xref: /openbmc/linux/arch/x86/kernel/cpu/mce/core.c (revision 0ed66cb7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Machine check handler.
4  *
5  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6  * Rest from unknown author(s).
7  * 2004 Andi Kleen. Rewrote most of it.
8  * Copyright 2008 Intel Corporation
9  * Author: Andi Kleen
10  */
11 
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55 
56 #include "internal.h"
57 
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63 
64 #define SPINUNIT		100	/* 100ns */
65 
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69 
70 struct mce_bank {
71 	u64			ctl;			/* subevents to enable */
72 	bool			init;			/* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75 
76 #define ATTR_LEN               16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 	struct device_attribute	attr;			/* device attribute */
80 	char			attrname[ATTR_LEN];	/* attribute name */
81 	u8			bank;			/* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84 
85 struct mce_vendor_flags mce_flags __read_mostly;
86 
87 struct mca_config mca_cfg __read_mostly = {
88 	.bootlog  = -1,
89 	/*
90 	 * Tolerant levels:
91 	 * 0: always panic on uncorrected errors, log corrected errors
92 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 	 * 3: never panic or SIGBUS, log all errors (for testing only)
95 	 */
96 	.tolerant = 1,
97 	.monarch_timeout = -1
98 };
99 
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103 
104 /*
105  * MCA banks polled by the period polling timer for corrected events.
106  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107  */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111 
112 /*
113  * MCA banks controlled through firmware first for corrected errors.
114  * This is a global list of banks for which we won't enable CMCI and we
115  * won't poll. Firmware controls these banks and is responsible for
116  * reporting corrected errors through GHES. Uncorrected/recoverable
117  * errors are still notified through a machine check.
118  */
119 mce_banks_t mce_banks_ce_disabled;
120 
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123 
124 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
125 
126 /*
127  * CPU/chipset specific EDAC code can register a notifier call here to print
128  * MCE errors in a human-readable form.
129  */
130 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
131 
132 /* Do initial initialization of a struct mce */
133 noinstr void mce_setup(struct mce *m)
134 {
135 	memset(m, 0, sizeof(struct mce));
136 	m->cpu = m->extcpu = smp_processor_id();
137 	/* need the internal __ version to avoid deadlocks */
138 	m->time = __ktime_get_real_seconds();
139 	m->cpuvendor = boot_cpu_data.x86_vendor;
140 	m->cpuid = cpuid_eax(1);
141 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
142 	m->apicid = cpu_data(m->extcpu).initial_apicid;
143 	m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
144 
145 	if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
146 		m->ppin = __rdmsr(MSR_PPIN);
147 	else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
148 		m->ppin = __rdmsr(MSR_AMD_PPIN);
149 
150 	m->microcode = boot_cpu_data.microcode;
151 }
152 
153 DEFINE_PER_CPU(struct mce, injectm);
154 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
155 
156 void mce_log(struct mce *m)
157 {
158 	if (!mce_gen_pool_add(m))
159 		irq_work_queue(&mce_irq_work);
160 }
161 EXPORT_SYMBOL_GPL(mce_log);
162 
163 void mce_register_decode_chain(struct notifier_block *nb)
164 {
165 	if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
166 		    nb->priority > MCE_PRIO_HIGHEST))
167 		return;
168 
169 	blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
170 }
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
172 
173 void mce_unregister_decode_chain(struct notifier_block *nb)
174 {
175 	blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
176 }
177 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
178 
179 static inline u32 ctl_reg(int bank)
180 {
181 	return MSR_IA32_MCx_CTL(bank);
182 }
183 
184 static inline u32 status_reg(int bank)
185 {
186 	return MSR_IA32_MCx_STATUS(bank);
187 }
188 
189 static inline u32 addr_reg(int bank)
190 {
191 	return MSR_IA32_MCx_ADDR(bank);
192 }
193 
194 static inline u32 misc_reg(int bank)
195 {
196 	return MSR_IA32_MCx_MISC(bank);
197 }
198 
199 static inline u32 smca_ctl_reg(int bank)
200 {
201 	return MSR_AMD64_SMCA_MCx_CTL(bank);
202 }
203 
204 static inline u32 smca_status_reg(int bank)
205 {
206 	return MSR_AMD64_SMCA_MCx_STATUS(bank);
207 }
208 
209 static inline u32 smca_addr_reg(int bank)
210 {
211 	return MSR_AMD64_SMCA_MCx_ADDR(bank);
212 }
213 
214 static inline u32 smca_misc_reg(int bank)
215 {
216 	return MSR_AMD64_SMCA_MCx_MISC(bank);
217 }
218 
219 struct mca_msr_regs msr_ops = {
220 	.ctl	= ctl_reg,
221 	.status	= status_reg,
222 	.addr	= addr_reg,
223 	.misc	= misc_reg
224 };
225 
226 static void __print_mce(struct mce *m)
227 {
228 	pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
229 		 m->extcpu,
230 		 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
231 		 m->mcgstatus, m->bank, m->status);
232 
233 	if (m->ip) {
234 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
235 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
236 			m->cs, m->ip);
237 
238 		if (m->cs == __KERNEL_CS)
239 			pr_cont("{%pS}", (void *)(unsigned long)m->ip);
240 		pr_cont("\n");
241 	}
242 
243 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
244 	if (m->addr)
245 		pr_cont("ADDR %llx ", m->addr);
246 	if (m->misc)
247 		pr_cont("MISC %llx ", m->misc);
248 	if (m->ppin)
249 		pr_cont("PPIN %llx ", m->ppin);
250 
251 	if (mce_flags.smca) {
252 		if (m->synd)
253 			pr_cont("SYND %llx ", m->synd);
254 		if (m->ipid)
255 			pr_cont("IPID %llx ", m->ipid);
256 	}
257 
258 	pr_cont("\n");
259 
260 	/*
261 	 * Note this output is parsed by external tools and old fields
262 	 * should not be changed.
263 	 */
264 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
265 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
266 		m->microcode);
267 }
268 
269 static void print_mce(struct mce *m)
270 {
271 	__print_mce(m);
272 
273 	if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
274 		pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
275 }
276 
277 #define PANIC_TIMEOUT 5 /* 5 seconds */
278 
279 static atomic_t mce_panicked;
280 
281 static int fake_panic;
282 static atomic_t mce_fake_panicked;
283 
284 /* Panic in progress. Enable interrupts and wait for final IPI */
285 static void wait_for_panic(void)
286 {
287 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
288 
289 	preempt_disable();
290 	local_irq_enable();
291 	while (timeout-- > 0)
292 		udelay(1);
293 	if (panic_timeout == 0)
294 		panic_timeout = mca_cfg.panic_timeout;
295 	panic("Panicing machine check CPU died");
296 }
297 
298 static void mce_panic(const char *msg, struct mce *final, char *exp)
299 {
300 	int apei_err = 0;
301 	struct llist_node *pending;
302 	struct mce_evt_llist *l;
303 
304 	if (!fake_panic) {
305 		/*
306 		 * Make sure only one CPU runs in machine check panic
307 		 */
308 		if (atomic_inc_return(&mce_panicked) > 1)
309 			wait_for_panic();
310 		barrier();
311 
312 		bust_spinlocks(1);
313 		console_verbose();
314 	} else {
315 		/* Don't log too much for fake panic */
316 		if (atomic_inc_return(&mce_fake_panicked) > 1)
317 			return;
318 	}
319 	pending = mce_gen_pool_prepare_records();
320 	/* First print corrected ones that are still unlogged */
321 	llist_for_each_entry(l, pending, llnode) {
322 		struct mce *m = &l->mce;
323 		if (!(m->status & MCI_STATUS_UC)) {
324 			print_mce(m);
325 			if (!apei_err)
326 				apei_err = apei_write_mce(m);
327 		}
328 	}
329 	/* Now print uncorrected but with the final one last */
330 	llist_for_each_entry(l, pending, llnode) {
331 		struct mce *m = &l->mce;
332 		if (!(m->status & MCI_STATUS_UC))
333 			continue;
334 		if (!final || mce_cmp(m, final)) {
335 			print_mce(m);
336 			if (!apei_err)
337 				apei_err = apei_write_mce(m);
338 		}
339 	}
340 	if (final) {
341 		print_mce(final);
342 		if (!apei_err)
343 			apei_err = apei_write_mce(final);
344 	}
345 	if (cpu_missing)
346 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
347 	if (exp)
348 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
349 	if (!fake_panic) {
350 		if (panic_timeout == 0)
351 			panic_timeout = mca_cfg.panic_timeout;
352 		panic(msg);
353 	} else
354 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
355 }
356 
357 /* Support code for software error injection */
358 
359 static int msr_to_offset(u32 msr)
360 {
361 	unsigned bank = __this_cpu_read(injectm.bank);
362 
363 	if (msr == mca_cfg.rip_msr)
364 		return offsetof(struct mce, ip);
365 	if (msr == msr_ops.status(bank))
366 		return offsetof(struct mce, status);
367 	if (msr == msr_ops.addr(bank))
368 		return offsetof(struct mce, addr);
369 	if (msr == msr_ops.misc(bank))
370 		return offsetof(struct mce, misc);
371 	if (msr == MSR_IA32_MCG_STATUS)
372 		return offsetof(struct mce, mcgstatus);
373 	return -1;
374 }
375 
376 __visible bool ex_handler_rdmsr_fault(const struct exception_table_entry *fixup,
377 				      struct pt_regs *regs, int trapnr,
378 				      unsigned long error_code,
379 				      unsigned long fault_addr)
380 {
381 	pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
382 		 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
383 
384 	show_stack_regs(regs);
385 
386 	panic("MCA architectural violation!\n");
387 
388 	while (true)
389 		cpu_relax();
390 
391 	return true;
392 }
393 
394 /* MSR access wrappers used for error injection */
395 static noinstr u64 mce_rdmsrl(u32 msr)
396 {
397 	DECLARE_ARGS(val, low, high);
398 
399 	if (__this_cpu_read(injectm.finished)) {
400 		int offset;
401 		u64 ret;
402 
403 		instrumentation_begin();
404 
405 		offset = msr_to_offset(msr);
406 		if (offset < 0)
407 			ret = 0;
408 		else
409 			ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
410 
411 		instrumentation_end();
412 
413 		return ret;
414 	}
415 
416 	/*
417 	 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
418 	 * architectural violation and needs to be reported to hw vendor. Panic
419 	 * the box to not allow any further progress.
