xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103 
104 /*
105  * MCA banks polled by the period polling timer for corrected events.
106  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107  */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111 
112 /*
113  * MCA banks controlled through firmware first for corrected errors.
114  * This is a global list of banks for which we won't enable CMCI and we
115  * won't poll. Firmware controls these banks and is responsible for
116  * reporting corrected errors through GHES. Uncorrected/recoverable
117  * errors are still notified through a machine check.
118  */
119 mce_banks_t mce_banks_ce_disabled;
120 
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123 
124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
125 
126 /*
127  * CPU/chipset specific EDAC code can register a notifier call here to print
128  * MCE errors in a human-readable form.
129  */
130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
131 
132 /* Do initial initialization of a struct mce */
133 noinstr void mce_setup(struct mce *m)
134 {
135 	memset(m, 0, sizeof(struct mce));
136 	m->cpu = m->extcpu = smp_processor_id();
137 	/* need the internal __ version to avoid deadlocks */
138 	m->time = __ktime_get_real_seconds();
139 	m->cpuvendor = boot_cpu_data.x86_vendor;
140 	m->cpuid = cpuid_eax(1);
141 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
142 	m->apicid = cpu_data(m->extcpu).initial_apicid;
143 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
144 
145 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
146 		m->ppin = __rdmsr(MSR_PPIN);
147 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
148 		m->ppin = __rdmsr(MSR_AMD_PPIN);
149 
150 	m->microcode = boot_cpu_data.microcode;
151 }
152 
153 DEFINE_PER_CPU(struct mce, injectm);
154 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
155 
156 void mce_log(struct mce *m)
157 {
158 	if (!mce_gen_pool_add(m))
159 		irq_work_queue(&mce_irq_work);
160 }
161 EXPORT_SYMBOL_GPL(mce_log);
162 
163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
166 		    nb->priority > MCE_PRIO_HIGHEST))
167 		return;
168 
169 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
170 }
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
172 
173 void mce_unregister_decode_chain(struct notifier_block *nb)
174 {
175 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
176 }
177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
178 
179 static inline u32 ctl_reg(int bank)
180 {
181 	return MSR_IA32_MCx_CTL(bank);
182 }
183 
184 static inline u32 status_reg(int bank)
185 {
186 	return MSR_IA32_MCx_STATUS(bank);
187 }
188 
189 static inline u32 addr_reg(int bank)
190 {
191 	return MSR_IA32_MCx_ADDR(bank);
192 }
193 
194 static inline u32 misc_reg(int bank)
195 {
196 	return MSR_IA32_MCx_MISC(bank);
197 }
198 
199 static inline u32 smca_ctl_reg(int bank)
200 {
201 	return MSR_AMD64_SMCA_MCx_CTL(bank);
202 }
203 
204 static inline u32 smca_status_reg(int bank)
205 {
206 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
207 }
208 
209 static inline u32 smca_addr_reg(int bank)
210 {
211 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
212 }
213 
214 static inline u32 smca_misc_reg(int bank)
215 {
216 	return MSR_AMD64_SMCA_MCx_MISC(bank);
217 }
218 
219 struct mca_msr_regs msr_ops = {
220 	.ctl	= ctl_reg,
221 	.status	= status_reg,
222 	.addr	= addr_reg,
223 	.misc	= misc_reg
224 };
225 
226 static void __print_mce(struct mce *m)
227 {
228 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
229 		 m->extcpu,
230 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
231 		 m->mcgstatus, m->bank, m->status);
232 
233 	if (m->ip) {
234 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
235 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
236 			m->cs, m->ip);
237 
238 		if (m->cs == __KERNEL_CS)
239 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
240 		pr_cont("\n");
241 	}
242 
243 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
244 	if (m->addr)
245 		pr_cont("ADDR %llx ", m->addr);
246 	if (m->misc)
247 		pr_cont("MISC %llx ", m->misc);
248 	if (m->ppin)
249 		pr_cont("PPIN %llx ", m->ppin);
250 
251 	if (mce_flags.smca) {
252 		if (m->synd)
253 			pr_cont("SYND %llx ", m->synd);
254 		if (m->ipid)
255 			pr_cont("IPID %llx ", m->ipid);
256 	}
257 
258 	pr_cont("\n");
259 
260 	/*
261 	 * Note this output is parsed by external tools and old fields
262 	 * should not be changed.
263 	 */
264 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
265 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
266 		m->microcode);
267 }
268 
269 static void print_mce(struct mce *m)
270 {
271 	__print_mce(m);
272 
273 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
274 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
275 }
276 
277 #define PANIC_TIMEOUT 5 /* 5 seconds */
278 
279 static atomic_t mce_panicked;
280 
281 static int fake_panic;
282 static atomic_t mce_fake_panicked;
283 
284 /* Panic in progress. Enable interrupts and wait for final IPI */
285 static void wait_for_panic(void)
286 {
287 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
288 
289 	preempt_disable();
290 	local_irq_enable();
291 	while (timeout-- > 0)
292 		udelay(1);
293 	if (panic_timeout == 0)
294 		panic_timeout = mca_cfg.panic_timeout;
295 	panic("Panicing machine check CPU died");
296 }
297 
298 static void mce_panic(const char *msg, struct mce *final, char *exp)
299 {
300 	int apei_err = 0;
301 	struct llist_node *pending;
302 	struct mce_evt_llist *l;
303 
304 	if (!fake_panic) {
305 		/*
306 		 * Make sure only one CPU runs in machine check panic
307 		 */
308 		if (atomic_inc_return(&mce_panicked) > 1)
309 			wait_for_panic();
310 		barrier();
311 
312 		bust_spinlocks(1);
313 		console_verbose();
314 	} else {
315 		/* Don't log too much for fake panic */
316 		if (atomic_inc_return(&mce_fake_panicked) > 1)
317 			return;
318 	}
319 	pending = mce_gen_pool_prepare_records();
320 	/* First print corrected ones that are still unlogged */
321 	llist_for_each_entry(l, pending, llnode) {
322 		struct mce *m = &l->mce;
323 		if (!(m->status & MCI_STATUS_UC)) {
324 			print_mce(m);
325 			if (!apei_err)
326 				apei_err = apei_write_mce(m);
327 		}
328 	}
329 	/* Now print uncorrected but with the final one last */
330 	llist_for_each_entry(l, pending, llnode) {
331 		struct mce *m = &l->mce;
332 		if (!(m->status & MCI_STATUS_UC))
333 			continue;
334 		if (!final || mce_cmp(m, final)) {
335 			print_mce(m);
336 			if (!apei_err)
337 				apei_err = apei_write_mce(m);
338 		}
339 	}
340 	if (final) {
341 		print_mce(final);
342 		if (!apei_err)
343 			apei_err = apei_write_mce(final);
344 	}
345 	if (cpu_missing)
346 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
347 	if (exp)
348 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
349 	if (!fake_panic) {
350 		if (panic_timeout == 0)
351 			panic_timeout = mca_cfg.panic_timeout;
352 		panic(msg);
353 	} else
354 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
355 }
356 
357 /* Support code for software error injection */
358 
359 static int msr_to_offset(u32 msr)
360 {
361 	unsigned bank = __this_cpu_read(injectm.bank);
362 
363 	if (msr == mca_cfg.rip_msr)
364 		return offsetof(struct mce, ip);
365 	if (msr == msr_ops.status(bank))
366 		return offsetof(struct mce, status);
367 	if (msr == msr_ops.addr(bank))
368 		return offsetof(struct mce, addr);
369 	if (msr == msr_ops.misc(bank))
370 		return offsetof(struct mce, misc);
371 	if (msr == MSR_IA32_MCG_STATUS)
372 		return offsetof(struct mce, mcgstatus);
373 	return -1;
374 }
375 
376 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup,
377 				      struct pt_regs *regs, int trapnr,
378 				      unsigned long error_code,
379 				      unsigned long fault_addr)
380 {
381 	pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
382 		 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
383 
384 	show_stack_regs(regs);
385 
386 	panic("MCA architectural violation!\n");
387 
388 	while (true)
389 		cpu_relax();
390 
391 	return true;
392 }
393 
394 /* MSR access wrappers used for error injection */
395 static noinstr u64 mce_rdmsrl(u32 msr)
396 {
397 	DECLARE_ARGS(val, low, high);
398 
399 	if (__this_cpu_read(injectm.finished)) {
400 		int offset;
401 		u64 ret;
402 
403 		instrumentation_begin();
404 
405 		offset = msr_to_offset(msr);
406 		if (offset < 0)
407 			ret = 0;
408 		else
409 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
410 
411 		instrumentation_end();
412 
413 		return ret;
414 	}
415 
416 	/*
417 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
418 	 * architectural violation and needs to be reported to hw vendor. Panic
419 	 * the box to not allow any further progress.
420 	 */
421 	asm volatile("1: rdmsr\n"
422 		     "2:\n"
423 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault)
424 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
425 
426 
427 	return EAX_EDX_VAL(val, low, high);
428 }
429 
430 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup,
431 				      struct pt_regs *regs, int trapnr,
432 				      unsigned long error_code,
433 				      unsigned long fault_addr)
434 {
435 	pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
436 		 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
437 		  regs->ip, (void *)regs->ip);
438 
439 	show_stack_regs(regs);
440 
441 	panic("MCA architectural violation!\n");
442 
443 	while (true)
444 		cpu_relax();
445 
446 	return true;
447 }
448 
449 static noinstr void mce_wrmsrl(u32 msr, u64 v)
450 {
451 	u32 low, high;
452 
453 	if (__this_cpu_read(injectm.finished)) {
454 		int offset;
455 
456 		instrumentation_begin();
457 
458 		offset = msr_to_offset(msr);
459 		if (offset >= 0)
460 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
461 
462 		instrumentation_end();
463 
464 		return;
465 	}
466 
467 	low  = (u32)v;
468 	high = (u32)(v >> 32);
469 
470 	/* See comment in mce_rdmsrl() */
471 	asm volatile("1: wrmsr\n"
472 		     "2:\n"
473 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault)
474 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
475 }
476 
477 /*
478  * Collect all global (w.r.t. this processor) status about this machine
479  * check into our "mce" struct so that we can use it later to assess
480  * the severity of the problem as we read per-bank specific details.
