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1415 	 */
1416 	no_way_out = 0;
1417 
1418 	/*
1419 	 * If kill_current_task is not set, there might be a way to recover from this
1420 	 * error.
1421 	 */
1422 	kill_current_task = 0;
1423 
1424 	/*
1425 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1426 	 * on Intel.
1427 	 */
1428 	lmce = 1;
1429 
1430 	this_cpu_inc(mce_exception_count);
1431 
1432 	mce_gather_info(&m, regs);
1433 	m.tsc = rdtsc();
1434 
1435 	final = this_cpu_ptr(&mces_seen);
1436 	*final = m;
1437 
1438 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1439 
1440 	barrier();
1441 
1442 	/*
1443 	 * When no restart IP might need to kill or panic.
1444 	 * Assume the worst for now, but if we find the
1445 	 * severity is MCE_AR_SEVERITY we have other options.
1446 	 */
1447 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1448 		kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1449 	/*
1450 	 * Check if this MCE is signaled to only this logical processor,
1451 	 * on Intel, Zhaoxin only.
1452 	 */
1453 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1454 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1455 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1456 
1457 	/*
1458 	 * Local machine check may already know that we have to panic.
1459 	 * Broadcast machine check begins rendezvous in mce_start()
1460 	 * Go through all banks in exclusion of the other CPUs. This way we
1461 	 * don't report duplicated events on shared banks because the first one
1462 	 * to see it will clear it.
1463 	 */
1464 	if (lmce) {
1465 		if (no_way_out && cfg->tolerant < 3)
1466 			mce_panic("Fatal local machine check", &m, msg);
1467 	} else {
1468 		order = mce_start(&no_way_out);
1469 	}
1470 
1471 	taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1472 
1473 	if (!no_way_out)
1474 		mce_clear_state(toclear);
1475 
1476 	/*
1477 	 * Do most of the synchronization with other CPUs.
1478 	 * When there's any problem use only local no_way_out state.
1479 	 */
1480 	if (!lmce) {
1481 		if (mce_end(order) < 0) {
1482 			if (!no_way_out)
1483 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1484 
1485 			if (no_way_out && cfg->tolerant < 3)
1486 				mce_panic("Fatal machine check on current CPU", &m, msg);
1487 		}
1488 	} else {
1489 		/*
1490 		 * If there was a fatal machine check we should have
1491 		 * already called mce_panic earlier in this function.
1492 		 * Since we re-read the banks, we might have found
1493 		 * something new. Check again to see if we found a
1494 		 * fatal error. We call "mce_severity()" again to
1495 		 * make sure we have the right "msg".
1496 		 */
1497 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1498 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1499 			mce_panic("Local fatal machine check!", &m, msg);
1500 		}
1501 	}
1502 
1503 	/*
1504 	 * Enable instrumentation around the external facilities like task_work_add()
1505 	 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1506 	 * properly would need a lot more involved reorganization.
1507 	 */
1508 	instrumentation_begin();
1509 
1510 	if (taint)
1511 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1512 
1513 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1514 		goto out;
1515 
1516 	/* Fault was in user mode and we need to take some action */
1517 	if ((m.cs & 3) == 3) {
1518 		/* If this triggers there is no way to recover. Die hard. */
1519 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1520 
1521 		if (kill_current_task)
1522 			queue_task_work(&m, msg, kill_me_now);
1523 		else
1524 			queue_task_work(&m, msg, kill_me_maybe);
1525 
1526 	} else {
1527 		/*
1528 		 * Handle an MCE which has happened in kernel space but from
1529 		 * which the kernel can recover: ex_has_fault_handler() has
1530 		 * already verified that the rIP at which the error happened is
1531 		 * a rIP from which the kernel can recover (by jumping to
1532 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1533 		 * corresponding exception handler which would do that is the
1534 		 * proper one.
1535 		 */
1536 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1537 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1538 				mce_panic("Failed kernel mode recovery", &m, msg);
1539 		}
1540 
1541 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1542 			queue_task_work(&m, msg, kill_me_never);
1543 	}
1544 
1545 out:
1546 	instrumentation_end();
1547 
1548 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1549 }
1550 EXPORT_SYMBOL_GPL(do_machine_check);
1551 
1552 #ifndef CONFIG_MEMORY_FAILURE
1553 int memory_failure(unsigned long pfn, int flags)
1554 {
1555 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1556 	BUG_ON(flags & MF_ACTION_REQUIRED);
1557 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1558 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1559 	       pfn);
1560 
1561 	return 0;
1562 }
1563 #endif
1564 
1565 /*
1566  * Periodic polling timer for "silent" machine check errors.  If the
1567  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1568  * errors, poll 2x slower (up to check_interval seconds).