420 	 */
421 	asm volatile("1: rdmsr\n"
422 		     "2:\n"
423 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_rdmsr_fault)
424 		     : EAX_EDX_RET(val, low, high) : "c" (msr));
425 
426 
427 	return EAX_EDX_VAL(val, low, high);
428 }
429 
430 __visible bool ex_handler_wrmsr_fault(const struct exception_table_entry *fixup,
431 				      struct pt_regs *regs, int trapnr,
432 				      unsigned long error_code,
433 				      unsigned long fault_addr)
434 {
435 	pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
436 		 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
437 		  regs->ip, (void *)regs->ip);
438 
439 	show_stack_regs(regs);
440 
441 	panic("MCA architectural violation!\n");
442 
443 	while (true)
444 		cpu_relax();
445 
446 	return true;
447 }
448 
449 static noinstr void mce_wrmsrl(u32 msr, u64 v)
450 {
451 	u32 low, high;
452 
453 	if (__this_cpu_read(injectm.finished)) {
454 		int offset;
455 
456 		instrumentation_begin();
457 
458 		offset = msr_to_offset(msr);
459 		if (offset >= 0)
460 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
461 
462 		instrumentation_end();
463 
464 		return;
465 	}
466 
467 	low  = (u32)v;
468 	high = (u32)(v >> 32);
469 
470 	/* See comment in mce_rdmsrl() */
471 	asm volatile("1: wrmsr\n"
472 		     "2:\n"
473 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_wrmsr_fault)
474 		     : : "c" (msr), "a"(low), "d" (high) : "memory");
475 }
476 
477 /*
478  * Collect all global (w.r.t. this processor) status about this machine
479  * check into our "mce" struct so that we can use it later to assess
480  * the severity of the problem as we read per-bank specific details.
481  */
482 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
483 {
484 	mce_setup(m);
485 
486 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
487 	if (regs) {
488 		/*
489 		 * Get the address of the instruction at the time of
490 		 * the machine check error.
491 		 */
492 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
493 			m->ip = regs->ip;
494 			m->cs = regs->cs;
495 
496 			/*
497 			 * When in VM86 mode make the cs look like ring 3
498 			 * always. This is a lie, but it's better than passing
499 			 * the additional vm86 bit around everywhere.
500 			 */
501 			if (v8086_mode(regs))
502 				m->cs |= 3;
503 		}
504 		/* Use accurate RIP reporting if available. */
505 		if (mca_cfg.rip_msr)
506 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
507 	}
508 }
509 
510 int mce_available(struct cpuinfo_x86 *c)
511 {
512 	if (mca_cfg.disabled)
513 		return 0;
514 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
515 }
516 
517 static void mce_schedule_work(void)
518 {
519 	if (!mce_gen_pool_empty())
520 		schedule_work(&mce_work);
521 }
522 
523 static void mce_irq_work_cb(struct irq_work *entry)
524 {
525 	mce_schedule_work();
526 }
527 
528 /*
529  * Check if the address reported by the CPU is in a format we can parse.
530  * It would be possible to add code for most other cases, but all would
531  * be somewhat complicated (e.g. segment offset would require an instruction
532  * parser). So only support physical addresses up to page granularity for now.
533  */
534 int mce_usable_address(struct mce *m)
535 {
536 	if (!(m->status & MCI_STATUS_ADDRV))
537 		return 0;
538 
539 	/* Checks after this one are Intel/Zhaoxin-specific: */
540 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
541 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
542 		return 1;
543 
544 	if (!(m->status & MCI_STATUS_MISCV))
545 		return 0;
546 
547 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
548 		return 0;
549 
550 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
551 		return 0;
552 
553 	return 1;
554 }
555 EXPORT_SYMBOL_GPL(mce_usable_address);
556 
557 bool mce_is_memory_error(struct mce *m)
558 {
559 	switch (m->cpuvendor) {
560 	case X86_VENDOR_AMD:
561 	case X86_VENDOR_HYGON:
562 		return amd_mce_is_memory_error(m);
563 
564 	case X86_VENDOR_INTEL:
565 	case X86_VENDOR_ZHAOXIN:
566 		/*
567 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
568 		 *
569 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
570 		 * indicating a memory error. Bit 8 is used for indicating a
571 		 * cache hierarchy error. The combination of bit 2 and bit 3
572 		 * is used for indicating a `generic' cache hierarchy error
573 		 * But we can't just blindly check the above bits, because if
574 		 * bit 11 is set, then it is a bus/interconnect error - and
575 		 * either way the above bits just gives more detail on what
576 		 * bus/interconnect error happened. Note that bit 12 can be
577 		 * ignored, as it's the "filter" bit.
578 		 */
579 		return (m->status & 0xef80) == BIT(7) ||
580 		       (m->status & 0xef00) == BIT(8) ||
581 		       (m->status & 0xeffc) == 0xc;
582 
583 	default:
584 		return false;
585 	}
586 }
587 EXPORT_SYMBOL_GPL(mce_is_memory_error);
588 
589 static bool whole_page(struct mce *m)
590 {
591 	if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
592 		return true;
593 
594 	return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
595 }
596 
597 bool mce_is_correctable(struct mce *m)
598 {
599 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
600 		return false;
601 
602 	if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
603 		return false;
604 
605 	if (m->status & MCI_STATUS_UC)
606 		return false;
607 
608 	return true;
609 }
610 EXPORT_SYMBOL_GPL(mce_is_correctable);
611 
612 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
613 			      void *data)
614 {
615 	struct mce *m = (struct mce *)data;
616 
617 	if (!m)
618 		return NOTIFY_DONE;
619 
620 	/* Emit the trace record: */
621 	trace_mce_record(m);
622 
623 	set_bit(0, &mce_need_notify);
624 
625 	mce_notify_irq();
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static struct notifier_block early_nb = {
631 	.notifier_call	= mce_early_notifier,
632 	.priority	= MCE_PRIO_EARLY,
633 };
634 
635 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
636 			      void *data)
637 {
638 	struct mce *mce = (struct mce *)data;
639 	unsigned long pfn;
640 
641 	if (!mce || !mce_usable_address(mce))
642 		return NOTIFY_DONE;
643 
644 	if (mce->severity != MCE_AO_SEVERITY &&
645 	    mce->severity != MCE_DEFERRED_SEVERITY)
646 		return NOTIFY_DONE;
647 
648 	pfn = mce->addr >> PAGE_SHIFT;
649 	if (!memory_failure(pfn, 0)) {
650 		set_mce_nospec(pfn, whole_page(mce));
651 		mce->kflags |= MCE_HANDLED_UC;
652 	}
653 
654 	return NOTIFY_OK;
655 }
656 
657 static struct notifier_block mce_uc_nb = {
658 	.notifier_call	= uc_decode_notifier,
659 	.priority	= MCE_PRIO_UC,
660 };
661 
662 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
663 				void *data)
664 {
665 	struct mce *m = (struct mce *)data;
666 
667 	if (!m)
668 		return NOTIFY_DONE;
669 
670 	if (mca_cfg.print_all || !m->kflags)
671 		__print_mce(m);
672 
673 	return NOTIFY_DONE;
674 }
675 
676 static struct notifier_block mce_default_nb = {
677 	.notifier_call	= mce_default_notifier,
678 	/* lowest prio, we want it to run last. */
679 	.priority	= MCE_PRIO_LOWEST,
680 };
681 
682 /*
683  * Read ADDR and MISC registers.
684  */
685 static void mce_read_aux(struct mce *m, int i)
686 {
687 	if (m->status & MCI_STATUS_MISCV)
688 		m->misc = mce_rdmsrl(msr_ops.misc(i));
689 
690 	if (m->status & MCI_STATUS_ADDRV) {
691 		m->addr = mce_rdmsrl(msr_ops.addr(i));
692 
693 		/*
694 		 * Mask the reported address by the reported granularity.
695 		 */
696 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
697 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
698 			m->addr >>= shift;
699 			m->addr <<= shift;
700 		}
701 
702 		/*
703 		 * Extract [55:<lsb>] where lsb is the least significant
704 		 * *valid* bit of the address bits.
705 		 */
706 		if (mce_flags.smca) {
707 			u8 lsb = (m->addr >> 56) & 0x3f;
708 
709 			m->addr &= GENMASK_ULL(55, lsb);
710 		}
711 	}
712 
713 	if (mce_flags.smca) {
714 		m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
715 
716 		if (m->status & MCI_STATUS_SYNDV)
717 			m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
718 	}
719 }
720 
721 DEFINE_PER_CPU(unsigned, mce_poll_count);
722 
723 /*
724  * Poll for corrected events or events that happened before reset.
725  * Those are just logged through /dev/mcelog.
726  *
727  * This is executed in standard interrupt context.
728  *
729  * Note: spec recommends to panic for fatal unsignalled
730  * errors here. However this would be quite problematic --
731  * we would need to reimplement the Monarch handling and
732  * it would mess up the exclusion between exception handler
733  * and poll handler -- * so we skip this for now.
734  * These cases should not happen anyways, or only when the CPU
735  * is already totally * confused. In this case it's likely it will
736  * not fully execute the machine check handler either.
737  */
738 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
739 {
740 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
741 	bool error_seen = false;
742 	struct mce m;
743 	int i;
744 
745 	this_cpu_inc(mce_poll_count);
746 
747 	mce_gather_info(&m, NULL);
748 
749 	if (flags & MCP_TIMESTAMP)
750 		m.tsc = rdtsc();
751 
752 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
753 		if (!mce_banks[i].ctl || !test_bit(i, *b))
754 			continue;
755 
756 		m.misc = 0;
757 		m.addr = 0;
758 		m.bank = i;
759 
760 		barrier();
761 		m.status = mce_rdmsrl(msr_ops.status(i));
762 
763 		/* If this entry is not valid, ignore it */
764 		if (!(m.status & MCI_STATUS_VAL))
765 			continue;
766 
767 		/*
768 		 * If we are logging everything (at CPU online) or this
769 		 * is a corrected error, then we must log it.