481  */
482 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
483 {
484 	mce_setup(m);
485 
486 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
487 	if (regs) {
488 		/*
489 		 * Get the address of the instruction at the time of
490 		 * the machine check error.
491 		 */
492 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
493 			m->ip = regs->ip;
494 			m->cs = regs->cs;
495 
496 			/*
497 			 * When in VM86 mode make the cs look like ring 3
498 			 * always. This is a lie, but it's better than passing
499 			 * the additional vm86 bit around everywhere.
500 			 */
501 			if (v8086_mode(regs))
502 				m->cs |= 3;
503 		}
504 		/* Use accurate RIP reporting if available. */
505 		if (mca_cfg.rip_msr)
506 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
507 	}
508 }
509 
510 int mce_available(struct cpuinfo_x86 *c)
511 {
512 	if (mca_cfg.disabled)
513 		return 0;
514 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515 }
516 
517 static void mce_schedule_work(void)
518 {
519 	if (!mce_gen_pool_empty())
520 		schedule_work(&mce_work);
521 }
522 
523 static void mce_irq_work_cb(struct irq_work *entry)
524 {
525 	mce_schedule_work();
526 }
527 
528 /*
529  * Check if the address reported by the CPU is in a format we can parse.
530  * It would be possible to add code for most other cases, but all would
531  * be somewhat complicated (e.g. segment offset would require an instruction
532  * parser). So only support physical addresses up to page granularity for now.
533  */
534 int mce_usable_address(struct mce *m)
535 {
536 	if (!(m->status & MCI_STATUS_ADDRV))
537 		return 0;
538 
539 	/* Checks after this one are Intel/Zhaoxin-specific: */
540 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
541 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
542 		return 1;
543 
544 	if (!(m->status & MCI_STATUS_MISCV))
545 		return 0;
546 
547 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
548 		return 0;
549 
550 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
551 		return 0;
552 
553 	return 1;
554 }
555 EXPORT_SYMBOL_GPL(mce_usable_address);
556 
557 bool mce_is_memory_error(struct mce *m)
558 {
559 	switch (m->cpuvendor) {
560 	case X86_VENDOR_AMD:
561 	case X86_VENDOR_HYGON:
562 		return amd_mce_is_memory_error(m);
563 
564 	case X86_VENDOR_INTEL:
565 	case X86_VENDOR_ZHAOXIN:
566 		/*
567 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
568 		 *
569 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
570 		 * indicating a memory error. Bit 8 is used for indicating a
571 		 * cache hierarchy error. The combination of bit 2 and bit 3
572 		 * is used for indicating a `generic' cache hierarchy error
573 		 * But we can't just blindly check the above bits, because if
574 		 * bit 11 is set, then it is a bus/interconnect error - and
575 		 * either way the above bits just gives more detail on what
576 		 * bus/interconnect error happened. Note that bit 12 can be
577 		 * ignored, as it's the "filter" bit.
578 		 */
579 		return (m->status & 0xef80) == BIT(7) ||
580 		       (m->status & 0xef00) == BIT(8) ||
581 		       (m->status & 0xeffc) == 0xc;
582 
583 	default:
584 		return false;
585 	}
586 }
587 EXPORT_SYMBOL_GPL(mce_is_memory_error);
588 
589 static bool whole_page(struct mce *m)
590 {
591 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
592 		return true;
593 
594 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
595 }
596 
597 bool mce_is_correctable(struct mce *m)
598 {
599 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
600 		return false;
601 
602 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
603 		return false;
604 
605 	if (m->status & MCI_STATUS_UC)
606 		return false;
607 
608 	return true;
609 }
610 EXPORT_SYMBOL_GPL(mce_is_correctable);
611 
612 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
613 			      void *data)
614 {
615 	struct mce *m = (struct mce *)data;
616 
617 	if (!m)
618 		return NOTIFY_DONE;
619 
620 	/* Emit the trace record: */
621 	trace_mce_record(m);
622 
623 	set_bit(0, &mce_need_notify);
624 
625 	mce_notify_irq();
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static struct notifier_block early_nb = {
631 	.notifier_call	= mce_early_notifier,
632 	.priority	= MCE_PRIO_EARLY,
633 };
634 
635 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
636 			      void *data)
637 {
638 	struct mce *mce = (struct mce *)data;
639 	unsigned long pfn;
640 
641 	if (!mce || !mce_usable_address(mce))
642 		return NOTIFY_DONE;
643 
644 	if (mce->severity != MCE_AO_SEVERITY &&
645 	    mce->severity != MCE_DEFERRED_SEVERITY)
646 		return NOTIFY_DONE;
647 
648 	pfn = mce->addr >> PAGE_SHIFT;
649 	if (!memory_failure(pfn, 0)) {
650 		set_mce_nospec(pfn, whole_page(mce));
651 		mce->kflags |= MCE_HANDLED_UC;
652 	}
653 
654 	return NOTIFY_OK;
655 }
656 
657 static struct notifier_block mce_uc_nb = {
658 	.notifier_call	= uc_decode_notifier,
659 	.priority	= MCE_PRIO_UC,
660 };
661 
662 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
663 				void *data)
664 {
665 	struct mce *m = (struct mce *)data;
666 
667 	if (!m)
668 		return NOTIFY_DONE;
669 
670 	if (mca_cfg.print_all || !m->kflags)
671 		__print_mce(m);
672 
673 	return NOTIFY_DONE;
674 }
675 
676 static struct notifier_block mce_default_nb = {
677 	.notifier_call	= mce_default_notifier,
678 	/* lowest prio, we want it to run last. */
679 	.priority	= MCE_PRIO_LOWEST,
680 };
681 
682 /*
683  * Read ADDR and MISC registers.
684  */
685 static void mce_read_aux(struct mce *m, int i)
686 {
687 	if (m->status & MCI_STATUS_MISCV)
688 		m->misc = mce_rdmsrl(msr_ops.misc(i));
689 
690 	if (m->status & MCI_STATUS_ADDRV) {
691 		m->addr = mce_rdmsrl(msr_ops.addr(i));
692 
693 		/*
694 		 * Mask the reported address by the reported granularity.
695 		 */
696 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
697 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
698 			m->addr >>= shift;
699 			m->addr <<= shift;
700 		}
701 
702 		/*
703 		 * Extract [55:<lsb>] where lsb is the least significant
704 		 * *valid* bit of the address bits.
705 		 */
706 		if (mce_flags.smca) {
707 			u8 lsb = (m->addr >> 56) & 0x3f;
708 
709 			m->addr &= GENMASK_ULL(55, lsb);
710 		}
711 	}
712 
713 	if (mce_flags.smca) {
714 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
715 
716 		if (m->status & MCI_STATUS_SYNDV)
717 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
718 	}
719 }
720 
721 DEFINE_PER_CPU(unsigned, mce_poll_count);
722 
723 /*
724  * Poll for corrected events or events that happened before reset.
725  * Those are just logged through /dev/mcelog.
726  *
727  * This is executed in standard interrupt context.
728  *
729  * Note: spec recommends to panic for fatal unsignalled
730  * errors here. However this would be quite problematic --
731  * we would need to reimplement the Monarch handling and
732  * it would mess up the exclusion between exception handler
733  * and poll handler -- * so we skip this for now.
734  * These cases should not happen anyways, or only when the CPU
735  * is already totally * confused. In this case it's likely it will
736  * not fully execute the machine check handler either.
737  */
738 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
739 {
740 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
741 	bool error_seen = false;
742 	struct mce m;
743 	int i;
744 
745 	this_cpu_inc(mce_poll_count);
746 
747 	mce_gather_info(&m, NULL);
748 
749 	if (flags & MCP_TIMESTAMP)
750 		m.tsc = rdtsc();
751 
752 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
753 		if (!mce_banks[i].ctl || !test_bit(i, *b))
754 			continue;
755 
756 		m.misc = 0;
757 		m.addr = 0;
758 		m.bank = i;
759 
760 		barrier();
761 		m.status = mce_rdmsrl(msr_ops.status(i));
762 
763 		/* If this entry is not valid, ignore it */
764 		if (!(m.status & MCI_STATUS_VAL))
765 			continue;
766 
767 		/*
768 		 * If we are logging everything (at CPU online) or this
769 		 * is a corrected error, then we must log it.
770 		 */
771 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
772 			goto log_it;
773 
774 		/*
775 		 * Newer Intel systems that support software error
776 		 * recovery need to make additional checks. Other
777 		 * CPUs should skip over uncorrected errors, but log
778 		 * everything else.
779 		 */
780 		if (!mca_cfg.ser) {
781 			if (m.status & MCI_STATUS_UC)
782 				continue;
783 			goto log_it;
784 		}
785 
786 		/* Log "not enabled" (speculative) errors */
787 		if (!(m.status & MCI_STATUS_EN))
788 			goto log_it;
789 
790 		/*
791 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
792 		 * UC == 1 && PCC == 0 && S == 0
793 		 */
794 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
795 			goto log_it;
796 
797 		/*
798 		 * Skip anything else. Presumption is that our read of this
799 		 * bank is racing with a machine check. Leave the log alone
800 		 * for do_machine_check() to deal with it.
