xref: /openbmc/linux/arch/x86/kernel/cpu/intel.c (revision e8254a8e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/pgtable.h>
4 
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/smp.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/semaphore.h>
11 #include <linux/thread_info.h>
12 #include <linux/init.h>
13 #include <linux/uaccess.h>
14 #include <linux/workqueue.h>
15 #include <linux/delay.h>
16 #include <linux/cpuhotplug.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/msr.h>
20 #include <asm/bugs.h>
21 #include <asm/cpu.h>
22 #include <asm/intel-family.h>
23 #include <asm/microcode_intel.h>
24 #include <asm/hwcap2.h>
25 #include <asm/elf.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/cmdline.h>
28 #include <asm/traps.h>
29 #include <asm/resctrl.h>
30 #include <asm/numa.h>
31 #include <asm/thermal.h>
32 
33 #ifdef CONFIG_X86_64
34 #include <linux/topology.h>
35 #endif
36 
37 #include "cpu.h"
38 
39 #ifdef CONFIG_X86_LOCAL_APIC
40 #include <asm/mpspec.h>
41 #include <asm/apic.h>
42 #endif
43 
44 enum split_lock_detect_state {
45 	sld_off = 0,
46 	sld_warn,
47 	sld_fatal,
48 	sld_ratelimit,
49 };
50 
51 /*
52  * Default to sld_off because most systems do not support split lock detection.
53  * sld_state_setup() will switch this to sld_warn on systems that support
54  * split lock/bus lock detect, unless there is a command line override.
55  */
56 static enum split_lock_detect_state sld_state __ro_after_init = sld_off;
57 static u64 msr_test_ctrl_cache __ro_after_init;
58 
59 /*
60  * With a name like MSR_TEST_CTL it should go without saying, but don't touch
61  * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it
62  * on CPUs that do not support SLD can cause fireworks, even when writing '0'.
63  */
64 static bool cpu_model_supports_sld __ro_after_init;
65 
66 /*
67  * Processors which have self-snooping capability can handle conflicting
68  * memory type across CPUs by snooping its own cache. However, there exists
69  * CPU models in which having conflicting memory types still leads to
70  * unpredictable behavior, machine check errors, or hangs. Clear this
71  * feature to prevent its use on machines with known erratas.
72  */
73 static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
74 {
75 	switch (c->x86_model) {
76 	case INTEL_FAM6_CORE_YONAH:
77 	case INTEL_FAM6_CORE2_MEROM:
78 	case INTEL_FAM6_CORE2_MEROM_L:
79 	case INTEL_FAM6_CORE2_PENRYN:
80 	case INTEL_FAM6_CORE2_DUNNINGTON:
81 	case INTEL_FAM6_NEHALEM:
82 	case INTEL_FAM6_NEHALEM_G:
83 	case INTEL_FAM6_NEHALEM_EP:
84 	case INTEL_FAM6_NEHALEM_EX:
85 	case INTEL_FAM6_WESTMERE:
86 	case INTEL_FAM6_WESTMERE_EP:
87 	case INTEL_FAM6_SANDYBRIDGE:
88 		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
89 	}
90 }
91 
92 static bool ring3mwait_disabled __read_mostly;
93 
94 static int __init ring3mwait_disable(char *__unused)
95 {
96 	ring3mwait_disabled = true;
97 	return 1;
98 }
99 __setup("ring3mwait=disable", ring3mwait_disable);
100 
101 static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
102 {
103 	/*
104 	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
105 	 * cpu model and family comparison.
106 	 */
107 	if (c->x86 != 6)
108 		return;
109 	switch (c->x86_model) {
110 	case INTEL_FAM6_XEON_PHI_KNL:
111 	case INTEL_FAM6_XEON_PHI_KNM:
112 		break;
113 	default:
114 		return;
115 	}
116 
117 	if (ring3mwait_disabled)
118 		return;
119 
120 	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
121 	this_cpu_or(msr_misc_features_shadow,
122 		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
123 
124 	if (c == &boot_cpu_data)
125 		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
126 }
127 
128 /*
129  * Early microcode releases for the Spectre v2 mitigation were broken.
130  * Information taken from;
131  * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
132  * - https://kb.vmware.com/s/article/52345
133  * - Microcode revisions observed in the wild
134  * - Release note from 20180108 microcode release
135  */
136 struct sku_microcode {
137 	u8 model;
138 	u8 stepping;
139 	u32 microcode;
140 };
141 static const struct sku_microcode spectre_bad_microcodes[] = {
142 	{ INTEL_FAM6_KABYLAKE,		0x0B,	0x80 },
143 	{ INTEL_FAM6_KABYLAKE,		0x0A,	0x80 },
144 	{ INTEL_FAM6_KABYLAKE,		0x09,	0x80 },
145 	{ INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 },
146 	{ INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 },
147 	{ INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e },
148 	{ INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c },
149 	{ INTEL_FAM6_BROADWELL,		0x04,	0x28 },
150 	{ INTEL_FAM6_BROADWELL_G,	0x01,	0x1b },
151 	{ INTEL_FAM6_BROADWELL_D,	0x02,	0x14 },
152 	{ INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 },
153 	{ INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 },
154 	{ INTEL_FAM6_HASWELL_L,		0x01,	0x21 },
155 	{ INTEL_FAM6_HASWELL_G,		0x01,	0x18 },
156 	{ INTEL_FAM6_HASWELL,		0x03,	0x23 },
157 	{ INTEL_FAM6_HASWELL_X,		0x02,	0x3b },
158 	{ INTEL_FAM6_HASWELL_X,		0x04,	0x10 },
159 	{ INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a },
160 	/* Observed in the wild */
161 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b },
162 	{ INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 },
163 };
164 
165 static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
166 {
167 	int i;
168 
169 	/*
170 	 * We know that the hypervisor lie to us on the microcode version so
171 	 * we may as well hope that it is running the correct version.