770 		 */
771 		if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
772 			goto log_it;
773 
774 		/*
775 		 * Newer Intel systems that support software error
776 		 * recovery need to make additional checks. Other
777 		 * CPUs should skip over uncorrected errors, but log
778 		 * everything else.
779 		 */
780 		if (!mca_cfg.ser) {
781 			if (m.status & MCI_STATUS_UC)
782 				continue;
783 			goto log_it;
784 		}
785 
786 		/* Log "not enabled" (speculative) errors */
787 		if (!(m.status & MCI_STATUS_EN))
788 			goto log_it;
789 
790 		/*
791 		 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
792 		 * UC == 1 && PCC == 0 && S == 0
793 		 */
794 		if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
795 			goto log_it;
796 
797 		/*
798 		 * Skip anything else. Presumption is that our read of this
799 		 * bank is racing with a machine check. Leave the log alone
800 		 * for do_machine_check() to deal with it.
801 		 */
802 		continue;
803 
804 log_it:
805 		error_seen = true;
806 
807 		if (flags & MCP_DONTLOG)
808 			goto clear_it;
809 
810 		mce_read_aux(&m, i);
811 		m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
812 		/*
813 		 * Don't get the IP here because it's unlikely to
814 		 * have anything to do with the actual error location.
815 		 */
816 
817 		if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
818 			goto clear_it;
819 
820 		if (flags & MCP_QUEUE_LOG)
821 			mce_gen_pool_add(&m);
822 		else
823 			mce_log(&m);
824 
825 clear_it:
826 		/*
827 		 * Clear state for this bank.
828 		 */
829 		mce_wrmsrl(msr_ops.status(i), 0);
830 	}
831 
832 	/*
833 	 * Don't clear MCG_STATUS here because it's only defined for
834 	 * exceptions.
835 	 */
836 
837 	sync_core();
838 
839 	return error_seen;
840 }
841 EXPORT_SYMBOL_GPL(machine_check_poll);
842 
843 /*
844  * Do a quick check if any of the events requires a panic.
845  * This decides if we keep the events around or clear them.
846  */
847 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
848 			  struct pt_regs *regs)
849 {
850 	char *tmp = *msg;
851 	int i;
852 
853 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
854 		m->status = mce_rdmsrl(msr_ops.status(i));
855 		if (!(m->status & MCI_STATUS_VAL))
856 			continue;
857 
858 		__set_bit(i, validp);
859 		if (quirk_no_way_out)
860 			quirk_no_way_out(i, m, regs);
861 
862 		m->bank = i;
863 		if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
864 			mce_read_aux(m, i);
865 			*msg = tmp;
866 			return 1;
867 		}
868 	}
869 	return 0;
870 }
871 
872 /*
873  * Variable to establish order between CPUs while scanning.
874  * Each CPU spins initially until executing is equal its number.
875  */
876 static atomic_t mce_executing;
877 
878 /*
879  * Defines order of CPUs on entry. First CPU becomes Monarch.
880  */
881 static atomic_t mce_callin;
882 
883 /*
884  * Track which CPUs entered the MCA broadcast synchronization and which not in
885  * order to print holdouts.
886  */
887 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
888 
889 /*
890  * Check if a timeout waiting for other CPUs happened.
891  */
892 static int mce_timed_out(u64 *t, const char *msg)
893 {
894 	/*
895 	 * The others already did panic for some reason.
896 	 * Bail out like in a timeout.
897 	 * rmb() to tell the compiler that system_state
898 	 * might have been modified by someone else.
899 	 */
900 	rmb();
901 	if (atomic_read(&mce_panicked))
902 		wait_for_panic();
903 	if (!mca_cfg.monarch_timeout)
904 		goto out;
905 	if ((s64)*t < SPINUNIT) {
906 		if (mca_cfg.tolerant <= 1) {
907 			if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
908 				pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
909 					 cpumask_pr_args(&mce_missing_cpus));
910 			mce_panic(msg, NULL, NULL);
911 		}
912 		cpu_missing = 1;
913 		return 1;
914 	}
915 	*t -= SPINUNIT;
916 out:
917 	touch_nmi_watchdog();
918 	return 0;
919 }
920 
921 /*
922  * The Monarch's reign.  The Monarch is the CPU who entered
923  * the machine check handler first. It waits for the others to
924  * raise the exception too and then grades them. When any
925  * error is fatal panic. Only then let the others continue.
926  *
927  * The other CPUs entering the MCE handler will be controlled by the
928  * Monarch. They are called Subjects.
929  *
930  * This way we prevent any potential data corruption in a unrecoverable case
931  * and also makes sure always all CPU's errors are examined.
932  *
933  * Also this detects the case of a machine check event coming from outer
934  * space (not detected by any CPUs) In this case some external agent wants
935  * us to shut down, so panic too.
936  *
937  * The other CPUs might still decide to panic if the handler happens
938  * in a unrecoverable place, but in this case the system is in a semi-stable
939  * state and won't corrupt anything by itself. It's ok to let the others
940  * continue for a bit first.
941  *
942  * All the spin loops have timeouts; when a timeout happens a CPU
943  * typically elects itself to be Monarch.
944  */
945 static void mce_reign(void)
946 {
947 	int cpu;
948 	struct mce *m = NULL;
949 	int global_worst = 0;
950 	char *msg = NULL;
951 
952 	/*
953 	 * This CPU is the Monarch and the other CPUs have run
954 	 * through their handlers.
955 	 * Grade the severity of the errors of all the CPUs.
956 	 */
957 	for_each_possible_cpu(cpu) {
958 		struct mce *mtmp = &per_cpu(mces_seen, cpu);
959 
960 		if (mtmp->severity > global_worst) {
961 			global_worst = mtmp->severity;
962 			m = &per_cpu(mces_seen, cpu);
963 		}
964 	}
965 
966 	/*
967 	 * Cannot recover? Panic here then.
968 	 * This dumps all the mces in the log buffer and stops the
969 	 * other CPUs.
970 	 */
971 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
972 		/* call mce_severity() to get "msg" for panic */
973 		mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
974 		mce_panic("Fatal machine check", m, msg);
975 	}
976 
977 	/*
978 	 * For UC somewhere we let the CPU who detects it handle it.
979 	 * Also must let continue the others, otherwise the handling
980 	 * CPU could deadlock on a lock.
981 	 */
982 
983 	/*
984 	 * No machine check event found. Must be some external
985 	 * source or one CPU is hung. Panic.
986 	 */
987 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
988 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
989 
990 	/*
991 	 * Now clear all the mces_seen so that they don't reappear on
992 	 * the next mce.
993 	 */
994 	for_each_possible_cpu(cpu)
995 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
996 }
997 
998 static atomic_t global_nwo;
999 
1000 /*
1001  * Start of Monarch synchronization. This waits until all CPUs have
1002  * entered the exception handler and then determines if any of them
1003  * saw a fatal event that requires panic. Then it executes them
1004  * in the entry order.
1005  * TBD double check parallel CPU hotunplug
1006  */
1007 static int mce_start(int *no_way_out)
1008 {
1009 	int order;
1010 	int cpus = num_online_cpus();
1011 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1012 
1013 	if (!timeout)
1014 		return -1;
1015 
1016 	atomic_add(*no_way_out, &global_nwo);
1017 	/*
1018 	 * Rely on the implied barrier below, such that global_nwo
1019 	 * is updated before mce_callin.
1020 	 */
1021 	order = atomic_inc_return(&mce_callin);
1022 	cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1023 
1024 	/*
1025 	 * Wait for everyone.
1026 	 */
1027 	while (atomic_read(&mce_callin) != cpus) {
1028 		if (mce_timed_out(&timeout,
1029 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
1030 			atomic_set(&global_nwo, 0);
1031 			return -1;
1032 		}
1033 		ndelay(SPINUNIT);
1034 	}
1035 
1036 	/*
1037 	 * mce_callin should be read before global_nwo
1038 	 */
1039 	smp_rmb();
1040 
1041 	if (order == 1) {
1042 		/*
1043 		 * Monarch: Starts executing now, the others wait.
1044 		 */
1045 		atomic_set(&mce_executing, 1);
1046 	} else {
1047 		/*
1048 		 * Subject: Now start the scanning loop one by one in
1049 		 * the original callin order.
1050 		 * This way when there are any shared banks it will be
1051 		 * only seen by one CPU before cleared, avoiding duplicates.
1052 		 */
1053 		while (atomic_read(&mce_executing) < order) {
1054 			if (mce_timed_out(&timeout,
1055 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
1056 				atomic_set(&global_nwo, 0);
1057 				return -1;
1058 			}
1059 			ndelay(SPINUNIT);
1060 		}
1061 	}
1062 
1063 	/*
1064 	 * Cache the global no_way_out state.
1065 	 */
1066 	*no_way_out = atomic_read(&global_nwo);
1067 
1068 	return order;
1069 }
1070 
1071 /*
1072  * Synchronize between CPUs after main scanning loop.
1073  * This invokes the bulk of the Monarch processing.
1074  */
1075 static int mce_end(int order)
1076 {
1077 	int ret = -1;
1078 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1079 
1080 	if (!timeout)
1081 		goto reset;
1082 	if (order < 0)
1083 		goto reset;
1084 
1085 	/*
1086 	 * Allow others to run.
1087 	 */
1088 	atomic_inc(&mce_executing);
1089 
1090 	if (order == 1) {
1091 		/* CHECKME: Can this race with a parallel hotplug? */
1092 		int cpus = num_online_cpus();
1093 
1094 		/*
1095 		 * Monarch: Wait for everyone to go through their scanning
1096 		 * loops.
1097 		 */
1098 		while (atomic_read(&mce_executing) <= cpus) {
1099 			if (mce_timed_out(&timeout,
1100 					  "Timeout: Monarch CPU unable to finish machine check processing"))
1101 				goto reset;
1102 			ndelay(SPINUNIT);
1103 		}
1104 
1105 		mce_reign();
1106 		barrier();
1107 		ret = 0;
1108 	} else {
1109 		/*
1110 		 * Subject: Wait for Monarch to finish.