801 		 */
802 		continue;
803 
804 log_it:
805 		error_seen = true;
806 
807 		if (flags & MCP_DONTLOG)
808 			goto clear_it;
809 
810 		mce_read_aux(&m, i);
811 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
812 		/*
813 		 * Don't get the IP here because it's unlikely to
814 		 * have anything to do with the actual error location.
815 		 */
816 
817 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
818 			goto clear_it;
819 
820 		mce_log(&m);
821 
822 clear_it:
823 		/*
824 		 * Clear state for this bank.
825 		 */
826 		mce_wrmsrl(msr_ops.status(i), 0);
827 	}
828 
829 	/*
830 	 * Don't clear MCG_STATUS here because it's only defined for
831 	 * exceptions.
832 	 */
833 
834 	sync_core();
835 
836 	return error_seen;
837 }
838 EXPORT_SYMBOL_GPL(machine_check_poll);
839 
840 /*
841  * Do a quick check if any of the events requires a panic.
842  * This decides if we keep the events around or clear them.
843  */
844 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
845 			  struct pt_regs *regs)
846 {
847 	char *tmp = *msg;
848 	int i;
849 
850 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
851 		m->status = mce_rdmsrl(msr_ops.status(i));
852 		if (!(m->status & MCI_STATUS_VAL))
853 			continue;
854 
855 		__set_bit(i, validp);
856 		if (quirk_no_way_out)
857 			quirk_no_way_out(i, m, regs);
858 
859 		m->bank = i;
860 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
861 			mce_read_aux(m, i);
862 			*msg = tmp;
863 			return 1;
864 		}
865 	}
866 	return 0;
867 }
868 
869 /*
870  * Variable to establish order between CPUs while scanning.
871  * Each CPU spins initially until executing is equal its number.
872  */
873 static atomic_t mce_executing;
874 
875 /*
876  * Defines order of CPUs on entry. First CPU becomes Monarch.
877  */
878 static atomic_t mce_callin;
879 
880 /*
881  * Track which CPUs entered the MCA broadcast synchronization and which not in
882  * order to print holdouts.
883  */
884 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
885 
886 /*
887  * Check if a timeout waiting for other CPUs happened.
888  */
889 static int mce_timed_out(u64 *t, const char *msg)
890 {
891 	/*
892 	 * The others already did panic for some reason.
893 	 * Bail out like in a timeout.
894 	 * rmb() to tell the compiler that system_state
895 	 * might have been modified by someone else.
896 	 */
897 	rmb();
898 	if (atomic_read(&mce_panicked))
899 		wait_for_panic();
900 	if (!mca_cfg.monarch_timeout)
901 		goto out;
902 	if ((s64)*t < SPINUNIT) {
903 		if (mca_cfg.tolerant <= 1) {
904 			if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
905 				pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
906 					 cpumask_pr_args(&mce_missing_cpus));
907 			mce_panic(msg, NULL, NULL);
908 		}
909 		cpu_missing = 1;
910 		return 1;
911 	}
912 	*t -= SPINUNIT;
913 out:
914 	touch_nmi_watchdog();
915 	return 0;
916 }
917 
918 /*
919  * The Monarch's reign.  The Monarch is the CPU who entered
920  * the machine check handler first. It waits for the others to
921  * raise the exception too and then grades them. When any
922  * error is fatal panic. Only then let the others continue.
923  *
924  * The other CPUs entering the MCE handler will be controlled by the
925  * Monarch. They are called Subjects.
926  *
927  * This way we prevent any potential data corruption in a unrecoverable case
928  * and also makes sure always all CPU's errors are examined.
929  *
930  * Also this detects the case of a machine check event coming from outer
931  * space (not detected by any CPUs) In this case some external agent wants
932  * us to shut down, so panic too.
933  *
934  * The other CPUs might still decide to panic if the handler happens
935  * in a unrecoverable place, but in this case the system is in a semi-stable
936  * state and won't corrupt anything by itself. It's ok to let the others
937  * continue for a bit first.
938  *
939  * All the spin loops have timeouts; when a timeout happens a CPU
940  * typically elects itself to be Monarch.
941  */
942 static void mce_reign(void)
943 {
944 	int cpu;
945 	struct mce *m = NULL;
946 	int global_worst = 0;
947 	char *msg = NULL;
948 
949 	/*
950 	 * This CPU is the Monarch and the other CPUs have run
951 	 * through their handlers.
952 	 * Grade the severity of the errors of all the CPUs.
953 	 */
954 	for_each_possible_cpu(cpu) {
955 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
956 
957 		if (mtmp->severity > global_worst) {
958 			global_worst = mtmp->severity;
959 			m = &per_cpu(mces_seen, cpu);
960 		}
961 	}
962 
963 	/*
964 	 * Cannot recover? Panic here then.
965 	 * This dumps all the mces in the log buffer and stops the
966 	 * other CPUs.
967 	 */
968 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
969 		/* call mce_severity() to get "msg" for panic */
970 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
971 		mce_panic("Fatal machine check", m, msg);
972 	}
973 
974 	/*
975 	 * For UC somewhere we let the CPU who detects it handle it.
976 	 * Also must let continue the others, otherwise the handling
977 	 * CPU could deadlock on a lock.
978 	 */
979 
980 	/*
981 	 * No machine check event found. Must be some external
982 	 * source or one CPU is hung. Panic.
983 	 */
984 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
985 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
986 
987 	/*
988 	 * Now clear all the mces_seen so that they don't reappear on
989 	 * the next mce.
990 	 */
991 	for_each_possible_cpu(cpu)
992 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
993 }
994 
995 static atomic_t global_nwo;
996 
997 /*
998  * Start of Monarch synchronization. This waits until all CPUs have
999  * entered the exception handler and then determines if any of them
1000  * saw a fatal event that requires panic. Then it executes them
1001  * in the entry order.
1002  * TBD double check parallel CPU hotunplug
1003  */
1004 static int mce_start(int *no_way_out)
1005 {
1006 	int order;
1007 	int cpus = num_online_cpus();
1008 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1009 
1010 	if (!timeout)
1011 		return -1;
1012 
1013 	atomic_add(*no_way_out, &global_nwo);
1014 	/*
1015 	 * Rely on the implied barrier below, such that global_nwo
1016 	 * is updated before mce_callin.
1017 	 */
1018 	order = atomic_inc_return(&mce_callin);
1019 	cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1020 
1021 	/*
1022 	 * Wait for everyone.
1023 	 */
1024 	while (atomic_read(&mce_callin) != cpus) {
1025 		if (mce_timed_out(&timeout,
1026 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1027 			atomic_set(&global_nwo, 0);
1028 			return -1;
1029 		}
1030 		ndelay(SPINUNIT);
1031 	}
1032 
1033 	/*
1034 	 * mce_callin should be read before global_nwo
1035 	 */
1036 	smp_rmb();
1037 
1038 	if (order == 1) {
1039 		/*
1040 		 * Monarch: Starts executing now, the others wait.
1041 		 */
1042 		atomic_set(&mce_executing, 1);
1043 	} else {
1044 		/*
1045 		 * Subject: Now start the scanning loop one by one in
1046 		 * the original callin order.
1047 		 * This way when there are any shared banks it will be
1048 		 * only seen by one CPU before cleared, avoiding duplicates.
1049 		 */
1050 		while (atomic_read(&mce_executing) < order) {
1051 			if (mce_timed_out(&timeout,
1052 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1053 				atomic_set(&global_nwo, 0);
1054 				return -1;
1055 			}
1056 			ndelay(SPINUNIT);
1057 		}
1058 	}
1059 
1060 	/*
1061 	 * Cache the global no_way_out state.
1062 	 */
1063 	*no_way_out = atomic_read(&global_nwo);
1064 
1065 	return order;
1066 }
1067 
1068 /*
1069  * Synchronize between CPUs after main scanning loop.
1070  * This invokes the bulk of the Monarch processing.
1071  */
1072 static int mce_end(int order)
1073 {
1074 	int ret = -1;
1075 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1076 
1077 	if (!timeout)
1078 		goto reset;
1079 	if (order < 0)
1080 		goto reset;
1081 
1082 	/*
1083 	 * Allow others to run.
1084 	 */
1085 	atomic_inc(&mce_executing);
1086 
1087 	if (order == 1) {
1088 		/* CHECKME: Can this race with a parallel hotplug? */
1089 		int cpus = num_online_cpus();
1090 
1091 		/*
1092 		 * Monarch: Wait for everyone to go through their scanning
1093 		 * loops.
1094 		 */
1095 		while (atomic_read(&mce_executing) <= cpus) {
1096 			if (mce_timed_out(&timeout,
1097 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1098 				goto reset;
1099 			ndelay(SPINUNIT);
1100 		}
1101 
1102 		mce_reign();
1103 		barrier();
1104 		ret = 0;
1105 	} else {
1106 		/*
1107 		 * Subject: Wait for Monarch to finish.
1108 		 */
1109 		while (atomic_read(&mce_executing) != 0) {
1110 			if (mce_timed_out(&timeout,
1111 					  "Timeout: Monarch CPU did not finish machine check processing"))
1112 				goto reset;
1113 			ndelay(SPINUNIT);
1114 		}
1115 
1116 		/*
1117 		 * Don't reset anything. That's done by the Monarch.
1118 		 */
1119 		return 0;
1120 	}
1121 
1122 	/*
1123 	 * Reset all global state.
1124 	 */
1125 reset:
1126 	atomic_set(&global_nwo, 0);
1127 	atomic_set(&mce_callin, 0);
1128 	cpumask_setall(&mce_missing_cpus);
1129 	barrier();
1130 
1131 	/*
1132 	 * Let others run again.
