xref: /openbmc/linux/arch/x86/kernel/cpu/mce/amd.c (revision 63705da3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  (c) 2005-2016 Advanced Micro Devices, Inc.
4  *
5  *  Written by Jacob Shin - AMD, Inc.
6  *  Maintained by: Borislav Petkov <bp@alien8.de>
7  *
8  *  All MC4_MISCi registers are shared between cores on a node.
9  */
10 #include <linux/interrupt.h>
11 #include <linux/notifier.h>
12 #include <linux/kobject.h>
13 #include <linux/percpu.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sysfs.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/cpu.h>
20 #include <linux/smp.h>
21 #include <linux/string.h>
22 
23 #include <asm/amd_nb.h>
24 #include <asm/traps.h>
25 #include <asm/apic.h>
26 #include <asm/mce.h>
27 #include <asm/msr.h>
28 #include <asm/trace/irq_vectors.h>
29 
30 #include "internal.h"
31 
32 #define NR_BLOCKS         5
33 #define THRESHOLD_MAX     0xFFF
34 #define INT_TYPE_APIC     0x00020000
35 #define MASK_VALID_HI     0x80000000
36 #define MASK_CNTP_HI      0x40000000
37 #define MASK_LOCKED_HI    0x20000000
38 #define MASK_LVTOFF_HI    0x00F00000
39 #define MASK_COUNT_EN_HI  0x00080000
40 #define MASK_INT_TYPE_HI  0x00060000
41 #define MASK_OVERFLOW_HI  0x00010000
42 #define MASK_ERR_COUNT_HI 0x00000FFF
43 #define MASK_BLKPTR_LO    0xFF000000
44 #define MCG_XBLK_ADDR     0xC0000400
45 
46 /* Deferred error settings */
47 #define MSR_CU_DEF_ERR		0xC0000410
48 #define MASK_DEF_LVTOFF		0x000000F0
49 #define MASK_DEF_INT_TYPE	0x00000006
50 #define DEF_LVT_OFF		0x2
51 #define DEF_INT_TYPE_APIC	0x2
52 
53 /* Scalable MCA: */
54 
55 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
56 #define SMCA_THR_LVT_OFF	0xF000
57 
58 static bool thresholding_irq_en;
59 
60 static const char * const th_names[] = {
61 	"load_store",
62 	"insn_fetch",
63 	"combined_unit",
64 	"decode_unit",
65 	"northbridge",
66 	"execution_unit",
67 };
68 
69 static const char * const smca_umc_block_names[] = {
70 	"dram_ecc",
71 	"misc_umc"
72 };
73 
74 struct smca_bank_name {
75 	const char *name;	/* Short name for sysfs */
76 	const char *long_name;	/* Long name for pretty-printing */
77 };
78 
79 static struct smca_bank_name smca_names[] = {
80 	[SMCA_LS ... SMCA_LS_V2]	= { "load_store",	"Load Store Unit" },
81 	[SMCA_IF]			= { "insn_fetch",	"Instruction Fetch Unit" },
82 	[SMCA_L2_CACHE]			= { "l2_cache",		"L2 Cache" },
83 	[SMCA_DE]			= { "decode_unit",	"Decode Unit" },
84 	[SMCA_RESERVED]			= { "reserved",		"Reserved" },
85 	[SMCA_EX]			= { "execution_unit",	"Execution Unit" },
86 	[SMCA_FP]			= { "floating_point",	"Floating Point Unit" },
87 	[SMCA_L3_CACHE]			= { "l3_cache",		"L3 Cache" },
88 	[SMCA_CS ... SMCA_CS_V2]	= { "coherent_slave",	"Coherent Slave" },
89 	[SMCA_PIE]			= { "pie",		"Power, Interrupts, etc." },
90 
91 	/* UMC v2 is separate because both of them can exist in a single system. */
92 	[SMCA_UMC]			= { "umc",		"Unified Memory Controller" },
93 	[SMCA_UMC_V2]			= { "umc_v2",		"Unified Memory Controller v2" },
94 	[SMCA_PB]			= { "param_block",	"Parameter Block" },
95 	[SMCA_PSP ... SMCA_PSP_V2]	= { "psp",		"Platform Security Processor" },
96 	[SMCA_SMU ... SMCA_SMU_V2]	= { "smu",		"System Management Unit" },
97 	[SMCA_MP5]			= { "mp5",		"Microprocessor 5 Unit" },
98 	[SMCA_NBIO]			= { "nbio",		"Northbridge IO Unit" },
99 	[SMCA_PCIE ... SMCA_PCIE_V2]	= { "pcie",		"PCI Express Unit" },
100 	[SMCA_XGMI_PCS]			= { "xgmi_pcs",		"Ext Global Memory Interconnect PCS Unit" },
101 	[SMCA_XGMI_PHY]			= { "xgmi_phy",		"Ext Global Memory Interconnect PHY Unit" },
102 	[SMCA_WAFL_PHY]			= { "wafl_phy",		"WAFL PHY Unit" },
103 };
104 
105 static const char *smca_get_name(enum smca_bank_types t)
106 {
107 	if (t >= N_SMCA_BANK_TYPES)
108 		return NULL;
109 
110 	return smca_names[t].name;
111 }
112 
113 const char *smca_get_long_name(enum smca_bank_types t)
114 {
115 	if (t >= N_SMCA_BANK_TYPES)
116 		return NULL;
117 
118 	return smca_names[t].long_name;
119 }
120 EXPORT_SYMBOL_GPL(smca_get_long_name);
121 
122 enum smca_bank_types smca_get_bank_type(unsigned int bank)
123 {
124 	struct smca_bank *b;
125 
126 	if (bank >= MAX_NR_BANKS)
127 		return N_SMCA_BANK_TYPES;
128 
129 	b = &smca_banks[bank];
130 	if (!b->hwid)
131 		return N_SMCA_BANK_TYPES;
132 
133 	return b->hwid->bank_type;
134 }
135 EXPORT_SYMBOL_GPL(smca_get_bank_type);
136 
137 static struct smca_hwid smca_hwid_mcatypes[] = {
138 	/* { bank_type, hwid_mcatype } */
139 
140 	/* Reserved type */
141 	{ SMCA_RESERVED, HWID_MCATYPE(0x00, 0x0)	},
142 
143 	/* ZN Core (HWID=0xB0) MCA types */
144 	{ SMCA_LS,	 HWID_MCATYPE(0xB0, 0x0)	},
145 	{ SMCA_LS_V2,	 HWID_MCATYPE(0xB0, 0x10)	},
146 	{ SMCA_IF,	 HWID_MCATYPE(0xB0, 0x1)	},
147 	{ SMCA_L2_CACHE, HWID_MCATYPE(0xB0, 0x2)	},
148 	{ SMCA_DE,	 HWID_MCATYPE(0xB0, 0x3)	},
149 	/* HWID 0xB0 MCATYPE 0x4 is Reserved */
150 	{ SMCA_EX,	 HWID_MCATYPE(0xB0, 0x5)	},
151 	{ SMCA_FP,	 HWID_MCATYPE(0xB0, 0x6)	},
152 	{ SMCA_L3_CACHE, HWID_MCATYPE(0xB0, 0x7)	},
153 
154 	/* Data Fabric MCA types */
155 	{ SMCA_CS,	 HWID_MCATYPE(0x2E, 0x0)	},
156 	{ SMCA_PIE,	 HWID_MCATYPE(0x2E, 0x1)	},
157 	{ SMCA_CS_V2,	 HWID_MCATYPE(0x2E, 0x2)	},
158 
159 	/* Unified Memory Controller MCA type */
160 	{ SMCA_UMC,	 HWID_MCATYPE(0x96, 0x0)	},
161 	{ SMCA_UMC_V2,	 HWID_MCATYPE(0x96, 0x1)	},
162 