1111 		 */
1112 		while (atomic_read(&mce_executing) != 0) {
1113 			if (mce_timed_out(&timeout,
1114 					  "Timeout: Monarch CPU did not finish machine check processing"))
1115 				goto reset;
1116 			ndelay(SPINUNIT);
1117 		}
1118 
1119 		/*
1120 		 * Don't reset anything. That's done by the Monarch.
1121 		 */
1122 		return 0;
1123 	}
1124 
1125 	/*
1126 	 * Reset all global state.
1127 	 */
1128 reset:
1129 	atomic_set(&global_nwo, 0);
1130 	atomic_set(&mce_callin, 0);
1131 	cpumask_setall(&mce_missing_cpus);
1132 	barrier();
1133 
1134 	/*
1135 	 * Let others run again.
1136 	 */
1137 	atomic_set(&mce_executing, 0);
1138 	return ret;
1139 }
1140 
1141 static void mce_clear_state(unsigned long *toclear)
1142 {
1143 	int i;
1144 
1145 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1146 		if (test_bit(i, toclear))
1147 			mce_wrmsrl(msr_ops.status(i), 0);
1148 	}
1149 }
1150 
1151 /*
1152  * Cases where we avoid rendezvous handler timeout:
1153  * 1) If this CPU is offline.
1154  *
1155  * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1156  *  skip those CPUs which remain looping in the 1st kernel - see
1157  *  crash_nmi_callback().
1158  *
1159  * Note: there still is a small window between kexec-ing and the new,
1160  * kdump kernel establishing a new #MC handler where a broadcasted MCE
1161  * might not get handled properly.
1162  */
1163 static noinstr bool mce_check_crashing_cpu(void)
1164 {
1165 	unsigned int cpu = smp_processor_id();
1166 
1167 	if (arch_cpu_is_offline(cpu) ||
1168 	    (crashing_cpu != -1 && crashing_cpu != cpu)) {
1169 		u64 mcgstatus;
1170 
1171 		mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1172 
1173 		if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1174 			if (mcgstatus & MCG_STATUS_LMCES)
1175 				return false;
1176 		}
1177 
1178 		if (mcgstatus & MCG_STATUS_RIPV) {
1179 			__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1180 			return true;
1181 		}
1182 	}
1183 	return false;
1184 }
1185 
1186 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1187 			    unsigned long *toclear, unsigned long *valid_banks,
1188 			    int no_way_out, int *worst)
1189 {
1190 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1191 	struct mca_config *cfg = &mca_cfg;
1192 	int severity, i;
1193 
1194 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1195 		__clear_bit(i, toclear);
1196 		if (!test_bit(i, valid_banks))
1197 			continue;
1198 
1199 		if (!mce_banks[i].ctl)
1200 			continue;
1201 
1202 		m->misc = 0;
1203 		m->addr = 0;
1204 		m->bank = i;
1205 
1206 		m->status = mce_rdmsrl(msr_ops.status(i));
1207 		if (!(m->status & MCI_STATUS_VAL))
1208 			continue;
1209 
1210 		/*
1211 		 * Corrected or non-signaled errors are handled by
1212 		 * machine_check_poll(). Leave them alone, unless this panics.
1213 		 */
1214 		if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1215 			!no_way_out)
1216 			continue;
1217 
1218 		/* Set taint even when machine check was not enabled. */
1219 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1220 
1221 		severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1222 
1223 		/*
1224 		 * When machine check was for corrected/deferred handler don't
1225 		 * touch, unless we're panicking.
1226 		 */
1227 		if ((severity == MCE_KEEP_SEVERITY ||
1228 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1229 			continue;
1230 
1231 		__set_bit(i, toclear);
1232 
1233 		/* Machine check event was not enabled. Clear, but ignore. */
1234 		if (severity == MCE_NO_SEVERITY)
1235 			continue;
1236 
1237 		mce_read_aux(m, i);
1238 
1239 		/* assuming valid severity level != 0 */
1240 		m->severity = severity;
1241 
1242 		mce_log(m);
1243 
1244 		if (severity > *worst) {
1245 			*final = *m;
1246 			*worst = severity;
1247 		}
1248 	}
1249 
1250 	/* mce_clear_state will clear *final, save locally for use later */
1251 	*m = *final;
1252 }
1253 
1254 static void kill_me_now(struct callback_head *ch)
1255 {
1256 	force_sig(SIGBUS);
1257 }
1258 
1259 static void kill_me_maybe(struct callback_head *cb)
1260 {
1261 	struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1262 	int flags = MF_ACTION_REQUIRED;
1263 	int ret;
1264 
1265 	pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1266 
1267 	if (!p->mce_ripv)
1268 		flags |= MF_MUST_KILL;
1269 
1270 	ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1271 	if (!ret && !(p->mce_kflags & MCE_IN_KERNEL_COPYIN)) {
1272 		set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1273 		sync_core();
1274 		return;
1275 	}
1276 
1277 	/*
1278 	 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1279 	 * to the current process with the proper error info, so no need to
1280 	 * send SIGBUS here again.
1281 	 */
1282 	if (ret == -EHWPOISON)
1283 		return;
1284 
1285 	if (p->mce_vaddr != (void __user *)-1l) {
1286 		force_sig_mceerr(BUS_MCEERR_AR, p->mce_vaddr, PAGE_SHIFT);
1287 	} else {
1288 		pr_err("Memory error not recovered");
1289 		kill_me_now(cb);
1290 	}
1291 }
1292 
1293 static void queue_task_work(struct mce *m, int kill_current_task)
1294 {
1295 	current->mce_addr = m->addr;
1296 	current->mce_kflags = m->kflags;
1297 	current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1298 	current->mce_whole_page = whole_page(m);
1299 
1300 	if (kill_current_task)
1301 		current->mce_kill_me.func = kill_me_now;
1302 	else
1303 		current->mce_kill_me.func = kill_me_maybe;
1304 
1305 	task_work_add(current, &current->mce_kill_me, TWA_RESUME);
1306 }
1307 
1308 /*
1309  * The actual machine check handler. This only handles real
1310  * exceptions when something got corrupted coming in through int 18.
1311  *
1312  * This is executed in NMI context not subject to normal locking rules. This
1313  * implies that most kernel services cannot be safely used. Don't even
1314  * think about putting a printk in there!
1315  *
1316  * On Intel systems this is entered on all CPUs in parallel through
1317  * MCE broadcast. However some CPUs might be broken beyond repair,
1318  * so be always careful when synchronizing with others.
1319  *
1320  * Tracing and kprobes are disabled: if we interrupted a kernel context
1321  * with IF=1, we need to minimize stack usage.  There are also recursion
1322  * issues: if the machine check was due to a failure of the memory
1323  * backing the user stack, tracing that reads the user stack will cause
1324  * potentially infinite recursion.
1325  */
1326 noinstr void do_machine_check(struct pt_regs *regs)
1327 {
1328 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1329 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1330 	struct mca_config *cfg = &mca_cfg;
1331 	struct mce m, *final;
1332 	char *msg = NULL;
1333 	int worst = 0;
1334 
1335 	/*
1336 	 * Establish sequential order between the CPUs entering the machine
1337 	 * check handler.
1338 	 */
1339 	int order = -1;
1340 
1341 	/*
1342 	 * If no_way_out gets set, there is no safe way to recover from this
1343 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1344 	 */
1345 	int no_way_out = 0;
1346 
1347 	/*
1348 	 * If kill_current_task is not set, there might be a way to recover from this
1349 	 * error.
1350 	 */
1351 	int kill_current_task = 0;
1352 
1353 	/*
1354 	 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1355 	 * on Intel.
1356 	 */
1357 	int lmce = 1;
1358 
1359 	this_cpu_inc(mce_exception_count);
1360 
1361 	mce_gather_info(&m, regs);
1362 	m.tsc = rdtsc();
1363 
1364 	final = this_cpu_ptr(&mces_seen);
1365 	*final = m;
1366 
1367 	memset(valid_banks, 0, sizeof(valid_banks));
1368 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1369 
1370 	barrier();
1371 
1372 	/*
1373 	 * When no restart IP might need to kill or panic.
1374 	 * Assume the worst for now, but if we find the
1375 	 * severity is MCE_AR_SEVERITY we have other options.
1376 	 */
1377 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1378 		kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1379 	/*
1380 	 * Check if this MCE is signaled to only this logical processor,
1381 	 * on Intel, Zhaoxin only.
1382 	 */
1383 	if (m.cpuvendor == X86_VENDOR_INTEL ||
1384 	    m.cpuvendor == X86_VENDOR_ZHAOXIN)
1385 		lmce = m.mcgstatus & MCG_STATUS_LMCES;
1386 
1387 	/*
1388 	 * Local machine check may already know that we have to panic.
1389 	 * Broadcast machine check begins rendezvous in mce_start()
1390 	 * Go through all banks in exclusion of the other CPUs. This way we
1391 	 * don't report duplicated events on shared banks because the first one
1392 	 * to see it will clear it.
1393 	 */
1394 	if (lmce) {
1395 		if (no_way_out && cfg->tolerant < 3)
1396 			mce_panic("Fatal local machine check", &m, msg);
1397 	} else {
1398 		order = mce_start(&no_way_out);
1399 	}
1400 
1401 	__mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1402 
1403 	if (!no_way_out)
1404 		mce_clear_state(toclear);
1405 
1406 	/*
1407 	 * Do most of the synchronization with other CPUs.
1408 	 * When there's any problem use only local no_way_out state.
1409 	 */
1410 	if (!lmce) {
1411 		if (mce_end(order) < 0) {
1412 			if (!no_way_out)
1413 				no_way_out = worst >= MCE_PANIC_SEVERITY;
1414 
1415 			if (no_way_out && cfg->tolerant < 3)
1416 				mce_panic("Fatal machine check on current CPU", &m, msg);
1417 		}
1418 	} else {
1419 		/*
1420 		 * If there was a fatal machine check we should have
1421 		 * already called mce_panic earlier in this function.
1422 		 * Since we re-read the banks, we might have found
1423 		 * something new. Check again to see if we found a
1424 		 * fatal error. We call "mce_severity()" again to
1425 		 * make sure we have the right "msg".