172 	 */
173 	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
174 		return false;
175 
176 	if (c->x86 != 6)
177 		return false;
178 
179 	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
180 		if (c->x86_model == spectre_bad_microcodes[i].model &&
181 		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
182 			return (c->microcode <= spectre_bad_microcodes[i].microcode);
183 	}
184 	return false;
185 }
186 
187 int intel_cpu_collect_info(struct ucode_cpu_info *uci)
188 {
189 	unsigned int val[2];
190 	unsigned int family, model;
191 	struct cpu_signature csig = { 0 };
192 	unsigned int eax, ebx, ecx, edx;
193 
194 	memset(uci, 0, sizeof(*uci));
195 
196 	eax = 0x00000001;
197 	ecx = 0;
198 	native_cpuid(&eax, &ebx, &ecx, &edx);
199 	csig.sig = eax;
200 
201 	family = x86_family(eax);
202 	model  = x86_model(eax);
203 
204 	if (model >= 5 || family > 6) {
205 		/* get processor flags from MSR 0x17 */
206 		native_rdmsr(MSR_IA32_PLATFORM_ID, val[0], val[1]);
207 		csig.pf = 1 << ((val[1] >> 18) & 7);
208 	}
209 
210 	csig.rev = intel_get_microcode_revision();
211 
212 	uci->cpu_sig = csig;
213 
214 	return 0;
215 }
216 EXPORT_SYMBOL_GPL(intel_cpu_collect_info);
217 
218 /*
219  * Returns 1 if update has been found, 0 otherwise.
220  */
221 int intel_find_matching_signature(void *mc, unsigned int csig, int cpf)
222 {
223 	struct microcode_header_intel *mc_hdr = mc;
224 	struct extended_sigtable *ext_hdr;
225 	struct extended_signature *ext_sig;
226 	int i;
227 
228 	if (intel_cpu_signatures_match(csig, cpf, mc_hdr->sig, mc_hdr->pf))
229 		return 1;
230 
231 	/* Look for ext. headers: */
232 	if (get_totalsize(mc_hdr) <= get_datasize(mc_hdr) + MC_HEADER_SIZE)
233 		return 0;
234 
235 	ext_hdr = mc + get_datasize(mc_hdr) + MC_HEADER_SIZE;
236 	ext_sig = (void *)ext_hdr + EXT_HEADER_SIZE;
237 
238 	for (i = 0; i < ext_hdr->count; i++) {
239 		if (intel_cpu_signatures_match(csig, cpf, ext_sig->sig, ext_sig->pf))
240 			return 1;
241 		ext_sig++;
242 	}
243 	return 0;
244 }
245 EXPORT_SYMBOL_GPL(intel_find_matching_signature);
246 
247 /**
248  * intel_microcode_sanity_check() - Sanity check microcode file.
249  * @mc: Pointer to the microcode file contents.
250  * @print_err: Display failure reason if true, silent if false.
251  * @hdr_type: Type of file, i.e. normal microcode file or In Field Scan file.
252  *            Validate if the microcode header type matches with the type
253  *            specified here.
254  *
255  * Validate certain header fields and verify if computed checksum matches
256  * with the one specified in the header.
257  *
258  * Return: 0 if the file passes all the checks, -EINVAL if any of the checks
259  * fail.
260  */
261 int intel_microcode_sanity_check(void *mc, bool print_err, int hdr_type)
262 {
263 	unsigned long total_size, data_size, ext_table_size;
264 	struct microcode_header_intel *mc_header = mc;
265 	struct extended_sigtable *ext_header = NULL;
266 	u32 sum, orig_sum, ext_sigcount = 0, i;
267 	struct extended_signature *ext_sig;
268 
269 	total_size = get_totalsize(mc_header);
270 	data_size = get_datasize(mc_header);
271 
272 	if (data_size + MC_HEADER_SIZE > total_size) {
273 		if (print_err)
274 			pr_err("Error: bad microcode data file size.\n");
275 		return -EINVAL;
276 	}
277 
278 	if (mc_header->ldrver != 1 || mc_header->hdrver != hdr_type) {
279 		if (print_err)
280 			pr_err("Error: invalid/unknown microcode update format. Header type %d\n",
281 			       mc_header->hdrver);
282 		return -EINVAL;
283 	}
284 
285 	ext_table_size = total_size - (MC_HEADER_SIZE + data_size);
286 	if (ext_table_size) {
287 		u32 ext_table_sum = 0;
288 		u32 *ext_tablep;
289 
290 		if (ext_table_size < EXT_HEADER_SIZE ||
291 		    ((ext_table_size - EXT_HEADER_SIZE) % EXT_SIGNATURE_SIZE)) {
292 			if (print_err)
293 				pr_err("Error: truncated extended signature table.\n");
294 			return -EINVAL;
295 		}
296 
297 		ext_header = mc + MC_HEADER_SIZE + data_size;
298 		if (ext_table_size != exttable_size(ext_header)) {
299 			if (print_err)
300 				pr_err("Error: extended signature table size mismatch.\n");
301 			return -EFAULT;
302 		}
303 
304 		ext_sigcount = ext_header->count;
305 
306 		/*
307 		 * Check extended table checksum: the sum of all dwords that
308 		 * comprise a valid table must be 0.
309 		 */
310 		ext_tablep = (u32 *)ext_header;
311 
312 		i = ext_table_size / sizeof(u32);
313 		while (i--)
314 			ext_table_sum += ext_tablep[i];
315 
316 		if (ext_table_sum) {
317 			if (print_err)
318 				pr_warn("Bad extended signature table checksum, aborting.\n");
319 			return -EINVAL;
320 		}
321 	}
322 
323 	/*
324 	 * Calculate the checksum of update data and header. The checksum of
325 	 * valid update data and header including the extended signature table
326 	 * must be 0.
327 	 */
328 	orig_sum = 0;
329 	i = (MC_HEADER_SIZE + data_size) / sizeof(u32);
330 	while (i--)
331 		orig_sum += ((u32 *)mc)[i];
332 
333 	if (orig_sum) {
334 		if (print_err)
335 			pr_err("Bad microcode data checksum, aborting.\n");
336 		return -EINVAL;
337 	}
338 
339 	if (!ext_table_size)
340 		return 0;
341 
342 	/*
343 	 * Check extended signature checksum: 0 => valid.