1133 	 */
1134 	atomic_set(&mce_executing, 0);
1135 	return ret;
1136 }
1137 
1138 static void mce_clear_state(unsigned long *toclear)
1139 {
1140 	int i;
1141 
1142 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1143 		if (test_bit(i, toclear))
1144 			mce_wrmsrl(msr_ops.status(i), 0);
1145 	}
1146 }
1147 
1148 /*
1149  * Cases where we avoid rendezvous handler timeout:
1150  * 1) If this CPU is offline.
1151  *
1152  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1153  *  skip those CPUs which remain looping in the 1st kernel - see
1154  *  crash_nmi_callback().
1155  *
1156  * Note: there still is a small window between kexec-ing and the new,
1157  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1158  * might not get handled properly.
1159  */
1160 static noinstr bool mce_check_crashing_cpu(void)
1161 {
1162 	unsigned int cpu = smp_processor_id();
1163 
1164 	if (arch_cpu_is_offline(cpu) ||
1165 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1166 		u64 mcgstatus;
1167 
1168 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1169 
1170 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1171 			if (mcgstatus & MCG_STATUS_LMCES)
1172 				return false;
1173 		}
1174 
1175 		if (mcgstatus & MCG_STATUS_RIPV) {
1176 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1177 			return true;
1178 		}
1179 	}
1180 	return false;
1181 }
1182 
1183 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1184 			    unsigned long *toclear, unsigned long *valid_banks,
1185 			    int no_way_out, int *worst)
1186 {
1187 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1188 	struct mca_config *cfg = &mca_cfg;
1189 	int severity, i;
1190 
1191 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1192 		__clear_bit(i, toclear);
1193 		if (!test_bit(i, valid_banks))
1194 			continue;
1195 
1196 		if (!mce_banks[i].ctl)
1197 			continue;
1198 
1199 		m->misc = 0;
1200 		m->addr = 0;
1201 		m->bank = i;
1202 
1203 		m->status = mce_rdmsrl(msr_ops.status(i));
1204 		if (!(m->status & MCI_STATUS_VAL))
1205 			continue;
1206 
1207 		/*
1208 		 * Corrected or non-signaled errors are handled by
1209 		 * machine_check_poll(). Leave them alone, unless this panics.
1210 		 */
1211 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1212 			!no_way_out)
1213 			continue;
1214 
1215 		/* Set taint even when machine check was not enabled. */
1216 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1217 
1218 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1219 
1220 		/*
1221 		 * When machine check was for corrected/deferred handler don't
1222 		 * touch, unless we're panicking.
1223 		 */
1224 		if ((severity == MCE_KEEP_SEVERITY ||
1225 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1226 			continue;
1227 
1228 		__set_bit(i, toclear);
1229 
1230 		/* Machine check event was not enabled. Clear, but ignore. */
1231 		if (severity == MCE_NO_SEVERITY)
1232 			continue;
1233 
1234 		mce_read_aux(m, i);
1235 
1236 		/* assuming valid severity level != 0 */
1237 		m->severity = severity;
1238 
1239 		mce_log(m);
1240 
1241 		if (severity > *worst) {
1242 			*final = *m;
1243 			*worst = severity;
1244 		}
1245 	}
1246 
1247 	/* mce_clear_state will clear *final, save locally for use later */
1248 	*m = *final;
1249 }
1250 
1251 static void kill_me_now(struct callback_head *ch)
1252 {
1253 	force_sig(SIGBUS);
1254 }
1255 
1256 static void kill_me_maybe(struct callback_head *cb)
1257 {
1258 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1259 	int flags = MF_ACTION_REQUIRED;
1260 	int ret;
1261 
1262 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1263 
1264 	if (!p->mce_ripv)
1265 		flags |= MF_MUST_KILL;
1266 
1267 	ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1268 	if (!ret && !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1269 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1270 		sync_core();
1271 		return;
1272 	}
1273 
1274 	/*
1275 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1276 	 * to the current process with the proper error info, so no need to
1277 	 * send SIGBUS here again.
1278 	 */
1279 	if (ret == -EHWPOISON)
1280 		return;
1281 
1282 	if (p->mce_vaddr != (void __user *)-1l) {
1283 		force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1284 	} else {
1285 		pr_err("Memory error not recovered");
1286 		kill_me_now(cb);
1287 	}
1288 }
1289 
1290 static void queue_task_work(struct mce *m, int kill_current_task)
1291 {
1292 	current->mce_addr = m->addr;
1293 	current->mce_kflags = m->kflags;
1294 	current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1295 	current->mce_whole_page = whole_page(m);
1296 
1297 	if (kill_current_task)
1298 		current->mce_kill_me.func = kill_me_now;
1299 	else
1300 		current->mce_kill_me.func = kill_me_maybe;
1301 
1302 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1303 }
1304 
1305 /*
1306  * The actual machine check handler. This only handles real
1307  * exceptions when something got corrupted coming in through int 18.
1308  *
1309  * This is executed in NMI context not subject to normal locking rules. This
1310  * implies that most kernel services cannot be safely used. Don't even
1311  * think about putting a printk in there!
1312  *
1313  * On Intel systems this is entered on all CPUs in parallel through
1314  * MCE broadcast. However some CPUs might be broken beyond repair,
1315  * so be always careful when synchronizing with others.
1316  *
1317  * Tracing and kprobes are disabled: if we interrupted a kernel context
1318  * with IF=1, we need to minimize stack usage.  There are also recursion
1319  * issues: if the machine check was due to a failure of the memory
1320  * backing the user stack, tracing that reads the user stack will cause
1321  * potentially infinite recursion.
1322  */
1323 noinstr void do_machine_check(struct pt_regs *regs)
1324 {
1325 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1326 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1327 	struct mca_config *cfg = &mca_cfg;
1328 	struct mce m, *final;
1329 	char *msg = NULL;
1330 	int worst = 0;
1331 
1332 	/*
1333 	 * Establish sequential order between the CPUs entering the machine
1334 	 * check handler.
1335 	 */
1336 	int order = -1;
1337 
1338 	/*
1339 	 * If no_way_out gets set, there is no safe way to recover from this
1340 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1341 	 */
1342 	int no_way_out = 0;
1343 
1344 	/*
1345 	 * If kill_current_task is not set, there might be a way to recover from this
1346 	 * error.
1347 	 */
1348 	int kill_current_task = 0;
1349 
1350 	/*
1351 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1352 	 * on Intel.
1353 	 */
1354 	int lmce = 1;
1355 
1356 	this_cpu_inc(mce_exception_count);
1357 
1358 	mce_gather_info(&m, regs);
1359 	m.tsc = rdtsc();
1360 
1361 	final = this_cpu_ptr(&mces_seen);
1362 	*final = m;
1363 
1364 	memset(valid_banks, 0, sizeof(valid_banks));
1365 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1366 
1367 	barrier();
1368 
1369 	/*
1370 	 * When no restart IP might need to kill or panic.
1371 	 * Assume the worst for now, but if we find the
1372 	 * severity is MCE_AR_SEVERITY we have other options.
1373 	 */
1374 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1375 		kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1376 	/*
1377 	 * Check if this MCE is signaled to only this logical processor,
1378 	 * on Intel, Zhaoxin only.
1379 	 */
1380 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1381 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1382 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1383 
1384 	/*
1385 	 * Local machine check may already know that we have to panic.
1386 	 * Broadcast machine check begins rendezvous in mce_start()
1387 	 * Go through all banks in exclusion of the other CPUs. This way we
1388 	 * don't report duplicated events on shared banks because the first one
1389 	 * to see it will clear it.
1390 	 */
1391 	if (lmce) {
1392 		if (no_way_out && cfg->tolerant < 3)
1393 			mce_panic("Fatal local machine check", &m, msg);
1394 	} else {
1395 		order = mce_start(&no_way_out);
1396 	}
1397 
1398 	__mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1399 
1400 	if (!no_way_out)
1401 		mce_clear_state(toclear);
1402 
1403 	/*
1404 	 * Do most of the synchronization with other CPUs.
1405 	 * When there's any problem use only local no_way_out state.
1406 	 */
1407 	if (!lmce) {
1408 		if (mce_end(order) < 0) {
1409 			if (!no_way_out)
1410 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1411 
1412 			if (no_way_out && cfg->tolerant < 3)
1413 				mce_panic("Fatal machine check on current CPU", &m, msg);
1414 		}
1415 	} else {
1416 		/*
1417 		 * If there was a fatal machine check we should have
1418 		 * already called mce_panic earlier in this function.
1419 		 * Since we re-read the banks, we might have found
1420 		 * something new. Check again to see if we found a
1421 		 * fatal error. We call "mce_severity()" again to
1422 		 * make sure we have the right "msg".
1423 		 */
1424 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1425 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1426 			mce_panic("Local fatal machine check!", &m, msg);
1427 		}
1428 	}
1429 
1430 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1431 		goto out;
1432 
1433 	/* Fault was in user mode and we need to take some action */
1434 	if ((m.cs & 3) == 3) {
1435 		/* If this triggers there is no way to recover. Die hard. */
1436 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1437 
1438 		queue_task_work(&m, kill_current_task);
1439 
1440 	} else {
1441 		/*
1442 		 * Handle an MCE which has happened in kernel space but from
1443 		 * which the kernel can recover: ex_has_fault_handler() has
1444 		 * already verified that the rIP at which the error happened is
1445 		 * a rIP from which the kernel can recover (by jumping to
1446 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1447 		 * corresponding exception handler which would do that is the
1448 		 * proper one.