1426 		 */
1427 		if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1428 			mce_severity(&m, regs, cfg->tolerant, &msg, true);
1429 			mce_panic("Local fatal machine check!", &m, msg);
1430 		}
1431 	}
1432 
1433 	if (worst != MCE_AR_SEVERITY && !kill_current_task)
1434 		goto out;
1435 
1436 	/* Fault was in user mode and we need to take some action */
1437 	if ((m.cs & 3) == 3) {
1438 		/* If this triggers there is no way to recover. Die hard. */
1439 		BUG_ON(!on_thread_stack() || !user_mode(regs));
1440 
1441 		queue_task_work(&m, kill_current_task);
1442 
1443 	} else {
1444 		/*
1445 		 * Handle an MCE which has happened in kernel space but from
1446 		 * which the kernel can recover: ex_has_fault_handler() has
1447 		 * already verified that the rIP at which the error happened is
1448 		 * a rIP from which the kernel can recover (by jumping to
1449 		 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1450 		 * corresponding exception handler which would do that is the
1451 		 * proper one.
1452 		 */
1453 		if (m.kflags & MCE_IN_KERNEL_RECOV) {
1454 			if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1455 				mce_panic("Failed kernel mode recovery", &m, msg);
1456 		}
1457 
1458 		if (m.kflags & MCE_IN_KERNEL_COPYIN)
1459 			queue_task_work(&m, kill_current_task);
1460 	}
1461 out:
1462 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1463 }
1464 EXPORT_SYMBOL_GPL(do_machine_check);
1465 
1466 #ifndef CONFIG_MEMORY_FAILURE
1467 int memory_failure(unsigned long pfn, int flags)
1468 {
1469 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1470 	BUG_ON(flags & MF_ACTION_REQUIRED);
1471 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1472 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1473 	       pfn);
1474 
1475 	return 0;
1476 }
1477 #endif
1478 
1479 /*
1480  * Periodic polling timer for "silent" machine check errors.  If the
1481  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1482  * errors, poll 2x slower (up to check_interval seconds).
1483  */
1484 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1485 
1486 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1487 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1488 
1489 static unsigned long mce_adjust_timer_default(unsigned long interval)
1490 {
1491 	return interval;
1492 }
1493 
1494 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1495 
1496 static void __start_timer(struct timer_list *t, unsigned long interval)
1497 {
1498 	unsigned long when = jiffies + interval;
1499 	unsigned long flags;
1500 
1501 	local_irq_save(flags);
1502 
1503 	if (!timer_pending(t) || time_before(when, t->expires))
1504 		mod_timer(t, round_jiffies(when));
1505 
1506 	local_irq_restore(flags);
1507 }
1508 
1509 static void mce_timer_fn(struct timer_list *t)
1510 {
1511 	struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1512 	unsigned long iv;
1513 
1514 	WARN_ON(cpu_t != t);
1515 
1516 	iv = __this_cpu_read(mce_next_interval);
1517 
1518 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1519 		machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1520 
1521 		if (mce_intel_cmci_poll()) {
1522 			iv = mce_adjust_timer(iv);
1523 			goto done;
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1529 	 * interval, otherwise increase the polling interval.
1530 	 */
1531 	if (mce_notify_irq())
1532 		iv = max(iv / 2, (unsigned long) HZ/100);
1533 	else
1534 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1535 
1536 done:
1537 	__this_cpu_write(mce_next_interval, iv);
1538 	__start_timer(t, iv);
1539 }
1540 
1541 /*
1542  * Ensure that the timer is firing in @interval from now.
1543  */
1544 void mce_timer_kick(unsigned long interval)
1545 {
1546 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1547 	unsigned long iv = __this_cpu_read(mce_next_interval);
1548 
1549 	__start_timer(t, interval);
1550 
1551 	if (interval < iv)
1552 		__this_cpu_write(mce_next_interval, interval);
1553 }
1554 
1555 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1556 static void mce_timer_delete_all(void)
1557 {
1558 	int cpu;
1559 
1560 	for_each_online_cpu(cpu)
1561 		del_timer_sync(&per_cpu(mce_timer, cpu));
1562 }
1563 
1564 /*
1565  * Notify the user(s) about new machine check events.
1566  * Can be called from interrupt context, but not from machine check/NMI
1567  * context.
1568  */
1569 int mce_notify_irq(void)
1570 {
1571 	/* Not more than two messages every minute */
1572 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1573 
1574 	if (test_and_clear_bit(0, &mce_need_notify)) {
1575 		mce_work_trigger();
1576 
1577 		if (__ratelimit(&ratelimit))
1578 			pr_info(HW_ERR "Machine check events logged\n");
1579 
1580 		return 1;
1581 	}
1582 	return 0;
1583 }
1584 EXPORT_SYMBOL_GPL(mce_notify_irq);
1585 
1586 static void __mcheck_cpu_mce_banks_init(void)
1587 {
1588 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1589 	u8 n_banks = this_cpu_read(mce_num_banks);
1590 	int i;
1591 
1592 	for (i = 0; i < n_banks; i++) {
1593 		struct mce_bank *b = &mce_banks[i];
1594 
1595 		/*
1596 		 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1597 		 * the required vendor quirks before
1598 		 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1599 		 */
1600 		b->ctl = -1ULL;
1601 		b->init = true;
1602 	}
1603 }
1604 
1605 /*
1606  * Initialize Machine Checks for a CPU.
1607  */
1608 static void __mcheck_cpu_cap_init(void)
1609 {
1610 	u64 cap;
1611 	u8 b;
1612 
1613 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1614 
1615 	b = cap & MCG_BANKCNT_MASK;
1616 
1617 	if (b > MAX_NR_BANKS) {
1618 		pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1619 			smp_processor_id(), MAX_NR_BANKS, b);
1620 		b = MAX_NR_BANKS;
1621 	}
1622 
1623 	this_cpu_write(mce_num_banks, b);
1624 
1625 	__mcheck_cpu_mce_banks_init();
1626 
1627 	/* Use accurate RIP reporting if available. */
1628 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1629 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1630 
1631 	if (cap & MCG_SER_P)
1632 		mca_cfg.ser = 1;
1633 }
1634 
1635 static void __mcheck_cpu_init_generic(void)
1636 {
1637 	enum mcp_flags m_fl = 0;
1638 	mce_banks_t all_banks;
1639 	u64 cap;
1640 
1641 	if (!mca_cfg.bootlog)
1642 		m_fl = MCP_DONTLOG;
1643 
1644 	/*
1645 	 * Log the machine checks left over from the previous reset. Log them
1646 	 * only, do not start processing them. That will happen in mcheck_late_init()
1647 	 * when all consumers have been registered on the notifier chain.
1648 	 */
1649 	bitmap_fill(all_banks, MAX_NR_BANKS);
1650 	machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1651 
1652 	cr4_set_bits(X86_CR4_MCE);
1653 
1654 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1655 	if (cap & MCG_CTL_P)
1656 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1657 }
1658 
1659 static void __mcheck_cpu_init_clear_banks(void)
1660 {
1661 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1662 	int i;
1663 
1664 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1665 		struct mce_bank *b = &mce_banks[i];
1666 
1667 		if (!b->init)
1668 			continue;
1669 		wrmsrl(msr_ops.ctl(i), b->ctl);
1670 		wrmsrl(msr_ops.status(i), 0);
1671 	}
1672 }
1673 
1674 /*
1675  * Do a final check to see if there are any unused/RAZ banks.
1676  *
1677  * This must be done after the banks have been initialized and any quirks have
1678  * been applied.
1679  *
1680  * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1681  * Otherwise, a user who disables a bank will not be able to re-enable it
1682  * without a system reboot.
1683  */
1684 static void __mcheck_cpu_check_banks(void)
1685 {
1686 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1687 	u64 msrval;
1688 	int i;
1689 
1690 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1691 		struct mce_bank *b = &mce_banks[i];
1692 
1693 		if (!b->init)
1694 			continue;
1695 
1696 		rdmsrl(msr_ops.ctl(i), msrval);
1697 		b->init = !!msrval;
1698 	}
1699 }
1700 
1701 /*
1702  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1703  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1704  * Vol 3B Table 15-20). But this confuses both the code that determines
1705  * whether the machine check occurred in kernel or user mode, and also
1706  * the severity assessment code. Pretend that EIPV was set, and take the
1707  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1708  */
1709 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1710 {
1711 	if (bank != 0)
1712 		return;
1713 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1714 		return;
1715 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1716 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1717 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1718 			  MCACOD)) !=
1719 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1720 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1721 			  MCI_STATUS_AR|MCACOD_INSTR))
1722 		return;
1723 
1724 	m->mcgstatus |= MCG_STATUS_EIPV;
1725 	m->ip = regs->ip;
1726 	m->cs = regs->cs;
1727 }
1728 
1729 /* Add per CPU specific workarounds here */
1730 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1731 {
1732 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1733 	struct mca_config *cfg = &mca_cfg;
1734 
1735 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1736 		pr_info("unknown CPU type - not enabling MCE support\n");
1737 		return -EOPNOTSUPP;
1738 	}
1739 
1740 	/* This should be disabled by the BIOS, but isn't always */
1741 	if (c->x86_vendor == X86_VENDOR_AMD) {
1742 		if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1743 			/*
1744 			 * disable GART TBL walk error reporting, which
1745 			 * trips off incorrectly with the IOMMU & 3ware
1746 			 * & Cerberus:
1747 			 */
1748 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1749 		}
1750 		if (c->x86 < 0x11 && cfg->bootlog < 0) {
1751 			/*
1752 			 * Lots of broken BIOS around that don't clear them
1753 			 * by default and leave crap in there. Don't log:
1754 			 */
1755 			cfg->bootlog = 0;
1756 		}
1757 		/*
1758 		 * Various K7s with broken bank 0 around. Always disable
1759 		 * by default.
1760 		 */
1761 		if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1762 			mce_banks[0].ctl = 0;
1763 
1764 		/*
1765 		 * overflow_recov is supported for F15h Models 00h-0fh
1766 		 * even though we don't have a CPUID bit for it.
1767 		 */
1768 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1769 			mce_flags.overflow_recov = 1;
1770 
1771 	}
1772 
1773 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1774 		/*
1775 		 * SDM documents that on family 6 bank 0 should not be written
1776 		 * because it aliases to another special BIOS controlled
1777 		 * register.