344 	 */
345 	for (i = 0; i < ext_sigcount; i++) {
346 		ext_sig = (void *)ext_header + EXT_HEADER_SIZE +
347 			  EXT_SIGNATURE_SIZE * i;
348 
349 		sum = (mc_header->sig + mc_header->pf + mc_header->cksum) -
350 		      (ext_sig->sig + ext_sig->pf + ext_sig->cksum);
351 		if (sum) {
352 			if (print_err)
353 				pr_err("Bad extended signature checksum, aborting.\n");
354 			return -EINVAL;
355 		}
356 	}
357 	return 0;
358 }
359 EXPORT_SYMBOL_GPL(intel_microcode_sanity_check);
360 
361 static void early_init_intel(struct cpuinfo_x86 *c)
362 {
363 	u64 misc_enable;
364 
365 	/* Unmask CPUID levels if masked: */
366 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
367 		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
368 				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
369 			c->cpuid_level = cpuid_eax(0);
370 			get_cpu_cap(c);
371 		}
372 	}
373 
374 	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
375 		(c->x86 == 0x6 && c->x86_model >= 0x0e))
376 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
377 
378 	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
379 		c->microcode = intel_get_microcode_revision();
380 
381 	/* Now if any of them are set, check the blacklist and clear the lot */
382 	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
383 	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
384 	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
385 	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
386 		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
387 		setup_clear_cpu_cap(X86_FEATURE_IBRS);
388 		setup_clear_cpu_cap(X86_FEATURE_IBPB);
389 		setup_clear_cpu_cap(X86_FEATURE_STIBP);
390 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
391 		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
392 		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
393 		setup_clear_cpu_cap(X86_FEATURE_SSBD);
394 		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
395 	}
396 
397 	/*
398 	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
399 	 *
400 	 * A race condition between speculative fetches and invalidating
401 	 * a large page.  This is worked around in microcode, but we
402 	 * need the microcode to have already been loaded... so if it is
403 	 * not, recommend a BIOS update and disable large pages.
404 	 */
405 	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 &&
406 	    c->microcode < 0x20e) {
407 		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
408 		clear_cpu_cap(c, X86_FEATURE_PSE);
409 	}
410 
411 #ifdef CONFIG_X86_64
412 	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
413 #else
414 	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
415 	if (c->x86 == 15 && c->x86_cache_alignment == 64)
416 		c->x86_cache_alignment = 128;
417 #endif
418 
419 	/* CPUID workaround for 0F33/0F34 CPU */
420 	if (c->x86 == 0xF && c->x86_model == 0x3
421 	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
422 		c->x86_phys_bits = 36;
423 
424 	/*
425 	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
426 	 * with P/T states and does not stop in deep C-states.
427 	 *
428 	 * It is also reliable across cores and sockets. (but not across
429 	 * cabinets - we turn it off in that case explicitly.)
430 	 */
431 	if (c->x86_power & (1 << 8)) {
432 		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
433 		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
434 	}
435 
436 	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
437 	if (c->x86 == 6) {
438 		switch (c->x86_model) {
439 		case INTEL_FAM6_ATOM_SALTWELL_MID:
440 		case INTEL_FAM6_ATOM_SALTWELL_TABLET:
441 		case INTEL_FAM6_ATOM_SILVERMONT_MID:
442 		case INTEL_FAM6_ATOM_AIRMONT_NP:
443 			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
444 			break;
445 		default:
446 			break;
447 		}
448 	}
449 
450 	/*
451 	 * There is a known erratum on Pentium III and Core Solo
452 	 * and Core Duo CPUs.
453 	 * " Page with PAT set to WC while associated MTRR is UC
454 	 *   may consolidate to UC "
455 	 * Because of this erratum, it is better to stick with
456 	 * setting WC in MTRR rather than using PAT on these CPUs.
457 	 *
458 	 * Enable PAT WC only on P4, Core 2 or later CPUs.
459 	 */
460 	if (c->x86 == 6 && c->x86_model < 15)
461 		clear_cpu_cap(c, X86_FEATURE_PAT);
462 
463 	/*
464 	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
465 	 * clear the fast string and enhanced fast string CPU capabilities.
466 	 */
467 	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
468 		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
469 		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
470 			pr_info("Disabled fast string operations\n");
471 			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
472 			setup_clear_cpu_cap(X86_FEATURE_ERMS);
473 		}
474 	}
475 
476 	/*
477 	 * Intel Quark Core DevMan_001.pdf section 6.4.11
478 	 * "The operating system also is required to invalidate (i.e., flush)
479 	 *  the TLB when any changes are made to any of the page table entries.
480 	 *  The operating system must reload CR3 to cause the TLB to be flushed"
481 	 *
482 	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
483 	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
484 	 * to be modified.
485 	 */
486 	if (c->x86 == 5 && c->x86_model == 9) {
487 		pr_info("Disabling PGE capability bit\n");
488 		setup_clear_cpu_cap(X86_FEATURE_PGE);
489 	}
490 
491 	if (c->cpuid_level >= 0x00000001) {
492 		u32 eax, ebx, ecx, edx;
493 
494 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
495 		/*
496 		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
497 		 * apicids which are reserved per package. Store the resulting
498 		 * shift value for the package management code.
499 		 */
500 		if (edx & (1U << 28))
501 			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
502 	}
503 
504 	check_memory_type_self_snoop_errata(c);
505 
506 	/*
507 	 * Get the number of SMT siblings early from the extended topology
508 	 * leaf, if available. Otherwise try the legacy SMT detection.