163 	/* Parameter Block MCA type */
164 	{ SMCA_PB,	 HWID_MCATYPE(0x05, 0x0)	},
165 
166 	/* Platform Security Processor MCA type */
167 	{ SMCA_PSP,	 HWID_MCATYPE(0xFF, 0x0)	},
168 	{ SMCA_PSP_V2,	 HWID_MCATYPE(0xFF, 0x1)	},
169 
170 	/* System Management Unit MCA type */
171 	{ SMCA_SMU,	 HWID_MCATYPE(0x01, 0x0)	},
172 	{ SMCA_SMU_V2,	 HWID_MCATYPE(0x01, 0x1)	},
173 
174 	/* Microprocessor 5 Unit MCA type */
175 	{ SMCA_MP5,	 HWID_MCATYPE(0x01, 0x2)	},
176 
177 	/* Northbridge IO Unit MCA type */
178 	{ SMCA_NBIO,	 HWID_MCATYPE(0x18, 0x0)	},
179 
180 	/* PCI Express Unit MCA type */
181 	{ SMCA_PCIE,	 HWID_MCATYPE(0x46, 0x0)	},
182 	{ SMCA_PCIE_V2,	 HWID_MCATYPE(0x46, 0x1)	},
183 
184 	/* xGMI PCS MCA type */
185 	{ SMCA_XGMI_PCS, HWID_MCATYPE(0x50, 0x0)	},
186 
187 	/* xGMI PHY MCA type */
188 	{ SMCA_XGMI_PHY, HWID_MCATYPE(0x259, 0x0)	},
189 
190 	/* WAFL PHY MCA type */
191 	{ SMCA_WAFL_PHY, HWID_MCATYPE(0x267, 0x0)	},
192 };
193 
194 struct smca_bank smca_banks[MAX_NR_BANKS];
195 EXPORT_SYMBOL_GPL(smca_banks);
196 
197 /*
198  * In SMCA enabled processors, we can have multiple banks for a given IP type.
199  * So to define a unique name for each bank, we use a temp c-string to append
200  * the MCA_IPID[InstanceId] to type's name in get_name().
201  *
202  * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
203  * is greater than 8 plus 1 (for underscore) plus length of longest type name.
204  */
205 #define MAX_MCATYPE_NAME_LEN	30
206 static char buf_mcatype[MAX_MCATYPE_NAME_LEN];
207 
208 static DEFINE_PER_CPU(struct threshold_bank **, threshold_banks);
209 
210 /*
211  * A list of the banks enabled on each logical CPU. Controls which respective
212  * descriptors to initialize later in mce_threshold_create_device().
213  */
214 static DEFINE_PER_CPU(unsigned int, bank_map);
215 
216 /* Map of banks that have more than MCA_MISC0 available. */
217 static DEFINE_PER_CPU(u32, smca_misc_banks_map);
218 
219 static void amd_threshold_interrupt(void);
220 static void amd_deferred_error_interrupt(void);
221 
222 static void default_deferred_error_interrupt(void)
223 {
224 	pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR);
225 }
226 void (*deferred_error_int_vector)(void) = default_deferred_error_interrupt;
227 
228 static void smca_set_misc_banks_map(unsigned int bank, unsigned int cpu)
229 {
230 	u32 low, high;
231 
232 	/*
233 	 * For SMCA enabled processors, BLKPTR field of the first MISC register
234 	 * (MCx_MISC0) indicates presence of additional MISC regs set (MISC1-4).
235 	 */
236 	if (rdmsr_safe(MSR_AMD64_SMCA_MCx_CONFIG(bank), &low, &high))
237 		return;
238 
239 	if (!(low & MCI_CONFIG_MCAX))
240 		return;
241 
242 	if (rdmsr_safe(MSR_AMD64_SMCA_MCx_MISC(bank), &low, &high))
243 		return;
244 
245 	if (low & MASK_BLKPTR_LO)
246 		per_cpu(smca_misc_banks_map, cpu) |= BIT(bank);
247 
248 }
249 
250 static void smca_configure(unsigned int bank, unsigned int cpu)
251 {
252 	unsigned int i, hwid_mcatype;
253 	struct smca_hwid *s_hwid;
254 	u32 high, low;
255 	u32 smca_config = MSR_AMD64_SMCA_MCx_CONFIG(bank);
256 
257 	/* Set appropriate bits in MCA_CONFIG */
258 	if (!rdmsr_safe(smca_config, &low, &high)) {
259 		/*
260 		 * OS is required to set the MCAX bit to acknowledge that it is
261 		 * now using the new MSR ranges and new registers under each
262 		 * bank. It also means that the OS will configure deferred
263 		 * errors in the new MCx_CONFIG register. If the bit is not set,
264 		 * uncorrectable errors will cause a system panic.
265 		 *
266 		 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
267 		 */
268 		high |= BIT(0);
269 
270 		/*
271 		 * SMCA sets the Deferred Error Interrupt type per bank.
272 		 *
273 		 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
274 		 * if the DeferredIntType bit field is available.
275 		 *
276 		 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
277 		 * high portion of the MSR). OS should set this to 0x1 to enable
278 		 * APIC based interrupt. First, check that no interrupt has been
279 		 * set.
280 		 */
281 		if ((low & BIT(5)) && !((high >> 5) & 0x3))
282 			high |= BIT(5);
283 
284 		wrmsr(smca_config, low, high);
285 	}
286 
287 	smca_set_misc_banks_map(bank, cpu);
288 
289 	/* Return early if this bank was already initialized. */
290 	if (smca_banks[bank].hwid && smca_banks[bank].hwid->hwid_mcatype != 0)
291 		return;
292 
293 	if (rdmsr_safe(MSR_AMD64_SMCA_MCx_IPID(bank), &low, &high)) {
294 		pr_warn("Failed to read MCA_IPID for bank %d\n", bank);
295 		return;
296 	}
297 
298 	hwid_mcatype = HWID_MCATYPE(high & MCI_IPID_HWID,
299 				    (high & MCI_IPID_MCATYPE) >> 16);
300 
301 	for (i = 0; i < ARRAY_SIZE(smca_hwid_mcatypes); i++) {
302 		s_hwid = &smca_hwid_mcatypes[i];
303 		if (hwid_mcatype == s_hwid->hwid_mcatype) {
304 			smca_banks[bank].hwid = s_hwid;
305 			smca_banks[bank].id = low;
306 			smca_banks[bank].sysfs_id = s_hwid->count++;
307 			break;
308 		}
309 	}
310 }
311 
312 struct thresh_restart {
313 	struct threshold_block	*b;
314 	int			reset;
315 	int			set_lvt_off;
316 	int			lvt_off;
317 	u16			old_limit;
318 };
319 
320 static inline bool is_shared_bank(int bank)
321 {
322 	/*
323 	 * Scalable MCA provides for only one core to have access to the MSRs of
324 	 * a shared bank.