1778 		 * But it's not aliased anymore on model 0x1a+
1779 		 * Don't ignore bank 0 completely because there could be a
1780 		 * valid event later, merely don't write CTL0.
1781 		 */
1782 
1783 		if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1784 			mce_banks[0].init = false;
1785 
1786 		/*
1787 		 * All newer Intel systems support MCE broadcasting. Enable
1788 		 * synchronization with a one second timeout.
1789 		 */
1790 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1791 			cfg->monarch_timeout < 0)
1792 			cfg->monarch_timeout = USEC_PER_SEC;
1793 
1794 		/*
1795 		 * There are also broken BIOSes on some Pentium M and
1796 		 * earlier systems:
1797 		 */
1798 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1799 			cfg->bootlog = 0;
1800 
1801 		if (c->x86 == 6 && c->x86_model == 45)
1802 			quirk_no_way_out = quirk_sandybridge_ifu;
1803 	}
1804 
1805 	if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1806 		/*
1807 		 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1808 		 * synchronization with a one second timeout.
1809 		 */
1810 		if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1811 			if (cfg->monarch_timeout < 0)
1812 				cfg->monarch_timeout = USEC_PER_SEC;
1813 		}
1814 	}
1815 
1816 	if (cfg->monarch_timeout < 0)
1817 		cfg->monarch_timeout = 0;
1818 	if (cfg->bootlog != 0)
1819 		cfg->panic_timeout = 30;
1820 
1821 	return 0;
1822 }
1823 
1824 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1825 {
1826 	if (c->x86 != 5)
1827 		return 0;
1828 
1829 	switch (c->x86_vendor) {
1830 	case X86_VENDOR_INTEL:
1831 		intel_p5_mcheck_init(c);
1832 		return 1;
1833 	case X86_VENDOR_CENTAUR:
1834 		winchip_mcheck_init(c);
1835 		return 1;
1836 	default:
1837 		return 0;
1838 	}
1839 
1840 	return 0;
1841 }
1842 
1843 /*
1844  * Init basic CPU features needed for early decoding of MCEs.
1845  */
1846 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1847 {
1848 	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1849 		mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1850 		mce_flags.succor	 = !!cpu_has(c, X86_FEATURE_SUCCOR);
1851 		mce_flags.smca		 = !!cpu_has(c, X86_FEATURE_SMCA);
1852 		mce_flags.amd_threshold	 = 1;
1853 
1854 		if (mce_flags.smca) {
1855 			msr_ops.ctl	= smca_ctl_reg;
1856 			msr_ops.status	= smca_status_reg;
1857 			msr_ops.addr	= smca_addr_reg;
1858 			msr_ops.misc	= smca_misc_reg;
1859 		}
1860 	}
1861 }
1862 
1863 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1864 {
1865 	struct mca_config *cfg = &mca_cfg;
1866 
1867 	 /*
1868 	  * All newer Centaur CPUs support MCE broadcasting. Enable
1869 	  * synchronization with a one second timeout.
1870 	  */
1871 	if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1872 	     c->x86 > 6) {
1873 		if (cfg->monarch_timeout < 0)
1874 			cfg->monarch_timeout = USEC_PER_SEC;
1875 	}
1876 }
1877 
1878 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1879 {
1880 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1881 
1882 	/*
1883 	 * These CPUs have MCA bank 8 which reports only one error type called
1884 	 * SVAD (System View Address Decoder). The reporting of that error is
1885 	 * controlled by IA32_MC8.CTL.0.
1886 	 *
1887 	 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1888 	 * virtual machines start and result in a system  panic. Always disable
1889 	 * bank 8 SVAD error by default.
1890 	 */
1891 	if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1892 	    (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1893 		if (this_cpu_read(mce_num_banks) > 8)
1894 			mce_banks[8].ctl = 0;
1895 	}
1896 
1897 	intel_init_cmci();
1898 	intel_init_lmce();
1899 	mce_adjust_timer = cmci_intel_adjust_timer;
1900 }
1901 
1902 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1903 {
1904 	intel_clear_lmce();
1905 }
1906 
1907 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1908 {
1909 	switch (c->x86_vendor) {
1910 	case X86_VENDOR_INTEL:
1911 		mce_intel_feature_init(c);
1912 		mce_adjust_timer = cmci_intel_adjust_timer;
1913 		break;
1914 
1915 	case X86_VENDOR_AMD: {
1916 		mce_amd_feature_init(c);
1917 		break;
1918 		}
1919 
1920 	case X86_VENDOR_HYGON:
1921 		mce_hygon_feature_init(c);
1922 		break;
1923 
1924 	case X86_VENDOR_CENTAUR:
1925 		mce_centaur_feature_init(c);
1926 		break;
1927 
1928 	case X86_VENDOR_ZHAOXIN:
1929 		mce_zhaoxin_feature_init(c);
1930 		break;
1931 
1932 	default:
1933 		break;
1934 	}
1935 }
1936 
1937 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1938 {
1939 	switch (c->x86_vendor) {
1940 	case X86_VENDOR_INTEL:
1941 		mce_intel_feature_clear(c);
1942 		break;
1943 
1944 	case X86_VENDOR_ZHAOXIN:
1945 		mce_zhaoxin_feature_clear(c);
1946 		break;
1947 
1948 	default:
1949 		break;
1950 	}
1951 }
1952 
1953 static void mce_start_timer(struct timer_list *t)
1954 {
1955 	unsigned long iv = check_interval * HZ;
1956 
1957 	if (mca_cfg.ignore_ce || !iv)
1958 		return;
1959 
1960 	this_cpu_write(mce_next_interval, iv);
1961 	__start_timer(t, iv);
1962 }
1963 
1964 static void __mcheck_cpu_setup_timer(void)
1965 {
1966 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1967 
1968 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1969 }
1970 
1971 static void __mcheck_cpu_init_timer(void)
1972 {
1973 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1974 
1975 	timer_setup(t, mce_timer_fn, TIMER_PINNED);
1976 	mce_start_timer(t);
1977 }
1978 
1979 bool filter_mce(struct mce *m)
1980 {
1981 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1982 		return amd_filter_mce(m);
1983 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1984 		return intel_filter_mce(m);
1985 
1986 	return false;
1987 }
1988 
1989 /* Handle unconfigured int18 (should never happen) */
1990 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1991 {
1992 	instrumentation_begin();
1993 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1994 	       smp_processor_id());
1995 	instrumentation_end();
1996 }
1997 
1998 /* Call the installed machine check handler for this CPU setup. */
1999 void (*machine_check_vector)(struct pt_regs *) = unexpected_machine_check;
2000 
2001 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2002 {
2003 	irqentry_state_t irq_state;
2004 
2005 	WARN_ON_ONCE(user_mode(regs));
2006 
2007 	/*
2008 	 * Only required when from kernel mode. See
2009 	 * mce_check_crashing_cpu() for details.
2010 	 */
2011 	if (machine_check_vector == do_machine_check &&
2012 	    mce_check_crashing_cpu())
2013 		return;
2014 
2015 	irq_state = irqentry_nmi_enter(regs);
2016 	/*
2017 	 * The call targets are marked noinstr, but objtool can't figure
2018 	 * that out because it's an indirect call. Annotate it.
2019 	 */
2020 	instrumentation_begin();
2021 
2022 	machine_check_vector(regs);
2023 
2024 	instrumentation_end();
2025 	irqentry_nmi_exit(regs, irq_state);
2026 }
2027 
2028 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2029 {
2030 	irqentry_enter_from_user_mode(regs);
2031 	instrumentation_begin();
2032 
2033 	machine_check_vector(regs);
2034 
2035 	instrumentation_end();
2036 	irqentry_exit_to_user_mode(regs);
2037 }
2038 
2039 #ifdef CONFIG_X86_64
2040 /* MCE hit kernel mode */
2041 DEFINE_IDTENTRY_MCE(exc_machine_check)
2042 {
2043 	unsigned long dr7;
2044 
2045 	dr7 = local_db_save();
2046 	exc_machine_check_kernel(regs);
2047 	local_db_restore(dr7);
2048 }
2049 
2050 /* The user mode variant. */
2051 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2052 {
2053 	unsigned long dr7;
2054 
2055 	dr7 = local_db_save();
2056 	exc_machine_check_user(regs);
2057 	local_db_restore(dr7);
2058 }
2059 #else
2060 /* 32bit unified entry point */
2061 DEFINE_IDTENTRY_RAW(exc_machine_check)
2062 {
2063 	unsigned long dr7;
2064 
2065 	dr7 = local_db_save();
2066 	if (user_mode(regs))
2067 		exc_machine_check_user(regs);
2068 	else
2069 		exc_machine_check_kernel(regs);
2070 	local_db_restore(dr7);
2071 }
2072 #endif
2073 
2074 /*
2075  * Called for each booted CPU to set up machine checks.