1569  */
1570 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1571 
1572 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1573 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1574 
1575 static unsigned long mce_adjust_timer_default(unsigned long interval)
1576 {
1577 	return interval;
1578 }
1579 
1580 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1581 
1582 static void __start_timer(struct timer_list *t, unsigned long interval)
1583 {
1584 	unsigned long when = jiffies + interval;
1585 	unsigned long flags;
1586 
1587 	local_irq_save(flags);
1588 
1589 	if (!timer_pending(t) || time_before(when, t->expires))
1590 		mod_timer(t, round_jiffies(when));
1591 
1592 	local_irq_restore(flags);
1593 }
1594 
1595 static void mce_timer_fn(struct timer_list *t)
1596 {
1597 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1598 	unsigned long iv;
1599 
1600 	WARN_ON(cpu_t != t);
1601 
1602 	iv = __this_cpu_read(mce_next_interval);
1603 
1604 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1605 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1606 
1607 		if (mce_intel_cmci_poll()) {
1608 			iv = mce_adjust_timer(iv);
1609 			goto done;
1610 		}
1611 	}
1612 
1613 	/*
1614 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1615 	 * interval, otherwise increase the polling interval.
1616 	 */
1617 	if (mce_notify_irq())
1618 		iv = max(iv / 2, (unsigned long) HZ/100);
1619 	else
1620 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1621 
1622 done:
1623 	__this_cpu_write(mce_next_interval, iv);
1624 	__start_timer(t, iv);
1625 }
1626 
1627 /*
1628  * Ensure that the timer is firing in @interval from now.
1629  */
1630 void mce_timer_kick(unsigned long interval)
1631 {
1632 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1633 	unsigned long iv = __this_cpu_read(mce_next_interval);
1634 
1635 	__start_timer(t, interval);
1636 
1637 	if (interval < iv)
1638 		__this_cpu_write(mce_next_interval, interval);
1639 }
1640 
1641 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1642 static void mce_timer_delete_all(void)
1643 {
1644 	int cpu;
1645 
1646 	for_each_online_cpu(cpu)
1647 		del_timer_sync(&per_cpu(mce_timer, cpu));
1648 }
1649 
1650 /*
1651  * Notify the user(s) about new machine check events.
1652  * Can be called from interrupt context, but not from machine check/NMI
1653  * context.
1654  */
1655 int mce_notify_irq(void)
1656 {
1657 	/* Not more than two messages every minute */
1658 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1659 
1660 	if (test_and_clear_bit(0, &mce_need_notify)) {
1661 		mce_work_trigger();
1662 
1663 		if (__ratelimit(&ratelimit))
1664 			pr_info(HW_ERR "Machine check events logged\n");
1665 
1666 		return 1;
1667 	}
1668 	return 0;
1669 }
1670 EXPORT_SYMBOL_GPL(mce_notify_irq);
1671 
1672 static void __mcheck_cpu_mce_banks_init(void)
1673 {
1674 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1675 	u8 n_banks = this_cpu_read(mce_num_banks);
1676 	int i;
1677 
1678 	for (i = 0; i < n_banks; i++) {
1679 		struct mce_bank *b = &mce_banks[i];
1680 
1681 		/*
1682 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1683 		 * the required vendor quirks before
1684 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1685 		 */
1686 		b->ctl = -1ULL;
1687 		b->init = true;
1688 	}
1689 }
1690 
1691 /*
1692  * Initialize Machine Checks for a CPU.
1693  */
1694 static void __mcheck_cpu_cap_init(void)
1695 {
1696 	u64 cap;
1697 	u8 b;
1698 
1699 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1700 
1701 	b = cap & MCG_BANKCNT_MASK;
1702 
1703 	if (b > MAX_NR_BANKS) {
1704 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1705 			smp_processor_id(), MAX_NR_BANKS, b);
1706 		b = MAX_NR_BANKS;
1707 	}
1708 
1709 	this_cpu_write(mce_num_banks, b);
1710 
1711 	__mcheck_cpu_mce_banks_init();
1712 
1713 	/* Use accurate RIP reporting if available. */
1714 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1715 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1716 
1717 	if (cap & MCG_SER_P)
1718 		mca_cfg.ser = 1;
1719 }
1720 
1721 static void __mcheck_cpu_init_generic(void)
1722 {
1723 	enum mcp_flags m_fl = 0;
1724 	mce_banks_t all_banks;
1725 	u64 cap;
1726 
1727 	if (!mca_cfg.bootlog)
1728 		m_fl = MCP_DONTLOG;
1729 
1730 	/*
1731 	 * Log the machine checks left over from the previous reset. Log them
1732 	 * only, do not start processing them. That will happen in mcheck_late_init()
1733 	 * when all consumers have been registered on the notifier chain.
1734 	 */
1735 	bitmap_fill(all_banks, MAX_NR_BANKS);
1736 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1737 
1738 	cr4_set_bits(X86_CR4_MCE);
1739 
1740 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1741 	if (cap & MCG_CTL_P)
1742 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1743 }
1744 
1745 static void __mcheck_cpu_init_clear_banks(void)
1746 {
1747 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1748 	int i;
1749 
1750 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1751 		struct mce_bank *b = &mce_banks[i];
1752 
1753 		if (!b->init)
1754 			continue;
1755 		wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1756 		wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1757 	}
1758 }
1759 
1760 /*
1761  * Do a final check to see if there are any unused/RAZ banks.
1762  *
1763  * This must be done after the banks have been initialized and any quirks have
1764  * been applied.
1765  *
1766  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1767  * Otherwise, a user who disables a bank will not be able to re-enable it
1768  * without a system reboot.