325 	 */
326 	if (mce_flags.smca)
327 		return false;
328 
329 	/* Bank 4 is for northbridge reporting and is thus shared */
330 	return (bank == 4);
331 }
332 
333 static const char *bank4_names(const struct threshold_block *b)
334 {
335 	switch (b->address) {
336 	/* MSR4_MISC0 */
337 	case 0x00000413:
338 		return "dram";
339 
340 	case 0xc0000408:
341 		return "ht_links";
342 
343 	case 0xc0000409:
344 		return "l3_cache";
345 
346 	default:
347 		WARN(1, "Funny MSR: 0x%08x\n", b->address);
348 		return "";
349 	}
350 };
351 
352 
353 static bool lvt_interrupt_supported(unsigned int bank, u32 msr_high_bits)
354 {
355 	/*
356 	 * bank 4 supports APIC LVT interrupts implicitly since forever.
357 	 */
358 	if (bank == 4)
359 		return true;
360 
361 	/*
362 	 * IntP: interrupt present; if this bit is set, the thresholding
363 	 * bank can generate APIC LVT interrupts
364 	 */
365 	return msr_high_bits & BIT(28);
366 }
367 
368 static int lvt_off_valid(struct threshold_block *b, int apic, u32 lo, u32 hi)
369 {
370 	int msr = (hi & MASK_LVTOFF_HI) >> 20;
371 
372 	if (apic < 0) {
373 		pr_err(FW_BUG "cpu %d, failed to setup threshold interrupt "
374 		       "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b->cpu,
375 		       b->bank, b->block, b->address, hi, lo);
376 		return 0;
377 	}
378 
379 	if (apic != msr) {
380 		/*
381 		 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
382 		 * the BIOS provides the value. The original field where LVT offset
383 		 * was set is reserved. Return early here:
384 		 */
385 		if (mce_flags.smca)
386 			return 0;
387 
388 		pr_err(FW_BUG "cpu %d, invalid threshold interrupt offset %d "
389 		       "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
390 		       b->cpu, apic, b->bank, b->block, b->address, hi, lo);
391 		return 0;
392 	}
393 
394 	return 1;
395 };
396 
397 /* Reprogram MCx_MISC MSR behind this threshold bank. */
398 static void threshold_restart_bank(void *_tr)
399 {
400 	struct thresh_restart *tr = _tr;
401 	u32 hi, lo;
402 
403 	/* sysfs write might race against an offline operation */
404 	if (this_cpu_read(threshold_banks))
405 		return;
406 
407 	rdmsr(tr->b->address, lo, hi);
408 
409 	if (tr->b->threshold_limit < (hi & THRESHOLD_MAX))
410 		tr->reset = 1;	/* limit cannot be lower than err count */
411 
412 	if (tr->reset) {		/* reset err count and overflow bit */
413 		hi =
414 		    (hi & ~(MASK_ERR_COUNT_HI | MASK_OVERFLOW_HI)) |
415 		    (THRESHOLD_MAX - tr->b->threshold_limit);
416 	} else if (tr->old_limit) {	/* change limit w/o reset */
417 		int new_count = (hi & THRESHOLD_MAX) +
418 		    (tr->old_limit - tr->b->threshold_limit);
419 
420 		hi = (hi & ~MASK_ERR_COUNT_HI) |
421 		    (new_count & THRESHOLD_MAX);
422 	}
423 
424 	/* clear IntType */
425 	hi &= ~MASK_INT_TYPE_HI;
426 
427 	if (!tr->b->interrupt_capable)
428 		goto done;
429 
430 	if (tr->set_lvt_off) {
431 		if (lvt_off_valid(tr->b, tr->lvt_off, lo, hi)) {
432 			/* set new lvt offset */
433 			hi &= ~MASK_LVTOFF_HI;
434 			hi |= tr->lvt_off << 20;
435 		}
436 	}
437 
438 	if (tr->b->interrupt_enable)
439 		hi |= INT_TYPE_APIC;
440 
441  done:
442 
443 	hi |= MASK_COUNT_EN_HI;
444 	wrmsr(tr->b->address, lo, hi);
445 }
446 
447 static void mce_threshold_block_init(struct threshold_block *b, int offset)
448 {
449 	struct thresh_restart tr = {
450 		.b			= b,
451 		.set_lvt_off		= 1,
452 		.lvt_off		= offset,
453 	};
454 
455 	b->threshold_limit		= THRESHOLD_MAX;
456 	threshold_restart_bank(&tr);
457 };
458 
459 static int setup_APIC_mce_threshold(int reserved, int new)
460 {
461 	if (reserved < 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR,
462 					      APIC_EILVT_MSG_FIX, 0))
463 		return new;
464 
465 	return reserved;
466 }
467 
468 static int setup_APIC_deferred_error(int reserved, int new)
469 {
470 	if (reserved < 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR,
471 					      APIC_EILVT_MSG_FIX, 0))
472 		return new;
473 
474 	return reserved;
475 }
476 
477 static void deferred_error_interrupt_enable(struct cpuinfo_x86 *c)
478 {
479 	u32 low = 0, high = 0;
480 	int def_offset = -1, def_new;
481 
482 	if (rdmsr_safe(MSR_CU_DEF_ERR, &low, &high))
483 		return;
484 
485 	def_new = (low & MASK_DEF_LVTOFF) >> 4;
486 	if (!(low & MASK_DEF_LVTOFF)) {
487 		pr_err(FW_BUG "Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
488 		def_new = DEF_LVT_OFF;
489 		low = (low & ~MASK_DEF_LVTOFF) | (DEF_LVT_OFF << 4);
490 	}
491 
492 	def_offset = setup_APIC_deferred_error(def_offset, def_new);
493 	if ((def_offset == def_new) &&
494 	    (deferred_error_int_vector != amd_deferred_error_interrupt))
495 		deferred_error_int_vector = amd_deferred_error_interrupt;
496 
497 	if (!mce_flags.smca)
498 		low = (low & ~MASK_DEF_INT_TYPE) | DEF_INT_TYPE_APIC;
499 
500 	wrmsr(MSR_CU_DEF_ERR, low, high);
501 }
502 
503 static u32 smca_get_block_address(unsigned int bank, unsigned int block,
504 				  unsigned int cpu)
505 {
506 	if (!block)
507 		return MSR_AMD64_SMCA_MCx_MISC(bank);
508 
509 	if (!(per_cpu(smca_misc_banks_map, cpu) & BIT(bank)))
510 		return 0;
511 
512 	return MSR_AMD64_SMCA_MCx_MISCy(bank, block - 1);
513 }
514 
515 static u32 get_block_address(u32 current_addr, u32 low, u32 high,
516 			     unsigned int bank, unsigned int block,
517 			     unsigned int cpu)
518 {
519 	u32 addr = 0, offset = 0;
520 
521 	if ((bank >= per_cpu(mce_num_banks, cpu)) || (block >= NR_BLOCKS))
522 		return addr;
523 
524 	if (mce_flags.smca)
525 		return smca_get_block_address(bank, block, cpu);
526 
527 	/* Fall back to method we used for older processors: */