2076  * Must be called with preempt off:
2077  */
2078 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2079 {
2080 	if (mca_cfg.disabled)
2081 		return;
2082 
2083 	if (__mcheck_cpu_ancient_init(c))
2084 		return;
2085 
2086 	if (!mce_available(c))
2087 		return;
2088 
2089 	__mcheck_cpu_cap_init();
2090 
2091 	if (__mcheck_cpu_apply_quirks(c) < 0) {
2092 		mca_cfg.disabled = 1;
2093 		return;
2094 	}
2095 
2096 	if (mce_gen_pool_init()) {
2097 		mca_cfg.disabled = 1;
2098 		pr_emerg("Couldn't allocate MCE records pool!\n");
2099 		return;
2100 	}
2101 
2102 	machine_check_vector = do_machine_check;
2103 
2104 	__mcheck_cpu_init_early(c);
2105 	__mcheck_cpu_init_generic();
2106 	__mcheck_cpu_init_vendor(c);
2107 	__mcheck_cpu_init_clear_banks();
2108 	__mcheck_cpu_check_banks();
2109 	__mcheck_cpu_setup_timer();
2110 }
2111 
2112 /*
2113  * Called for each booted CPU to clear some machine checks opt-ins
2114  */
2115 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2116 {
2117 	if (mca_cfg.disabled)
2118 		return;
2119 
2120 	if (!mce_available(c))
2121 		return;
2122 
2123 	/*
2124 	 * Possibly to clear general settings generic to x86
2125 	 * __mcheck_cpu_clear_generic(c);
2126 	 */
2127 	__mcheck_cpu_clear_vendor(c);
2128 
2129 }
2130 
2131 static void __mce_disable_bank(void *arg)
2132 {
2133 	int bank = *((int *)arg);
2134 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2135 	cmci_disable_bank(bank);
2136 }
2137 
2138 void mce_disable_bank(int bank)
2139 {
2140 	if (bank >= this_cpu_read(mce_num_banks)) {
2141 		pr_warn(FW_BUG
2142 			"Ignoring request to disable invalid MCA bank %d.\n",
2143 			bank);
2144 		return;
2145 	}
2146 	set_bit(bank, mce_banks_ce_disabled);
2147 	on_each_cpu(__mce_disable_bank, &bank, 1);
2148 }
2149 
2150 /*
2151  * mce=off Disables machine check
2152  * mce=no_cmci Disables CMCI
2153  * mce=no_lmce Disables LMCE
2154  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2155  * mce=print_all Print all machine check logs to console
2156  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2157  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2158  *	monarchtimeout is how long to wait for other CPUs on machine
2159  *	check, or 0 to not wait
2160  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2161 	and older.
2162  * mce=nobootlog Don't log MCEs from before booting.
2163  * mce=bios_cmci_threshold Don't program the CMCI threshold
2164  * mce=recovery force enable copy_mc_fragile()
2165  */
2166 static int __init mcheck_enable(char *str)
2167 {
2168 	struct mca_config *cfg = &mca_cfg;
2169 
2170 	if (*str == 0) {
2171 		enable_p5_mce();
2172 		return 1;
2173 	}
2174 	if (*str == '=')
2175 		str++;
2176 	if (!strcmp(str, "off"))
2177 		cfg->disabled = 1;
2178 	else if (!strcmp(str, "no_cmci"))
2179 		cfg->cmci_disabled = true;
2180 	else if (!strcmp(str, "no_lmce"))
2181 		cfg->lmce_disabled = 1;
2182 	else if (!strcmp(str, "dont_log_ce"))
2183 		cfg->dont_log_ce = true;
2184 	else if (!strcmp(str, "print_all"))
2185 		cfg->print_all = true;
2186 	else if (!strcmp(str, "ignore_ce"))
2187 		cfg->ignore_ce = true;
2188 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2189 		cfg->bootlog = (str[0] == 'b');
2190 	else if (!strcmp(str, "bios_cmci_threshold"))
2191 		cfg->bios_cmci_threshold = 1;
2192 	else if (!strcmp(str, "recovery"))
2193 		cfg->recovery = 1;
2194 	else if (isdigit(str[0])) {
2195 		if (get_option(&str, &cfg->tolerant) == 2)
2196 			get_option(&str, &(cfg->monarch_timeout));
2197 	} else {
2198 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2199 		return 0;
2200 	}
2201 	return 1;
2202 }
2203 __setup("mce", mcheck_enable);
2204 
2205 int __init mcheck_init(void)
2206 {
2207 	mce_register_decode_chain(&early_nb);
2208 	mce_register_decode_chain(&mce_uc_nb);
2209 	mce_register_decode_chain(&mce_default_nb);
2210 	mcheck_vendor_init_severity();
2211 
2212 	INIT_WORK(&mce_work, mce_gen_pool_process);
2213 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2214 
2215 	return 0;
2216 }
2217 
2218 /*
2219  * mce_syscore: PM support
2220  */
2221 
2222 /*
2223  * Disable machine checks on suspend and shutdown. We can't really handle
2224  * them later.
2225  */
2226 static void mce_disable_error_reporting(void)
2227 {
2228 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2229 	int i;
2230 
2231 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2232 		struct mce_bank *b = &mce_banks[i];
2233 
2234 		if (b->init)
2235 			wrmsrl(msr_ops.ctl(i), 0);
2236 	}
2237 	return;
2238 }
2239 
2240 static void vendor_disable_error_reporting(void)
2241 {
2242 	/*
2243 	 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2244 	 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2245 	 * is bad, since it will inhibit reporting for all shared resources on
2246 	 * the socket like the last level cache (LLC), the integrated memory
2247 	 * controller (iMC), etc.
2248 	 */
2249 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2250 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2251 	    boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2252 	    boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2253 		return;
2254 
2255 	mce_disable_error_reporting();
2256 }
2257 
2258 static int mce_syscore_suspend(void)
2259 {
2260 	vendor_disable_error_reporting();
2261 	return 0;
2262 }
2263 
2264 static void mce_syscore_shutdown(void)
2265 {
2266 	vendor_disable_error_reporting();
2267 }
2268 
2269 /*
2270  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2271  * Only one CPU is active at this time, the others get re-added later using
2272  * CPU hotplug:
2273  */
2274 static void mce_syscore_resume(void)
2275 {
2276 	__mcheck_cpu_init_generic();
2277 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2278 	__mcheck_cpu_init_clear_banks();
2279 }
2280 
2281 static struct syscore_ops mce_syscore_ops = {
2282 	.suspend	= mce_syscore_suspend,
2283 	.shutdown	= mce_syscore_shutdown,
2284 	.resume		= mce_syscore_resume,
2285 };
2286 
2287 /*
2288  * mce_device: Sysfs support
2289  */
2290 
2291 static void mce_cpu_restart(void *data)
2292 {
2293 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2294 		return;
2295 	__mcheck_cpu_init_generic();
2296 	__mcheck_cpu_init_clear_banks();
2297 	__mcheck_cpu_init_timer();
2298 }
2299 
2300 /* Reinit MCEs after user configuration changes */
2301 static void mce_restart(void)
2302 {
2303 	mce_timer_delete_all();
2304 	on_each_cpu(mce_cpu_restart, NULL, 1);
2305 }
2306 
2307 /* Toggle features for corrected errors */
2308 static void mce_disable_cmci(void *data)
2309 {
2310 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2311 		return;
2312 	cmci_clear();
2313 }
2314 
2315 static void mce_enable_ce(void *all)
2316 {
2317 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2318 		return;
2319 	cmci_reenable();
2320 	cmci_recheck();
2321 	if (all)
2322 		__mcheck_cpu_init_timer();
2323 }
2324 
2325 static struct bus_type mce_subsys = {
2326 	.name		= "machinecheck",
2327 	.dev_name	= "machinecheck",
2328 };
2329 
2330 DEFINE_PER_CPU(struct device *, mce_device);
2331 
2332 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2333 {
2334 	return container_of(attr, struct mce_bank_dev, attr);
2335 }
2336 
2337 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2338 			 char *buf)
2339 {
2340 	u8 bank = attr_to_bank(attr)->bank;
2341 	struct mce_bank *b;
2342 
2343 	if (bank >= per_cpu(mce_num_banks, s->id))
2344 		return -EINVAL;
2345 
2346 	b = &per_cpu(mce_banks_array, s->id)[bank];
2347 
2348 	if (!b->init)
2349 		return -ENODEV;
2350 
2351 	return sprintf(buf, "%llx\n", b->ctl);
2352 }
2353 
2354 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2355 			const char *buf, size_t size)
2356 {
2357 	u8 bank = attr_to_bank(attr)->bank;
2358 	struct mce_bank *b;
2359 	u64 new;
2360 
2361 	if (kstrtou64(buf, 0, &new) < 0)
2362 		return -EINVAL;
2363 
2364 	if (bank >= per_cpu(mce_num_banks, s->id))
2365 		return -EINVAL;
2366 
2367 	b = &per_cpu(mce_banks_array, s->id)[bank];
2368 
2369 	if (!b->init)
2370 		return -ENODEV;
2371 
2372 	b->ctl = new;
2373 	mce_restart();
2374 
2375 	return size;
2376 }
2377 
2378 static ssize_t set_ignore_ce(struct device *s,
2379 			     struct device_attribute *attr,
2380 			     const char *buf, size_t size)
2381 {
2382 	u64 new;
2383 
2384 	if (kstrtou64(buf, 0, &new) < 0)
2385 		return -EINVAL;
2386 
2387 	mutex_lock(&mce_sysfs_mutex);
2388 	if (mca_cfg.ignore_ce ^ !!new) {
2389 		if (new) {
2390 			/* disable ce features */
2391 			mce_timer_delete_all();
2392 			on_each_cpu(mce_disable_cmci, NULL, 1);
2393 			mca_cfg.ignore_ce = true;
2394 		} else {
2395 			/* enable ce features */
2396 			mca_cfg.ignore_ce = false;
2397 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2398 		}
2399 	}
2400 	mutex_unlock(&mce_sysfs_mutex);
2401 
2402 	return size;
2403 }
2404 
2405 static ssize_t set_cmci_disabled(struct device *s,
2406 				 struct device_attribute *attr,
2407 				 const char *buf, size_t size)
2408 {
2409 	u64 new;
2410 
2411 	if (kstrtou64(buf, 0, &new) < 0)
2412 		return -EINVAL;
2413 
2414 	mutex_lock(&mce_sysfs_mutex);
2415 	if (mca_cfg.cmci_disabled ^ !!new) {
2416 		if (new) {
2417 			/* disable cmci */
2418 			on_each_cpu(mce_disable_cmci, NULL, 1);
2419 			mca_cfg.cmci_disabled = true;
2420 		} else {
2421 			/* enable cmci */