1769  */
1770 static void __mcheck_cpu_check_banks(void)
1771 {
1772 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1773 	u64 msrval;
1774 	int i;
1775 
1776 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1777 		struct mce_bank *b = &mce_banks[i];
1778 
1779 		if (!b->init)
1780 			continue;
1781 
1782 		rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1783 		b->init = !!msrval;
1784 	}
1785 }
1786 
1787 /* Add per CPU specific workarounds here */
1788 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1789 {
1790 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1791 	struct mca_config *cfg = &mca_cfg;
1792 
1793 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1794 		pr_info("unknown CPU type - not enabling MCE support\n");
1795 		return -EOPNOTSUPP;
1796 	}
1797 
1798 	/* This should be disabled by the BIOS, but isn't always */
1799 	if (c->x86_vendor == X86_VENDOR_AMD) {
1800 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1801 			/*
1802 			 * disable GART TBL walk error reporting, which
1803 			 * trips off incorrectly with the IOMMU & 3ware
1804 			 * & Cerberus:
1805 			 */
1806 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1807 		}
1808 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1809 			/*
1810 			 * Lots of broken BIOS around that don't clear them
1811 			 * by default and leave crap in there. Don't log:
1812 			 */
1813 			cfg->bootlog = 0;
1814 		}
1815 		/*
1816 		 * Various K7s with broken bank 0 around. Always disable
1817 		 * by default.
1818 		 */
1819 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1820 			mce_banks[0].ctl = 0;
1821 
1822 		/*
1823 		 * overflow_recov is supported for F15h Models 00h-0fh
1824 		 * even though we don't have a CPUID bit for it.
1825 		 */
1826 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1827 			mce_flags.overflow_recov = 1;
1828 
1829 	}
1830 
1831 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1832 		/*
1833 		 * SDM documents that on family 6 bank 0 should not be written
1834 		 * because it aliases to another special BIOS controlled
1835 		 * register.
1836 		 * But it's not aliased anymore on model 0x1a+
1837 		 * Don't ignore bank 0 completely because there could be a
1838 		 * valid event later, merely don't write CTL0.
1839 		 */
1840 
1841 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1842 			mce_banks[0].init = false;
1843 
1844 		/*
1845 		 * All newer Intel systems support MCE broadcasting. Enable
1846 		 * synchronization with a one second timeout.
1847 		 */
1848 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1849 			cfg->monarch_timeout < 0)
1850 			cfg->monarch_timeout = USEC_PER_SEC;
1851 
1852 		/*
1853 		 * There are also broken BIOSes on some Pentium M and
1854 		 * earlier systems:
1855 		 */
1856 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1857 			cfg->bootlog = 0;
1858 
1859 		if (c->x86 == 6 && c->x86_model == 45)
1860 			mce_flags.snb_ifu_quirk = 1;
1861 	}
1862 
1863 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1864 		/*
1865 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1866 		 * synchronization with a one second timeout.
1867 		 */
1868 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1869 			if (cfg->monarch_timeout < 0)
1870 				cfg->monarch_timeout = USEC_PER_SEC;
1871 		}
1872 	}
1873 
1874 	if (cfg->monarch_timeout < 0)
1875 		cfg->monarch_timeout = 0;
1876 	if (cfg->bootlog != 0)
1877 		cfg->panic_timeout = 30;
1878 
1879 	return 0;
1880 }
1881 
1882 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1883 {
1884 	if (c->x86 != 5)
1885 		return 0;
1886 
1887 	switch (c->x86_vendor) {
1888 	case X86_VENDOR_INTEL:
1889 		intel_p5_mcheck_init(c);
1890 		mce_flags.p5 = 1;
1891 		return 1;
1892 	case X86_VENDOR_CENTAUR:
1893 		winchip_mcheck_init(c);
1894 		mce_flags.winchip = 1;
1895 		return 1;
1896 	default:
1897 		return 0;
1898 	}
1899 
1900 	return 0;
1901 }
1902 
1903 /*
1904  * Init basic CPU features needed for early decoding of MCEs.
1905  */
1906 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1907 {
1908 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1909 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1910 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1911 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1912 		mce_flags.amd_threshold	 = 1;
1913 	}
1914 }
1915 
1916 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1917 {
1918 	struct mca_config *cfg = &mca_cfg;
1919 
1920 	 /*
1921 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1922 	  * synchronization with a one second timeout.
1923 	  */
1924 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1925 	     c->x86 > 6) {
1926 		if (cfg->monarch_timeout < 0)
1927 			cfg->monarch_timeout = USEC_PER_SEC;
1928 	}
1929 }
1930 
1931 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1932 {
1933 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1934 
1935 	/*
1936 	 * These CPUs have MCA bank 8 which reports only one error type called
1937 	 * SVAD (System View Address Decoder). The reporting of that error is
1938 	 * controlled by IA32_MC8.CTL.0.
1939 	 *
1940 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1941 	 * virtual machines start and result in a system  panic. Always disable
1942 	 * bank 8 SVAD error by default.