528 	switch (block) {
529 	case 0:
530 		addr = mca_msr_reg(bank, MCA_MISC);
531 		break;
532 	case 1:
533 		offset = ((low & MASK_BLKPTR_LO) >> 21);
534 		if (offset)
535 			addr = MCG_XBLK_ADDR + offset;
536 		break;
537 	default:
538 		addr = ++current_addr;
539 	}
540 	return addr;
541 }
542 
543 static int
544 prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
545 			int offset, u32 misc_high)
546 {
547 	unsigned int cpu = smp_processor_id();
548 	u32 smca_low, smca_high;
549 	struct threshold_block b;
550 	int new;
551 
552 	if (!block)
553 		per_cpu(bank_map, cpu) |= (1 << bank);
554 
555 	memset(&b, 0, sizeof(b));
556 	b.cpu			= cpu;
557 	b.bank			= bank;
558 	b.block			= block;
559 	b.address		= addr;
560 	b.interrupt_capable	= lvt_interrupt_supported(bank, misc_high);
561 
562 	if (!b.interrupt_capable)
563 		goto done;
564 
565 	b.interrupt_enable = 1;
566 
567 	if (!mce_flags.smca) {
568 		new = (misc_high & MASK_LVTOFF_HI) >> 20;
569 		goto set_offset;
570 	}
571 
572 	/* Gather LVT offset for thresholding: */
573 	if (rdmsr_safe(MSR_CU_DEF_ERR, &smca_low, &smca_high))
574 		goto out;
575 
576 	new = (smca_low & SMCA_THR_LVT_OFF) >> 12;
577 
578 set_offset:
579 	offset = setup_APIC_mce_threshold(offset, new);
580 	if (offset == new)
581 		thresholding_irq_en = true;
582 
583 done:
584 	mce_threshold_block_init(&b, offset);
585 
586 out:
587 	return offset;
588 }
589 
590 bool amd_filter_mce(struct mce *m)
591 {
592 	enum smca_bank_types bank_type = smca_get_bank_type(m->bank);
593 	struct cpuinfo_x86 *c = &boot_cpu_data;
594 
595 	/* See Family 17h Models 10h-2Fh Erratum #1114. */
596 	if (c->x86 == 0x17 &&
597 	    c->x86_model >= 0x10 && c->x86_model <= 0x2F &&
598 	    bank_type == SMCA_IF && XEC(m->status, 0x3f) == 10)
599 		return true;
600 
601 	/* NB GART TLB error reporting is disabled by default. */
602 	if (c->x86 < 0x17) {
603 		if (m->bank == 4 && XEC(m->status, 0x1f) == 0x5)
604 			return true;
605 	}
606 
607 	return false;
608 }
609 
610 /*
611  * Turn off thresholding banks for the following conditions:
612  * - MC4_MISC thresholding is not supported on Family 0x15.
613  * - Prevent possible spurious interrupts from the IF bank on Family 0x17
614  *   Models 0x10-0x2F due to Erratum #1114.
615  */
616 static void disable_err_thresholding(struct cpuinfo_x86 *c, unsigned int bank)
617 {
618 	int i, num_msrs;
619 	u64 hwcr;
620 	bool need_toggle;
621 	u32 msrs[NR_BLOCKS];
622 
623 	if (c->x86 == 0x15 && bank == 4) {
624 		msrs[0] = 0x00000413; /* MC4_MISC0 */
625 		msrs[1] = 0xc0000408; /* MC4_MISC1 */
626 		num_msrs = 2;
627 	} else if (c->x86 == 0x17 &&
628 		   (c->x86_model >= 0x10 && c->x86_model <= 0x2F)) {
629 
630 		if (smca_get_bank_type(bank) != SMCA_IF)
631 			return;
632 
633 		msrs[0] = MSR_AMD64_SMCA_MCx_MISC(bank);
634 		num_msrs = 1;
635 	} else {
636 		return;
637 	}
638 
639 	rdmsrl(MSR_K7_HWCR, hwcr);
640 
641 	/* McStatusWrEn has to be set */
642 	need_toggle = !(hwcr & BIT(18));
643 	if (need_toggle)
644 		wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
645 
646 	/* Clear CntP bit safely */
647 	for (i = 0; i < num_msrs; i++)
648 		msr_clear_bit(msrs[i], 62);
649 
650 	/* restore old settings */
651 	if (need_toggle)
652 		wrmsrl(MSR_K7_HWCR, hwcr);
653 }
654 
655 /* cpu init entry point, called from mce.c with preempt off */
656 void mce_amd_feature_init(struct cpuinfo_x86 *c)
657 {
658 	unsigned int bank, block, cpu = smp_processor_id();
659 	u32 low = 0, high = 0, address = 0;
660 	int offset = -1;
661 
662 
663 	for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
664 		if (mce_flags.smca)
665 			smca_configure(bank, cpu);
666 
667 		disable_err_thresholding(c, bank);
668 
669 		for (block = 0; block < NR_BLOCKS; ++block) {
670 			address = get_block_address(address, low, high, bank, block, cpu);
671 			if (!address)
672 				break;
673 
674 			if (rdmsr_safe(address, &low, &high))
675 				break;
676 
677 			if (!(high & MASK_VALID_HI))
678 				continue;
679 
680 			if (!(high & MASK_CNTP_HI)  ||
681 			     (high & MASK_LOCKED_HI))
682 				continue;
683 
684 			offset = prepare_threshold_block(bank, block, address, offset, high);
685 		}
686 	}
687 
688 	if (mce_flags.succor)
689 		deferred_error_interrupt_enable(c);
690 }
691 
692 int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
693 {
694 	u64 dram_base_addr, dram_limit_addr, dram_hole_base;
695 	/* We start from the normalized address */
696 	u64 ret_addr = norm_addr;
697 
698 	u32 tmp;
699 
700 	u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
701 	u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
702 	u8 intlv_addr_sel, intlv_addr_bit;
703 	u8 num_intlv_bits, hashed_bit;
704 	u8 lgcy_mmio_hole_en, base = 0;
705 	u8 cs_mask, cs_id = 0;
706 	bool hash_enabled = false;
707 
708 	/* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
709 	if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
710 		goto out_err;
711 
712 	/* Remove HiAddrOffset from normalized address, if enabled: */
713 	if (tmp & BIT(0)) {
714 		u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
715 
716 		if (norm_addr >= hi_addr_offset) {
717 			ret_addr -= hi_addr_offset;
718 			base = 1;
719 		}
720 	}
721 
722 	/* Read D18F0x110 (DramBaseAddress). */
723 	if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
724 		goto out_err;
725 
726 	/* Check if address range is valid. */
727 	if (!(tmp & BIT(0))) {
728 		pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
729 			__func__, tmp);
730 		goto out_err;
731 	}
732 
733 	lgcy_mmio_hole_en = tmp & BIT(1);