509 	 */
510 	if (detect_extended_topology_early(c) < 0)
511 		detect_ht_early(c);
512 }
513 
514 static void bsp_init_intel(struct cpuinfo_x86 *c)
515 {
516 	resctrl_cpu_detect(c);
517 }
518 
519 #ifdef CONFIG_X86_32
520 /*
521  *	Early probe support logic for ppro memory erratum #50
522  *
523  *	This is called before we do cpu ident work
524  */
525 
526 int ppro_with_ram_bug(void)
527 {
528 	/* Uses data from early_cpu_detect now */
529 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
530 	    boot_cpu_data.x86 == 6 &&
531 	    boot_cpu_data.x86_model == 1 &&
532 	    boot_cpu_data.x86_stepping < 8) {
533 		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
534 		return 1;
535 	}
536 	return 0;
537 }
538 
539 static void intel_smp_check(struct cpuinfo_x86 *c)
540 {
541 	/* calling is from identify_secondary_cpu() ? */
542 	if (!c->cpu_index)
543 		return;
544 
545 	/*
546 	 * Mask B, Pentium, but not Pentium MMX
547 	 */
548 	if (c->x86 == 5 &&
549 	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
550 	    c->x86_model <= 3) {
551 		/*
552 		 * Remember we have B step Pentia with bugs
553 		 */
554 		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
555 				    "with B stepping processors.\n");
556 	}
557 }
558 
559 static int forcepae;
560 static int __init forcepae_setup(char *__unused)
561 {
562 	forcepae = 1;
563 	return 1;
564 }
565 __setup("forcepae", forcepae_setup);
566 
567 static void intel_workarounds(struct cpuinfo_x86 *c)
568 {
569 #ifdef CONFIG_X86_F00F_BUG
570 	/*
571 	 * All models of Pentium and Pentium with MMX technology CPUs
572 	 * have the F0 0F bug, which lets nonprivileged users lock up the
573 	 * system. Announce that the fault handler will be checking for it.
574 	 * The Quark is also family 5, but does not have the same bug.
575 	 */
576 	clear_cpu_bug(c, X86_BUG_F00F);
577 	if (c->x86 == 5 && c->x86_model < 9) {
578 		static int f00f_workaround_enabled;
579 
580 		set_cpu_bug(c, X86_BUG_F00F);
581 		if (!f00f_workaround_enabled) {
582 			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
583 			f00f_workaround_enabled = 1;
584 		}
585 	}
586 #endif
587 
588 	/*
589 	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
590 	 * model 3 mask 3
591 	 */
592 	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
593 		clear_cpu_cap(c, X86_FEATURE_SEP);
594 
595 	/*
596 	 * PAE CPUID issue: many Pentium M report no PAE but may have a
597 	 * functionally usable PAE implementation.
598 	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
599 	 */
600 	if (forcepae) {
601 		pr_warn("PAE forced!\n");
602 		set_cpu_cap(c, X86_FEATURE_PAE);
603 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
604 	}
605 
606 	/*
607 	 * P4 Xeon erratum 037 workaround.
608 	 * Hardware prefetcher may cause stale data to be loaded into the cache.
609 	 */
610 	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
611 		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
612 				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
613 			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
614 			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
615 		}
616 	}
617 
618 	/*
619 	 * See if we have a good local APIC by checking for buggy Pentia,
620 	 * i.e. all B steppings and the C2 stepping of P54C when using their
621 	 * integrated APIC (see 11AP erratum in "Pentium Processor
622 	 * Specification Update").
623 	 */
624 	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
625 	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
626 		set_cpu_bug(c, X86_BUG_11AP);
627 
628 
629 #ifdef CONFIG_X86_INTEL_USERCOPY
630 	/*
631 	 * Set up the preferred alignment for movsl bulk memory moves
632 	 */
633 	switch (c->x86) {
634 	case 4:		/* 486: untested */
635 		break;
636 	case 5:		/* Old Pentia: untested */
637 		break;
638 	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
639 		movsl_mask.mask = 7;
640 		break;
641 	case 15:	/* P4 is OK down to 8-byte alignment */
642 		movsl_mask.mask = 7;
643 		break;
644 	}
645 #endif
646 
647 	intel_smp_check(c);
648 }
649 #else
650 static void intel_workarounds(struct cpuinfo_x86 *c)
651 {
652 }
653 #endif
654 
655 static void srat_detect_node(struct cpuinfo_x86 *c)
656 {
657 #ifdef CONFIG_NUMA
658 	unsigned node;
659 	int cpu = smp_processor_id();
660 
661 	/* Don't do the funky fallback heuristics the AMD version employs
662 	   for now. */
663 	node = numa_cpu_node(cpu);
664 	if (node == NUMA_NO_NODE || !node_online(node)) {
665 		/* reuse the value from init_cpu_to_node() */
666 		node = cpu_to_node(cpu);
667 	}
668 	numa_set_node(cpu, node);
669 #endif
670 }
671 
672 #define MSR_IA32_TME_ACTIVATE		0x982
673 
674 /* Helpers to access TME_ACTIVATE MSR */
675 #define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
676 #define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
677 
678 #define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */
679 #define TME_ACTIVATE_POLICY_AES_XTS_128	0
680 
681 #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
682 
683 #define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */
684 #define TME_ACTIVATE_CRYPTO_AES_XTS_128	1
685 
686 /* Values for mktme_status (SW only construct) */
687 #define MKTME_ENABLED			0
688 #define MKTME_DISABLED			1
689 #define MKTME_UNINITIALIZED		2
690 static int mktme_status = MKTME_UNINITIALIZED;
691 
692 static void detect_tme(struct cpuinfo_x86 *c)
693 {
694 	u64 tme_activate, tme_policy, tme_crypto_algs;
695 	int keyid_bits = 0, nr_keyids = 0;
696 	static u64 tme_activate_cpu0 = 0;
697 
698 	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
699 
700 	if (mktme_status != MKTME_UNINITIALIZED) {
701 		if (tme_activate != tme_activate_cpu0) {
702 			/* Broken BIOS? */
703 			pr_err_once("x86/tme: configuration is inconsistent between CPUs\n");
704 			pr_err_once("x86/tme: MKTME is not usable\n");
705 			mktme_status = MKTME_DISABLED;
706 
707 			/* Proceed. We may need to exclude bits from x86_phys_bits. */
708 		}
709 	} else {
710 		tme_activate_cpu0 = tme_activate;
711 	}
712 
713 	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
714 		pr_info_once("x86/tme: not enabled by BIOS\n");
715 		mktme_status = MKTME_DISABLED;
716 		return;
717 	}
718 
719 	if (mktme_status != MKTME_UNINITIALIZED)
720 		goto detect_keyid_bits;
721 
722 	pr_info("x86/tme: enabled by BIOS\n");
723 
724 	tme_policy = TME_ACTIVATE_POLICY(tme_activate);
725 	if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128)
726 		pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy);
727 
728 	tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate);
729 	if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) {
730 		pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n",
731 				tme_crypto_algs);
732 		mktme_status = MKTME_DISABLED;
733 	}
734 detect_keyid_bits:
735 	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
736 	nr_keyids = (1UL << keyid_bits) - 1;
737 	if (nr_keyids) {
738 		pr_info_once("x86/mktme: enabled by BIOS\n");
739 		pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids);
740 	} else {
741 		pr_info_once("x86/mktme: disabled by BIOS\n");
742 	}
743 
744 	if (mktme_status == MKTME_UNINITIALIZED) {
745 		/* MKTME is usable */
746 		mktme_status = MKTME_ENABLED;
747 	}
748 
749 	/*
750 	 * KeyID bits effectively lower the number of physical address
751 	 * bits.  Update cpuinfo_x86::x86_phys_bits accordingly.