1943 	 */
1944 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1945 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1946 		if (this_cpu_read(mce_num_banks) > 8)
1947 			mce_banks[8].ctl = 0;
1948 	}
1949 
1950 	intel_init_cmci();
1951 	intel_init_lmce();
1952 	mce_adjust_timer = cmci_intel_adjust_timer;
1953 }
1954 
1955 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1956 {
1957 	intel_clear_lmce();
1958 }
1959 
1960 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1961 {
1962 	switch (c->x86_vendor) {
1963 	case X86_VENDOR_INTEL:
1964 		mce_intel_feature_init(c);
1965 		mce_adjust_timer = cmci_intel_adjust_timer;
1966 		break;
1967 
1968 	case X86_VENDOR_AMD: {
1969 		mce_amd_feature_init(c);
1970 		break;
1971 		}
1972 
1973 	case X86_VENDOR_HYGON:
1974 		mce_hygon_feature_init(c);
1975 		break;
1976 
1977 	case X86_VENDOR_CENTAUR:
1978 		mce_centaur_feature_init(c);
1979 		break;
1980 
1981 	case X86_VENDOR_ZHAOXIN:
1982 		mce_zhaoxin_feature_init(c);
1983 		break;
1984 
1985 	default:
1986 		break;
1987 	}
1988 }
1989 
1990 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1991 {
1992 	switch (c->x86_vendor) {
1993 	case X86_VENDOR_INTEL:
1994 		mce_intel_feature_clear(c);
1995 		break;
1996 
1997 	case X86_VENDOR_ZHAOXIN:
1998 		mce_zhaoxin_feature_clear(c);
1999 		break;
2000 
2001 	default:
2002 		break;
2003 	}
2004 }
2005 
2006 static void mce_start_timer(struct timer_list *t)
2007 {
2008 	unsigned long iv = check_interval * HZ;
2009 
2010 	if (mca_cfg.ignore_ce || !iv)
2011 		return;
2012 
2013 	this_cpu_write(mce_next_interval, iv);
2014 	__start_timer(t, iv);
2015 }
2016 
2017 static void __mcheck_cpu_setup_timer(void)
2018 {
2019 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2020 
2021 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2022 }
2023 
2024 static void __mcheck_cpu_init_timer(void)
2025 {
2026 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2027 
2028 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
2029 	mce_start_timer(t);
2030 }
2031 
2032 bool filter_mce(struct mce *m)
2033 {
2034 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2035 		return amd_filter_mce(m);
2036 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2037 		return intel_filter_mce(m);
2038 
2039 	return false;
2040 }
2041 
2042 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2043 {
2044 	irqentry_state_t irq_state;
2045 
2046 	WARN_ON_ONCE(user_mode(regs));
2047 
2048 	/*
2049 	 * Only required when from kernel mode. See
2050 	 * mce_check_crashing_cpu() for details.
2051 	 */
2052 	if (mca_cfg.initialized && mce_check_crashing_cpu())
2053 		return;
2054 
2055 	irq_state = irqentry_nmi_enter(regs);
2056 
2057 	do_machine_check(regs);
2058 
2059 	irqentry_nmi_exit(regs, irq_state);
2060 }
2061 
2062 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2063 {
2064 	irqentry_enter_from_user_mode(regs);
2065 
2066 	do_machine_check(regs);
2067 
2068 	irqentry_exit_to_user_mode(regs);
2069 }
2070 
2071 #ifdef CONFIG_X86_64
2072 /* MCE hit kernel mode */
2073 DEFINE_IDTENTRY_MCE(exc_machine_check)
2074 {
2075 	unsigned long dr7;
2076 
2077 	dr7 = local_db_save();
2078 	exc_machine_check_kernel(regs);
2079 	local_db_restore(dr7);
2080 }
2081 
2082 /* The user mode variant. */
2083 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2084 {
2085 	unsigned long dr7;
2086 
2087 	dr7 = local_db_save();
2088 	exc_machine_check_user(regs);
2089 	local_db_restore(dr7);
2090 }
2091 #else
2092 /* 32bit unified entry point */
2093 DEFINE_IDTENTRY_RAW(exc_machine_check)
2094 {
2095 	unsigned long dr7;
2096 
2097 	dr7 = local_db_save();
2098 	if (user_mode(regs))
2099 		exc_machine_check_user(regs);
2100 	else
2101 		exc_machine_check_kernel(regs);
2102 	local_db_restore(dr7);
2103 }
2104 #endif
2105 
2106 /*
2107  * Called for each booted CPU to set up machine checks.