734 	intlv_num_chan	  = (tmp >> 4) & 0xF;
735 	intlv_addr_sel	  = (tmp >> 8) & 0x7;
736 	dram_base_addr	  = (tmp & GENMASK_ULL(31, 12)) << 16;
737 
738 	/* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
739 	if (intlv_addr_sel > 3) {
740 		pr_err("%s: Invalid interleave address select %d.\n",
741 			__func__, intlv_addr_sel);
742 		goto out_err;
743 	}
744 
745 	/* Read D18F0x114 (DramLimitAddress). */
746 	if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
747 		goto out_err;
748 
749 	intlv_num_sockets = (tmp >> 8) & 0x1;
750 	intlv_num_dies	  = (tmp >> 10) & 0x3;
751 	dram_limit_addr	  = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
752 
753 	intlv_addr_bit = intlv_addr_sel + 8;
754 
755 	/* Re-use intlv_num_chan by setting it equal to log2(#channels) */
756 	switch (intlv_num_chan) {
757 	case 0:	intlv_num_chan = 0; break;
758 	case 1: intlv_num_chan = 1; break;
759 	case 3: intlv_num_chan = 2; break;
760 	case 5:	intlv_num_chan = 3; break;
761 	case 7:	intlv_num_chan = 4; break;
762 
763 	case 8: intlv_num_chan = 1;
764 		hash_enabled = true;
765 		break;
766 	default:
767 		pr_err("%s: Invalid number of interleaved channels %d.\n",
768 			__func__, intlv_num_chan);
769 		goto out_err;
770 	}
771 
772 	num_intlv_bits = intlv_num_chan;
773 
774 	if (intlv_num_dies > 2) {
775 		pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
776 			__func__, intlv_num_dies);
777 		goto out_err;
778 	}
779 
780 	num_intlv_bits += intlv_num_dies;
781 
782 	/* Add a bit if sockets are interleaved. */
783 	num_intlv_bits += intlv_num_sockets;
784 
785 	/* Assert num_intlv_bits <= 4 */
786 	if (num_intlv_bits > 4) {
787 		pr_err("%s: Invalid interleave bits %d.\n",
788 			__func__, num_intlv_bits);
789 		goto out_err;
790 	}
791 
792 	if (num_intlv_bits > 0) {
793 		u64 temp_addr_x, temp_addr_i, temp_addr_y;
794 		u8 die_id_bit, sock_id_bit, cs_fabric_id;
795 
796 		/*
797 		 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
798 		 * This is the fabric id for this coherent slave. Use
799 		 * umc/channel# as instance id of the coherent slave
800 		 * for FICAA.
801 		 */
802 		if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
803 			goto out_err;
804 
805 		cs_fabric_id = (tmp >> 8) & 0xFF;
806 		die_id_bit   = 0;
807 
808 		/* If interleaved over more than 1 channel: */
809 		if (intlv_num_chan) {
810 			die_id_bit = intlv_num_chan;
811 			cs_mask	   = (1 << die_id_bit) - 1;
812 			cs_id	   = cs_fabric_id & cs_mask;
813 		}
814 
815 		sock_id_bit = die_id_bit;
816 
817 		/* Read D18F1x208 (SystemFabricIdMask). */
818 		if (intlv_num_dies || intlv_num_sockets)
819 			if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
820 				goto out_err;
821 
822 		/* If interleaved over more than 1 die. */
823 		if (intlv_num_dies) {
824 			sock_id_bit  = die_id_bit + intlv_num_dies;
825 			die_id_shift = (tmp >> 24) & 0xF;
826 			die_id_mask  = (tmp >> 8) & 0xFF;
827 
828 			cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
829 		}
830 
831 		/* If interleaved over more than 1 socket. */
832 		if (intlv_num_sockets) {
833 			socket_id_shift	= (tmp >> 28) & 0xF;
834 			socket_id_mask	= (tmp >> 16) & 0xFF;
835 
836 			cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
837 		}
838 
839 		/*
840 		 * The pre-interleaved address consists of XXXXXXIIIYYYYY
841 		 * where III is the ID for this CS, and XXXXXXYYYYY are the
842 		 * address bits from the post-interleaved address.
843 		 * "num_intlv_bits" has been calculated to tell us how many "I"
844 		 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
845 		 * there are (where "I" starts).
846 		 */
847 		temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
848 		temp_addr_i = (cs_id << intlv_addr_bit);
849 		temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
850 		ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
851 	}
852 
853 	/* Add dram base address */
854 	ret_addr += dram_base_addr;
855 
856 	/* If legacy MMIO hole enabled */
857 	if (lgcy_mmio_hole_en) {
858 		if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
859 			goto out_err;
860 
861 		dram_hole_base = tmp & GENMASK(31, 24);
862 		if (ret_addr >= dram_hole_base)
863 			ret_addr += (BIT_ULL(32) - dram_hole_base);
864 	}
865 
866 	if (hash_enabled) {
867 		/* Save some parentheses and grab ls-bit at the end. */
868 		hashed_bit =	(ret_addr >> 12) ^
869 				(ret_addr >> 18) ^
870 				(ret_addr >> 21) ^
871 				(ret_addr >> 30) ^
872 				cs_id;
873 
874 		hashed_bit &= BIT(0);
875 
876 		if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
877 			ret_addr ^= BIT(intlv_addr_bit);
878 	}
879 
880 	/* Is calculated system address is above DRAM limit address? */
881 	if (ret_addr > dram_limit_addr)
882 		goto out_err;
883 
884 	*sys_addr = ret_addr;
885 	return 0;
886 
887 out_err:
888 	return -EINVAL;
889 }
890 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
891 
892 bool amd_mce_is_memory_error(struct mce *m)
893 {
894 	/* ErrCodeExt[20:16] */
895 	u8 xec = (m->status >> 16) & 0x1f;
896 
897 	if (mce_flags.smca)
898 		return smca_get_bank_type(m->bank) == SMCA_UMC && xec == 0x0;
899 
900 	return m->bank == 4 && xec == 0x8;
901 }
902 
903 static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
904 {
905 	struct mce m;
906 
907 	mce_setup(&m);
908 
909 	m.status = status;
910 	m.misc   = misc;
911 	m.bank   = bank;
912 	m.tsc	 = rdtsc();
913 
914 	if (m.status & MCI_STATUS_ADDRV) {
915 		m.addr = addr;
916 
917 		/*
918 		 * Extract [55:<lsb>] where lsb is the least significant
919 		 * *valid* bit of the address bits.