1449 		 */
1450 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1451 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1452 				mce_panic("Failed kernel mode recovery", &m, msg);
1453 		}
1454 
1455 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1456 			queue_task_work(&m, kill_current_task);
1457 	}
1458 out:
1459 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1460 }
1461 EXPORT_SYMBOL_GPL(do_machine_check);
1462 
1463 #ifndef CONFIG_MEMORY_FAILURE
1464 int memory_failure(unsigned long pfn, int flags)
1465 {
1466 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1467 	BUG_ON(flags & MF_ACTION_REQUIRED);
1468 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1469 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1470 	       pfn);
1471 
1472 	return 0;
1473 }
1474 #endif
1475 
1476 /*
1477  * Periodic polling timer for "silent" machine check errors.  If the
1478  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1479  * errors, poll 2x slower (up to check_interval seconds).
1480  */
1481 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1482 
1483 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1484 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1485 
1486 static unsigned long mce_adjust_timer_default(unsigned long interval)
1487 {
1488 	return interval;
1489 }
1490 
1491 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1492 
1493 static void __start_timer(struct timer_list *t, unsigned long interval)
1494 {
1495 	unsigned long when = jiffies + interval;
1496 	unsigned long flags;
1497 
1498 	local_irq_save(flags);
1499 
1500 	if (!timer_pending(t) || time_before(when, t->expires))
1501 		mod_timer(t, round_jiffies(when));
1502 
1503 	local_irq_restore(flags);
1504 }
1505 
1506 static void mce_timer_fn(struct timer_list *t)
1507 {
1508 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1509 	unsigned long iv;
1510 
1511 	WARN_ON(cpu_t != t);
1512 
1513 	iv = __this_cpu_read(mce_next_interval);
1514 
1515 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1516 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1517 
1518 		if (mce_intel_cmci_poll()) {
1519 			iv = mce_adjust_timer(iv);
1520 			goto done;
1521 		}
1522 	}
1523 
1524 	/*
1525 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1526 	 * interval, otherwise increase the polling interval.
1527 	 */
1528 	if (mce_notify_irq())
1529 		iv = max(iv / 2, (unsigned long) HZ/100);
1530 	else
1531 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1532 
1533 done:
1534 	__this_cpu_write(mce_next_interval, iv);
1535 	__start_timer(t, iv);
1536 }
1537 
1538 /*
1539  * Ensure that the timer is firing in @interval from now.
1540  */
1541 void mce_timer_kick(unsigned long interval)
1542 {
1543 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1544 	unsigned long iv = __this_cpu_read(mce_next_interval);
1545 
1546 	__start_timer(t, interval);
1547 
1548 	if (interval < iv)
1549 		__this_cpu_write(mce_next_interval, interval);
1550 }
1551 
1552 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1553 static void mce_timer_delete_all(void)
1554 {
1555 	int cpu;
1556 
1557 	for_each_online_cpu(cpu)
1558 		del_timer_sync(&per_cpu(mce_timer, cpu));
1559 }
1560 
1561 /*
1562  * Notify the user(s) about new machine check events.
1563  * Can be called from interrupt context, but not from machine check/NMI
1564  * context.
1565  */
1566 int mce_notify_irq(void)
1567 {
1568 	/* Not more than two messages every minute */
1569 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1570 
1571 	if (test_and_clear_bit(0, &mce_need_notify)) {
1572 		mce_work_trigger();
1573 
1574 		if (__ratelimit(&ratelimit))
1575 			pr_info(HW_ERR "Machine check events logged\n");
1576 
1577 		return 1;
1578 	}
1579 	return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(mce_notify_irq);
1582 
1583 static void __mcheck_cpu_mce_banks_init(void)
1584 {
1585 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1586 	u8 n_banks = this_cpu_read(mce_num_banks);
1587 	int i;
1588 
1589 	for (i = 0; i < n_banks; i++) {
1590 		struct mce_bank *b = &mce_banks[i];
1591 
1592 		/*
1593 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1594 		 * the required vendor quirks before
1595 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1596 		 */
1597 		b->ctl = -1ULL;
1598 		b->init = true;
1599 	}
1600 }
1601 
1602 /*
1603  * Initialize Machine Checks for a CPU.
1604  */
1605 static void __mcheck_cpu_cap_init(void)
1606 {
1607 	u64 cap;
1608 	u8 b;
1609 
1610 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1611 
1612 	b = cap & MCG_BANKCNT_MASK;
1613 
1614 	if (b > MAX_NR_BANKS) {
1615 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1616 			smp_processor_id(), MAX_NR_BANKS, b);
1617 		b = MAX_NR_BANKS;
1618 	}
1619 
1620 	this_cpu_write(mce_num_banks, b);
1621 
1622 	__mcheck_cpu_mce_banks_init();
1623 
1624 	/* Use accurate RIP reporting if available. */
1625 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1626 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1627 
1628 	if (cap & MCG_SER_P)
1629 		mca_cfg.ser = 1;
1630 }
1631 
1632 static void __mcheck_cpu_init_generic(void)
1633 {
1634 	enum mcp_flags m_fl = 0;
1635 	mce_banks_t all_banks;
1636 	u64 cap;
1637 
1638 	if (!mca_cfg.bootlog)
1639 		m_fl = MCP_DONTLOG;
1640 
1641 	/*
1642 	 * Log the machine checks left over from the previous reset.
1643 	 */
1644 	bitmap_fill(all_banks, MAX_NR_BANKS);
1645 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1646 
1647 	cr4_set_bits(X86_CR4_MCE);
1648 
1649 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1650 	if (cap & MCG_CTL_P)
1651 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1652 }
1653 
1654 static void __mcheck_cpu_init_clear_banks(void)
1655 {
1656 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1657 	int i;
1658 
1659 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1660 		struct mce_bank *b = &mce_banks[i];
1661 
1662 		if (!b->init)
1663 			continue;
1664 		wrmsrl(msr_ops.ctl(i), b->ctl);
1665 		wrmsrl(msr_ops.status(i), 0);
1666 	}
1667 }
1668 
1669 /*
1670  * Do a final check to see if there are any unused/RAZ banks.
1671  *
1672  * This must be done after the banks have been initialized and any quirks have
1673  * been applied.
1674  *
1675  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1676  * Otherwise, a user who disables a bank will not be able to re-enable it
1677  * without a system reboot.
1678  */
1679 static void __mcheck_cpu_check_banks(void)
1680 {
1681 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1682 	u64 msrval;
1683 	int i;
1684 
1685 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1686 		struct mce_bank *b = &mce_banks[i];
1687 
1688 		if (!b->init)
1689 			continue;
1690 
1691 		rdmsrl(msr_ops.ctl(i), msrval);
1692 		b->init = !!msrval;
1693 	}
1694 }
1695 
1696 /*
1697  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1698  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1699  * Vol 3B Table 15-20). But this confuses both the code that determines
1700  * whether the machine check occurred in kernel or user mode, and also
1701  * the severity assessment code. Pretend that EIPV was set, and take the
1702  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1703  */
1704 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1705 {
1706 	if (bank != 0)
1707 		return;
1708 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1709 		return;
1710 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1711 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1712 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1713 			  MCACOD)) !=
1714 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1715 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1716 			  MCI_STATUS_AR|MCACOD_INSTR))
1717 		return;
1718 
1719 	m->mcgstatus |= MCG_STATUS_EIPV;
1720 	m->ip = regs->ip;
1721 	m->cs = regs->cs;
1722 }
1723 
1724 /* Add per CPU specific workarounds here */
1725 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1726 {
1727 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1728 	struct mca_config *cfg = &mca_cfg;
1729 
1730 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1731 		pr_info("unknown CPU type - not enabling MCE support\n");
1732 		return -EOPNOTSUPP;
1733 	}
1734 
1735 	/* This should be disabled by the BIOS, but isn't always */
1736 	if (c->x86_vendor == X86_VENDOR_AMD) {
1737 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1738 			/*
1739 			 * disable GART TBL walk error reporting, which
1740 			 * trips off incorrectly with the IOMMU & 3ware
1741 			 * & Cerberus:
1742 			 */
1743 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1744 		}
1745 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1746 			/*
1747 			 * Lots of broken BIOS around that don't clear them
1748 			 * by default and leave crap in there. Don't log:
1749 			 */
1750 			cfg->bootlog = 0;
1751 		}
1752 		/*
1753 		 * Various K7s with broken bank 0 around. Always disable
1754 		 * by default.
1755 		 */
1756 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1757 			mce_banks[0].ctl = 0;
1758 
1759 		/*
1760 		 * overflow_recov is supported for F15h Models 00h-0fh
1761 		 * even though we don't have a CPUID bit for it.
1762 		 */
1763 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1764 			mce_flags.overflow_recov = 1;
1765 
1766 	}
1767 
1768 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1769 		/*
1770 		 * SDM documents that on family 6 bank 0 should not be written
1771 		 * because it aliases to another special BIOS controlled
1772 		 * register.
1773 		 * But it's not aliased anymore on model 0x1a+
1774 		 * Don't ignore bank 0 completely because there could be a
1775 		 * valid event later, merely don't write CTL0.
1776 		 */
1777 
1778 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1779 			mce_banks[0].init = false;
1780 
1781 		/*
1782 		 * All newer Intel systems support MCE broadcasting. Enable
1783 		 * synchronization with a one second timeout.
1784 		 */
1785 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1786 			cfg->monarch_timeout < 0)
1787 			cfg->monarch_timeout = USEC_PER_SEC;
1788 
1789 		/*
1790 		 * There are also broken BIOSes on some Pentium M and
1791 		 * earlier systems:
1792 		 */
1793 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1794 			cfg->bootlog = 0;
1795 
1796 		if (c->x86 == 6 && c->x86_model == 45)
1797 			quirk_no_way_out = quirk_sandybridge_ifu;
1798 	}
1799 
1800 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1801 		/*
1802 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1803 		 * synchronization with a one second timeout.