2422 			mca_cfg.cmci_disabled = false;
2423 			on_each_cpu(mce_enable_ce, NULL, 1);
2424 		}
2425 	}
2426 	mutex_unlock(&mce_sysfs_mutex);
2427 
2428 	return size;
2429 }
2430 
2431 static ssize_t store_int_with_restart(struct device *s,
2432 				      struct device_attribute *attr,
2433 				      const char *buf, size_t size)
2434 {
2435 	unsigned long old_check_interval = check_interval;
2436 	ssize_t ret = device_store_ulong(s, attr, buf, size);
2437 
2438 	if (check_interval == old_check_interval)
2439 		return ret;
2440 
2441 	mutex_lock(&mce_sysfs_mutex);
2442 	mce_restart();
2443 	mutex_unlock(&mce_sysfs_mutex);
2444 
2445 	return ret;
2446 }
2447 
2448 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2449 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2450 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2451 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2452 
2453 static struct dev_ext_attribute dev_attr_check_interval = {
2454 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2455 	&check_interval
2456 };
2457 
2458 static struct dev_ext_attribute dev_attr_ignore_ce = {
2459 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2460 	&mca_cfg.ignore_ce
2461 };
2462 
2463 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2464 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2465 	&mca_cfg.cmci_disabled
2466 };
2467 
2468 static struct device_attribute *mce_device_attrs[] = {
2469 	&dev_attr_tolerant.attr,
2470 	&dev_attr_check_interval.attr,
2471 #ifdef CONFIG_X86_MCELOG_LEGACY
2472 	&dev_attr_trigger,
2473 #endif
2474 	&dev_attr_monarch_timeout.attr,
2475 	&dev_attr_dont_log_ce.attr,
2476 	&dev_attr_print_all.attr,
2477 	&dev_attr_ignore_ce.attr,
2478 	&dev_attr_cmci_disabled.attr,
2479 	NULL
2480 };
2481 
2482 static cpumask_var_t mce_device_initialized;
2483 
2484 static void mce_device_release(struct device *dev)
2485 {
2486 	kfree(dev);
2487 }
2488 
2489 /* Per CPU device init. All of the CPUs still share the same bank device: */
2490 static int mce_device_create(unsigned int cpu)
2491 {
2492 	struct device *dev;
2493 	int err;
2494 	int i, j;
2495 
2496 	if (!mce_available(&boot_cpu_data))
2497 		return -EIO;
2498 
2499 	dev = per_cpu(mce_device, cpu);
2500 	if (dev)
2501 		return 0;
2502 
2503 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2504 	if (!dev)
2505 		return -ENOMEM;
2506 	dev->id  = cpu;
2507 	dev->bus = &mce_subsys;
2508 	dev->release = &mce_device_release;
2509 
2510 	err = device_register(dev);
2511 	if (err) {
2512 		put_device(dev);
2513 		return err;
2514 	}
2515 
2516 	for (i = 0; mce_device_attrs[i]; i++) {
2517 		err = device_create_file(dev, mce_device_attrs[i]);
2518 		if (err)
2519 			goto error;
2520 	}
2521 	for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2522 		err = device_create_file(dev, &mce_bank_devs[j].attr);
2523 		if (err)
2524 			goto error2;
2525 	}
2526 	cpumask_set_cpu(cpu, mce_device_initialized);
2527 	per_cpu(mce_device, cpu) = dev;
2528 
2529 	return 0;
2530 error2:
2531 	while (--j >= 0)
2532 		device_remove_file(dev, &mce_bank_devs[j].attr);
2533 error:
2534 	while (--i >= 0)
2535 		device_remove_file(dev, mce_device_attrs[i]);
2536 
2537 	device_unregister(dev);
2538 
2539 	return err;
2540 }
2541 
2542 static void mce_device_remove(unsigned int cpu)
2543 {
2544 	struct device *dev = per_cpu(mce_device, cpu);
2545 	int i;
2546 
2547 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2548 		return;
2549 
2550 	for (i = 0; mce_device_attrs[i]; i++)
2551 		device_remove_file(dev, mce_device_attrs[i]);
2552 
2553 	for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2554 		device_remove_file(dev, &mce_bank_devs[i].attr);
2555 
2556 	device_unregister(dev);
2557 	cpumask_clear_cpu(cpu, mce_device_initialized);
2558 	per_cpu(mce_device, cpu) = NULL;
2559 }
2560 
2561 /* Make sure there are no machine checks on offlined CPUs. */
2562 static void mce_disable_cpu(void)
2563 {
2564 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2565 		return;
2566 
2567 	if (!cpuhp_tasks_frozen)
2568 		cmci_clear();
2569 
2570 	vendor_disable_error_reporting();
2571 }
2572 
2573 static void mce_reenable_cpu(void)
2574 {
2575 	struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2576 	int i;
2577 
2578 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2579 		return;
2580 
2581 	if (!cpuhp_tasks_frozen)
2582 		cmci_reenable();
2583 	for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2584 		struct mce_bank *b = &mce_banks[i];
2585 
2586 		if (b->init)
2587 			wrmsrl(msr_ops.ctl(i), b->ctl);
2588 	}
2589 }
2590 
2591 static int mce_cpu_dead(unsigned int cpu)
2592 {
2593 	mce_intel_hcpu_update(cpu);
2594 
2595 	/* intentionally ignoring frozen here */
2596 	if (!cpuhp_tasks_frozen)
2597 		cmci_rediscover();
2598 	return 0;
2599 }
2600 
2601 static int mce_cpu_online(unsigned int cpu)
2602 {
2603 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2604 	int ret;
2605 
2606 	mce_device_create(cpu);
2607 
2608 	ret = mce_threshold_create_device(cpu);
2609 	if (ret) {
2610 		mce_device_remove(cpu);
2611 		return ret;
2612 	}
2613 	mce_reenable_cpu();
2614 	mce_start_timer(t);
2615 	return 0;
2616 }
2617 
2618 static int mce_cpu_pre_down(unsigned int cpu)
2619 {
2620 	struct timer_list *t = this_cpu_ptr(&mce_timer);
2621 
2622 	mce_disable_cpu();
2623 	del_timer_sync(t);
2624 	mce_threshold_remove_device(cpu);
2625 	mce_device_remove(cpu);
2626 	return 0;
2627 }
2628 
2629 static __init void mce_init_banks(void)
2630 {
2631 	int i;
2632 
2633 	for (i = 0; i < MAX_NR_BANKS; i++) {
2634 		struct mce_bank_dev *b = &mce_bank_devs[i];
2635 		struct device_attribute *a = &b->attr;
2636 
2637 		b->bank = i;
2638 
2639 		sysfs_attr_init(&a->attr);
2640 		a->attr.name	= b->attrname;
2641 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2642 
2643 		a->attr.mode	= 0644;
2644 		a->show		= show_bank;
2645 		a->store	= set_bank;
2646 	}
2647 }
2648 
2649 /*
2650  * When running on XEN, this initcall is ordered against the XEN mcelog
2651  * initcall:
2652  *
2653  *   device_initcall(xen_late_init_mcelog);
2654  *   device_initcall_sync(mcheck_init_device);
2655  */
2656 static __init int mcheck_init_device(void)
2657 {
2658 	int err;
2659 
2660 	/*
2661 	 * Check if we have a spare virtual bit. This will only become
2662 	 * a problem if/when we move beyond 5-level page tables.
2663 	 */
2664 	MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2665 
2666 	if (!mce_available(&boot_cpu_data)) {
2667 		err = -EIO;
2668 		goto err_out;
2669 	}
2670 
2671 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2672 		err = -ENOMEM;
2673 		goto err_out;
2674 	}
2675 
2676 	mce_init_banks();
2677 
2678 	err = subsys_system_register(&mce_subsys, NULL);
2679 	if (err)
2680 		goto err_out_mem;
2681 
2682 	err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2683 				mce_cpu_dead);
2684 	if (err)
2685 		goto err_out_mem;
2686 
2687 	/*
2688 	 * Invokes mce_cpu_online() on all CPUs which are online when
2689 	 * the state is installed.
2690 	 */
2691 	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2692 				mce_cpu_online, mce_cpu_pre_down);
2693 	if (err < 0)
2694 		goto err_out_online;
2695 
2696 	register_syscore_ops(&mce_syscore_ops);
2697 
2698 	return 0;
2699 
2700 err_out_online:
2701 	cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2702 
2703 err_out_mem:
2704 	free_cpumask_var(mce_device_initialized);
2705 
2706 err_out:
2707 	pr_err("Unable to init MCE device (rc: %d)\n", err);
2708 
2709 	return err;
2710 }
2711 device_initcall_sync(mcheck_init_device);
2712 
2713 /*
2714  * Old style boot options parsing. Only for compatibility.
2715  */
2716 static int __init mcheck_disable(char *str)
2717 {
2718 	mca_cfg.disabled = 1;
2719 	return 1;
2720 }
2721 __setup("nomce", mcheck_disable);
2722 
2723 #ifdef CONFIG_DEBUG_FS
2724 struct dentry *mce_get_debugfs_dir(void)
2725 {
2726 	static struct dentry *dmce;
2727 
2728 	if (!dmce)
2729 		dmce = debugfs_create_dir("mce", NULL);
2730 
2731 	return dmce;
2732 }
2733 
2734 static void mce_reset(void)
2735 {
2736 	cpu_missing = 0;
2737 	atomic_set(&mce_fake_panicked, 0);
2738 	atomic_set(&mce_executing, 0);
2739 	atomic_set(&mce_callin, 0);
2740 	atomic_set(&global_nwo, 0);
2741 	cpumask_setall(&mce_missing_cpus);
2742 }
2743 
2744 static int fake_panic_get(void *data, u64 *val)
2745 {
2746 	*val = fake_panic;
2747 	return 0;
2748 }
2749 
2750 static int fake_panic_set(void *data, u64 val)
2751 {
2752 	mce_reset();
2753 	fake_panic = val;
2754 	return 0;
2755 }
2756 
2757 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2758 			 "%llu\n");
2759 
2760 static void __init mcheck_debugfs_init(void)
2761 {
2762 	struct dentry *dmce;
2763 
2764 	dmce = mce_get_debugfs_dir();
2765 	debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2766 				   &fake_panic_fops);
2767 }
2768 #else
2769 static void __init mcheck_debugfs_init(void) { }
2770 #endif
2771 
2772 static int __init mcheck_late_init(void)
2773 {
2774 	if (mca_cfg.recovery)
2775 		enable_copy_mc_fragile();
2776 
2777 	mcheck_debugfs_init();
2778 
2779 	/*
2780 	 * Flush out everything that has been logged during early boot, now that
2781 	 * everything has been initialized (workqueues, decoders, ...).
2782 	 */
2783 	mce_schedule_work();
2784 
2785 	return 0;
2786 }
2787 late_initcall(mcheck_late_init);
2788