920 		 */
921 		if (mce_flags.smca) {
922 			u8 lsb = (m.addr >> 56) & 0x3f;
923 
924 			m.addr &= GENMASK_ULL(55, lsb);
925 		}
926 	}
927 
928 	if (mce_flags.smca) {
929 		rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank), m.ipid);
930 
931 		if (m.status & MCI_STATUS_SYNDV)
932 			rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank), m.synd);
933 	}
934 
935 	mce_log(&m);
936 }
937 
938 DEFINE_IDTENTRY_SYSVEC(sysvec_deferred_error)
939 {
940 	trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
941 	inc_irq_stat(irq_deferred_error_count);
942 	deferred_error_int_vector();
943 	trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR);
944 	ack_APIC_irq();
945 }
946 
947 /*
948  * Returns true if the logged error is deferred. False, otherwise.
949  */
950 static inline bool
951 _log_error_bank(unsigned int bank, u32 msr_stat, u32 msr_addr, u64 misc)
952 {
953 	u64 status, addr = 0;
954 
955 	rdmsrl(msr_stat, status);
956 	if (!(status & MCI_STATUS_VAL))
957 		return false;
958 
959 	if (status & MCI_STATUS_ADDRV)
960 		rdmsrl(msr_addr, addr);
961 
962 	__log_error(bank, status, addr, misc);
963 
964 	wrmsrl(msr_stat, 0);
965 
966 	return status & MCI_STATUS_DEFERRED;
967 }
968 
969 /*
970  * We have three scenarios for checking for Deferred errors:
971  *
972  * 1) Non-SMCA systems check MCA_STATUS and log error if found.
973  * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
974  *    clear MCA_DESTAT.
975  * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
976  *    log it.
977  */
978 static void log_error_deferred(unsigned int bank)
979 {
980 	bool defrd;
981 
982 	defrd = _log_error_bank(bank, mca_msr_reg(bank, MCA_STATUS),
983 				mca_msr_reg(bank, MCA_ADDR), 0);
984 
985 	if (!mce_flags.smca)
986 		return;
987 
988 	/* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
989 	if (defrd) {
990 		wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank), 0);
991 		return;
992 	}
993 
994 	/*
995 	 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
996 	 * for a valid error.
997 	 */
998 	_log_error_bank(bank, MSR_AMD64_SMCA_MCx_DESTAT(bank),
999 			      MSR_AMD64_SMCA_MCx_DEADDR(bank), 0);
1000 }
1001 
1002 /* APIC interrupt handler for deferred errors */
1003 static void amd_deferred_error_interrupt(void)
1004 {
1005 	unsigned int bank;
1006 
1007 	for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank)
1008 		log_error_deferred(bank);
1009 }
1010 
1011 static void log_error_thresholding(unsigned int bank, u64 misc)
1012 {
1013 	_log_error_bank(bank, mca_msr_reg(bank, MCA_STATUS), mca_msr_reg(bank, MCA_ADDR), misc);
1014 }
1015 
1016 static void log_and_reset_block(struct threshold_block *block)
1017 {
1018 	struct thresh_restart tr;
1019 	u32 low = 0, high = 0;
1020 
1021 	if (!block)
1022 		return;
1023 
1024 	if (rdmsr_safe(block->address, &low, &high))
1025 		return;
1026 
1027 	if (!(high & MASK_OVERFLOW_HI))
1028 		return;
1029 
1030 	/* Log the MCE which caused the threshold event. */
1031 	log_error_thresholding(block->bank, ((u64)high << 32) | low);
1032 
1033 	/* Reset threshold block after logging error. */
1034 	memset(&tr, 0, sizeof(tr));
1035 	tr.b = block;
1036 	threshold_restart_bank(&tr);
1037 }
1038 
1039 /*
1040  * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
1041  * goes off when error_count reaches threshold_limit.
1042  */
1043 static void amd_threshold_interrupt(void)
1044 {
1045 	struct threshold_block *first_block = NULL, *block = NULL, *tmp = NULL;
1046 	struct threshold_bank **bp = this_cpu_read(threshold_banks);
1047 	unsigned int bank, cpu = smp_processor_id();
1048 
1049 	/*
1050 	 * Validate that the threshold bank has been initialized already. The
1051 	 * handler is installed at boot time, but on a hotplug event the
1052 	 * interrupt might fire before the data has been initialized.
1053 	 */
1054 	if (!bp)
1055 		return;
1056 
1057 	for (bank = 0; bank < this_cpu_read(mce_num_banks); ++bank) {
1058 		if (!(per_cpu(bank_map, cpu) & (1 << bank)))
1059 			continue;
1060 
1061 		first_block = bp[bank]->blocks;
1062 		if (!first_block)
1063 			continue;
1064 
1065 		/*
1066 		 * The first block is also the head of the list. Check it first
1067 		 * before iterating over the rest.
1068 		 */
1069 		log_and_reset_block(first_block);
1070 		list_for_each_entry_safe(block, tmp, &first_block->miscj, miscj)
1071 			log_and_reset_block(block);
1072 	}
1073 }
1074 
1075 /*
1076  * Sysfs Interface
1077  */
1078 
1079 struct threshold_attr {
1080 	struct attribute attr;
1081 	ssize_t (*show) (struct threshold_block *, char *);
1082 	ssize_t (*store) (struct threshold_block *, const char *, size_t count);
1083 };
1084 
1085 #define SHOW_FIELDS(name)						\
1086 static ssize_t show_ ## name(struct threshold_block *b, char *buf)	\
1087 {									\
1088 	return sprintf(buf, "%lu\n", (unsigned long) b->name);		\
1089 }
1090 SHOW_FIELDS(interrupt_enable)
1091 SHOW_FIELDS(threshold_limit)
1092 
1093 static ssize_t
1094 store_interrupt_enable(struct threshold_block *b, const char *buf, size_t size)
1095 {
1096 	struct thresh_restart tr;
1097 	unsigned long new;
1098 
1099 	if (!b->interrupt_capable)
1100 		return -EINVAL;
1101 
1102 	if (kstrtoul(buf, 0, &new) < 0)
1103 		return -EINVAL;
1104 
1105 	b->interrupt_enable = !!new;
1106 
1107 	memset(&tr, 0, sizeof(tr));
1108 	tr.b		= b;
1109 
1110 	if (smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1))
1111 		return -ENODEV;
1112 
1113 	return size;
1114 }
1115 
1116 static ssize_t
1117 store_threshold_limit(struct threshold_block *b, const char *buf, size_t size)
1118 {
1119 	struct thresh_restart tr;