752 	 */
753 	c->x86_phys_bits -= keyid_bits;
754 }
755 
756 static void init_cpuid_fault(struct cpuinfo_x86 *c)
757 {
758 	u64 msr;
759 
760 	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
761 		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
762 			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
763 	}
764 }
765 
766 static void init_intel_misc_features(struct cpuinfo_x86 *c)
767 {
768 	u64 msr;
769 
770 	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
771 		return;
772 
773 	/* Clear all MISC features */
774 	this_cpu_write(msr_misc_features_shadow, 0);
775 
776 	/* Check features and update capabilities and shadow control bits */
777 	init_cpuid_fault(c);
778 	probe_xeon_phi_r3mwait(c);
779 
780 	msr = this_cpu_read(msr_misc_features_shadow);
781 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
782 }
783 
784 static void split_lock_init(void);
785 static void bus_lock_init(void);
786 
787 static void init_intel(struct cpuinfo_x86 *c)
788 {
789 	early_init_intel(c);
790 
791 	intel_workarounds(c);
792 
793 	/*
794 	 * Detect the extended topology information if available. This
795 	 * will reinitialise the initial_apicid which will be used
796 	 * in init_intel_cacheinfo()
797 	 */
798 	detect_extended_topology(c);
799 
800 	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
801 		/*
802 		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
803 		 * detection.
804 		 */
805 		detect_num_cpu_cores(c);
806 #ifdef CONFIG_X86_32
807 		detect_ht(c);
808 #endif
809 	}
810 
811 	init_intel_cacheinfo(c);
812 
813 	if (c->cpuid_level > 9) {
814 		unsigned eax = cpuid_eax(10);
815 		/* Check for version and the number of counters */
816 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
817 			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
818 	}
819 
820 	if (cpu_has(c, X86_FEATURE_XMM2))
821 		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
822 
823 	if (boot_cpu_has(X86_FEATURE_DS)) {
824 		unsigned int l1, l2;
825 
826 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
827 		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
828 			set_cpu_cap(c, X86_FEATURE_BTS);
829 		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
830 			set_cpu_cap(c, X86_FEATURE_PEBS);
831 	}
832 
833 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
834 	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
835 		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
836 
837 	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
838 		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
839 		set_cpu_bug(c, X86_BUG_MONITOR);
840 
841 #ifdef CONFIG_X86_64
842 	if (c->x86 == 15)
843 		c->x86_cache_alignment = c->x86_clflush_size * 2;
844 	if (c->x86 == 6)
845 		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
846 #else
847 	/*
848 	 * Names for the Pentium II/Celeron processors
849 	 * detectable only by also checking the cache size.
850 	 * Dixon is NOT a Celeron.
851 	 */
852 	if (c->x86 == 6) {
853 		unsigned int l2 = c->x86_cache_size;
854 		char *p = NULL;
855 
856 		switch (c->x86_model) {
857 		case 5:
858 			if (l2 == 0)
859 				p = "Celeron (Covington)";
860 			else if (l2 == 256)
861 				p = "Mobile Pentium II (Dixon)";
862 			break;
863 
864 		case 6:
865 			if (l2 == 128)
866 				p = "Celeron (Mendocino)";
867 			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
868 				p = "Celeron-A";
869 			break;
870 
871 		case 8:
872 			if (l2 == 128)
873 				p = "Celeron (Coppermine)";
874 			break;
875 		}
876 
877 		if (p)
878 			strcpy(c->x86_model_id, p);
879 	}
880 
881 	if (c->x86 == 15)
882 		set_cpu_cap(c, X86_FEATURE_P4);
883 	if (c->x86 == 6)
884 		set_cpu_cap(c, X86_FEATURE_P3);
885 #endif
886 
887 	/* Work around errata */
888 	srat_detect_node(c);
889 
890 	init_ia32_feat_ctl(c);
891 
892 	if (cpu_has(c, X86_FEATURE_TME))
893 		detect_tme(c);
894 
895 	init_intel_misc_features(c);
896 
897 	split_lock_init();
898 	bus_lock_init();
899 
900 	intel_init_thermal(c);
901 }
902 
903 #ifdef CONFIG_X86_32
904 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
905 {
906 	/*
907 	 * Intel PIII Tualatin. This comes in two flavours.
908 	 * One has 256kb of cache, the other 512. We have no way
909 	 * to determine which, so we use a boottime override
910 	 * for the 512kb model, and assume 256 otherwise.