1804 		 */
1805 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1806 			if (cfg->monarch_timeout < 0)
1807 				cfg->monarch_timeout = USEC_PER_SEC;
1808 		}
1809 	}
1810 
1811 	if (cfg->monarch_timeout < 0)
1812 		cfg->monarch_timeout = 0;
1813 	if (cfg->bootlog != 0)
1814 		cfg->panic_timeout = 30;
1815 
1816 	return 0;
1817 }
1818 
1819 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1820 {
1821 	if (c->x86 != 5)
1822 		return 0;
1823 
1824 	switch (c->x86_vendor) {
1825 	case X86_VENDOR_INTEL:
1826 		intel_p5_mcheck_init(c);
1827 		return 1;
1828 	case X86_VENDOR_CENTAUR:
1829 		winchip_mcheck_init(c);
1830 		return 1;
1831 	default:
1832 		return 0;
1833 	}
1834 
1835 	return 0;
1836 }
1837 
1838 /*
1839  * Init basic CPU features needed for early decoding of MCEs.
1840  */
1841 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1842 {
1843 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1844 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1845 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1846 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1847 		mce_flags.amd_threshold	 = 1;
1848 
1849 		if (mce_flags.smca) {
1850 			msr_ops.ctl	= smca_ctl_reg;
1851 			msr_ops.status	= smca_status_reg;
1852 			msr_ops.addr	= smca_addr_reg;
1853 			msr_ops.misc	= smca_misc_reg;
1854 		}
1855 	}
1856 }
1857 
1858 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1859 {
1860 	struct mca_config *cfg = &mca_cfg;
1861 
1862 	 /*
1863 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1864 	  * synchronization with a one second timeout.
1865 	  */
1866 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1867 	     c->x86 > 6) {
1868 		if (cfg->monarch_timeout < 0)
1869 			cfg->monarch_timeout = USEC_PER_SEC;
1870 	}
1871 }
1872 
1873 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1874 {
1875 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1876 
1877 	/*
1878 	 * These CPUs have MCA bank 8 which reports only one error type called
1879 	 * SVAD (System View Address Decoder). The reporting of that error is
1880 	 * controlled by IA32_MC8.CTL.0.
1881 	 *
1882 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1883 	 * virtual machines start and result in a system  panic. Always disable
1884 	 * bank 8 SVAD error by default.
1885 	 */
1886 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1887 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1888 		if (this_cpu_read(mce_num_banks) > 8)
1889 			mce_banks[8].ctl = 0;
1890 	}
1891 
1892 	intel_init_cmci();
1893 	intel_init_lmce();
1894 	mce_adjust_timer = cmci_intel_adjust_timer;
1895 }
1896 
1897 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1898 {
1899 	intel_clear_lmce();
1900 }
1901 
1902 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1903 {
1904 	switch (c->x86_vendor) {
1905 	case X86_VENDOR_INTEL:
1906 		mce_intel_feature_init(c);
1907 		mce_adjust_timer = cmci_intel_adjust_timer;
1908 		break;
1909 
1910 	case X86_VENDOR_AMD: {
1911 		mce_amd_feature_init(c);
1912 		break;
1913 		}
1914 
1915 	case X86_VENDOR_HYGON:
1916 		mce_hygon_feature_init(c);
1917 		break;
1918 
1919 	case X86_VENDOR_CENTAUR:
1920 		mce_centaur_feature_init(c);
1921 		break;
1922 
1923 	case X86_VENDOR_ZHAOXIN:
1924 		mce_zhaoxin_feature_init(c);
1925 		break;
1926 
1927 	default:
1928 		break;
1929 	}
1930 }
1931 
1932 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1933 {
1934 	switch (c->x86_vendor) {
1935 	case X86_VENDOR_INTEL:
1936 		mce_intel_feature_clear(c);
1937 		break;
1938 
1939 	case X86_VENDOR_ZHAOXIN:
1940 		mce_zhaoxin_feature_clear(c);
1941 		break;
1942 
1943 	default:
1944 		break;
1945 	}
1946 }
1947 
1948 static void mce_start_timer(struct timer_list *t)
1949 {
1950 	unsigned long iv = check_interval * HZ;
1951 
1952 	if (mca_cfg.ignore_ce || !iv)
1953 		return;
1954 
1955 	this_cpu_write(mce_next_interval, iv);
1956 	__start_timer(t, iv);
1957 }
1958 
1959 static void __mcheck_cpu_setup_timer(void)
1960 {
1961 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1962 
1963 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1964 }
1965 
1966 static void __mcheck_cpu_init_timer(void)
1967 {
1968 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1969 
1970 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1971 	mce_start_timer(t);
1972 }
1973 
1974 bool filter_mce(struct mce *m)
1975 {
1976 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1977 		return amd_filter_mce(m);
1978 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1979 		return intel_filter_mce(m);
1980 
1981 	return false;
1982 }
1983 
1984 /* Handle unconfigured int18 (should never happen) */
1985 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1986 {
1987 	instrumentation_begin();
1988 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1989 	       smp_processor_id());
1990 	instrumentation_end();
1991 }
1992 
1993 /* Call the installed machine check handler for this CPU setup. */
1994 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
1995 
1996 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
1997 {
1998 	irqentry_state_t irq_state;
1999 
2000 	WARN_ON_ONCE(user_mode(regs));
2001 
2002 	/*
2003 	 * Only required when from kernel mode. See
2004 	 * mce_check_crashing_cpu() for details.
2005 	 */
2006 	if (machine_check_vector == do_machine_check &&
2007 	    mce_check_crashing_cpu())
2008 		return;
2009 
2010 	irq_state = irqentry_nmi_enter(regs);
2011 	/*
2012 	 * The call targets are marked noinstr, but objtool can't figure
2013 	 * that out because it's an indirect call. Annotate it.
2014 	 */
2015 	instrumentation_begin();
2016 
2017 	machine_check_vector(regs);
2018 
2019 	instrumentation_end();
2020 	irqentry_nmi_exit(regs, irq_state);
2021 }
2022 
2023 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2024 {
2025 	irqentry_enter_from_user_mode(regs);
2026 	instrumentation_begin();
2027 
2028 	machine_check_vector(regs);
2029 
2030 	instrumentation_end();
2031 	irqentry_exit_to_user_mode(regs);
2032 }
2033 
2034 #ifdef CONFIG_X86_64
2035 /* MCE hit kernel mode */
2036 DEFINE_IDTENTRY_MCE(exc_machine_check)
2037 {
2038 	unsigned long dr7;
2039 
2040 	dr7 = local_db_save();
2041 	exc_machine_check_kernel(regs);
2042 	local_db_restore(dr7);
2043 }
2044 
2045 /* The user mode variant. */
2046 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2047 {
2048 	unsigned long dr7;
2049 
2050 	dr7 = local_db_save();
2051 	exc_machine_check_user(regs);
2052 	local_db_restore(dr7);
2053 }
2054 #else
2055 /* 32bit unified entry point */
2056 DEFINE_IDTENTRY_RAW(exc_machine_check)
2057 {
2058 	unsigned long dr7;
2059 
2060 	dr7 = local_db_save();
2061 	if (user_mode(regs))
2062 		exc_machine_check_user(regs);
2063 	else
2064 		exc_machine_check_kernel(regs);
2065 	local_db_restore(dr7);
2066 }
2067 #endif
2068 
2069 /*
2070  * Called for each booted CPU to set up machine checks.
2071  * Must be called with preempt off:
2072  */
2073 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2074 {
2075 	if (mca_cfg.disabled)
2076 		return;
2077 
2078 	if (__mcheck_cpu_ancient_init(c))
2079 		return;
2080 
2081 	if (!mce_available(c))
2082 		return;
2083 
2084 	__mcheck_cpu_cap_init();
2085 
2086 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2087 		mca_cfg.disabled = 1;
2088 		return;
2089 	}
2090 
2091 	if (mce_gen_pool_init()) {
2092 		mca_cfg.disabled = 1;
2093 		pr_emerg("Couldn't allocate MCE records pool!\n");
2094 		return;
2095 	}
2096 
2097 	machine_check_vector = do_machine_check;
2098 
2099 	__mcheck_cpu_init_early(c);
2100 	__mcheck_cpu_init_generic();
2101 	__mcheck_cpu_init_vendor(c);
2102 	__mcheck_cpu_init_clear_banks();
2103 	__mcheck_cpu_check_banks();
2104 	__mcheck_cpu_setup_timer();
2105 }
2106 
2107 /*
2108  * Called for each booted CPU to clear some machine checks opt-ins
2109  */
2110 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2111 {
2112 	if (mca_cfg.disabled)
2113 		return;
2114 
2115 	if (!mce_available(c))
2116 		return;
2117 
2118 	/*
2119 	 * Possibly to clear general settings generic to x86
2120 	 * __mcheck_cpu_clear_generic(c);
2121 	 */
2122 	__mcheck_cpu_clear_vendor(c);
2123 
2124 }
2125 
2126 static void __mce_disable_bank(void *arg)
2127 {
2128 	int bank = *((int *)arg);
2129 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2130 	cmci_disable_bank(bank);
2131 }
2132 
2133 void mce_disable_bank(int bank)
2134 {
2135 	if (bank >= this_cpu_read(mce_num_banks)) {
2136 		pr_warn(FW_BUG
2137 			"Ignoring request to disable invalid MCA bank %d.\n",
2138 			bank);
2139 		return;
2140 	}
2141 	set_bit(bank, mce_banks_ce_disabled);
2142 	on_each_cpu(__mce_disable_bank, &bank, 1);
2143 }
2144 
2145 /*
2146  * mce=off Disables machine check
2147  * mce=no_cmci Disables CMCI
2148  * mce=no_lmce Disables LMCE
2149  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2150  * mce=print_all Print all machine check logs to console
2151  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2152  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2153  *	monarchtimeout is how long to wait for other CPUs on machine
2154  *	check, or 0 to not wait
2155  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2156 	and older.