2108  * Must be called with preempt off:
2109  */
2110 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2111 {
2112 	if (mca_cfg.disabled)
2113 		return;
2114 
2115 	if (__mcheck_cpu_ancient_init(c))
2116 		return;
2117 
2118 	if (!mce_available(c))
2119 		return;
2120 
2121 	__mcheck_cpu_cap_init();
2122 
2123 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2124 		mca_cfg.disabled = 1;
2125 		return;
2126 	}
2127 
2128 	if (mce_gen_pool_init()) {
2129 		mca_cfg.disabled = 1;
2130 		pr_emerg("Couldn't allocate MCE records pool!\n");
2131 		return;
2132 	}
2133 
2134 	mca_cfg.initialized = 1;
2135 
2136 	__mcheck_cpu_init_early(c);
2137 	__mcheck_cpu_init_generic();
2138 	__mcheck_cpu_init_vendor(c);
2139 	__mcheck_cpu_init_clear_banks();
2140 	__mcheck_cpu_check_banks();
2141 	__mcheck_cpu_setup_timer();
2142 }
2143 
2144 /*
2145  * Called for each booted CPU to clear some machine checks opt-ins
2146  */
2147 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2148 {
2149 	if (mca_cfg.disabled)
2150 		return;
2151 
2152 	if (!mce_available(c))
2153 		return;
2154 
2155 	/*
2156 	 * Possibly to clear general settings generic to x86
2157 	 * __mcheck_cpu_clear_generic(c);
2158 	 */
2159 	__mcheck_cpu_clear_vendor(c);
2160 
2161 }
2162 
2163 static void __mce_disable_bank(void *arg)
2164 {
2165 	int bank = *((int *)arg);
2166 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2167 	cmci_disable_bank(bank);
2168 }
2169 
2170 void mce_disable_bank(int bank)
2171 {
2172 	if (bank >= this_cpu_read(mce_num_banks)) {
2173 		pr_warn(FW_BUG
2174 			"Ignoring request to disable invalid MCA bank %d.\n",
2175 			bank);
2176 		return;
2177 	}
2178 	set_bit(bank, mce_banks_ce_disabled);
2179 	on_each_cpu(__mce_disable_bank, &bank, 1);
2180 }
2181 
2182 /*
2183  * mce=off Disables machine check
2184  * mce=no_cmci Disables CMCI
2185  * mce=no_lmce Disables LMCE
2186  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2187  * mce=print_all Print all machine check logs to console
2188  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2189  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2190  *	monarchtimeout is how long to wait for other CPUs on machine
2191  *	check, or 0 to not wait
2192  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2193 	and older.
2194  * mce=nobootlog Don't log MCEs from before booting.
2195  * mce=bios_cmci_threshold Don't program the CMCI threshold
2196  * mce=recovery force enable copy_mc_fragile()
2197  */
2198 static int __init mcheck_enable(char *str)
2199 {
2200 	struct mca_config *cfg = &mca_cfg;
2201 
2202 	if (*str == 0) {
2203 		enable_p5_mce();
2204 		return 1;
2205 	}
2206 	if (*str == '=')
2207 		str++;
2208 	if (!strcmp(str, "off"))
2209 		cfg->disabled = 1;
2210 	else if (!strcmp(str, "no_cmci"))
2211 		cfg->cmci_disabled = true;
2212 	else if (!strcmp(str, "no_lmce"))
2213 		cfg->lmce_disabled = 1;
2214 	else if (!strcmp(str, "dont_log_ce"))
2215 		cfg->dont_log_ce = true;
2216 	else if (!strcmp(str, "print_all"))
2217 		cfg->print_all = true;
2218 	else if (!strcmp(str, "ignore_ce"))
2219 		cfg->ignore_ce = true;
2220 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2221 		cfg->bootlog = (str[0] == 'b');
2222 	else if (!strcmp(str, "bios_cmci_threshold"))
2223 		cfg->bios_cmci_threshold = 1;
2224 	else if (!strcmp(str, "recovery"))
2225 		cfg->recovery = 1;
2226 	else if (isdigit(str[0])) {
2227 		if (get_option(&str, &cfg->tolerant) == 2)
2228 			get_option(&str, &(cfg->monarch_timeout));
2229 	} else {
2230 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2231 		return 0;
2232 	}
2233 	return 1;
2234 }
2235 __setup("mce", mcheck_enable);
2236 
2237 int __init mcheck_init(void)
2238 {
2239 	mce_register_decode_chain(&early_nb);
2240 	mce_register_decode_chain(&mce_uc_nb);
2241 	mce_register_decode_chain(&mce_default_nb);
2242 
2243 	INIT_WORK(&mce_work, mce_gen_pool_process);
2244 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2245 
2246 	return 0;
2247 }
2248 
2249 /*
2250  * mce_syscore: PM support
2251  */
2252 
2253 /*
2254  * Disable machine checks on suspend and shutdown. We can't really handle
2255  * them later.
2256  */
2257 static void mce_disable_error_reporting(void)
2258 {
2259 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2260 	int i;
2261 
2262 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2263 		struct mce_bank *b = &mce_banks[i];
2264 
2265 		if (b->init)
2266 			wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2267 	}
2268 	return;
2269 }
2270 
2271 static void vendor_disable_error_reporting(void)
2272 {
2273 	/*
2274 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2275 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2276 	 * is bad, since it will inhibit reporting for all shared resources on
2277 	 * the socket like the last level cache (LLC), the integrated memory
2278 	 * controller (iMC), etc.