911 	 */
912 	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
913 		size = 256;
914 
915 	/*
916 	 * Intel Quark SoC X1000 contains a 4-way set associative
917 	 * 16K cache with a 16 byte cache line and 256 lines per tag
918 	 */
919 	if ((c->x86 == 5) && (c->x86_model == 9))
920 		size = 16;
921 	return size;
922 }
923 #endif
924 
925 #define TLB_INST_4K	0x01
926 #define TLB_INST_4M	0x02
927 #define TLB_INST_2M_4M	0x03
928 
929 #define TLB_INST_ALL	0x05
930 #define TLB_INST_1G	0x06
931 
932 #define TLB_DATA_4K	0x11
933 #define TLB_DATA_4M	0x12
934 #define TLB_DATA_2M_4M	0x13
935 #define TLB_DATA_4K_4M	0x14
936 
937 #define TLB_DATA_1G	0x16
938 
939 #define TLB_DATA0_4K	0x21
940 #define TLB_DATA0_4M	0x22
941 #define TLB_DATA0_2M_4M	0x23
942 
943 #define STLB_4K		0x41
944 #define STLB_4K_2M	0x42
945 
946 static const struct _tlb_table intel_tlb_table[] = {
947 	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
948 	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
949 	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
950 	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
951 	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
952 	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
953 	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
954 	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
955 	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
956 	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
957 	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
958 	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
959 	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
960 	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
961 	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
962 	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
963 	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
964 	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
965 	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
966 	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
967 	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
968 	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
969 	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
970 	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
971 	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
972 	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
973 	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
974 	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
975 	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
976 	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
977 	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
978 	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
979 	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
980 	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
981 	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
982 	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
983 	{ 0x00, 0, 0 }
984 };
985 
986 static void intel_tlb_lookup(const unsigned char desc)
987 {
988 	unsigned char k;
989 	if (desc == 0)
990 		return;
991 
992 	/* look up this descriptor in the table */
993 	for (k = 0; intel_tlb_table[k].descriptor != desc &&
994 	     intel_tlb_table[k].descriptor != 0; k++)
995 		;
996 
997 	if (intel_tlb_table[k].tlb_type == 0)
998 		return;
999 
1000 	switch (intel_tlb_table[k].tlb_type) {
1001 	case STLB_4K:
1002 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
1003 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
1004 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
1005 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
1006 		break;
1007 	case STLB_4K_2M:
1008 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
1009 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
1010 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
1011 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
1012 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
1013 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
1014 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
1015 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
1016 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
1017 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
1018 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
1019 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
1020 		break;
1021 	case TLB_INST_ALL:
1022 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
1023 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
1024 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
1025 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
1026 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
1027 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
1028 		break;
1029 	case TLB_INST_4K:
1030 		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
1031 			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
1032 		break;
1033 	case TLB_INST_4M:
1034 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
1035 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
1036 		break;
1037 	case TLB_INST_2M_4M:
1038 		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
1039 			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
1040 		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
1041 			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
1042 		break;
1043 	case TLB_DATA_4K:
1044 	case TLB_DATA0_4K:
1045 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
1046 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
1047 		break;
1048 	case TLB_DATA_4M:
1049 	case TLB_DATA0_4M:
1050 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
1051 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
1052 		break;
1053 	case TLB_DATA_2M_4M:
1054 	case TLB_DATA0_2M_4M:
1055 		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
1056 			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
1057 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
1058 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
1059 		break;
1060 	case TLB_DATA_4K_4M:
1061 		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
1062 			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
1063 		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
1064 			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
1065 		break;
1066 	case TLB_DATA_1G:
1067 		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
1068 			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
1069 		break;
1070 	}
1071 }
1072 
1073 static void intel_detect_tlb(struct cpuinfo_x86 *c)
1074 {
1075 	int i, j, n;
1076 	unsigned int regs[4];
1077 	unsigned char *desc = (unsigned char *)regs;
1078 
1079 	if (c->cpuid_level < 2)
1080 		return;
1081 
1082 	/* Number of times to iterate */
1083 	n = cpuid_eax(2) & 0xFF;
1084 
1085 	for (i = 0 ; i < n ; i++) {
1086 		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
1087 
1088 		/* If bit 31 is set, this is an unknown format */
1089 		for (j = 0 ; j < 3 ; j++)
1090 			if (regs[j] & (1 << 31))
1091 				regs[j] = 0;
1092 
1093 		/* Byte 0 is level count, not a descriptor */
1094 		for (j = 1 ; j < 16 ; j++)
1095 			intel_tlb_lookup(desc[j]);
1096 	}
1097 }
1098 
1099 static const struct cpu_dev intel_cpu_dev = {
1100 	.c_vendor	= "Intel",
1101 	.c_ident	= { "GenuineIntel" },
1102 #ifdef CONFIG_X86_32
1103 	.legacy_models = {
1104 		{ .family = 4, .model_names =
1105 		  {
1106 			  [0] = "486 DX-25/33",
1107 			  [1] = "486 DX-50",
1108 			  [2] = "486 SX",
1109 			  [3] = "486 DX/2",
1110 			  [4] = "486 SL",
1111 			  [5] = "486 SX/2",
1112 			  [7] = "486 DX/2-WB",
1113 			  [8] = "486 DX/4",
1114 			  [9] = "486 DX/4-WB"
1115 		  }
1116 		},
1117 		{ .family = 5, .model_names =
1118 		  {
1119 			  [0] = "Pentium 60/66 A-step",
1120 			  [1] = "Pentium 60/66",
1121 			  [2] = "Pentium 75 - 200",
1122 			  [3] = "OverDrive PODP5V83",
1123 			  [4] = "Pentium MMX",
1124 			  [7] = "Mobile Pentium 75 - 200",
1125 			  [8] = "Mobile Pentium MMX",
1126 			  [9] = "Quark SoC X1000",
1127 		  }
1128 		},
1129 		{ .family = 6, .model_names =
1130 		  {
1131 			  [0] = "Pentium Pro A-step",
1132 			  [1] = "Pentium Pro",
1133 			  [3] = "Pentium II (Klamath)",
1134 			  [4] = "Pentium II (Deschutes)",
1135 			  [5] = "Pentium II (Deschutes)",
1136 			  [6] = "Mobile Pentium II",
1137 			  [7] = "Pentium III (Katmai)",
1138 			  [8] = "Pentium III (Coppermine)",
1139 			  [10] = "Pentium III (Cascades)",
1140 			  [11] = "Pentium III (Tualatin)",
1141 		  }
1142 		},
1143 		{ .family = 15, .model_names =
1144 		  {
1145 			  [0] = "Pentium 4 (Unknown)",
1146 			  [1] = "Pentium 4 (Willamette)",
1147 			  [2] = "Pentium 4 (Northwood)",
1148 			  [4] = "Pentium 4 (Foster)",
1149 			  [5] = "Pentium 4 (Foster)",
1150 		  }
1151 		},
1152 	},
1153 	.legacy_cache_size = intel_size_cache,
1154 #endif
1155 	.c_detect_tlb	= intel_detect_tlb,
1156 	.c_early_init   = early_init_intel,
1157 	.c_bsp_init	= bsp_init_intel,
1158 	.c_init		= init_intel,
1159 	.c_x86_vendor	= X86_VENDOR_INTEL,
1160 };
1161 
1162 cpu_dev_register(intel_cpu_dev);
1163 
1164 #undef pr_fmt
1165 #define pr_fmt(fmt) "x86/split lock detection: " fmt
1166 
1167 static const struct {
1168 	const char			*option;
1169 	enum split_lock_detect_state	state;
1170 } sld_options[] __initconst = {
1171 	{ "off",	sld_off   },
1172 	{ "warn",	sld_warn  },
1173 	{ "fatal",	sld_fatal },
1174 	{ "ratelimit:", sld_ratelimit },
1175 };
1176 
1177 static struct ratelimit_state bld_ratelimit;
1178 
1179 static unsigned int sysctl_sld_mitigate = 1;
1180 static DEFINE_SEMAPHORE(buslock_sem);
1181 
1182 #ifdef CONFIG_PROC_SYSCTL
1183 static struct ctl_table sld_sysctls[] = {
1184 	{
1185 		.procname       = "split_lock_mitigate",
1186 		.data           = &sysctl_sld_mitigate,
1187 		.maxlen         = sizeof(unsigned int),
1188 		.mode           = 0644,
1189 		.proc_handler	= proc_douintvec_minmax,
1190 		.extra1         = SYSCTL_ZERO,
1191 		.extra2         = SYSCTL_ONE,
1192 	},
1193 	{}
1194 };
1195 
1196 static int __init sld_mitigate_sysctl_init(void)
1197 {
1198 	register_sysctl_init("kernel", sld_sysctls);
1199 	return 0;
1200 }
1201 
1202 late_initcall(sld_mitigate_sysctl_init);
1203 #endif
1204 
1205 static inline bool match_option(const char *arg, int arglen, const char *opt)
1206 {
1207 	int len = strlen(opt), ratelimit;
1208 
1209 	if (strncmp(arg, opt, len))
1210 		return false;
1211 
1212 	/*
1213 	 * Min ratelimit is 1 bus lock/sec.