2157  * mce=nobootlog Don't log MCEs from before booting.
2158  * mce=bios_cmci_threshold Don't program the CMCI threshold
2159  * mce=recovery force enable copy_mc_fragile()
2160  */
2161 static int __init mcheck_enable(char *str)
2162 {
2163 	struct mca_config *cfg = &mca_cfg;
2164 
2165 	if (*str == 0) {
2166 		enable_p5_mce();
2167 		return 1;
2168 	}
2169 	if (*str == '=')
2170 		str++;
2171 	if (!strcmp(str, "off"))
2172 		cfg->disabled = 1;
2173 	else if (!strcmp(str, "no_cmci"))
2174 		cfg->cmci_disabled = true;
2175 	else if (!strcmp(str, "no_lmce"))
2176 		cfg->lmce_disabled = 1;
2177 	else if (!strcmp(str, "dont_log_ce"))
2178 		cfg->dont_log_ce = true;
2179 	else if (!strcmp(str, "print_all"))
2180 		cfg->print_all = true;
2181 	else if (!strcmp(str, "ignore_ce"))
2182 		cfg->ignore_ce = true;
2183 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2184 		cfg->bootlog = (str[0] == 'b');
2185 	else if (!strcmp(str, "bios_cmci_threshold"))
2186 		cfg->bios_cmci_threshold = 1;
2187 	else if (!strcmp(str, "recovery"))
2188 		cfg->recovery = 1;
2189 	else if (isdigit(str[0])) {
2190 		if (get_option(&str, &cfg->tolerant) == 2)
2191 			get_option(&str, &(cfg->monarch_timeout));
2192 	} else {
2193 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2194 		return 0;
2195 	}
2196 	return 1;
2197 }
2198 __setup("mce", mcheck_enable);
2199 
2200 int __init mcheck_init(void)
2201 {
2202 	mce_register_decode_chain(&early_nb);
2203 	mce_register_decode_chain(&mce_uc_nb);
2204 	mce_register_decode_chain(&mce_default_nb);
2205 	mcheck_vendor_init_severity();
2206 
2207 	INIT_WORK(&mce_work, mce_gen_pool_process);
2208 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2209 
2210 	return 0;
2211 }
2212 
2213 /*
2214  * mce_syscore: PM support
2215  */
2216 
2217 /*
2218  * Disable machine checks on suspend and shutdown. We can't really handle
2219  * them later.
2220  */
2221 static void mce_disable_error_reporting(void)
2222 {
2223 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2224 	int i;
2225 
2226 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2227 		struct mce_bank *b = &mce_banks[i];
2228 
2229 		if (b->init)
2230 			wrmsrl(msr_ops.ctl(i), 0);
2231 	}
2232 	return;
2233 }
2234 
2235 static void vendor_disable_error_reporting(void)
2236 {
2237 	/*
2238 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2239 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2240 	 * is bad, since it will inhibit reporting for all shared resources on
2241 	 * the socket like the last level cache (LLC), the integrated memory
2242 	 * controller (iMC), etc.
2243 	 */
2244 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2245 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2246 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2247 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2248 		return;
2249 
2250 	mce_disable_error_reporting();
2251 }
2252 
2253 static int mce_syscore_suspend(void)
2254 {
2255 	vendor_disable_error_reporting();
2256 	return 0;
2257 }
2258 
2259 static void mce_syscore_shutdown(void)
2260 {
2261 	vendor_disable_error_reporting();
2262 }
2263 
2264 /*
2265  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2266  * Only one CPU is active at this time, the others get re-added later using
2267  * CPU hotplug:
2268  */
2269 static void mce_syscore_resume(void)
2270 {
2271 	__mcheck_cpu_init_generic();
2272 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2273 	__mcheck_cpu_init_clear_banks();
2274 }
2275 
2276 static struct syscore_ops mce_syscore_ops = {
2277 	.suspend	= mce_syscore_suspend,
2278 	.shutdown	= mce_syscore_shutdown,
2279 	.resume		= mce_syscore_resume,
2280 };
2281 
2282 /*
2283  * mce_device: Sysfs support
2284  */
2285 
2286 static void mce_cpu_restart(void *data)
2287 {
2288 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2289 		return;
2290 	__mcheck_cpu_init_generic();
2291 	__mcheck_cpu_init_clear_banks();
2292 	__mcheck_cpu_init_timer();
2293 }
2294 
2295 /* Reinit MCEs after user configuration changes */
2296 static void mce_restart(void)
2297 {
2298 	mce_timer_delete_all();
2299 	on_each_cpu(mce_cpu_restart, NULL, 1);
2300 }
2301 
2302 /* Toggle features for corrected errors */
2303 static void mce_disable_cmci(void *data)
2304 {
2305 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2306 		return;
2307 	cmci_clear();
2308 }
2309 
2310 static void mce_enable_ce(void *all)
2311 {
2312 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2313 		return;
2314 	cmci_reenable();
2315 	cmci_recheck();
2316 	if (all)
2317 		__mcheck_cpu_init_timer();
2318 }
2319 
2320 static struct bus_type mce_subsys = {
2321 	.name		= "machinecheck",
2322 	.dev_name	= "machinecheck",
2323 };
2324 
2325 DEFINE_PER_CPU(struct device *, mce_device);
2326 
2327 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2328 {
2329 	return container_of(attr, struct mce_bank_dev, attr);
2330 }
2331 
2332 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2333 			 char *buf)
2334 {
2335 	u8 bank = attr_to_bank(attr)->bank;
2336 	struct mce_bank *b;
2337 
2338 	if (bank >= per_cpu(mce_num_banks, s->id))
2339 		return -EINVAL;
2340 
2341 	b = &per_cpu(mce_banks_array, s->id)[bank];
2342 
2343 	if (!b->init)
2344 		return -ENODEV;
2345 
2346 	return sprintf(buf, "%llx\n", b->ctl);
2347 }
2348 
2349 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2350 			const char *buf, size_t size)
2351 {
2352 	u8 bank = attr_to_bank(attr)->bank;
2353 	struct mce_bank *b;
2354 	u64 new;
2355 
2356 	if (kstrtou64(buf, 0, &new) < 0)
2357 		return -EINVAL;
2358 
2359 	if (bank >= per_cpu(mce_num_banks, s->id))
2360 		return -EINVAL;
2361 
2362 	b = &per_cpu(mce_banks_array, s->id)[bank];
2363 
2364 	if (!b->init)
2365 		return -ENODEV;
2366 
2367 	b->ctl = new;
2368 	mce_restart();
2369 
2370 	return size;
2371 }
2372 
2373 static ssize_t set_ignore_ce(struct device *s,
2374 			     struct device_attribute *attr,
2375 			     const char *buf, size_t size)
2376 {
2377 	u64 new;
2378 
2379 	if (kstrtou64(buf, 0, &new) < 0)
2380 		return -EINVAL;
2381 
2382 	mutex_lock(&mce_sysfs_mutex);
2383 	if (mca_cfg.ignore_ce ^ !!new) {
2384 		if (new) {
2385 			/* disable ce features */
2386 			mce_timer_delete_all();
2387 			on_each_cpu(mce_disable_cmci, NULL, 1);
2388 			mca_cfg.ignore_ce = true;
2389 		} else {
2390 			/* enable ce features */
2391 			mca_cfg.ignore_ce = false;
2392 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2393 		}
2394 	}
2395 	mutex_unlock(&mce_sysfs_mutex);
2396 
2397 	return size;
2398 }
2399 
2400 static ssize_t set_cmci_disabled(struct device *s,
2401 				 struct device_attribute *attr,
2402 				 const char *buf, size_t size)
2403 {
2404 	u64 new;
2405 
2406 	if (kstrtou64(buf, 0, &new) < 0)
2407 		return -EINVAL;
2408 
2409 	mutex_lock(&mce_sysfs_mutex);
2410 	if (mca_cfg.cmci_disabled ^ !!new) {
2411 		if (new) {
2412 			/* disable cmci */
2413 			on_each_cpu(mce_disable_cmci, NULL, 1);
2414 			mca_cfg.cmci_disabled = true;
2415 		} else {
2416 			/* enable cmci */
2417 			mca_cfg.cmci_disabled = false;
2418 			on_each_cpu(mce_enable_ce, NULL, 1);
2419 		}
2420 	}
2421 	mutex_unlock(&mce_sysfs_mutex);
2422 
2423 	return size;
2424 }
2425 
2426 static ssize_t store_int_with_restart(struct device *s,
2427 				      struct device_attribute *attr,
2428 				      const char *buf, size_t size)
2429 {
2430 	unsigned long old_check_interval = check_interval;
2431 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2432 
2433 	if (check_interval == old_check_interval)
2434 		return ret;
2435 
2436 	mutex_lock(&mce_sysfs_mutex);
2437 	mce_restart();
2438 	mutex_unlock(&mce_sysfs_mutex);
2439 
2440 	return ret;
2441 }
2442 
2443 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2444 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2445 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2446 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2447 
2448 static struct dev_ext_attribute dev_attr_check_interval = {
2449 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2450 	&check_interval
2451 };
2452 
2453 static struct dev_ext_attribute dev_attr_ignore_ce = {