2279 	 */
2280 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2281 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2282 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2283 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2284 		return;
2285 
2286 	mce_disable_error_reporting();
2287 }
2288 
2289 static int mce_syscore_suspend(void)
2290 {
2291 	vendor_disable_error_reporting();
2292 	return 0;
2293 }
2294 
2295 static void mce_syscore_shutdown(void)
2296 {
2297 	vendor_disable_error_reporting();
2298 }
2299 
2300 /*
2301  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2302  * Only one CPU is active at this time, the others get re-added later using
2303  * CPU hotplug:
2304  */
2305 static void mce_syscore_resume(void)
2306 {
2307 	__mcheck_cpu_init_generic();
2308 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2309 	__mcheck_cpu_init_clear_banks();
2310 }
2311 
2312 static struct syscore_ops mce_syscore_ops = {
2313 	.suspend	= mce_syscore_suspend,
2314 	.shutdown	= mce_syscore_shutdown,
2315 	.resume		= mce_syscore_resume,
2316 };
2317 
2318 /*
2319  * mce_device: Sysfs support
2320  */
2321 
2322 static void mce_cpu_restart(void *data)
2323 {
2324 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2325 		return;
2326 	__mcheck_cpu_init_generic();
2327 	__mcheck_cpu_init_clear_banks();
2328 	__mcheck_cpu_init_timer();
2329 }
2330 
2331 /* Reinit MCEs after user configuration changes */
2332 static void mce_restart(void)
2333 {
2334 	mce_timer_delete_all();
2335 	on_each_cpu(mce_cpu_restart, NULL, 1);
2336 }
2337 
2338 /* Toggle features for corrected errors */
2339 static void mce_disable_cmci(void *data)
2340 {
2341 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2342 		return;
2343 	cmci_clear();
2344 }
2345 
2346 static void mce_enable_ce(void *all)
2347 {
2348 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2349 		return;
2350 	cmci_reenable();
2351 	cmci_recheck();
2352 	if (all)
2353 		__mcheck_cpu_init_timer();
2354 }
2355 
2356 static struct bus_type mce_subsys = {
2357 	.name		= "machinecheck",
2358 	.dev_name	= "machinecheck",
2359 };
2360 
2361 DEFINE_PER_CPU(struct device *, mce_device);
2362 
2363 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2364 {
2365 	return container_of(attr, struct mce_bank_dev, attr);
2366 }
2367 
2368 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2369 			 char *buf)
2370 {
2371 	u8 bank = attr_to_bank(attr)->bank;
2372 	struct mce_bank *b;
2373 
2374 	if (bank >= per_cpu(mce_num_banks, s->id))
2375 		return -EINVAL;
2376 
2377 	b = &per_cpu(mce_banks_array, s->id)[bank];
2378 
2379 	if (!b->init)
2380 		return -ENODEV;
2381 
2382 	return sprintf(buf, "%llx\n", b->ctl);
2383 }
2384 
2385 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2386 			const char *buf, size_t size)
2387 {
2388 	u8 bank = attr_to_bank(attr)->bank;
2389 	struct mce_bank *b;
2390 	u64 new;
2391 
2392 	if (kstrtou64(buf, 0, &new) < 0)
2393 		return -EINVAL;
2394 
2395 	if (bank >= per_cpu(mce_num_banks, s->id))
2396 		return -EINVAL;
2397 
2398 	b = &per_cpu(mce_banks_array, s->id)[bank];
2399 
2400 	if (!b->init)
2401 		return -ENODEV;
2402 
2403 	b->ctl = new;
2404 	mce_restart();
2405 
2406 	return size;
2407 }
2408 
2409 static ssize_t set_ignore_ce(struct device *s,
2410 			     struct device_attribute *attr,
2411 			     const char *buf, size_t size)
2412 {
2413 	u64 new;
2414 
2415 	if (kstrtou64(buf, 0, &new) < 0)
2416 		return -EINVAL;
2417 
2418 	mutex_lock(&mce_sysfs_mutex);
2419 	if (mca_cfg.ignore_ce ^ !!new) {
2420 		if (new) {
2421 			/* disable ce features */
2422 			mce_timer_delete_all();
2423 			on_each_cpu(mce_disable_cmci, NULL, 1);
2424 			mca_cfg.ignore_ce = true;
2425 		} else {
2426 			/* enable ce features */
2427 			mca_cfg.ignore_ce = false;
2428 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2429 		}
2430 	}
2431 	mutex_unlock(&mce_sysfs_mutex);
2432 
2433 	return size;
2434 }
2435 
2436 static ssize_t set_cmci_disabled(struct device *s,
2437 				 struct device_attribute *attr,
2438 				 const char *buf, size_t size)
2439 {
2440 	u64 new;
2441 
2442 	if (kstrtou64(buf, 0, &new) < 0)
2443 		return -EINVAL;
2444 
2445 	mutex_lock(&mce_sysfs_mutex);
2446 	if (mca_cfg.cmci_disabled ^ !!new) {
2447 		if (new) {
2448 			/* disable cmci */
2449 			on_each_cpu(mce_disable_cmci, NULL, 1);
2450 			mca_cfg.cmci_disabled = true;
2451 		} else {
2452 			/* enable cmci */
2453 			mca_cfg.cmci_disabled = false;
2454 			on_each_cpu(mce_enable_ce, NULL, 1);
2455 		}
2456 	}
2457 	mutex_unlock(&mce_sysfs_mutex);
2458 