1120 	unsigned long new;
1121 
1122 	if (kstrtoul(buf, 0, &new) < 0)
1123 		return -EINVAL;
1124 
1125 	if (new > THRESHOLD_MAX)
1126 		new = THRESHOLD_MAX;
1127 	if (new < 1)
1128 		new = 1;
1129 
1130 	memset(&tr, 0, sizeof(tr));
1131 	tr.old_limit = b->threshold_limit;
1132 	b->threshold_limit = new;
1133 	tr.b = b;
1134 
1135 	if (smp_call_function_single(b->cpu, threshold_restart_bank, &tr, 1))
1136 		return -ENODEV;
1137 
1138 	return size;
1139 }
1140 
1141 static ssize_t show_error_count(struct threshold_block *b, char *buf)
1142 {
1143 	u32 lo, hi;
1144 
1145 	/* CPU might be offline by now */
1146 	if (rdmsr_on_cpu(b->cpu, b->address, &lo, &hi))
1147 		return -ENODEV;
1148 
1149 	return sprintf(buf, "%u\n", ((hi & THRESHOLD_MAX) -
1150 				     (THRESHOLD_MAX - b->threshold_limit)));
1151 }
1152 
1153 static struct threshold_attr error_count = {
1154 	.attr = {.name = __stringify(error_count), .mode = 0444 },
1155 	.show = show_error_count,
1156 };
1157 
1158 #define RW_ATTR(val)							\
1159 static struct threshold_attr val = {					\
1160 	.attr	= {.name = __stringify(val), .mode = 0644 },		\
1161 	.show	= show_## val,						\
1162 	.store	= store_## val,						\
1163 };
1164 
1165 RW_ATTR(interrupt_enable);
1166 RW_ATTR(threshold_limit);
1167 
1168 static struct attribute *default_attrs[] = {
1169 	&threshold_limit.attr,
1170 	&error_count.attr,
1171 	NULL,	/* possibly interrupt_enable if supported, see below */
1172 	NULL,
1173 };
1174 
1175 #define to_block(k)	container_of(k, struct threshold_block, kobj)
1176 #define to_attr(a)	container_of(a, struct threshold_attr, attr)
1177 
1178 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1179 {
1180 	struct threshold_block *b = to_block(kobj);
1181 	struct threshold_attr *a = to_attr(attr);
1182 	ssize_t ret;
1183 
1184 	ret = a->show ? a->show(b, buf) : -EIO;
1185 
1186 	return ret;
1187 }
1188 
1189 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1190 		     const char *buf, size_t count)
1191 {
1192 	struct threshold_block *b = to_block(kobj);
1193 	struct threshold_attr *a = to_attr(attr);
1194 	ssize_t ret;
1195 
1196 	ret = a->store ? a->store(b, buf, count) : -EIO;
1197 
1198 	return ret;
1199 }
1200 
1201 static const struct sysfs_ops threshold_ops = {
1202 	.show			= show,
1203 	.store			= store,
1204 };
1205 
1206 static void threshold_block_release(struct kobject *kobj);
1207 
1208 static struct kobj_type threshold_ktype = {
1209 	.sysfs_ops		= &threshold_ops,
1210 	.default_attrs		= default_attrs,
1211 	.release		= threshold_block_release,
1212 };
1213 
1214 static const char *get_name(unsigned int bank, struct threshold_block *b)
1215 {
1216 	enum smca_bank_types bank_type;
1217 
1218 	if (!mce_flags.smca) {
1219 		if (b && bank == 4)
1220 			return bank4_names(b);
1221 
1222 		return th_names[bank];
1223 	}
1224 
1225 	bank_type = smca_get_bank_type(bank);
1226 	if (bank_type >= N_SMCA_BANK_TYPES)
1227 		return NULL;
1228 
1229 	if (b && bank_type == SMCA_UMC) {
1230 		if (b->block < ARRAY_SIZE(smca_umc_block_names))
1231 			return smca_umc_block_names[b->block];
1232 		return NULL;
1233 	}
1234 
1235 	if (smca_banks[bank].hwid->count == 1)
1236 		return smca_get_name(bank_type);
1237 
1238 	snprintf(buf_mcatype, MAX_MCATYPE_NAME_LEN,
1239 		 "%s_%x", smca_get_name(bank_type),
1240 			  smca_banks[bank].sysfs_id);
1241 	return buf_mcatype;
1242 }
1243 
1244 static int allocate_threshold_blocks(unsigned int cpu, struct threshold_bank *tb,
1245 				     unsigned int bank, unsigned int block,
1246 				     u32 address)
1247 {
1248 	struct threshold_block *b = NULL;
1249 	u32 low, high;
1250 	int err;
1251 
1252 	if ((bank >= this_cpu_read(mce_num_banks)) || (block >= NR_BLOCKS))
1253 		return 0;
1254 
1255 	if (rdmsr_safe(address, &low, &high))
1256 		return 0;
1257 
1258 	if (!(high & MASK_VALID_HI)) {
1259 		if (block)
1260 			goto recurse;
1261 		else
1262 			return 0;
1263 	}
1264 
1265 	if (!(high & MASK_CNTP_HI)  ||
1266 	     (high & MASK_LOCKED_HI))
1267 		goto recurse;
1268 
1269 	b = kzalloc(sizeof(struct threshold_block), GFP_KERNEL);
1270 	if (!b)
1271 		return -ENOMEM;
1272 
1273 	b->block		= block;
1274 	b->bank			= bank;
1275 	b->cpu			= cpu;
1276 	b->address		= address;
1277 	b->interrupt_enable	= 0;
1278 	b->interrupt_capable	= lvt_interrupt_supported(bank, high);
1279 	b->threshold_limit	= THRESHOLD_MAX;
1280 
1281 	if (b->interrupt_capable) {
1282 		threshold_ktype.default_attrs[2] = &interrupt_enable.attr;
1283 		b->interrupt_enable = 1;
1284 	} else {
1285 		threshold_ktype.default_attrs[2] = NULL;
1286 	}
1287 
1288 	INIT_LIST_HEAD(&b->miscj);
1289 
1290 	/* This is safe as @tb is not visible yet */
1291 	if (tb->blocks)
1292 		list_add(&b->miscj, &tb->blocks->miscj);
1293 	else
1294 		tb->blocks = b;
1295 
1296 	err = kobject_init_and_add(&b->kobj, &threshold_ktype, tb->kobj, get_name(bank, b));
1297 	if (err)
1298 		goto out_free;
1299 recurse:
1300 	address = get_block_address(address, low, high, bank, ++block, cpu);
1301 	if (!address)
1302 		return 0;
1303 
1304 	err = allocate_threshold_blocks(cpu, tb, bank, block, address);
1305 	if (err)
1306 		goto out_free;
1307 
1308 	if (b)
1309 		kobject_uevent(&b->kobj, KOBJ_ADD);
1310 
1311 	return 0;
1312 
1313 out_free:
1314 	if (b) {
1315 		list_del(&b->miscj);
1316 		kobject_put(&b->kobj);
1317 	}
1318 	return err;
1319 }
1320 
1321 static int __threshold_add_blocks(struct threshold_bank *b)
1322 {
1323 	struct list_head *head = &b->blocks->miscj;
1324 	struct threshold_block *pos = NULL;
1325 	struct threshold_block *tmp = NULL;
1326 	int err = 0;
1327 