2454 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2455 	&mca_cfg.ignore_ce
2456 };
2457 
2458 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2459 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2460 	&mca_cfg.cmci_disabled
2461 };
2462 
2463 static struct device_attribute *mce_device_attrs[] = {
2464 	&dev_attr_tolerant.attr,
2465 	&dev_attr_check_interval.attr,
2466 #ifdef CONFIG_X86_MCELOG_LEGACY
2467 	&dev_attr_trigger,
2468 #endif
2469 	&dev_attr_monarch_timeout.attr,
2470 	&dev_attr_dont_log_ce.attr,
2471 	&dev_attr_print_all.attr,
2472 	&dev_attr_ignore_ce.attr,
2473 	&dev_attr_cmci_disabled.attr,
2474 	NULL
2475 };
2476 
2477 static cpumask_var_t mce_device_initialized;
2478 
2479 static void mce_device_release(struct device *dev)
2480 {
2481 	kfree(dev);
2482 }
2483 
2484 /* Per CPU device init. All of the CPUs still share the same bank device: */
2485 static int mce_device_create(unsigned int cpu)
2486 {
2487 	struct device *dev;
2488 	int err;
2489 	int i, j;
2490 
2491 	if (!mce_available(&boot_cpu_data))
2492 		return -EIO;
2493 
2494 	dev = per_cpu(mce_device, cpu);
2495 	if (dev)
2496 		return 0;
2497 
2498 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2499 	if (!dev)
2500 		return -ENOMEM;
2501 	dev->id  = cpu;
2502 	dev->bus = &mce_subsys;
2503 	dev->release = &mce_device_release;
2504 
2505 	err = device_register(dev);
2506 	if (err) {
2507 		put_device(dev);
2508 		return err;
2509 	}
2510 
2511 	for (i = 0; mce_device_attrs[i]; i++) {
2512 		err = device_create_file(dev, mce_device_attrs[i]);
2513 		if (err)
2514 			goto error;
2515 	}
2516 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2517 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2518 		if (err)
2519 			goto error2;
2520 	}
2521 	cpumask_set_cpu(cpu, mce_device_initialized);
2522 	per_cpu(mce_device, cpu) = dev;
2523 
2524 	return 0;
2525 error2:
2526 	while (--j >= 0)
2527 		device_remove_file(dev, &mce_bank_devs[j].attr);
2528 error:
2529 	while (--i >= 0)
2530 		device_remove_file(dev, mce_device_attrs[i]);
2531 
2532 	device_unregister(dev);
2533 
2534 	return err;
2535 }
2536 
2537 static void mce_device_remove(unsigned int cpu)
2538 {
2539 	struct device *dev = per_cpu(mce_device, cpu);
2540 	int i;
2541 
2542 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2543 		return;
2544 
2545 	for (i = 0; mce_device_attrs[i]; i++)
2546 		device_remove_file(dev, mce_device_attrs[i]);
2547 
2548 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2549 		device_remove_file(dev, &mce_bank_devs[i].attr);
2550 
2551 	device_unregister(dev);
2552 	cpumask_clear_cpu(cpu, mce_device_initialized);
2553 	per_cpu(mce_device, cpu) = NULL;
2554 }
2555 
2556 /* Make sure there are no machine checks on offlined CPUs. */
2557 static void mce_disable_cpu(void)
2558 {
2559 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2560 		return;
2561 
2562 	if (!cpuhp_tasks_frozen)
2563 		cmci_clear();
2564 
2565 	vendor_disable_error_reporting();
2566 }
2567 
2568 static void mce_reenable_cpu(void)
2569 {
2570 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2571 	int i;
2572 
2573 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2574 		return;
2575 
2576 	if (!cpuhp_tasks_frozen)
2577 		cmci_reenable();
2578 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2579 		struct mce_bank *b = &mce_banks[i];
2580 
2581 		if (b->init)
2582 			wrmsrl(msr_ops.ctl(i), b->ctl);
2583 	}
2584 }
2585 
2586 static int mce_cpu_dead(unsigned int cpu)
2587 {
2588 	mce_intel_hcpu_update(cpu);
2589 
2590 	/* intentionally ignoring frozen here */
2591 	if (!cpuhp_tasks_frozen)
2592 		cmci_rediscover();
2593 	return 0;
2594 }
2595 
2596 static int mce_cpu_online(unsigned int cpu)
2597 {
2598 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2599 	int ret;
2600 
2601 	mce_device_create(cpu);
2602 
2603 	ret = mce_threshold_create_device(cpu);
2604 	if (ret) {
2605 		mce_device_remove(cpu);
2606 		return ret;
2607 	}
2608 	mce_reenable_cpu();
2609 	mce_start_timer(t);
2610 	return 0;
2611 }
2612 
2613 static int mce_cpu_pre_down(unsigned int cpu)
2614 {
2615 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2616 
2617 	mce_disable_cpu();
2618 	del_timer_sync(t);
2619 	mce_threshold_remove_device(cpu);
2620 	mce_device_remove(cpu);
2621 	return 0;
2622 }
2623 
2624 static __init void mce_init_banks(void)
2625 {
2626 	int i;
2627 
2628 	for (i = 0; i < MAX_NR_BANKS; i++) {
2629 		struct mce_bank_dev *b = &mce_bank_devs[i];
2630 		struct device_attribute *a = &b->attr;
2631 
2632 		b->bank = i;
2633 
2634 		sysfs_attr_init(&a->attr);
2635 		a->attr.name	= b->attrname;
2636 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2637 
2638 		a->attr.mode	= 0644;
2639 		a->show		= show_bank;
2640 		a->store	= set_bank;
2641 	}
2642 }
2643 
2644 /*
2645  * When running on XEN, this initcall is ordered against the XEN mcelog
2646  * initcall:
2647  *
2648  *   device_initcall(xen_late_init_mcelog);
2649  *   device_initcall_sync(mcheck_init_device);
2650  */
2651 static __init int mcheck_init_device(void)
2652 {
2653 	int err;
2654 
2655 	/*
2656 	 * Check if we have a spare virtual bit. This will only become
2657 	 * a problem if/when we move beyond 5-level page tables.
2658 	 */
2659 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2660 
2661 	if (!mce_available(&boot_cpu_data)) {
2662 		err = -EIO;
2663 		goto err_out;
2664 	}
2665 
2666 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2667 		err = -ENOMEM;
2668 		goto err_out;
2669 	}
2670 
2671 	mce_init_banks();
2672 
2673 	err = subsys_system_register(&mce_subsys, NULL);
2674 	if (err)
2675 		goto err_out_mem;
2676 
2677 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2678 				mce_cpu_dead);
2679 	if (err)
2680 		goto err_out_mem;
2681 
2682 	/*
2683 	 * Invokes mce_cpu_online() on all CPUs which are online when
2684 	 * the state is installed.
2685 	 */
2686 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2687 				mce_cpu_online, mce_cpu_pre_down);
2688 	if (err < 0)
2689 		goto err_out_online;
2690 
2691 	register_syscore_ops(&mce_syscore_ops);
2692 
2693 	return 0;
2694 
2695 err_out_online:
2696 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2697 
2698 err_out_mem:
2699 	free_cpumask_var(mce_device_initialized);
2700 
2701 err_out:
2702 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2703 
2704 	return err;
2705 }
2706 device_initcall_sync(mcheck_init_device);
2707 
2708 /*
2709  * Old style boot options parsing. Only for compatibility.
2710  */
2711 static int __init mcheck_disable(char *str)
2712 {
2713 	mca_cfg.disabled = 1;
2714 	return 1;
2715 }
2716 __setup("nomce", mcheck_disable);
2717 
2718 #ifdef CONFIG_DEBUG_FS
2719 struct dentry *mce_get_debugfs_dir(void)
2720 {
2721 	static struct dentry *dmce;
2722 
2723 	if (!dmce)
2724 		dmce = debugfs_create_dir("mce", NULL);
2725 
2726 	return dmce;
2727 }
2728 
2729 static void mce_reset(void)
2730 {
2731 	cpu_missing = 0;
2732 	atomic_set(&mce_fake_panicked, 0);
2733 	atomic_set(&mce_executing, 0);
2734 	atomic_set(&mce_callin, 0);
2735 	atomic_set(&global_nwo, 0);
2736 	cpumask_setall(&mce_missing_cpus);
2737 }
2738 
2739 static int fake_panic_get(void *data, u64 *val)
2740 {
2741 	*val = fake_panic;
2742 	return 0;
2743 }
2744 
2745 static int fake_panic_set(void *data, u64 val)
2746 {
2747 	mce_reset();
2748 	fake_panic = val;
2749 	return 0;
2750 }
2751 
2752 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2753 			 "%llu\n");
2754 
2755 static void __init mcheck_debugfs_init(void)
2756 {
2757 	struct dentry *dmce;
2758 
2759 	dmce = mce_get_debugfs_dir();
2760 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2761 				   &fake_panic_fops);
2762 }
2763 #else
2764 static void __init mcheck_debugfs_init(void) { }
2765 #endif
2766 
2767 static int __init mcheck_late_init(void)
2768 {
2769 	if (mca_cfg.recovery)
2770 		enable_copy_mc_fragile();
2771 
2772 	mcheck_debugfs_init();
2773 
2774 	/*
2775 	 * Flush out everything that has been logged during early boot, now that
2776 	 * everything has been initialized (workqueues, decoders, ...).
2777 	 */
2778 	mce_schedule_work();
2779 
2780 	return 0;
2781 }
2782 late_initcall(mcheck_late_init);
2783