1214 	 * Max ratelimit is 1000 bus locks/sec.
1215 	 */
1216 	if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 &&
1217 	    ratelimit > 0 && ratelimit <= 1000) {
1218 		ratelimit_state_init(&bld_ratelimit, HZ, ratelimit);
1219 		ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE);
1220 		return true;
1221 	}
1222 
1223 	return len == arglen;
1224 }
1225 
1226 static bool split_lock_verify_msr(bool on)
1227 {
1228 	u64 ctrl, tmp;
1229 
1230 	if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl))
1231 		return false;
1232 	if (on)
1233 		ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1234 	else
1235 		ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1236 	if (wrmsrl_safe(MSR_TEST_CTRL, ctrl))
1237 		return false;
1238 	rdmsrl(MSR_TEST_CTRL, tmp);
1239 	return ctrl == tmp;
1240 }
1241 
1242 static void __init sld_state_setup(void)
1243 {
1244 	enum split_lock_detect_state state = sld_warn;
1245 	char arg[20];
1246 	int i, ret;
1247 
1248 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1249 	    !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1250 		return;
1251 
1252 	ret = cmdline_find_option(boot_command_line, "split_lock_detect",
1253 				  arg, sizeof(arg));
1254 	if (ret >= 0) {
1255 		for (i = 0; i < ARRAY_SIZE(sld_options); i++) {
1256 			if (match_option(arg, ret, sld_options[i].option)) {
1257 				state = sld_options[i].state;
1258 				break;
1259 			}
1260 		}
1261 	}
1262 	sld_state = state;
1263 }
1264 
1265 static void __init __split_lock_setup(void)
1266 {
1267 	if (!split_lock_verify_msr(false)) {
1268 		pr_info("MSR access failed: Disabled\n");
1269 		return;
1270 	}
1271 
1272 	rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1273 
1274 	if (!split_lock_verify_msr(true)) {
1275 		pr_info("MSR access failed: Disabled\n");
1276 		return;
1277 	}
1278 
1279 	/* Restore the MSR to its cached value. */
1280 	wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache);
1281 
1282 	setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT);
1283 }
1284 
1285 /*
1286  * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking
1287  * is not implemented as one thread could undo the setting of the other
1288  * thread immediately after dropping the lock anyway.
1289  */
1290 static void sld_update_msr(bool on)
1291 {
1292 	u64 test_ctrl_val = msr_test_ctrl_cache;
1293 
1294 	if (on)
1295 		test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT;
1296 
1297 	wrmsrl(MSR_TEST_CTRL, test_ctrl_val);
1298 }
1299 
1300 static void split_lock_init(void)
1301 {
1302 	/*
1303 	 * #DB for bus lock handles ratelimit and #AC for split lock is
1304 	 * disabled.
1305 	 */
1306 	if (sld_state == sld_ratelimit) {
1307 		split_lock_verify_msr(false);
1308 		return;
1309 	}
1310 
1311 	if (cpu_model_supports_sld)
1312 		split_lock_verify_msr(sld_state != sld_off);
1313 }
1314 
1315 static void __split_lock_reenable_unlock(struct work_struct *work)
1316 {
1317 	sld_update_msr(true);
1318 	up(&buslock_sem);
1319 }
1320 
1321 static DECLARE_DELAYED_WORK(sl_reenable_unlock, __split_lock_reenable_unlock);
1322 
1323 static void __split_lock_reenable(struct work_struct *work)
1324 {
1325 	sld_update_msr(true);
1326 }
1327 static DECLARE_DELAYED_WORK(sl_reenable, __split_lock_reenable);
1328 
1329 /*
1330  * If a CPU goes offline with pending delayed work to re-enable split lock
1331  * detection then the delayed work will be executed on some other CPU. That
1332  * handles releasing the buslock_sem, but because it executes on a
1333  * different CPU probably won't re-enable split lock detection. This is a
1334  * problem on HT systems since the sibling CPU on the same core may then be
1335  * left running with split lock detection disabled.
1336  *
1337  * Unconditionally re-enable detection here.
1338  */
1339 static int splitlock_cpu_offline(unsigned int cpu)
1340 {
1341 	sld_update_msr(true);
1342 
1343 	return 0;
1344 }
1345 
1346 static void split_lock_warn(unsigned long ip)
1347 {
1348 	struct delayed_work *work;
1349 	int cpu;
1350 
1351 	if (!current->reported_split_lock)
1352 		pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n",
1353 				    current->comm, current->pid, ip);
1354 	current->reported_split_lock = 1;
1355 
1356 	if (sysctl_sld_mitigate) {
1357 		/*
1358 		 * misery factor #1:
1359 		 * sleep 10ms before trying to execute split lock.