2459 	return size;
2460 }
2461 
2462 static ssize_t store_int_with_restart(struct device *s,
2463 				      struct device_attribute *attr,
2464 				      const char *buf, size_t size)
2465 {
2466 	unsigned long old_check_interval = check_interval;
2467 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2468 
2469 	if (check_interval == old_check_interval)
2470 		return ret;
2471 
2472 	mutex_lock(&mce_sysfs_mutex);
2473 	mce_restart();
2474 	mutex_unlock(&mce_sysfs_mutex);
2475 
2476 	return ret;
2477 }
2478 
2479 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2480 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2481 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2482 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2483 
2484 static struct dev_ext_attribute dev_attr_check_interval = {
2485 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2486 	&check_interval
2487 };
2488 
2489 static struct dev_ext_attribute dev_attr_ignore_ce = {
2490 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2491 	&mca_cfg.ignore_ce
2492 };
2493 
2494 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2495 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2496 	&mca_cfg.cmci_disabled
2497 };
2498 
2499 static struct device_attribute *mce_device_attrs[] = {
2500 	&dev_attr_tolerant.attr,
2501 	&dev_attr_check_interval.attr,
2502 #ifdef CONFIG_X86_MCELOG_LEGACY
2503 	&dev_attr_trigger,
2504 #endif
2505 	&dev_attr_monarch_timeout.attr,
2506 	&dev_attr_dont_log_ce.attr,
2507 	&dev_attr_print_all.attr,
2508 	&dev_attr_ignore_ce.attr,
2509 	&dev_attr_cmci_disabled.attr,
2510 	NULL
2511 };
2512 
2513 static cpumask_var_t mce_device_initialized;
2514 
2515 static void mce_device_release(struct device *dev)
2516 {
2517 	kfree(dev);
2518 }
2519 
2520 /* Per CPU device init. All of the CPUs still share the same bank device: */
2521 static int mce_device_create(unsigned int cpu)
2522 {
2523 	struct device *dev;
2524 	int err;
2525 	int i, j;
2526 
2527 	if (!mce_available(&boot_cpu_data))
2528 		return -EIO;
2529 
2530 	dev = per_cpu(mce_device, cpu);
2531 	if (dev)
2532 		return 0;
2533 
2534 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2535 	if (!dev)
2536 		return -ENOMEM;
2537 	dev->id  = cpu;
2538 	dev->bus = &mce_subsys;
2539 	dev->release = &mce_device_release;
2540 
2541 	err = device_register(dev);
2542 	if (err) {
2543 		put_device(dev);
2544 		return err;
2545 	}
2546 
2547 	for (i = 0; mce_device_attrs[i]; i++) {
2548 		err = device_create_file(dev, mce_device_attrs[i]);
2549 		if (err)
2550 			goto error;
2551 	}
2552 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2553 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2554 		if (err)
2555 			goto error2;
2556 	}
2557 	cpumask_set_cpu(cpu, mce_device_initialized);
2558 	per_cpu(mce_device, cpu) = dev;
2559 
2560 	return 0;
2561 error2:
2562 	while (--j >= 0)
2563 		device_remove_file(dev, &mce_bank_devs[j].attr);
2564 error:
2565 	while (--i >= 0)
2566 		device_remove_file(dev, mce_device_attrs[i]);
2567 
2568 	device_unregister(dev);
2569 
2570 	return err;
2571 }
2572 
2573 static void mce_device_remove(unsigned int cpu)
2574 {
2575 	struct device *dev = per_cpu(mce_device, cpu);
2576 	int i;
2577 
2578 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2579 		return;
2580 
2581 	for (i = 0; mce_device_attrs[i]; i++)
2582 		device_remove_file(dev, mce_device_attrs[i]);
2583 
2584 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2585 		device_remove_file(dev, &mce_bank_devs[i].attr);
2586 
2587 	device_unregister(dev);
2588 	cpumask_clear_cpu(cpu, mce_device_initialized);
2589 	per_cpu(mce_device, cpu) = NULL;
2590 }
2591 
2592 /* Make sure there are no machine checks on offlined CPUs. */
2593 static void mce_disable_cpu(void)
2594 {
2595 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2596 		return;
2597 
2598 	if (!cpuhp_tasks_frozen)
2599 		cmci_clear();
2600 
2601 	vendor_disable_error_reporting();
2602 }
2603 
2604 static void mce_reenable_cpu(void)
2605 {
2606 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2607 	int i;
2608 
2609 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2610 		return;
2611 
2612 	if (!cpuhp_tasks_frozen)
2613 		cmci_reenable();
2614 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2615 		struct mce_bank *b = &mce_banks[i];
2616 
2617 		if (b->init)
2618 			wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2619 	}
2620 }
2621 
2622 static int mce_cpu_dead(unsigned int cpu)
2623 {
2624 	mce_intel_hcpu_update(cpu);
2625 
2626 	/* intentionally ignoring frozen here */