1328 	err = kobject_add(&b->blocks->kobj, b->kobj, b->blocks->kobj.name);
1329 	if (err)
1330 		return err;
1331 
1332 	list_for_each_entry_safe(pos, tmp, head, miscj) {
1333 
1334 		err = kobject_add(&pos->kobj, b->kobj, pos->kobj.name);
1335 		if (err) {
1336 			list_for_each_entry_safe_reverse(pos, tmp, head, miscj)
1337 				kobject_del(&pos->kobj);
1338 
1339 			return err;
1340 		}
1341 	}
1342 	return err;
1343 }
1344 
1345 static int threshold_create_bank(struct threshold_bank **bp, unsigned int cpu,
1346 				 unsigned int bank)
1347 {
1348 	struct device *dev = this_cpu_read(mce_device);
1349 	struct amd_northbridge *nb = NULL;
1350 	struct threshold_bank *b = NULL;
1351 	const char *name = get_name(bank, NULL);
1352 	int err = 0;
1353 
1354 	if (!dev)
1355 		return -ENODEV;
1356 
1357 	if (is_shared_bank(bank)) {
1358 		nb = node_to_amd_nb(topology_die_id(cpu));
1359 
1360 		/* threshold descriptor already initialized on this node? */
1361 		if (nb && nb->bank4) {
1362 			/* yes, use it */
1363 			b = nb->bank4;
1364 			err = kobject_add(b->kobj, &dev->kobj, name);
1365 			if (err)
1366 				goto out;
1367 
1368 			bp[bank] = b;
1369 			refcount_inc(&b->cpus);
1370 
1371 			err = __threshold_add_blocks(b);
1372 
1373 			goto out;
1374 		}
1375 	}
1376 
1377 	b = kzalloc(sizeof(struct threshold_bank), GFP_KERNEL);
1378 	if (!b) {
1379 		err = -ENOMEM;
1380 		goto out;
1381 	}
1382 
1383 	/* Associate the bank with the per-CPU MCE device */
1384 	b->kobj = kobject_create_and_add(name, &dev->kobj);
1385 	if (!b->kobj) {
1386 		err = -EINVAL;
1387 		goto out_free;
1388 	}
1389 
1390 	if (is_shared_bank(bank)) {
1391 		b->shared = 1;
1392 		refcount_set(&b->cpus, 1);
1393 
1394 		/* nb is already initialized, see above */
1395 		if (nb) {
1396 			WARN_ON(nb->bank4);
1397 			nb->bank4 = b;
1398 		}
1399 	}
1400 
1401 	err = allocate_threshold_blocks(cpu, b, bank, 0, mca_msr_reg(bank, MCA_MISC));
1402 	if (err)
1403 		goto out_kobj;
1404 
1405 	bp[bank] = b;
1406 	return 0;
1407 
1408 out_kobj:
1409 	kobject_put(b->kobj);
1410 out_free:
1411 	kfree(b);
1412 out:
1413 	return err;
1414 }
1415 
1416 static void threshold_block_release(struct kobject *kobj)
1417 {
1418 	kfree(to_block(kobj));
1419 }
1420 
1421 static void deallocate_threshold_blocks(struct threshold_bank *bank)
1422 {
1423 	struct threshold_block *pos, *tmp;
1424 
1425 	list_for_each_entry_safe(pos, tmp, &bank->blocks->miscj, miscj) {
1426 		list_del(&pos->miscj);
1427 		kobject_put(&pos->kobj);
1428 	}
1429 
1430 	kobject_put(&bank->blocks->kobj);
1431 }
1432 
1433 static void __threshold_remove_blocks(struct threshold_bank *b)
1434 {
1435 	struct threshold_block *pos = NULL;
1436 	struct threshold_block *tmp = NULL;
1437 
1438 	kobject_del(b->kobj);
1439 
1440 	list_for_each_entry_safe(pos, tmp, &b->blocks->miscj, miscj)
1441 		kobject_del(&pos->kobj);
1442 }
1443 
1444 static void threshold_remove_bank(struct threshold_bank *bank)
1445 {
1446 	struct amd_northbridge *nb;
1447 
1448 	if (!bank->blocks)
1449 		goto out_free;
1450 
1451 	if (!bank->shared)
1452 		goto out_dealloc;
1453 
1454 	if (!refcount_dec_and_test(&bank->cpus)) {
1455 		__threshold_remove_blocks(bank);
1456 		return;
1457 	} else {
1458 		/*
1459 		 * The last CPU on this node using the shared bank is going
1460 		 * away, remove that bank now.
1461 		 */
1462 		nb = node_to_amd_nb(topology_die_id(smp_processor_id()));
1463 		nb->bank4 = NULL;
1464 	}
1465 
1466 out_dealloc:
1467 	deallocate_threshold_blocks(bank);
1468 
1469 out_free:
1470 	kobject_put(bank->kobj);
1471 	kfree(bank);
1472 }
1473 
1474 int mce_threshold_remove_device(unsigned int cpu)
1475 {
1476 	struct threshold_bank **bp = this_cpu_read(threshold_banks);
1477 	unsigned int bank, numbanks = this_cpu_read(mce_num_banks);
1478 
1479 	if (!bp)
1480 		return 0;
1481 
1482 	/*
1483 	 * Clear the pointer before cleaning up, so that the interrupt won't
1484 	 * touch anything of this.
1485 	 */
1486 	this_cpu_write(threshold_banks, NULL);
1487 
1488 	for (bank = 0; bank < numbanks; bank++) {
1489 		if (bp[bank]) {
1490 			threshold_remove_bank(bp[bank]);
1491 			bp[bank] = NULL;
1492 		}
1493 	}
1494 	kfree(bp);
1495 	return 0;
1496 }
1497 
1498 /**
1499  * mce_threshold_create_device - Create the per-CPU MCE threshold device
1500  * @cpu:	The plugged in CPU
1501  *
1502  * Create directories and files for all valid threshold banks.
1503  *
1504  * This is invoked from the CPU hotplug callback which was installed in
1505  * mcheck_init_device(). The invocation happens in context of the hotplug
1506  * thread running on @cpu.  The callback is invoked on all CPUs which are
1507  * online when the callback is installed or during a real hotplug event.
1508  */
1509 int mce_threshold_create_device(unsigned int cpu)
1510 {
1511 	unsigned int numbanks, bank;
1512 	struct threshold_bank **bp;
1513 	int err;
1514 
1515 	if (!mce_flags.amd_threshold)
1516 		return 0;
1517 
1518 	bp = this_cpu_read(threshold_banks);
1519 	if (bp)
1520 		return 0;
1521 
1522 	numbanks = this_cpu_read(mce_num_banks);
1523 	bp = kcalloc(numbanks, sizeof(*bp), GFP_KERNEL);
1524 	if (!bp)
1525 		return -ENOMEM;
1526 
1527 	for (bank = 0; bank < numbanks; ++bank) {
1528 		if (!(this_cpu_read(bank_map) & (1 << bank)))
1529 			continue;
1530 		err = threshold_create_bank(bp, cpu, bank);
1531 		if (err)
1532 			goto out_err;
1533 	}
1534 	this_cpu_write(threshold_banks, bp);
1535 
1536 	if (thresholding_irq_en)
1537 		mce_threshold_vector = amd_threshold_interrupt;
1538 	return 0;
1539 out_err:
1540 	mce_threshold_remove_device(cpu);
1541 	return err;
1542 }
1543