1360 		 */
1361 		if (msleep_interruptible(10) > 0)
1362 			return;
1363 		/*
1364 		 * Misery factor #2:
1365 		 * only allow one buslocked disabled core at a time.
1366 		 */
1367 		if (down_interruptible(&buslock_sem) == -EINTR)
1368 			return;
1369 		work = &sl_reenable_unlock;
1370 	} else {
1371 		work = &sl_reenable;
1372 	}
1373 
1374 	cpu = get_cpu();
1375 	schedule_delayed_work_on(cpu, work, 2);
1376 
1377 	/* Disable split lock detection on this CPU to make progress */
1378 	sld_update_msr(false);
1379 	put_cpu();
1380 }
1381 
1382 bool handle_guest_split_lock(unsigned long ip)
1383 {
1384 	if (sld_state == sld_warn) {
1385 		split_lock_warn(ip);
1386 		return true;
1387 	}
1388 
1389 	pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n",
1390 		     current->comm, current->pid,
1391 		     sld_state == sld_fatal ? "fatal" : "bogus", ip);
1392 
1393 	current->thread.error_code = 0;
1394 	current->thread.trap_nr = X86_TRAP_AC;
1395 	force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1396 	return false;
1397 }
1398 EXPORT_SYMBOL_GPL(handle_guest_split_lock);
1399 
1400 static void bus_lock_init(void)
1401 {
1402 	u64 val;
1403 
1404 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1405 		return;
1406 
1407 	rdmsrl(MSR_IA32_DEBUGCTLMSR, val);
1408 
1409 	if ((boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) &&
1410 	    (sld_state == sld_warn || sld_state == sld_fatal)) ||
1411 	    sld_state == sld_off) {
1412 		/*
1413 		 * Warn and fatal are handled by #AC for split lock if #AC for
1414 		 * split lock is supported.
1415 		 */
1416 		val &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1417 	} else {
1418 		val |= DEBUGCTLMSR_BUS_LOCK_DETECT;
1419 	}
1420 
1421 	wrmsrl(MSR_IA32_DEBUGCTLMSR, val);
1422 }
1423 
1424 bool handle_user_split_lock(struct pt_regs *regs, long error_code)
1425 {
1426 	if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal)
1427 		return false;
1428 	split_lock_warn(regs->ip);
1429 	return true;
1430 }
1431 
1432 void handle_bus_lock(struct pt_regs *regs)
1433 {
1434 	switch (sld_state) {
1435 	case sld_off:
1436 		break;
1437 	case sld_ratelimit:
1438 		/* Enforce no more than bld_ratelimit bus locks/sec. */
1439 		while (!__ratelimit(&bld_ratelimit))
1440 			msleep(20);
1441 		/* Warn on the bus lock. */
1442 		fallthrough;
1443 	case sld_warn:
1444 		pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n",
1445 				    current->comm, current->pid, regs->ip);
1446 		break;
1447 	case sld_fatal:
1448 		force_sig_fault(SIGBUS, BUS_ADRALN, NULL);
1449 		break;
1450 	}
1451 }
1452 
1453 /*
1454  * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should
1455  * only be trusted if it is confirmed that a CPU model implements a
1456  * specific feature at a particular bit position.
1457  *
1458  * The possible driver data field values:
1459  *
1460  * - 0: CPU models that are known to have the per-core split-lock detection
1461  *	feature even though they do not enumerate IA32_CORE_CAPABILITIES.
1462  *
1463  * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use
1464  *      bit 5 to enumerate the per-core split-lock detection feature.
1465  */
1466 static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = {
1467 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		0),
1468 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		0),
1469 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		0),
1470 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	1),
1471 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	1),
1472 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	1),
1473 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		1),
1474 	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		1),
1475 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	1),
1476 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		1),
1477 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		1),
1478 	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE,		1),
1479 	{}
1480 };
1481 
1482 static void __init split_lock_setup(struct cpuinfo_x86 *c)
1483 {
1484 	const struct x86_cpu_id *m;
1485 	u64 ia32_core_caps;
1486 
1487 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1488 		return;
1489 
1490 	m = x86_match_cpu(split_lock_cpu_ids);
1491 	if (!m)
1492 		return;
1493 
1494 	switch (m->driver_data) {
1495 	case 0:
1496 		break;
1497 	case 1:
1498 		if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES))
1499 			return;
1500 		rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps);
1501 		if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT))
1502 			return;
1503 		break;
1504 	default:
1505 		return;
1506 	}
1507 
1508 	cpu_model_supports_sld = true;
1509 	__split_lock_setup();
1510 }
1511 
1512 static void sld_state_show(void)
1513 {
1514 	if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
1515 	    !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
1516 		return;
1517 
1518 	switch (sld_state) {
1519 	case sld_off:
1520 		pr_info("disabled\n");
1521 		break;
1522 	case sld_warn:
1523 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1524 			pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n");
1525 			if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
1526 					      "x86/splitlock", NULL, splitlock_cpu_offline) < 0)
1527 				pr_warn("No splitlock CPU offline handler\n");
1528 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1529 			pr_info("#DB: warning on user-space bus_locks\n");
1530 		}
1531 		break;
1532 	case sld_fatal:
1533 		if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) {
1534 			pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n");
1535 		} else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) {
1536 			pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n",
1537 				boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ?
1538 				" from non-WB" : "");
1539 		}
1540 		break;
1541 	case sld_ratelimit:
1542 		if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT))
1543 			pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst);
1544 		break;
1545 	}
1546 }
1547 
1548 void __init sld_setup(struct cpuinfo_x86 *c)
1549 {
1550 	split_lock_setup(c);
1551 	sld_state_setup();
1552 	sld_state_show();
1553 }
1554 
1555 #define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
1556 
1557 /**
1558  * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
1559  *
1560  * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
1561  * a hybrid processor. If the processor is not hybrid, returns 0.
1562  */
1563 u8 get_this_hybrid_cpu_type(void)
1564 {
1565 	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1566 		return 0;
1567 
1568 	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
1569 }
1570