2627 	if (!cpuhp_tasks_frozen)
2628 		cmci_rediscover();
2629 	return 0;
2630 }
2631 
2632 static int mce_cpu_online(unsigned int cpu)
2633 {
2634 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2635 	int ret;
2636 
2637 	mce_device_create(cpu);
2638 
2639 	ret = mce_threshold_create_device(cpu);
2640 	if (ret) {
2641 		mce_device_remove(cpu);
2642 		return ret;
2643 	}
2644 	mce_reenable_cpu();
2645 	mce_start_timer(t);
2646 	return 0;
2647 }
2648 
2649 static int mce_cpu_pre_down(unsigned int cpu)
2650 {
2651 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2652 
2653 	mce_disable_cpu();
2654 	del_timer_sync(t);
2655 	mce_threshold_remove_device(cpu);
2656 	mce_device_remove(cpu);
2657 	return 0;
2658 }
2659 
2660 static __init void mce_init_banks(void)
2661 {
2662 	int i;
2663 
2664 	for (i = 0; i < MAX_NR_BANKS; i++) {
2665 		struct mce_bank_dev *b = &mce_bank_devs[i];
2666 		struct device_attribute *a = &b->attr;
2667 
2668 		b->bank = i;
2669 
2670 		sysfs_attr_init(&a->attr);
2671 		a->attr.name	= b->attrname;
2672 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2673 
2674 		a->attr.mode	= 0644;
2675 		a->show		= show_bank;
2676 		a->store	= set_bank;
2677 	}
2678 }
2679 
2680 /*
2681  * When running on XEN, this initcall is ordered against the XEN mcelog
2682  * initcall:
2683  *
2684  *   device_initcall(xen_late_init_mcelog);
2685  *   device_initcall_sync(mcheck_init_device);
2686  */
2687 static __init int mcheck_init_device(void)
2688 {
2689 	int err;
2690 
2691 	/*
2692 	 * Check if we have a spare virtual bit. This will only become
2693 	 * a problem if/when we move beyond 5-level page tables.
2694 	 */
2695 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2696 
2697 	if (!mce_available(&boot_cpu_data)) {
2698 		err = -EIO;
2699 		goto err_out;
2700 	}
2701 
2702 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2703 		err = -ENOMEM;
2704 		goto err_out;
2705 	}
2706 
2707 	mce_init_banks();
2708 
2709 	err = subsys_system_register(&mce_subsys, NULL);
2710 	if (err)
2711 		goto err_out_mem;
2712 
2713 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2714 				mce_cpu_dead);
2715 	if (err)
2716 		goto err_out_mem;
2717 
2718 	/*
2719 	 * Invokes mce_cpu_online() on all CPUs which are online when
2720 	 * the state is installed.
2721 	 */
2722 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2723 				mce_cpu_online, mce_cpu_pre_down);
2724 	if (err < 0)
2725 		goto err_out_online;
2726 
2727 	register_syscore_ops(&mce_syscore_ops);
2728 
2729 	return 0;
2730 
2731 err_out_online:
2732 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2733 
2734 err_out_mem:
2735 	free_cpumask_var(mce_device_initialized);
2736 
2737 err_out:
2738 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2739 
2740 	return err;
2741 }
2742 device_initcall_sync(mcheck_init_device);
2743 
2744 /*
2745  * Old style boot options parsing. Only for compatibility.
2746  */
2747 static int __init mcheck_disable(char *str)
2748 {
2749 	mca_cfg.disabled = 1;
2750 	return 1;
2751 }
2752 __setup("nomce", mcheck_disable);
2753 
2754 #ifdef CONFIG_DEBUG_FS
2755 struct dentry *mce_get_debugfs_dir(void)
2756 {
2757 	static struct dentry *dmce;
2758 
2759 	if (!dmce)
2760 		dmce = debugfs_create_dir("mce", NULL);
2761 
2762 	return dmce;
2763 }
2764 
2765 static void mce_reset(void)
2766 {
2767 	atomic_set(&mce_fake_panicked, 0);
2768 	atomic_set(&mce_executing, 0);
2769 	atomic_set(&mce_callin, 0);
2770 	atomic_set(&global_nwo, 0);
2771 	cpumask_setall(&mce_missing_cpus);
2772 }
2773 
2774 static int fake_panic_get(void *data, u64 *val)
2775 {
2776 	*val = fake_panic;
2777 	return 0;
2778 }
2779 
2780 static int fake_panic_set(void *data, u64 val)
2781 {
2782 	mce_reset();
2783 	fake_panic = val;
2784 	return 0;
2785 }
2786 
2787 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2788 			 "%llu\n");
2789 
2790 static void __init mcheck_debugfs_init(void)
2791 {
2792 	struct dentry *dmce;
2793 
2794 	dmce = mce_get_debugfs_dir();
2795 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2796 				   &fake_panic_fops);
2797 }
2798 #else
2799 static void __init mcheck_debugfs_init(void) { }
2800 #endif
2801 
2802 static int __init mcheck_late_init(void)
2803 {
2804 	if (mca_cfg.recovery)
2805 		enable_copy_mc_fragile();
2806 
2807 	mcheck_debugfs_init();
2808 
2809 	/*
2810 	 * Flush out everything that has been logged during early boot, now that
2811 	 * everything has been initialized (workqueues, decoders, ...).
2812 	 */
2813 	mce_schedule_work();
2814 
2815 	return 0;
2816 }
2817 late_initcall(mcheck_late_init);
2818